Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
NASA Astrophysics Data System (ADS)
Stephen, Christopher; Kumaraswamy, S.
2018-01-01
An experimental investigation of the cavitation behaviour of a radial flow pump of metric specific speed 23.62 rpm having different leading edge profiles of the vane is presented. The pump was operated for flow rates from 80 to 120% of the best efficiency point. The measurement included noise and vibration signals apart from the hydraulic parameters. The results exhibited the trends of noise and vibration with respect to percentage of head drops for all operating conditions. It was concluded that the trends were totally different for various flow rates. Hence it is suggested that the criteria to be used for detecting the early cavitation in pump based on noise and vibration signals should be a function of the flow rate. Further, it was found that the range of frequency band for noise and vibration was within 5 kHz with reference to the magnitude of fluctuation. The repeatable predominant frequency of vibration for prediction of cavitation behaviour of this particular pump was established as 0.992 kHz.
Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model
NASA Astrophysics Data System (ADS)
Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.
2010-08-01
The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.
Nakamura, Ryosuke; Hamada, Norio
2015-05-14
Vibrational energy flow in the electronic ground state of photoactive yellow protein (PYP) is studied by ultrafast infrared (IR) pump-visible probe spectroscopy. Vibrational modes of the chromophore and the surrounding protein are excited with a femtosecond IR pump pulse, and the subsequent vibrational dynamics in the chromophore are selectively probed with a visible probe pulse through changes in the absorption spectrum of the chromophore. We thus obtain the vibrational energy flow with four characteristic time constants. The vibrational excitation with an IR pulse at 1340, 1420, 1500, or 1670 cm(-1) results in ultrafast intramolecular vibrational redistribution (IVR) with a time constant of 0.2 ps. The vibrational modes excited through the IVR process relax to the initial ground state with a time constant of 6-8 ps in parallel with vibrational cooling with a time constant of 14 ps. In addition, upon excitation with an IR pulse at 1670 cm(-1), we observe the energy flow from the protein backbone to the chromophore that occurs with a time constant of 4.2 ps.
Vibration analysis of large centrifugal pump rotors
NASA Astrophysics Data System (ADS)
Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.
2013-12-01
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.
Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James
2012-01-01
Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.
NASA Astrophysics Data System (ADS)
Yu, Y. H.; Liu, D.; Yang, X. F.; Si, J.
2017-08-01
To analyse the flow characteristics of leakage as well as the mechanism of selfexcited vibration in valves, the method of characteristics was used to assess the effect of flexible valve leakage on the self-excited vibration in water-supply pump system. Piezometric head in upstream of the valve as a function of time was obtained. Two comparative schemes were proposed to simulate the process of self-excited vibration by changing the length, the material of the pipeline and the leakage of valves in the above pump system. It is shown that the length and material of the pipe significantly affect the amplitude and cycle of self-excited vibration as well as the increasing rate of the vibration amplitude. In addition, the leakage of the valve has little influence on the amplitude and cycle of self-excited vibration, but has a significant effect on the increasing rate of vibration amplitude. A pipe explosion accident may occur without the inhibiting of self-excited vibration.
Unsteady response of flow system around balance piston in a rocket pump
NASA Astrophysics Data System (ADS)
Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.
2013-03-01
In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.
Hardware and circuit design of a vibrational cleaner
NASA Astrophysics Data System (ADS)
Fhong Soon, Chin; Thong, Kok Tung; Sek Tee, Kian; Nayan, Nafarizal; Khairul Ahmad, Mohd; Nurashikin Nordin, Anis
2016-11-01
Microtissue can be grown on soft substrates of hydrogel or liquid crystal gel. These gels are adherent to the microtissues and they may interfere fluorescence imaging as background noise due to their absorbance property. A microfluidic vibrational cleaner with polydimethylsiloxane (PDMS) microfluidic chip platform was proposed and developed to remove the residual gel of liquid crystal adhered to the microtissues. The microtissues were placed in a microfluidic chip attaching to a microfluidic vibrational platform. In the system design, two motorised vibrators vibrating attached to a microfluidic platform and generating vibration signals at 148 Hz and 0.89 Grms to clean the microtissues. The acceleration of the vibration increased gradually from 0 to 0.96 Grms when the duty cycle of PWM pulses increased from 50 - 90%. It dropped slightly to 0.89 Grms at 100% duty cycle. Irrigation water valve was designed to control the fluid flow from water pump during cleaning process. Water pumps were included to flush the channels of the microfluidic device. The signals in controlling the pump, motor and valve were linearly proportional to the duty cycles of the pulse width modulation signals generated from a microcontroller.
NASA Astrophysics Data System (ADS)
Emile, Olivier; Emile, Janine
2016-12-01
Most of the vibrating mechanisms of optofluidic systems are based on local heating of membranes that induces liquid flow.We report here a new type of diaphragm pump in a liquid film based on the optical radiation pressure force. We modulate a low power laser that generates, at resonance, a symmetric vibration of a free standing soap film. The film lifetime strongly varies from 56 s at low power (2 mW) to 2 s at higher power (70 mW). Since the laser beam only acts mechanically on the interfaces, such a pump could be easily implemented on delicate microequipment on chips or in biological systems.
Introduction to Design and Analysis of High Speed Pumps
2006-11-01
for public release, distribution unlimited 13 . SUPPLEMENTARY NOTES See also ADM002051., The original document contains color images. 14. ABSTRACT 15...fluctuations in the pump and the installation, vibration and noise). Figure ( 13 ) presents schematically, for a meridional section in a radial flow pump...impeller. Figure (14) illustrates what can be observed in different types of pumps when recirculation is present. Figure 13 : Schematic Illustration
The Shock and Vibration Digest. Volume 12, Number 4.
1980-04-01
self -excited oscillations. a great deal of experience has been gained in applying these techniques to practical situations. This Con- INVITED...Outlet Flow Field of Axial Flow Fans Key Words: Pumps, Compressors, Self -excited vibrations, Surges H. Fujita Mechanical Engrg. Res. Lab., Hitachi, Ltd...Tsu- Investigations concerned with the stability of stationary chiura, 300 Japan, NOISE-CON 79, Machinery Noise states and the possibility of self
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.
1993-01-01
Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.
Laser-induced vibration of a thin soap film.
Emile, Olivier; Emile, Janine
2014-09-21
We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.
Kobayashi, S; Owada, N; Yambe, T; Nitta, S; Fukuju, T; Hongoh, T; Hashimoto, H
1999-08-01
A vibrating flow pump (VFP) can generate high frequency oscillated blood flow within 10-30 Hz by the oscillation of its central tube. A totally implantable artificial heart using a VFP is being developed as a unique type of blood pump. In this study, left ventricular (LV) assist circulation was performed using a VFP. The total vascular resistance and driving frequency of the VFP were estimated from their relationship. The effect of oscillation on the vascular system was studied by the frequency analysis method and vascular impedance. Adult goats were anesthetized by halothane using an inhaler and a left fourth thoracotomy was performed. The inflow cannula was inserted into the left ventricle, and the outflow cannula was sutured to the descending aorta. The VFP and a centrifugal pump were set in parallel for alternation and comparison. The driving frequency of the VFP was changed and included 15, 20, 25, and 30 Hz. The hemodynamic parameters were continuously recorded during experiments by a digital audio tape (DAT) data recorder. The internal pressure of the left ventricular cavity and aortic pressure were monitored by the pressure manometers continuously. One hundred percent LV assistance was judged by the separation of LV and aortic pressure. The total vascular resistance was decreased by the start of operation of each pump. The decrease during flow using the VFP was not as large as that using a centrifugal pump (CP). The arterial input impedance during oscillated blood flow by the VFP showed a slow curve appearance. It was similar to the frequency characteristics curve of natural heart beats within the lower frequencies. The study of arterial impedance may be important for the estimation of the reflection of the pulsatile wave from the arterial branch, among other things.
An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis
NASA Astrophysics Data System (ADS)
Tan, Chek Zin; Leong, M. Salman
Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.
Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang
2017-08-01
In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.
Numerical simulation of compressible fluid flow in an ultrasonic suction pump.
Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro
2016-08-01
Characteristics of an ultrasonic suction pump that uses a vibrating piston surface and a pipe are numerically simulated and compared with experimental results. Fluid analysis based on the finite-difference time-domain (FDTD) routine is performed, where the nonlinear term and the moving fluid-surface boundary condition are considered. As a result, the suction mechanism of the pump is found to be similar to that of a check valve, where the gap is open during the inflow phase, and it is nearly closed during the outflow phase. The effects of Reynolds number, vibration amplitude and gap thickness on the pump performance are analyzed. The calculated result is in good agreement with the previously measured results. Copyright © 2016 Elsevier B.V. All rights reserved.
Conference on Fluid Machinery, 8th, Budapest, Hungary, Sept. 1987, Proceedings. Volumes 1 & 2
NASA Astrophysics Data System (ADS)
Szabo, A.; Kisbocskoi, L.
The present conference on turbomachine fluid mechanics gives attention to the analysis of labyrinth seals, irrigation turbomachinery, axial-flow fans, poppet valves, the generation of Karman vortices, self-rectifying Wells-type air turbines, computer simulations for water-supply systems, the computation of meridional flow in turbomachines, entrained air effects on vortex pump performance, the three-dimensional potential flow in a draft tube, and hydro powerplant diagnostic methods. Also discussed are a mathematical model for the initiation of cavitation wear, cryogenic flow in ejectors, flow downstream of guide vanes in a Kaplan turbine, unsteady flow in rotating cascades, novel methods for turbomachine vibration monitoring, cavitation breakdown in centrifugal pumps, test results for Banki turbines, centrifugal compressor return-channel flow, performance predictions for regenerative turbomachines, and secondary flows in a centrifugal pump.
Pulsations Induced by Vibrations in Aircraft Engine Two-Stage Pump
NASA Astrophysics Data System (ADS)
Gafurov, S. A.; Salmina, V. A.; Handroos, H.
2018-01-01
This paper describes a phenomenon of induced pressure pulsations inside a two-stage aircraft engine pump. A considered pumps consists of a screw-centrifugal and gear stages. The paper describes the cause of two-stage pump elements loading. A number of hypothesis of pressure pulsations generation inside a pump were considered. The main focus in this consideration is made on phenomena that are not related to pump mode of operation. Provided analysis has shown that pump vibrations as well as pump elements self-oscillations are the main causes that lead to trailing vortices generation. Analysis was conducted by means FEM and CFD simulations as well by means of experimental investigations to obtain natural frequencies and flow structure inside a screw-centrifugal stage. To perform accurate simulations adequate boundary conditions were considered. Cavitation and turbulence phenomena have been also taken into account. Obtained results have shown generated trailing vortices lead to high-frequency loading of the impeller of screw-centrifugal stage and can be a cause of the bearing damage.
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1993-01-01
The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.
Dynamic Characteristics and Stability Analysis of Space Shuttle Main Engine Oxygen Pump
NASA Technical Reports Server (NTRS)
Gunter, Edgar J.; Branagan, Lyle
1991-01-01
The dynamic characteristics of the Space Shuttle high pressure oxygen pump are presented. Experimental data is presented to show the vibration spectrum and response under actual engine operation and also in spin pit testing for balancing. The oxygen pump appears to be operating near a second critical speed and is sensitive to self excited aerodynamic cross coupling forces in the turbine and pump. An analysis is presented to show the improvement in pump stability by the application of turbulent flow seals, preburner seals, and pump shaft cross sectional modifications.
Quantitative analysis of backflow of reversible pump-turbine in generating mode
NASA Astrophysics Data System (ADS)
Liu, K. H.; Zhang, Y. N.; Li, J. W.; Xian, H. Z.
2016-05-01
Significant vibration and pressure fluctuations are usually observed when pump- turbine is operated during the off-design conditions, especially turbine brake and runaway. The root cause of these instability phenomena is the abnormal unsteady flow (especially the backflow) inside the pump-turbine. In the present paper, numerical simulation method is adopted to investigate the characteristics of the flow inside the whole passage of pump-turbine with two guide vane openings (6° and 21° respectively) and three kinds of operating conditions (turbine, runaway and turbine braking respectively). A quantitative analysis of backflow is performed in both the axial and radial directions and the generation and development of backflow in the pump turbine are revealed with great details.
Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers
NASA Astrophysics Data System (ADS)
Dlott, Dana
2008-03-01
Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim
2015-01-01
Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.
Dual-Pump CARS Measurements in the University of Virginia's Dual-Mode Scramjet: Configuration "C"
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca; Gallo, Emanuela; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, James
2013-01-01
Measurements have been conducted at the University of Virginia Supersonic Combustion Facility in configuration C of the dual-mode scramjet. This is a continuation of previously published works on configuration A. The scramjet is hydrogen fueled and operated at two equivalence ratios, one representative of the scram mode and the other of the ram mode. Dual-pump CARS was used to acquire the mole fractions of the major species as well as the rotational and vibrational temperatures of N2. Developments in methods and uncertainties in fitting CARS spectra for vibrational temperature are discussed. Mean quantities and the standard deviation of the turbulent fluctuations at multiple planes in the flow path are presented. In the scram case the combustion of fuel is completed before the end of the measurement domain, while for the ram case the measurement domain extends into the region where the flow is accelerating and combustion is almost completed. Higher vibrational than rotational temperature is observed in those parts of the hot combustion plume where there is substantial H2 (and hence chemical reaction) present.
Fabrication of micro metallic valve and pump
NASA Astrophysics Data System (ADS)
Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi
2010-03-01
Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.
Vibrational energy transfer in OH X 2Pi(i), v = 2 and 1
NASA Technical Reports Server (NTRS)
Raiche, George A.; Jeffries, Jay B.; Rensberger, Karen J.; Crosley, David R.
1990-01-01
Using an IR-pump/UV-probe method in a flow discharge cell, vibrational energy transfer in OH X 2Pi(i) has been studied. OH is prepared in v = 2 by overtone excitation, and the time evolution of population in v = 2 and 1 monitored by laser-induced fluorescence. Rate constants for vibrational relaxation by the colliders H2O, NH3, CO2, and CH4 were measured. Ratios of rate constants for removal from the two states, k2/k1, range from two to five.
Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S
1997-01-01
We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.
Centaur liquid oxygen boost pump vibration test
NASA Technical Reports Server (NTRS)
Tang, H. M.
1975-01-01
The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
Instability in Rotating Machinery
NASA Technical Reports Server (NTRS)
1985-01-01
The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.
Lesnicki, Dominika; Sulpizi, Marialore
2018-06-13
What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.
Ultrafast vibrational energy flow in water monomers in acetonitrile
NASA Astrophysics Data System (ADS)
Dahms, Fabian; Costard, Rene; Nibbering, Erik T. J.; Elsaesser, Thomas
2016-05-01
Vibrational relaxation of the OH stretching and bending modes of water monomers in acetonitrile is studied by two-color pump-probe experiments in a frequency range from 1400 to 3800 cm-1. Measurements with resonant infrared excitation reveal vibrational lifetimes of 6.4 ± 1.0 ps of the OH stretching modes and 4.0 ± 0.5 ps of the OH bending mode. After OH stretching excitation, the OH bending mode shows an instantaneous response, a hallmark of the anharmonic coupling of stretching and bending modes, and a delayed population buildup by relaxation of the stretching via the bending mode. The relaxation steps are discussed within the framework of current theoretical pictures of water's vibrational relaxation.
Evaluation of Weapons’ Combustion Products in Armored Vehicles
1989-01-01
H.S, SO HC ) Particulates Filter Gravimetry This program also addressed other pollutants including volatile organic compounds, aldehydes and nitro...the number of samples collected due to failure of pumps as a result of vibrational stress, precipitation , restriction of sample flow tube in vests, or
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
The mechanism performance of improved oil pump with micro-structured vanes
NASA Astrophysics Data System (ADS)
Li, Ping; Xie, Jin; Qi, Dongtao; Li, Houbu
2017-09-01
The wear of oil pump vanes easily leads to the noise and vibration, even results the decrease of volume efficiency and total efficiency. In order to reduce the friction and improve the lubrication between the vane and the pump inner wall, the micro-machining of micro-structure on the oil pump vanes is proposed. First, the micro-V-grooves with the depth ranging from 500μm to 50μm were micro-grinding on the top of the vanes by a diamond grinding wheel. Secondly, the experiments were conducted to test the actual flow rate, the output power and the overall efficiency of the oil pump with and without the micro-groove vanes. Then, the computational fluid dynamics (CFD) method was adopted to simulate the pump internal flow field. Finally, the micro-flow field between the internal wall of the oil pump and the top of micro-grooved vanes was analyzed. The results shows that the pump overall efficiency increased as the decrease of micro-groove depth from 500 μm to 50μm and not be affected by the rotate speed and working frequency of the pump rotator. Especially the micro-groove with depth of 50μm, the actual flow rate, the output power and the overall efficiency reached to the maximum. From CFD simulation, the velocity of the micro-flow between the surfaces of the vane and inner wall was larger than the pump linear velocity when the microstructure depth is larger than 50μm, leading to an internal leakage. When the micro-groove depth is between10-50μm, the velocity of the micro-flow was less than the pump linear velocity and no internal leakage was found, but the oil film thickness is too small to be beneficial to lubrication according to the fluid dynamic characteristics. Thus, for the oil pump equipping with micro-grooved vane with the depth of 50 μm, the internal leakage not only is avoided but the lubrication efficiency is improved and the oil pump efficiency is also enhanced.
Maeda, Hiroyuki; Iwase, Hideaki; Kanda, Akio; Morohashi, Itaru; Kaneko, Kazuo; Maeda, Mutsuhiro; Kakinuma, Yuki; Takei, Yusuke; Amemiya, Shota; Mitsui, Kazuyuki
2017-01-01
After an emergency or disaster, subsequent trauma can cause severe bleeding and this can often prove fatal, so promptly stopping that bleeding is crucial to preventing avoidable trauma deaths. A tourniquet is often used to restrict blood flow to an extremity. In operation and hospital, the tourniquet systems currently in use are pneumatically actuated by an air compressor, so they must have a steady power supply. These devices have several drawbacks: they vibrate and are noisy since they are pneumatically actuated and they are far from portable since they are large and heavy. Presumably, the drawbacks of pneumatic tourniquets could be overcome by developing a small, lightweight, vibration-free, quiet, and battery-powered tourniquet system. The current study built a small, vibration-free electrohydrodynamic (EHD) pump and then used that pump to restrict blood flow to the leg of rats in an experiment. This study explored the optimal conditions for effective restriction of blood flow by assessing biochemical and musculoskeletal complications following the restriction of blood flow, and this study also examined whether or not an EHD pump could be used to actuate a tourniquet system. A tourniquet cuff (width 12 mm × length 150 mm, material: polyolefin) was placed on the thigh of Wistar rats and pressure was applied for 2 hours by a device that uses EHD phenomena to generate pressure (an EHD pump). Animals were divided into four groups based on how much compressive pressure was applied with a tourniquet: 40 kPa (300 mm Hg, n = 13), 30 kPa (225 mm Hg, n = 12), 20 kPa (150 mm Hg, n = 15), or 0 kPa (controls, n = 25). Tissue oxygen saturation (regional oxygen saturation, denoted here as rSO 2 ) was measured to assess the restriction of blood flow. To assess behavior once blood flow resumed, animal activity was monitored for third day and the amount of movement was counted with digital counters. Body weight was measured before and after the behavioral experiment, and changes in body weight were determined. Blood was sampled after a behavioral experiment and biochemically assessed and creatine kinase (CK) levels were measured. Tissue oxygen saturation decreased significantly in each group. When a tourniquet was applied at a pressure of 30 kPa or more, tissue oxygen saturation decreased significantly. The amount of movement (the count) over third day decreased more when a tourniquet was applied at a higher pressure. The control group resumed the same amount of movement per day second after blood flow resumed. Animals to which a tourniquet was applied at a pressure of 20 or 30 kPa resumed the same amount of movement third day after blood flow resumed. In contrast, animals to which a tourniquet was applied at a pressure of 40 kPa did not resume the same amount of movement third day after blood flow resumed. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had a significantly lower body weight in comparison to the control group. After the behavioral experiment, animals to which a tourniquet was applied at a pressure of 40 kPa had significantly elevated CK levels in comparison to the control group. A relationship between blood flow restriction pressure and tissue oxygen saturation was noted. rSO 2 measurement can be used to assess the restriction of blood flow during surgery. On the basis of the decrease in rSO 2 , blood flow was effectively restricted at a pressure of 30 kPa or more. When, however, blood flow was restricted at a pressure of 40 kPa, weight loss and decreased movement were noted and CK levels increased after the behavioral experiment. Thus, complications had presumably developed due to damage to muscle tissue. These findings indicate that blood flow was effectively restricted in this experiment and they also indicate the existence of an optimal blood flow restriction pressure that does not cause musculoskeletal complications. The pressure in question was around 30 kPa. The tourniquet system that was developed here is actuated with an EHD pump that is still in the trial stages. That said, its pressure can readily be controlled and this pump could be used in a tourniquet system since it is quiet, vibration-free, and small. The pressure of this pump can be finely adjusted to prevent musculoskeletal complications.
Farrow, Darcie A; Smith, Eric R; Qian, Wei; Jonas, David M
2008-11-07
By analogy to the Raman depolarization ratio, vibrational quantum beats in pump-probe experiments depend on the relative pump and probe laser beam polarizations in a way that reflects vibrational symmetry. The polarization signatures differ from those in spontaneous Raman scattering because the order of field-matter interactions is different. Since pump-probe experiments are sensitive to vibrations on excited electronic states, the polarization anisotropy of vibrational quantum beats can also reflect electronic relaxation processes. Diagrammatic treatments, which expand use of the symmetry of the two-photon tensor to treat signal pathways with vibrational and vibronic coherences, are applied to find the polarization anisotropy of vibrational and vibronic quantum beats in pump-probe experiments for different stages of electronic relaxation in square symmetric molecules. Asymmetric vibrational quantum beats can be distinguished from asymmetric vibronic quantum beats by a pi phase jump near the center of the electronic spectrum and their disappearance in the impulsive limit. Beyond identification of vibrational symmetry, the vibrational quantum beat anisotropy can be used to determine if components of a doubly degenerate electronic state are unrelaxed, dephased, population exchanged, or completely equilibrated.
NASA Astrophysics Data System (ADS)
Mekhonoshina, E. V.; Modorskii, V. Ya.
2016-10-01
This paper describes simulation of oscillation modes in the elastic rotor supports with the gas-dynamic flow influence on the rotor in the magnetic suspension in the course of computational experiments. The system of engineering analysis ANSYS 15.0 was used as a numerical tool. The finite volume method for gas dynamics and finite element method for evaluating components of the stress-strain state (SSS) were applied for computation. The research varied magnetic suspension rigidity and estimated the SSS components in the system "gas-dynamic flow - compressor rotor - magnetic suspensions." The influence of aeroelastic effects on the impeller and the rotor on the deformability of vibration magnetic suspension was detected.
Vibrations Detection in Industrial Pumps Based on Spectral Analysis to Increase Their Efficiency
NASA Astrophysics Data System (ADS)
Rachid, Belhadef; Hafaifa, Ahmed; Boumehraz, Mohamed
2016-03-01
Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analysis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.
Design Study for a Free-piston Vuilleumier Cycle Heat Pump
NASA Astrophysics Data System (ADS)
Matsue, Junji; Hoshino, Norimasa; Ikumi, Yonezou; Shirai, Hiroyuki
Conceptual design for a free-piston Vuilleumier cycle heat pump machine was proposed. The machine was designed based upon the numerical results of a dynamic analysis method. The method included the effect of self excitation vibration with dissipation caused by the flow friction of an oscillating working gas flow and solid friction of seals. It was found that the design values of reciprocating masses and spring constants proposed in published papers related to this study were suitable for practical use. The fundamental effects of heat exchanger elements on dynamic behaviors of the machine were clarified. It has been pointed out that some improvements were required for thermodynamic analysis of heat exchangers and working spaces.
Vibrational pumping and heating under SERS conditions: fact or myth?
Le Ru, E C; Etchegoin, P G
2006-01-01
We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.
Vortex-induced vibrations mitigation through a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Dai, H. L.; Abdelkefi, A.; Wang, L.
2017-01-01
The passive suppression mechanism of the vortex-induced vibrations (VIV) of the cylinder by means of an essentially nonlinear element, the nonlinear energy sink (NES) is investigated. The flow-induced loads on the cylinder are modeled using a prevalent van der Pol oscillator which is experimentally validated, coupling to the structural vibrations in the presence of the NES structure. Based on the coupled nonlinear governing equations of motion, the performed analysis indicates that the mass and damping of NES have significant effects on the coupled frequency and damping of the aero-elastic system, leading to the shift of synchronization region and mitigation of vibration responses. It is demonstrated that the coupled system of flow-cylinder-NES behaves resonant interactions, showing periodic, aperiodic, and multiple stable responses which depend on the values of the NES parameters. In addition, it is found that the occurrence of multiple stable responses can enhance the nonlinear energy pumping effect, resulting in the increment of transferring energy from the flow via the cylinder to the NES, which is related to the essential nonlinearity of the sink stiffness. This results in a significant reduction in the VIV amplitudes of the primary circular cylinder for appropriate NES parameter values.
Gyro-effect stabilizes unstable permanent maglev centrifugal pump.
Qian, Kun-Xi
2007-03-01
According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.
NASA Technical Reports Server (NTRS)
Lempert, Walter R.; Zhang, Boying; Miles, Richard B.; Diskin, Glenn
1991-01-01
The use of an O2:He stimulated Raman cell to generate the Stokes beam for the Raman vibrational pumping step of the RELIEF (Raman Excitation plus Laser-Induced Electronic Fluorescence) flow tagging method is reported. Use of the Raman cell rather than a dye laser provides pump and Stokes beams which are automatically frequency matched and temporally and spatially overlapped. The Nd:YAG pump laser is operated multilongitudinal mode, which eliminates the need for injection seeding, resulting in decreased operation complexity and improved stability with respect to acoustic noise. Results are presented for 1st Stokes conversion efficiency and stimulated Brillouin backscattering loss and are compared to the case of pure O2. Scanning CARS measurements of the Q-branch lineshape for both pure O2 and the O2:He mixture are also presented.
CNT based thermal Brownian motor to pump water in nanodevices
NASA Astrophysics Data System (ADS)
Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.
2016-11-01
Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.
Analysis of the pump-turbine S characteristics using the detached eddy simulation method
NASA Astrophysics Data System (ADS)
Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao
2015-01-01
Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.
Comprehensive experimental and numerical analysis of instability phenomena in pump turbines
NASA Astrophysics Data System (ADS)
Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.
2014-03-01
The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV). For several wicket gate positions, the flow fields in the vane-less space at runner inlet observed in the experiment are compared with the results of unsteady CFD flow simulations. Physical phenomena are visualized and insight to flow phenomena is given. Analyses using both results of simulation and measurement allow deriving a consistent explanation of the fluid mechanical mechanisms leading to the S-shaped instability of pump turbines.
A review of vibration problems in power station boiler feed pumps
NASA Technical Reports Server (NTRS)
France, David
1994-01-01
Boiler feed pump reliability and availability is recognized as important to the overall efficiency of power generation. Vibration monitoring is often used as a part of planned maintenance. This paper reviews a number of different types of boiler feed pump vibration problems describing some methods of solution in the process. It is hoped that this review may assist both designers and users faced with similar problems.
Cracked shaft detection on large vertical nuclear reactor coolant pump
NASA Technical Reports Server (NTRS)
Jenkins, L. S.
1985-01-01
Due to difficulty and radiation exposure associated with examination of the internals of large commercial nuclear reactor coolant pumps, it is necessary to be able to diagnose the cause of an excessive vibration problem quickly without resorting to extensive trial and error efforts. Consequently, it is necessary to make maximum use of all available data to develop a consistent theory which locates the problem area in the machine. This type of approach was taken at Three Mile Island, Unit #1, in February 1984 to identify and locate the cause of a continuously climbing vibration level of the pump shaft. The data gathered necessitated some in-depth knowledge of the pump internals to provide proper interpretation and avoid misleading conclusions. Therefore, the raw data included more than just the vibration characteristics. Pertinent details of the data gathered is shown and is necessary and sufficient to show that the cause of the observed vibration problem could logically only be a cracked pump shaft in the shaft overhang below the pump bearing.
Mechanism study on pressure fluctuation of pump-turbine runner with large blade lean angle
NASA Astrophysics Data System (ADS)
Yulin, Fan; Xuhe, Wang; Baoshan, Zhu; Dongyue, Zhou; Xijun, Zhou
2016-11-01
Excessive pressure fluctuations in the vaneless space can cause mechanical vibration and even mechanical failures in pump-turbine operation. Mechanism studies on the pressure fluctuations and optimization design of blade geometry to reduce the pressure fluctuations have important significance in industrial production. In the present paper, two pump-turbine runners with big positive and negative blade lean angle were designed by using a multiobjective design strategy. Model test showed that the runner with negative blade lean angle not only had better power performance, but also had lower pressure fluctuation than the runner with positive blade lean angle. In order to figure out the mechanism of pressure fluctuation reduction in the vaneless;jik8space, full passage model for both runners were built and transient CFD computations were conducted to simulate the flow states inside the channel. Detailed flow field analyses indicated that the difference of low-pressure area in the trailing edge of blade pressure side were the main causes of pressure fluctuation reduction in the vaneless space.
NASA Astrophysics Data System (ADS)
Baranov, G. A.; Efremov, Yu V.; Smirnov, A. S.; Frolov, K. S.; Shevchenko, Yu I.
1989-02-01
An investigation was made of the distributions of the gain and input energy per unit volume along the discharge chamber length in a CO2-N2-He mixture stream excited by an rf discharge. The dependences of the gain and discharge luminescence intensity on the coordinate x were determined along the direction of the gas flow. The discharge luminescence intensity was shown to characterize the input energy distribution along the X axis. Calculations were made of the small-signal gain in the rf discharge. Experimental data on the distributions of the input energy and of the electric field in the discharge and the average values of the kinetic coefficients were used in the calculations. The efficiency of pumping CO2 lasers with an rf discharge was found to be close to the dc pumping efficiency. The results obtained provide evidence of promising prospects for using an rf discharge in fast-flow industrial lasers.
Rovibrational optical pumping of a molecular beam
NASA Astrophysics Data System (ADS)
Cournol, A.; Pillet, P.; Lignier, H.; Comparat, D.
2018-03-01
The preparation of molecules in well-defined internal states is essential for various studies in fundamental physics and physical chemistry. It is thus of particular interest to find methods that increase the brightness of molecular beams. Here, we report on rotational and vibrational pumpings of a supersonic beam of barium monofluoride molecules. With respect to previous works, the time scale of optical vibrational pumping has been greatly reduced by enhancing the spectral power density in the vicinity of the appropriate molecular transitions. We demonstrate a complete transfer of the rovibrational populations lying in v″=1 -3 into the vibrational ground-state v″=0 . Rotational pumping, which requires efficient vibrational pumping, has been also demonstrated. According to a Maxwell-Boltzmann description, the rotational temperature of our sample has been reduced by a factor of ˜8 . In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude.
Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump
NASA Astrophysics Data System (ADS)
Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng
2017-06-01
In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.
Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes.
Sun, Hui; Xiao, Ruofu; Liu, Weichao; Wang, Fujun
2013-05-01
Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pump-turbines. Misaligned guide vanes (MGVs) are widely used to control the stability in the S region. There have been experimental investigations and computational fluid dynamics (CFD) simulations of scale models with aligned guide vanes and MGVs with spectral analyses of the S curve characteristics and the pressure pulsations in the frequency and time-frequency domains at runaway conditions. The course of the S characteristic is related to the centrifugal force and the large incident angle at low flow conditions with large vortices forming between the guide vanes and the blade inlets and strong flow recirculation inside the vaneless space as the main factors that lead to the S-shaped characteristics. Preopening some of the guide vanes enables the pump-turbine to avoid the influence of the S characteristic. However, the increase of the flow during runaway destroys the flow symmetry in the runner leading to all asymmetry forces on the runner that leads to hydraulic system oscillations. The MGV technique also increases the pressure fluctuations in the draft tube and has a negative impact on stable operation of the unit.
Vibration assessment for thrombus formation in the centrifugal pump.
Nakazawa, T; Makinouchi, K; Takami, Y; Glueck, J; Tayama, E; Nosé, Y
1997-04-01
To clarify the correlation of vibration and thrombus formation inside a rotary blood pump, 40 preliminary vibration studies were performed on pivot bearing centrifugal pumps. No such studies were found in the literature. The primary data acquisition equipment included an accelerometer (Isotron PE accelerometer, ENDEVCO, San Juan Capistrano, CA, U.S.A.), digitizing oscilloscope (TDS 420, Tektronix Inc., Pittsfield, MA, U.S.A.), and pivot bearing centrifugal pumps. The pump impeller was coupled magnetically to the driver magnet. The accelerometer was mounted on the top of the pump casing to sense radial and axial accelerations. To simulate the 3 common areas of thrombus formation, a piece of silicone rubber was attached to each of the following 3 locations as described: a circular shape on the center bottom of the impeller (CI), an eccentric shape on the bottom of the impeller (EI), and a circular shape on the center bottom casing (CC). A fast Fourier transform (FFT) method at 5 L/min against 100 mm Hg, with a pump rotating speed of 1,600 rpm was used. The frequency response of the vibration sensors used spans of 40 Hz to 2 kHz. The frequency domain was already integrated into the oscilloscope, allowing for comparison of the vibration results. The area of frequency domain at a radial direction was 206 +/- 12.7 mVHz in CI, 239.5 +/- 12.1 mVHz in EI, 365 +/- 12.9 mVHz in CC, and 163 +/- 7.9 mVHz in the control (control vs. CI p = 0.07, control vs. EI p < 0.001, control vs. CC p < 0.001, EI vs. CC p < 0.001, CI vs. CC p < 0.001). Three types of imitation thrombus formations were roughly distinguishable. These results suggested the possibility of detecting thrombus formation using vibration signals, and these studies revealed the usefulness of vibration monitoring to detect thrombus formation in a centrifugal pump.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-12-01
We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.
Magnetic shielding and vacuum test for passive hydrogen masers
NASA Technical Reports Server (NTRS)
Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.
1982-01-01
Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kris, Cetin C.; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort will provide developers with information such as transient flow phenomena at start up, impact of non-uniform inflows, system vibration and impact on the structure. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Time-accuracy of the scheme has been evaluated with simple test cases. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z
2008-05-01
The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.
Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.
Abraham, Baxter; Fan, Hao; Galoppini, Elena; Gundlach, Lars
2018-03-01
Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO 2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.
Occurrence of sub-synchronous vibration in a multistage turbine pump and its prevention
NASA Technical Reports Server (NTRS)
Kanai, Yanosuke; Saito, Shinobu
1994-01-01
It is because of the critical importance the prevention of vibration for high-load rotary machinery assumes in ensuring reliability of a plant as a whole that so many investigations and studies have been performed. A peculiar vibration encountered in a multistage turbine pump is presented and discussed. The pump was serving an active power plant in a part that was a veritable 'heart' of the entire plant, and the major vibration component was about 80 percent frequency of revolution. At first, the propagating stall was thought to be responsible, but the absence of higher harmonics made this presumption untenable. Or else, even though previous reports dealt with seemingly similar mechanical vibration troubles, they offer no clear diagnosis nor suggest simple remedial measures. It is for these reasons that the problem was investigated. Through fundamental tests and experiments, several insights into the nature of this anomalous vibration were gained, the fluid force that caused such a vibration was determined, and effective countermeasures were devised.
Study on vibration characteristics of the shaft system for a dredging pump based on FEM
NASA Astrophysics Data System (ADS)
Zhai, L. M.; Qin, L.; Liu, C. Y.; Liu, X.; He, L. Y.; He, Y.; Wang, Z. W.
2012-11-01
The dynamic characteristics of the shaft system for a dredging pump were studied with the Finite Element Method (FEM) by SAMCEF ROTOR. At first, the influence of the fluid-solid coupling interaction of mud water and impeller, water sealing and pump shaft on the lateral critical speeds were analyzed. The results indicated that the mud water must be taken into consideration, while the water sealing need not to. Then the effects of radial and thrust rolling bearings on the lateral critical speeds were discussed, which shows that the radial bearing close to the impeller has greatest impact on the 1st order critical speed. At last, the upper and lower limits of the critical speeds of lateral, axial and torsional vibration were calculated. The rated speed of the dredging pump was far less than the predicted critical speed, which can ensure the safe operation of the unit. Each vibration mode is also shown in this paper. This dynamic analysis method offers some reference value on the research of vibration and stability of the shaft system in dredging pump.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-11-01
We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.
A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2002-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.
Lynch, Michael S; Slenkamp, Karla M; Khalil, Munira
2012-06-28
Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ∼57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.
Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes
NASA Astrophysics Data System (ADS)
Buckup, Tiago; Motzkus, Marcus
2014-04-01
Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.
NASA Astrophysics Data System (ADS)
Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing
2017-07-01
The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.
NASA Astrophysics Data System (ADS)
Dedic, Chloe Elizabeth
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is developed for measuring internal energy distributions, species concentration, and pressure for highly dynamic gas-phase environments. Systems of interest include next-generation combustors, plasma-based manufacturing and plasma-assisted combustion, and high-speed aerodynamic flow. These challenging environments include spatial variations and fast dynamics that require the spatial and temporal resolution offered by hybrid fs/ps CARS. A novel dual-pump fs/ps CARS approach is developed to simultaneously excite pure-rotational and rovibrational Raman coherences for dynamic thermometry (300-2400 K) and detection of major combustion species. This approach was also used to measure single-shot vibrational and rotational energy distributions of the nonequilibrium environment of a dielectric barrier discharge plasma. Detailed spatial distributions and shot-to-shot fluctuations of rotational and vibrational temperatures spanning 325-450 K and 1200-5000 K were recorded across the plasma and surrounding flow, and are compared to plasma emission spectroscopy measurements. Dual-pump hybrid fs/ps CARS allows for concise, kHz-rate measurements of vibrational and rotational energy distributions or temperatures at equilibrium and nonequilibrium without nonresonant wave-mixing or molecular collisional interference. Additionally, a highly transient ns laser spark is explored using CARS to measure temperature and pressure behind the shock wave and temperature of the expanding plasma kernel. Vibrational energy distributions at the exit of a microscale gaseous detonation tube are presented. Theory required to model fs/ps CARS response, including nonthermal energy distributions, is presented. The impact of nonequilibrium on measurement accuracy is explored, and a coherent line-mixing model is validated with high-pressure measurements. Temperature and pressure sensitivity are investigated for multiple measurement configurations, and accuracy and precision is quantified as a function of signal-to-noise for the fs/ps CARS system.
Ultrashort-pulse-train pump and dump excitation of a diatomic molecule
NASA Astrophysics Data System (ADS)
de Araujo, Luís E. E.
2010-09-01
An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.
Ultrashort-pulse-train pump and dump excitation of a diatomic molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Luis E. E. de
An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.
Production of a Beam of Highly Vibrationally Excited CO Using Perturbations
NASA Astrophysics Data System (ADS)
Bartels, N.; Schäfer, T.; Hühnert, J.; Wodtke, A. M.; Field, R. W.
2012-06-01
For many experimentalists (especially those, who are not spectroscopists), molecular pertubations are a curse, as they make assignments and analysis of spectral data more difficult. Nevertheless, they can also be a boon! In this talk we will show how a molecular beam of CO in high vibrational states (v=17,18) can be prepared by an optical pumping scheme that we call PUMP-PUMP-PERTURB and DUMP (P^3D). P^3D exploits the loaning, via spin-orbit perturbations, of the large oscillator strength of the 4th positive system, A ^1 π ← X ^1 Σ ^+, to the triplet manifold. This allows some nominally spin-forbidden transitions to be exploited in multistep optical pumping schemes. The ability to {state-selectively} prepare CO in high vibrational states opens up new opportunities for molecular beam scattering experiments.
Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition
NASA Astrophysics Data System (ADS)
Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.
2012-11-01
In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.
Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G
2014-10-21
We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.
Luminorefrigeration: vibrational cooling of NaCs.
Wakim, A; Zabawa, P; Haruza, M; Bigelow, N P
2012-07-02
We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X(1)Σ(+)(v ≥ 4) into the vibrational ground state X(1)Σ(+)(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X(1)Σ(+)(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J(initial)=0-2 is only moderately affected resulting in J(final)=0-4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.
Simulating Energy Relaxation in Pump-Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.
Dettori, Riccardo; Ceriotti, Michele; Hunger, Johannes; Melis, Claudio; Colombo, Luciano; Donadio, Davide
2017-03-14
We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.
A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chan, William; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
NASA Astrophysics Data System (ADS)
Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng
2018-06-01
The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.
Effect of blade outlet angle on radial thrust of single-blade centrifugal pump
NASA Astrophysics Data System (ADS)
Nishi, Y.; Fukutomi, J.; Fujiwara, R.
2012-11-01
Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.
Optical control of the coherent acoustic vibration of metal nanoparticles
NASA Astrophysics Data System (ADS)
Arbouet, A.; Del Fatti, N.; Vallee, F.
2006-04-01
Optical control of the coherent breathing vibrations of silver nanospheres is demonstrated using a high-sensitivity femtosecond pump-probe technique in a double-pump pulse configuration. Oscillation of the fundamental mode that usually dominates the time-domain vibrational response can thus be stopped, permitting observation of the first order radial mode and determination of its properties. These are found to be in agreement with the predictions of the model of an elastic sphere embedded in an elastic matrix.
The Ratio of Ortho- to Para-H2 in Photodissociation Regions
NASA Technical Reports Server (NTRS)
Sternberg, Amiel; Neufeld, David A.
1999-01-01
We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states and the total H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the "square root" part of the curve of growth, then the expected ratio of ortho and para vibrational line strengths is 3(sup 1/2) approximately 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models that illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.
Current Status in Cavitation Modeling
NASA Technical Reports Server (NTRS)
Singhal, Ashok K.; Avva, Ram K.
1993-01-01
Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.
Development of PZT Actuated Valveless Micropump.
Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet
2018-04-24
A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.
Heavy liquid metals: Research programs at PSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Y.
1996-06-01
The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futhermore » decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.« less
NASA Astrophysics Data System (ADS)
Martsynkovskyy, V. A.; Deineka, A.; Kovalenko, V.
2017-08-01
The article presents forced axial vibrations of the rotor with an automatic unloading machine in an oxidizer pump. A feature of the design is the use in the autoloading system of slotted throttles with mutually inverse throttling. Their conductivity is determined by a numerical experiment in the ANSYS CFX software package.
Method for enriching a middle isotope using vibration-vibration pumping
Rich, Joseph W.; Homicz, Gregory F.; Bergman, Richard C.
1989-01-01
Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.
Lasant Materials for Blackbody-Pumped Lasers
NASA Technical Reports Server (NTRS)
Deyoung, R. J. (Editor); Chen, K. Y. (Editor)
1985-01-01
Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.
Shock and vibration tests of a SNAP-8 NaK pump
NASA Technical Reports Server (NTRS)
Stromquist, A. J.; Nelson, R. B.; Hibben, L.
1971-01-01
The pump used for reactor cooling in the SNAP 8 space power system was subjected to the expected vehicle launch vibration, and shock loading in accordance with the SNAP 8 environmental specification. Subsequent disassembly revealed damage to the thrust bearing pins, which should be redesigned and strengthened. The unit was operational, however, when run in a test loop after reassembly.
JPRS report: Science and technology. Central Eurasia: Engineering and equipment
NASA Astrophysics Data System (ADS)
1993-10-01
Translated articles cover the following topics: transient gas dynamic processes in ramjet engines; aerodynamic characteristics of delta wings with detached leading edge shock wave at hypersonic flight velocities; effect of atmospheric density gradient on aerodynamic stabilization; measurement of target radar scattering characteristics using frequency synthesized signals; assessing survivability and ensuring safety of large axial-flow compressor blades; procedure for experimentally determining transient aerodynamic forces caused by flat vane cascade; analysis of aerodynamic interaction of profile and vortex; laser machine for balancing dynamically adjusted gyros; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.
NASA Astrophysics Data System (ADS)
Lebedev, V. F.; Lysikov, A. Yu; Ryazanova, A. V.; Shalygin, S. V.
1990-05-01
A diagnostic method was developed for determination of such an important characteristic of a CO2 active medium as the energy stored in the vibrational degrees of freedom of molecules, which can be determined directly from the experimentally measured powers of probe beams without the need for any additional information on the medium and without any numerical calculations. Measurements were carried out using a real fast-flow system, which satisfied the conditions of validity of the proposed diagnostic method, and the correctness of the approach was confirmed. The results obtained demonstrated the efficiency of the excitation of the medium when the pump conditions were varied.
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Hu, Sanbao
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
Production of a beam of highly vibrationally excited CO using perturbations.
Bartels, Nils; Schäfer, Tim; Hühnert, Jens; Field, Robert W; Wodtke, Alec M
2012-06-07
An intense molecular beam of CO (X(1)Σ(+)) in high vibrational states (v = 17, 18) was produced by a new approach that we call PUMP - PUMP - PERTURB and DUMP. The basic idea is to access high vibrational states of CO e(3)Σ(-) via a two-photon doubly resonant transition that is perturbed by the A(1)Π state. DUMP -ing from this mixed (predominantly triplet) state allows access to high vibrational levels of CO (X(1)Σ(+)). The success of the approach, which avoids the use of vacuum UV radiation in any of the excitation steps, is proven by laser induced fluorescence and resonance enhanced multi-photon ionization spectroscopy.
Production of a beam of highly vibrationally excited CO using perturbations
NASA Astrophysics Data System (ADS)
Bartels, Nils; Schäfer, Tim; Hühnert, Jens; Field, Robert W.; Wodtke, Alec M.
2012-06-01
An intense molecular beam of CO (X1Σ+) in high vibrational states (v = 17, 18) was produced by a new approach that we call PUMP - PUMP - PERTURB and DUMP. The basic idea is to access high vibrational states of CO e3Σ- via a two-photon doubly resonant transition that is perturbed by the A1Π state. DUMP -ing from this mixed (predominantly triplet) state allows access to high vibrational levels of CO (X1Σ+). The success of the approach, which avoids the use of vacuum UV radiation in any of the excitation steps, is proven by laser induced fluorescence and resonance enhanced multi-photon ionization spectroscopy.
Coherent vibrational climbing in carboxyhemoglobin
Ventalon, Cathie; Fraser, James M.; Vos, Marten H.; Alexandrou, Antigoni; Martin, Jean-Louis; Joffre, Manuel
2004-01-01
We demonstrate vibrational climbing in the CO stretch of carboxyhemoglobin pumped by midinfrared chirped ultrashort pulses. By use of spectrally resolved pump-probe measurements, we directly observed the induced absorption lines caused by excited vibrational populations up to v = 6. In some cases, we also observed stimulated emission, providing direct evidence of vibrational population inversion. This study provides important spectroscopic parameters on the CO stretch in the strong-field regime, such as transition frequencies and dephasing times up to the v = 6to v = 7 vibrational transition. We measured equally spaced vibrational transitions, in agreement with the energy levels of a Morse potential up to v = 6. It is interesting that the integral of the differential absorption spectra was observed to deviate far from zero, in contrast to what one would expect from a simple one-dimensional Morse model assuming a linear dependence of dipole moment with bond length. PMID:15319472
Cora valveless pulsatile rotary pump: new design and control.
Monties, J R; Trinkl, J; Mesana, T; Havlik, P J; Demunck, J L
1996-01-01
For decades, research for developing a totally implantable artificial ventricle has been carried on. For 4 to 5 years, two devices have been investigated clinically. For many years, we have studied a rotary (but not centrifugal) pump that furnishes pulsatile flow without a valve and does not need external venting or a compliance chamber. It is a hypocycloidal pump based on the principle of the Maillard-Wankel rotary compressor. Currently made of titanium, it is activated by an electrical brushless direct-current motor. The motor-pump unit is totally sealed and implantable, without noise or vibration. This pump was implanted as a left ventricular assist device in calves. The midterm experiments showed good hemodynamic function. The hemolysis was low, but serious problems were encountered: blood components collecting on the gear mechanism inside the rotor jammed the pump. We therefore redesigned the pump to seal the gear mechanism. We used a double system to seal the open end of the rotor cavity with components polished to superfine optical quality. In addition, we developed a control system based on the study of the predicted shape of the motor current. The new design is now underway. We hope to start chronic experiments again in a few months. If the problem of sealing the bearing could be solved, the Cora ventricle could be used as permanent totally implantable left ventricular assist device.
Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg
2016-07-01
The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, Eric R; Jonas, David M
2011-04-28
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.
Operating manual for the R100 digital vibration-time totalizer
Cordes, Edwin H.; Shi, Minghua
1988-01-01
A vibration sensor that monitors the running time of pumps to determine water withdrawal by various public-supply, agricultural, and industrial groups has been developed in response to a need demonstrated by data gathering activities of the U.S. Geological Survey 's National Water Use Information Program. This sensor, the R100 digital vibration-time totalizer, attaches to monitored equipment such as a pump, motor, or pipe facility and senses vibration to determine running time. Battery-powered and packaged for field environment, the R100 can be left unattended for up to 1 year. Time is recorded to the nearest 0.01 hour, or 36 seconds. This operating manual for the R100 digital vibration-time totalizer describes the R100 's principal of operation and gives installation guidelines and instructions for battery replacements. (USGS)
Vibrational dynamics of acetate in D2O studied by infrared pump-probe spectroscopy.
Banno, Motohiro; Ohta, Kaoru; Tominaga, Keisuke
2012-05-14
Solute-solvent interactions between acetate and D(2)O were investigated by vibrational spectroscopic methods. The vibrational dynamics of the COO asymmetric stretching mode in D(2)O was observed by time-resolved infrared (IR) pump-probe spectroscopy. The pump-probe signal contained both decay and oscillatory components. The time dependence of the decay component could be explained by a double exponential function with time constants of 200 fs and 2.6 ps, which are the same for both the COO asymmetric and symmetric stretching modes. The Fourier spectrum of the oscillatory component contained a band around 80 cm(-1), which suggests that the COO asymmetric stretching mode couples to a low-frequency vibrational mode with a wavenumber of 80 cm(-1). Based on quantum chemistry calculations, we propose that a bridged complex comprising an acetate ion and one D(2)O molecule, in which the two oxygen atoms in the acetate anion form hydrogen bonds with the two deuterium atoms in D(2)O, is the most stable structure. The 80 cm(-1) low-frequency mode was assigned to the asymmetric stretching vibration of the hydrogen bond in the bridged complex. This journal is © the Owner Societies 2012
Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.
Domingue, S R; Winters, D G; Bartels, R A
2014-07-15
Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.
Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira
2016-01-01
Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634
Slenkamp, Karla M; Lynch, Michael S; Brookes, Jennifer F; Bannan, Caitlin C; Daifuku, Stephanie L; Khalil, Munira
2016-03-01
Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O or formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Highly resistant to salt water, petroleum oil, heat, and vibration. (g) If a fixed hand pump is used to... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge pumps. 182.520 Section 182.520 Shipping COAST...) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.520 Bilge pumps. (a) A vessel must be provided with...
Increase of economy of torque flow pump with high specific speed
NASA Astrophysics Data System (ADS)
Gusak, A. G.; Krishtop, I. V.; German, V. F.; Baga, V. N.
2017-08-01
Torque flow pumps are widely spread types of energy machines, which are used in majority of modern branches of industry for pumping of dirty media. The main task of researchers of torque flow pumps is increase of such pumps effectiveness for higher feed. Hydraulic losses for torque flow pumps are caused by working process of such pumps and are inevitable. Decrease of losses can be obtained by means of optimization of hydraulic flow part geometry. Modern approach to design of pump outlet introduces new constructive solutions which can increase economy of torque flow pumps. The aim of this research is increase of economy of torque flow pumps by means of application of spatial outlet and investigation of its geometry on pump characteristics. Analytical and numerical methods of liquid flow research for hydraulic flow part of torque flow pump were used in this paper. Moreover, influence of hydraulic flow part geometry of different designs of “Turo” type torque flow pumps outlets on pump characteristics was investigated. Numerical research enabled to study process of energy transfer of torque flow pump and evaluate influence of geometrical dimensions of spatial spiral outlet on its characteristics. Besides numerical research confirmed introduced regularity of peripheral velocity distribution in outlet. Velocity moment distribution in outlet was obtained during implementation of numerical research. Implemented bench tests of torque flow pump prototypes enabled to obtain real characteristics of pump and confirm effectiveness of spatial geometry of outlet application for such pump.
Adjustable Tuning Spring for Bellows Pump
NASA Technical Reports Server (NTRS)
Green, G. L.; Tu Duc, D.; Hooper, S.
1985-01-01
Adjustable leaf spring increases maximum operating pressure of pump from 2 to over 60 psi (13 to over 400 kN/m2). Small commercial bellows pump using ac-powered electromagnet to vibrate bellows at mechanical resonance modified to operate over wider pressure range.
Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.
Liu, Jun; Yabushita, Atsushi; Taniguchi, Seiji; Chosrowjan, Haik; Imamoto, Yasushi; Sueda, Keiichi; Miyanaga, Noriaki; Kobayashi, Takayoshi
2013-05-02
Impulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm. The dependence of the vibrational phase of the vibrational mode around 1155 cm(-1) on the probe photon energy was observed for the first time to our knowledge. The vibrational mode coupled to the electronic transition observed in the probe spectral ranges of 2.95-3.05 and 3.15-3.35 eV was attributed to the wave packets in the ground state and the excited state, respectively. The frequencies in the ground state and excited state were determined to be 1155 ± 1 and 1149 ± 1 cm(-1), respectively. The frequency difference is due to change after photoexcitation. This means a reduction of the bond strength associated with π-π* excitation, which is related to the molecular structure change associated with the primary isomerization process in the photocycle in PYP. Real-time vibrational modes at low frequency around 138, 179, 203, 260, and 317 cm(-1) were also observed and compared with the Raman spectrum for the assignment of the vibrational wave packet.
NASA Astrophysics Data System (ADS)
Hayashi, I.; Kaneko, S.
2014-02-01
Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.
Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard
2004-09-08
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR + visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed. Copyright 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard
2004-09-01
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.
Granular avalanches down inclined and vibrated planes
NASA Astrophysics Data System (ADS)
Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine
2016-09-01
In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.
Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Men, Zhiwei
2016-05-02
To investigate the vibrational features of nitromethane (NM), which is a kind of energy material and a well known low-sensitivity and high explosive, experiments are performed to obtain the stimulated Raman scattering (SRS) of NM by employing a 532 nm pulsed pump laser. The Raman signal involves two stimulated emissions at 918 and 2,963 cm-1, attributed to the C-N and C-H stretching vibrations, respectively. To overcome the complexity of cross pump in the pure NM, one stimulated Raman radiation is chosen as a pump source to excite the other Raman mode. Two fluorescence dyes were added to selectively enhance each Raman cross section. By internally seeding the Raman gain medium with fluorescent photons, a significant modification in the stimulated Raman scattering spectrum has been observed. The enhanced Stokes emission at 918 cm-1 was able to induce the 2,963 cm-1 vibration mode when the all-trans-β-carotene was internal seeding in the NM, while the Raman radiation at 2,963 cm-1 was enhanced to excite the C-N mode with the addition of m-Cresol purple. The output energy of both 918 and 2,963 cm-1 under different input energy was also measured to illustrate this result.
Tapered Glass-Fiber Microspike: High-Q Flexural Wave Resonator and Optically Driven Knudsen Pump.
Pennetta, Riccardo; Xie, Shangran; Russell, Philip St J
2016-12-30
Appropriately designed optomechanical devices are ideal for making ultra-sensitive measurements. Here we report a fused-silica microspike that supports a flexural resonance with a quality factor greater than 100 000 at room temperature in vacuum. Fashioned by tapering single-mode fiber (SMF), it is designed so that the core-guided optical mode in the SMF evolves adiabatically into the fundamental mode of the air-glass waveguide at the tip. The very narrow mechanical linewidth (20 mHz) makes it possible to measure extremely small changes in resonant frequency. In a vacuum chamber at low pressure, the weak optical absorption of the glass is sufficient to create a temperature gradient along the microspike, which causes it to act as a microscopic Knudsen pump, driving a flow of gas molecules towards the tip where the temperature is highest. The result is a circulating molecular flow within the chamber. Momentum exchange between the vibrating microspike and the flowing molecules causes an additional restoring force that can be measured as a tiny shift in the resonant frequency. The effect is strongest when the mean free path of the gas molecules is comparable with the dimensions of the vacuum chamber. The system offers a novel means of monitoring the behavior of weakly absorbing optomechanical sensors operating in vacuum.
Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements
NASA Technical Reports Server (NTRS)
Tedder, Sarah Augusta Umberger
2010-01-01
Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.
The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water
NASA Astrophysics Data System (ADS)
Desai, Sandeep Rangrao; Pavitran, Sampat
2018-02-01
Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited flow capacity of the pump. The tests are carried out first on plain tube arrays to establish the same as the datum case and results are compared to known results of plain tube arrays and hence the quality of the test rig is also assessed. The fluid elastic vibration tests are then carried out on finned tube arrays with coarse and fine fin pitches and effects of fins and fin pitch on instability threshold are shown. The vibration response of the tube is recorded for each gradually increasing flow rates of water till instability point is reached. The parameters at the instability are then presented in terms of dimensionless parameters to compare them with published results. It is concluded that, arrays with higher pitch ratios are unstable at comparatively higher flow velocities and instability threshold for finned tube arrays is delayed due to addition of the fins. Further, it is concluded that, instability threshold for finned tube arrays with fine fin pitch is delayed compared to coarse fin pitch and hence for increased fin density, instability threshold is delayed. The experimental results in terms of critical velocities obtained for different tube arrays subjected to water cross flow will serve as the base flow rates for air-water cross flow experiments to be conducted in the next phase.
Collision Processes in Methyl Chloride
NASA Astrophysics Data System (ADS)
Pape, Travis W.
Time-resolved, double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter -wave probe radiation (IRMMDR) has been used to study rotational and vibrational collision processes in CH_3 ^{35}Cl and CH_3 ^{37}Cl. A collisional energy transfer model using only five parameters for rotational processes plus those needed for vibrational processes accurately models over 500 IRMMDR time responses for 105 pump-probe combinations, using three pump coincidences and a wide range of probed rotational states. Previous studies in this laboratory revealed that J- and K-changing rotational energy transfer (RET) have vastly different characteristics in CH_3 F. As was found for CH_3F, J-changing rotational collision rates in CH_3 Cl are modeled accurately by both the Statistical Power Gap law and the Infinite Order Sudden approximation using a power law expression for the basis rates. However, in contrast to CH_3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH_3 Cl states populated by K-changing collisions contain an additional early-time feature (ETF) that varies with pump and probe state. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH_3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH_3F, the temperature is found to be a function of time for CH_3 Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH_3Cl. As was observed in CH_3F, the principal vibrational collision processes are the near -resonant V-swap process, in which two colliding molecules exchange a quantum of vibrational energy, and a nonresonant process that directly moves population from the pumped {bf v}_6 = 1 vibrational state to the {bf v}_3 = 1 vibrational state. A V to T/R process was also measured. Finally, a V-swap process was measured that populates vibrational states of the other isotopic species.
Design and Development of Low-Cost Water Tunnel for Educational Purpose
NASA Astrophysics Data System (ADS)
Zahari, M.; Dol, S. S.
2015-04-01
The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.
A multiple disk centrifugal pump as a blood flow device.
Miller, G E; Etter, B D; Dorsi, J M
1990-02-01
A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.
Flow dynamic environment data base development for the SSME
NASA Technical Reports Server (NTRS)
Sundaram, C. V.
1985-01-01
The fluid flow-induced vibration of the Space Shuttle main engine (SSME) components are being studied with a view to correlating the frequency characteristics of the pressure fluctuations in a rocket engine to its operating conditions and geometry. An overview of the data base development for SSME test firing results and the interactive computer software used to access, retrieve, and plot or print the results selectively for given thrust levels, engine numbers, etc., is presented. The various statistical methods available in the computer code for data analysis are discussed. Plots of test data, nondimensionalized using parameters such as fluid flow velocities, densities, and pressures, are presented. Results are compared with those available in the literature. Correlations between the resonant peaks observed at higher frequencies in power spectral density plots with pump geometry and operating conditions are discussed. An overview of the status of the investigation is presented and future directions are discussed.
Multiphysics analysis of liquid metal annular linear induction pumps: A project overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, Carlos Omar; Nieminen, Juha E.
Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less
Multiphysics analysis of liquid metal annular linear induction pumps: A project overview
Maidana, Carlos Omar; Nieminen, Juha E.
2016-03-14
Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less
Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime.
Palacino-González, Elisa; Gelin, Maxim F; Domcke, Wolfgang
2017-12-13
We present a theoretical description of double-pump femtosecond single-molecule signals with fluorescence detection. We simulate these signals in the weak-field regime for a model mimicking a chromophore with a Franck-Condon-active vibrational mode. We establish several signatures of these signals which are characteristic for the weak-field regime. The signatures include the quenching of vibrational beatings by electronic dephasing and a pronounced tilt of the phase-time profiles in the two-dimensional (2D) maps. We study how environment-induced slow modulations of the electronic dephasing and relevant chromophore parameters (electronic energy, orientation, vibrational frequency and relative shift of the potential energy surfaces) affect the signals.
Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke
2009-09-15
In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This acceleration may be due to increased coupling between the OH stretching mode and the accepting mode of the VER, because the low-frequency shift caused by hydrogen bond formation is very large. Unlike phenol oligomers, however, the pump-probe signals of phenol-base complexes did not exhibit probe frequency dependence. For these complexes, rapid interconversion between different conformations causes rapid fluctuations in the vibrational frequency of the OH stretching modes, and these fluctuations level the VER times of different conformations. For the benzoic acid dimer, a quantum beat at a frequency of around 100 cm(-1) is superimposed on the pump-probe signal. This result indicates the presence of strong anharmonic coupling between the intramolecular OH stretching and the intermolecular stretching modes. From a two-dimensional plot of the OH stretching wavenumber and the low-frequency wavenumber, the wavenumber of the low-frequency mode is found to increase monotonically as the probe wavenumber is shifted toward lower wavenumbers. Our results represent a quantitative determination of the acceleration of VER by the formation of hydrogen bonds. Our studies merit further evaluation and raise fundamental questions about the current theory of vibrational dynamics in the condensed phase.
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
NASA Technical Reports Server (NTRS)
Hamilton, D. B.; Ensminger, D.; Grieser, D. R.; Plummer, A. M.; Saccocio, E. J.; Kissel, J. W.
1973-01-01
The research is reported which was conducted to develop devices for measuring vibrations and deflections of parts, such as impellers, shafts, turbine wheels, and inducers in operating turbopumps. Three devices were developed to the breadboard stage: ultrasonic Doppler transducer, flash X-rays, and light-pipe reflectance. It was found that the X-ray technique is applicable to the shaft assembly and the turbine seal of the J-2 pump, and the light-pipe-reflectance device appears to be ideal for cryogenic pump sections.
Vibrationally Excited HCN in the Luminous Infrared Galaxy NGC 4418
NASA Astrophysics Data System (ADS)
Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.
2010-12-01
Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of Tvib ≈ 230 K between the vibrational ground and excited (v 2 = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v 2 = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO+, H13CN, HC15N, CS, N2H+, and HC3N at λ ~ 1 mm. Their relative intensities may also be affected by the infrared pumping.
Stewart, Robert A; Shaw, J M
2015-09-01
The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonso Ferreira, J.; Stafford, L., E-mail: luc.stafford@umontreal.ca; Leonelli, R.
2014-04-28
A cylindrical Langmuir probe was used to analyze the spatial distribution of the number density of positive ions and electrons as well as the electron energy distribution function (EEDF) in the flowing afterglow of a 6 Torr N{sub 2} and N{sub 2}/O{sub 2} plasma sustained by a propagating electromagnetic surface wave in the microwave regime. In pure N{sub 2} discharges, ion densities were in the mid 10{sup 14} m{sup −3} in the pink afterglow and in the mid 10{sup 12} m{sup −3} early in the late afterglow. In both pink and late afterglows, the ion population was much higher than the electron population,more » indicating non-macroscopically neutral media. The EEDF was close to a Maxwellian with an electron temperature of 0.5 ± 0.1 eV, except in the pink afterglow where the temperature rose to 1.1 ± 0.2 eV. This latter behavior is ascribed to N{sub 2} vibration-vibration pumping in the pink afterglow that increases the concentration of high N{sub 2} vibrational states and thus rises the electron temperature by vibration-electron collisions. After addition of small amounts of O{sub 2} in the nominally pure N{sub 2} discharge, the charged particles densities and average electron energy first strongly increased and then decreased with increasing O{sub 2} concentration. Based on these data and the evolution of the N{sub 2}{sup +}(B) band emission intensities, it is concluded that a significant change in the positive ion composition of the flowing afterglow occurs, going from N{sub 2}{sup +} in nominally pure N{sub 2} discharges to NO{sup +} after addition of trace amounts of O{sub 2} in N{sub 2}.« less
Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.
Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y
2006-01-01
It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.
Unsteady Turbopump Flow Simulations
NASA Technical Reports Server (NTRS)
Centin, Kiris C.; Kwak, Dochan
2001-01-01
The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.
Pump and probe spectroscopy with continuous wave quantum cascade lasers.
Kirkbride, James M R; Causier, Sarah K; Dalton, Andrew R; Weidmann, Damien; Ritchie, Grant A D
2014-02-07
This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
Electronic and Vibrational Coherence in Charge-Transfer Reactions
NASA Astrophysics Data System (ADS)
Scherer, Norbert
1996-03-01
The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.
Fuel pumping system and method
Shafer, Scott F [Morton, IL; Wang, Lifeng ,
2006-12-19
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fuel Pumping System And Method
Shafer, Scott F.; Wang, Lifeng
2005-12-13
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Measurement of interstage fluid-annulus dynamical properties
NASA Technical Reports Server (NTRS)
Adams, M. L.; Makay, E.; Diaz-Tous, I. A.
1982-01-01
The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.
Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure.
Mehra, Mandeep R; Goldstein, Daniel J; Uriel, Nir; Cleveland, Joseph C; Yuzefpolskaya, Melana; Salerno, Christopher; Walsh, Mary N; Milano, Carmelo A; Patel, Chetan B; Ewald, Gregory A; Itoh, Akinobu; Dean, David; Krishnamoorthy, Arun; Cotts, William G; Tatooles, Antone J; Jorde, Ulrich P; Bruckner, Brian A; Estep, Jerry D; Jeevanandam, Valluvan; Sayer, Gabriel; Horstmanshof, Douglas; Long, James W; Gulati, Sanjeev; Skipper, Eric R; O'Connell, John B; Heatley, Gerald; Sood, Poornima; Naka, Yoshifumi
2018-04-12
In an early analysis of this trial, use of a magnetically levitated centrifugal continuous-flow circulatory pump was found to improve clinical outcomes, as compared with a mechanical-bearing axial continuous-flow pump, at 6 months in patients with advanced heart failure. In a randomized noninferiority and superiority trial, we compared the centrifugal-flow pump with the axial-flow pump in patients with advanced heart failure, irrespective of the intended goal of support (bridge to transplantation or destination therapy). The composite primary end point was survival at 2 years free of disabling stroke (with disabling stroke indicated by a modified Rankin score of >3; scores range from 0 to 6, with higher scores indicating more severe disability) or survival free of reoperation to replace or remove a malfunctioning device. The noninferiority margin for the risk difference (centrifugal-flow pump group minus axial-flow pump group) was -10 percentage points. Of 366 patients, 190 were assigned to the centrifugal-flow pump group and 176 to the axial-flow pump group. In the intention-to-treat population, the primary end point occurred in 151 patients (79.5%) in the centrifugal-flow pump group, as compared with 106 (60.2%) in the axial-flow pump group (absolute difference, 19.2 percentage points; 95% lower confidence boundary, 9.8 percentage points [P<0.001 for noninferiority]; hazard ratio, 0.46; 95% confidence interval [CI], 0.31 to 0.69 [P<0.001 for superiority]). Reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (3 patients [1.6%] vs. 30 patients [17.0%]; hazard ratio, 0.08; 95% CI, 0.03 to 0.27; P<0.001). The rates of death and disabling stroke were similar in the two groups, but the overall rate of stroke was lower in the centrifugal-flow pump group than in the axial-flow pump group (10.1% vs. 19.2%; hazard ratio, 0.47; 95% CI, 0.27 to 0.84, P=0.02). In patients with advanced heart failure, a fully magnetically levitated centrifugal-flow pump was superior to a mechanical-bearing axial-flow pump with regard to survival free of disabling stroke or reoperation to replace or remove a malfunctioning device. (Funded by Abbott; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).
Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance
NASA Astrophysics Data System (ADS)
Bing, Hao; Cao, Shuliang
2014-05-01
In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.
Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar
2014-01-01
A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.
Evaluation of Dry, Rough Vacuum Pumps
NASA Technical Reports Server (NTRS)
Hunter, Brian
2006-01-01
This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer
A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure.
Mehra, Mandeep R; Naka, Yoshifumi; Uriel, Nir; Goldstein, Daniel J; Cleveland, Joseph C; Colombo, Paolo C; Walsh, Mary N; Milano, Carmelo A; Patel, Chetan B; Jorde, Ulrich P; Pagani, Francis D; Aaronson, Keith D; Dean, David A; McCants, Kelly; Itoh, Akinobu; Ewald, Gregory A; Horstmanshof, Douglas; Long, James W; Salerno, Christopher
2017-02-02
Continuous-flow left ventricular assist systems increase the rate of survival among patients with advanced heart failure but are associated with the development of pump thrombosis. We investigated the effects of a new magnetically levitated centrifugal continuous-flow pump that was engineered to avert thrombosis. We randomly assigned patients with advanced heart failure to receive either the new centrifugal continuous-flow pump or a commercially available axial continuous-flow pump. Patients could be enrolled irrespective of the intended goal of pump support (bridge to transplantation or destination therapy). The primary end point was a composite of survival free of disabling stroke (with disabling stroke indicated by a modified Rankin score >3; scores range from 0 to 6, with higher scores indicating more severe disability) or survival free of reoperation to replace or remove the device at 6 months after implantation. The trial was powered for noninferiority testing of the primary end point (noninferiority margin, -10 percentage points). Of 294 patients, 152 were assigned to the centrifugal-flow pump group and 142 to the axial-flow pump group. In the intention-to-treat population, the primary end point occurred in 131 patients (86.2%) in the centrifugal-flow pump group and in 109 (76.8%) in the axial-flow pump group (absolute difference, 9.4 percentage points; 95% lower confidence boundary, -2.1 [P<0.001 for noninferiority]; hazard ratio, 0.55; 95% confidence interval [CI], 0.32 to 0.95 [two-tailed P=0.04 for superiority]). There were no significant between-group differences in the rates of death or disabling stroke, but reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (1 [0.7%] vs. 11 [7.7%]; hazard ratio, 0.08; 95% CI, 0.01 to 0.60; P=0.002). Suspected or confirmed pump thrombosis occurred in no patients in the centrifugal-flow pump group and in 14 patients (10.1%) in the axial-flow pump group. Among patients with advanced heart failure, implantation of a fully magnetically levitated centrifugal-flow pump was associated with better outcomes at 6 months than was implantation of an axial-flow pump, primarily because of the lower rate of reoperation for pump malfunction. (Funded by St. Jude Medical; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).
Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.
Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C
2016-01-21
Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.
NASA Astrophysics Data System (ADS)
Wan, Sheng; Li, Hui
2018-03-01
Though the test of blasting vibration, the blasting seismic wave propagation laws in southern granite pumped storage power project are studied. Attenuation coefficient of seismic wave and factors coefficient are acquired by the method of least squares regression analysis according to Sadaovsky empirical formula, and the empirical formula of seismic wave is obtained. This paper mainly discusses on the test of blasting vibration and the procedure of calculation. Our practice might as well serve as a reference for similar projects to come.
Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng
2018-06-14
Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.
NASA Astrophysics Data System (ADS)
Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng
2016-05-01
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
Unjamming a granular hopper by vibration
NASA Astrophysics Data System (ADS)
Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.
2009-07-01
We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.
Kirol, Lance D.
1988-01-01
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.
Kirol, L.D.
1987-02-11
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.
Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro
2016-06-01
To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations. Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets. PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems. Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.
Gruenbaum, S M; Skinner, J L
2011-08-21
The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum/classical model for the OD stretch spectroscopy of dilute HDO in H(2)O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations. © 2011 American Institute of Physics
Gruenbaum, S. M.; Skinner, J. L.
2011-01-01
The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum∕classical model for the OD stretch spectroscopy of dilute HDO in H2O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation that this shift results from the hydrogen bonding of water to the lipid phosphate group. From the pump-probe anisotropy decay, we confirm that the reorientational motions of water molecules slow significantly as hydration decreases, with water bound in the lipid carbonyl region undergoing the slowest rotations. PMID:21861584
Experimental testing of centrifugal pump: small and medium sized enterprise product
NASA Astrophysics Data System (ADS)
Ismail, R.; Paddiyatu, F.; Khafidh, M.; Nugroho, S.; Sugiyanto, S.; Jamari, J.
2014-06-01
This paper reports the experimental testing for centrifugal pump for fisherman ship, manufactured by small and medium sized enterprises in Central Java Province, Indonesia. The research covers material analysis, component observation, endurance and vibration test. Six centrifugal pumps are tested and three main pump components are discussed: shaft, bearings and seals. The results show that the material of the shaft is predicted to support and transmit the load from the engine to impeller. The problem found in the tolerance and geometry accuracy of the shaft which causes difficulties during assembling process, excessive wear and leakage during testing. From the endurance and vibration test, the ball bearings fail and lock the shaft due to the fatigue on the rolling elements and raceways. The oil seal and water seal also fail in maintaining the oil and water in the chamber and induce the unlubricated system for the ball bearings. Some suggestions are delivered to improve the product quality of the centrifugal pump. A good quality of the centrifugal pump for fishermen ship and long life span is expected to be produced by local SMEs to win the free trade competition in the Indonesian market.
Flow pumping system for physiological waveforms.
Tsai, William; Savaş, Omer
2010-02-01
A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
Meinhardt, J P; Ashton, B A; Annich, G M; Quintel, M; Hirschl, R B
2003-05-30
To evaluate the influence of pump system and flow pattern on expiratory airway collapse (EAC) in total perfluorocarbon ventilation. - Prospective, controlled, randomized animal trial for determination of (1) post-mortem changes by repeated expiration procedures (EP) with a constant flow piston pump (PP) before and after sacrifice (n = 8 rabbits), (2) differences between pump systems by subjecting animals to both PP and roller pump (RP) circuits for expiration (n = 16 rabbits). EP were performed using a servo-controlled shut-off at airway pressures < 25 cm H subset 2O randomly with either pump at different flows. - Expired volumes before and after sacrifice were not significantly different. PP and RP revealed identical mean flows, while significantly more liquid was drained using PP (p<0.05). Increasing differences towards higher flow rates indicated profound flow pulsatility in RP. - (1) post-mortem changes in expired volumes are not significant, (2) EAC is related to flow rate and pump system; (3) relationship between expiratory flow rate and drainable liquid volume is linear inverse; (4) PP provides higher drainage than RP. - Expiratory airway collapse is related to flow rate and pump system, post mortem changes in expirable volumes are not significant. Relationship between expiratory flow rate and drainable liquid volume is linear inverse, piston pump expiration provides higher drainage volumes than roller pump expiration.
The effect of balance holes to centrifugal pump performance
NASA Astrophysics Data System (ADS)
Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.
2017-07-01
The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkbride, James M. R.; Causier, Sarah K.; Dalton, Andrew R.
This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorptionmore » profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.« less
The time-resolved photoelectron spectrum of toluene using a perturbation theory approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk
A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includesmore » only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.« less
Huber, Christoph H; Tozzi, Piergiorgio; Hurni, Michel; von Segesser, Ludwig K
2004-06-01
The new magnetically suspended axial pump is free of seals, bearings, mechanical friction and wear. In the absence of a drive shaft or flow meter, pump flow assessment is made with an algorithm based on currents required for impeller rotation and stabilization. The aim of this study is to validate pump performance, algorithm-based flow and effective flow. A series of bovine experiments was realized after equipment with pressure transducers, continuous-cardiac-output-catheter, intracardiac ultrasound (AcuNav) over 6 h. Pump implantation was through a median sternotomy (LV-->VAD-->calibrated transonic-flow-probe-->aorta). A transonic-HT311-flow-probe was fixed onto the outflow cannula for flow comparison. Animals were electively sacrificed and at necropsy systematic pump inspection and renal embolus score was realized. Observation period was 340+/-62.4 min. The axial pump generated a mean arterial pressure of 58.8+/-14.3 mmHg (max 117 mmHg) running at a speed of 6591.3+/-1395.4 rev./min (min 5000/max 8500 rev./min) and generating 2.5+/-1.0 l/min (min 1.4/max 6.0 l/min) of flow. Correlation between the results of the pump flow algorithm and measured pump flow was linear (y=1.0339x, R2=0.9357). VAD explants were free of macroscopic thrombi. Renal embolus score was 0+/-0. The magnetically suspended axial flow pump provides excellent left ventricular support. The pump flow algorithm used is accurate and reliable. Therefore, there is no need for direct flow measurement.
Design Models for the Development of Helium-Carbon Sorption Crycoolers
NASA Technical Reports Server (NTRS)
Lindensmith, C. A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.
2000-01-01
We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approx. 50 K to 4 K.
Design Models for the Development of Helium-Carbon Sorption Cryocoolers
NASA Technical Reports Server (NTRS)
Lindensmith, Chris A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.
2000-01-01
We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approximately 50 K to 4 K.
Jet pump-drive system for heat removal
NASA Technical Reports Server (NTRS)
French, J. R. (Inventor)
1985-01-01
A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.
Jet pump-drive system for heat removal
NASA Technical Reports Server (NTRS)
French, James R. (Inventor)
1987-01-01
The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.
Apparatus and method for suppressing vibration and displacement of a bellows
Kuklo, T.C.
1984-01-01
Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems to separate them from each other, or to maintain the bellows in unsupported relationship between these systems. In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement, the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube in surrounding relationship about a bellows to suppress vibration and displacement thereof. A method for isolating first and second systems from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows between the systems, surrounding the bellows with an inflatable tube, and maintaining a predetermined pressure in the tube to urge the tube in flexible contact with at least some of the convolutions of the bellows.
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
NASA Technical Reports Server (NTRS)
Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)
2002-01-01
There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.
Heterodyne-detected dispersed vibrational echo spectroscopy.
Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei
2009-12-24
We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.
Fukui, Yuki; Ohta, Kaoru; Tominaga, Keisuke
2015-01-01
We studied the effects of hydrogen bonds on the vibrational structures and vibrational dynamics of the CO stretching mode of 9-fluorenone (FL) in the electronically excited state in aprotic and protic solvents using sub-picosecond visible-pump and IR-probe spectroscopy. The transient IR spectrum of the CO stretching band in methanol-d4 has two bands at 1529.9 cm(-1) and 1543.4 cm(-1), which are assigned to an FL-solvent complex and free FL, respectively. In the aprotic solvents, the CO stretching bands show blue-shifts in time. This shift is due to vibrational cooling, which is derived from anharmonic couplings with some low-frequency modes. Interestingly, a red-shift is observed at later delay time for the band at 1529.9 cm(-1) in methanol-d4. A possible mechanism of this spectral shift is related to the hydrogen bond dynamics between the solute and solvent.
Coherent Acoustic Vibration of Metal Nanoshells
NASA Astrophysics Data System (ADS)
Guillon, C.; Langot, P.; Del Fatti, N.; Vallée, F.; Kirakosyan, A. S.; Shahbazyan, T. V.; Cardinal, T.; Treguer, M.
2007-01-01
Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.
Effect of wave action on near-well zone cleaning
NASA Astrophysics Data System (ADS)
Pen'kovskii, V. I.; Korsakova, N. K.
2017-10-01
Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.
Yulong Guan; Xiaowei Su; McCoach, Robert; Kunselman, Allen; El-Banayosy, Aly; Undar, Akif
2010-03-01
Centrifugal blood pumps have been widely adopted in conventional adult cardiopulmonary bypass and circulatory assist procedures. Different brands of centrifugal blood pumps incorporate distinct designs which affect pump performance. In this adult extracorporeal life support (ECLS) model, the performances of two brands of centrifugal blood pump (RotaFlow blood pump and CentriMag blood pump) were compared. The simulated adult ECLS circuit used in this study included a centrifugal blood pump, Quadrox D membrane oxygenator and Sorin adult ECLS tubing package. A Sorin Cardiovascular(R) VVR(R) 4000i venous reservoir (Sorin S.p.A., Milan, Italy) with a Hoffman clamp served as a pseudo-patient. The circuit was primed with 900ml heparinized human packed red blood cells and 300ml lactated Ringer's solution (total volume 1200 ml, corrected hematocrit 40%). Trials were conducted at normothermia (36 degrees C). Performance, including circuit pressure and flow rate, was measured for every setting analyzed. The shut-off pressure of the RotaFlow was higher than the CentriMag at all measurement points given the same rotation speed (p < 0.0001). The shut-off pressure differential between the two centrifugal blood pumps was significant and increased given higher rotation speeds (p < 0.0001). The RotaFlow blood pump has higher maximal flow rate (9.08 +/- 0.01L/min) compared with the CentriMag blood pump (8.37 +/- 0.02L/min) (p < 0.0001). The blood flow rate differential between the two pumps when measured at the same revolutions per minute (RPM) ranged from 1.64L/min to 1.73L/min. The results obtained in this experiment demonstrate that the RotaFlow has a higher shut-off pressure (less retrograde flow) and maximal blood flow rate than the CentriMag blood pump. Findings support the conclusion that the RotaFlow disposable pump head has a better mechanical performance than the CentriMag. In addition, the RotaFlow disposable pump is 20-30 times less expensive than the CentriMag.
77 FR 72433 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Submersible pumps (3 @ 3,000 gallons/minute), (1 Low Flow Submersible pump @ 1,000 gallons/minute), (1 Low Flow Sump Pump @ 20 gallons/minute) for rehabilitation of a pump station in the State of Illinois... appropriate to use non-domestic Main Submersible pumps (3 @ 3,000 gallons/minute), (1 Low Flow Submersible...
Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W
2017-01-01
Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
NASA Astrophysics Data System (ADS)
McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.
2009-09-01
An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
A new blood pump for cardiopulmonary bypass: the HiFlow centrifugal pump.
Göbel, C; Eilers, R; Reul, H; Schwindke, P; Jörger, M; Rau, G
1997-07-01
Centrifugal blood pumps are considered to be generally superior to the traditionally used roller pumps in cardiopulmonary bypass. In our institute a new lightweight centrifugal sealless blood pump with a unique spherical thrust bearing and with a magnetic coupling was developed, the HiFlow. The small design makes the pump suitable for applications in complex devices or close to a patient. Hemolysis tests were carried out in which the BioMedicus pump BP-80 and a roller pump were used as reference. The centrifugal pump HiFlow showed the least blood trauma within the group of investigated pumps. In summary, the HiFlow pump concept with its low priming volume and limited contact surfaces shows great potential for clinical applications in cardiopulmonary bypass. Also, the possibility of using the pump as a short-term assist device with an option of a pulsatile driving mode was demonstrated.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
Method to produce American Thoracic Society flow-time waveforms using a mechanical pump.
Hankinson, J L; Reynolds, J S; Das, M K; Viola, J O
1997-03-01
The American Thoracic Society (ATS) recently adopted a new set of 26 standard flow-time waveforms for use in testing both diagnostic and monitoring devices. Some of these waveforms have a higher frequency content than present in the ATS-24 standard volume-time waveforms, which, when produced by a mechanical pump, may result in a pump flow output that is less than the desired flow due to gas compression losses within the pump. To investigate the effects of gas compression, a mechanical pump was used to generate the necessary flows to test mini-Wright and Assess peak expiratory flow (PEF) meters. Flow output from the pump was measured by two different independent methods, a pneumotachometer and a method based on piston displacement and pressure measured within the pump. Measuring output flow based on piston displacement and pressure has been validated using a pneumotachometer and mini-Wright PEF meter, and found to accurately measure pump output. This method introduces less resistance (lower back-pressure) and dead space volume than using a pneumotachometer in series with the meter under test. Pump output flow was found to be lower than the desired flow both with the mini-Wright and Assess meters (for waveform No. 26, PEFs 7.1 and 10.9% lower, respectively). To compensate for losses due to gas compression, we have developed a method of deriving new input waveforms, which, when used to drive a commercially available mechanical pump, accurately and reliably produces the 26 ATS flow-time waveforms, even those with the fastest rise-times.
POGO analysis based on N-II/H-I vehicle flight data
NASA Astrophysics Data System (ADS)
Mori, Hidehiko
Three types of longitudinal oscillations Pre-MECO POGO 1, Pre-MECO POGO 2, and MECO POGO have been observed in the launches of N-II/H-I vehicles. A Nyquist plot of a mathematical POGO model is used to examine stability properties of these oscillations. Pre-MECO POGO 1 and MECO POGO are generated in the LOX feed system installed with a accumulator. Flow fluctuation due to the LOX pump vibration is the main exciting factor for the former, the fluctuation of LOX tank bottom pressure for the latter. Pre-MECO POGO 2, excited in the vicinity of open-pipe resonant frequency of fuel suction line, is affected by fuel flow fluctuation. Frequency, longitudinal structural mode shape, and generalized mass related to each POGO are determined from flight data. The POGO model with these parameters is shown to represent the whole POGO features of N-II/H-I along flight time.
Molecular velocimetry using stimulated Raman spectroscopy
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1984-01-01
Molecular flow velocity of N2 was measured in a supersonic wind tunnel using inverse Raman spectroscopy. This technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counter-propagating (backward scattering). A retrometer system is employed to yield a vibration-free optical configuration which has the additional advantage of obtaining both the forward and backward scattered spectra simultaneously. The linebreadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the concept was performed in a supersonic wind tunnel and included: (1) measurements over the Mach number range 2.50 to 4.63; (2) static pressure measurements (at Mach 2.50) corresponding to a Reynolds number per foot range of 1 to 5 x 10 to the 6th power; and (3) measurements behind the shock wave of a flat plate model.
Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.
Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang
2011-01-20
We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.
Flow-induced vibration and fretting-wear damage in a moisture separator reheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.
1996-12-01
Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operationalmore » changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem.« less
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
Influence of vibration on structure rheological properties of a highly concentrated suspension
NASA Astrophysics Data System (ADS)
Ouriev Uriev, Boris N.; Uriev, Naum B.
2005-08-01
The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.
Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes
2015-01-01
To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.
Ye, Ying; Griffin, Michael J
2016-04-01
This study investigated whether the reductions in finger blood flow induced by 125-Hz vibration applied to different locations on the hand depend on thresholds for perceiving vibration at these locations. Subjects attended three sessions during which vibration was applied to the right index finger, the right thenar eminence, or the left thenar eminence. Absolute thresholds for perceiving vibration at these locations were determined. Finger blood flow in the middle finger of both hands was then measured at 30-s intervals during five successive 5-min periods: (i) pre-exposure, (ii) pre-exposure with 2-N force, (iii) 2-N force with vibration, (iv) post-exposure with 2-N force, (v) recovery. During period (iii), vibration was applied at 15 dB above the absolute threshold for perceiving vibration at the right thenar eminence. Vibration at all three locations reduced finger blood flow on the exposed and unexposed hand, with greater reductions when vibrating the finger. Vibration-induced vasoconstriction was greatest for individuals with low thresholds and locations of excitation with low thresholds. Differences in vasoconstriction between subjects and between locations are consistent with the Pacinian channel mediating both absolute thresholds and vibration-induced vasoconstriction.
Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation.
Ye, Ying; Mauro, Marcella; Bovenzi, Massimo; Griffin, Michael J
2015-10-01
This study investigated the effect of hand elevation on reductions in finger blood flow (FBF) induced by hand-transmitted vibration. Fourteen males attended six sessions on six separate days, with a control sessions and a vibration session (125-Hz vibration at 44 ms(-2) rms) with the right hand supported at each of three elevations: 20 cm below heart level (HL), at HL, and 20 cm above HL. Finger blood flow on the left and right hand was measured every 30 s during each 25-min session comprised of five periods: (1) no force and no vibration (5 min), (2) 2-N force and no vibration (5 min), (3) 2-N force and vibration (5 min), (4) 2-N force and no vibration (5 min), and (5) no force and no vibration (5 min). Without vibration, FBF decreased with increasing elevation of the hand. During vibration of the right hand, FBF reduced on both hands. With elevation of the right hand, the percentage reduction in FBF due to vibration (relative to FBF on the same finger at the same elevation before exposure to vibration) was similar on the middle and little fingers of both hands. After cessation of vibration, there was delayed return of FBF with all three hand heights. Vibration of one hand reduces FBF on both exposed and unexposed hands, with the reduction dependent on the elevation of the hand. The mechanisms responsible for vibration-induced reductions in FBF seem to reduce blood flow as a percentage of the blood flow without vibration. Tasks requiring the elevation of the hands will be associated with lower FBF, and the FBF will be reduced further if there is exposure to hand-transmitted vibration.
Magnetic heat pump flow director
NASA Technical Reports Server (NTRS)
Howard, Frank S. (Inventor)
1995-01-01
A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.
Measurement of food texture by an acoustic vibration method
NASA Astrophysics Data System (ADS)
Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi
2011-09-01
Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.
Effect of hydrogen bonding on the vibrational dephasing time in glycerol
NASA Technical Reports Server (NTRS)
Dorsinville, R.; Franklin, W. M.; Ockman, N.; Alfano, R. R.
1982-01-01
The vibrational dephasing of the methyl CH2 symmetric stretch mode in glycerol was directly measured over an extended temperature range using picosecond coherent Raman pump and probe spectroscopy. The dephasing time was found to increase dramatically as the temperature of the supercooled liquid was lowered. This observation is attributed to the increased hydrogen bonding with decreasing temperature which hinders the dephasing of the CH2 vibration by reducing molecular motions.
Peak expiratory flow profiles delivered by pump systems. Limitations due to wave action.
Miller, M R; Jones, B; Xu, Y; Pedersen, O F; Quanjer, P H
2000-06-01
Pump systems are currently used to test the performance of both spirometers and peak expiratory flow (PEF) meters, but for certain flow profiles the input signal (i.e., requested profile) and the output profile can differ. We developed a mathematical model of wave action within a pump and compared the recorded flow profiles with both the input profiles and the output predicted by the model. Three American Thoracic Society (ATS) flow profiles and four artificial flow-versus-time profiles were delivered by a pump, first to a pneumotachograph (PT) on its own, then to the PT with a 32-cm upstream extension tube (which would favor wave action), and lastly with the PT in series with and immediately downstream to a mini-Wright peak flow meter. With the PT on its own, recorded flow for the seven profiles was 2.4 +/- 1.9% (mean +/- SD) higher than the pump's input flow, and similarly was 2.3 +/- 2.3% higher than the pump's output flow as predicted by the model. With the extension tube in place, the recorded flow was 6.6 +/- 6.4% higher than the input flow (range: 0.1 to 18.4%), but was only 1.2 +/- 2.5% higher than the output flow predicted by the model (range: -0.8 to 5.2%). With the mini-Wright meter in series, the flow recorded by the PT was on average 6.1 +/- 9.1% below the input flow (range: -23.8 to 2. 5%), but was only 0.6 +/- 3.3% above the pump's output flow predicted by the model (range: -5.5 to 3.9%). The mini-Wright meter's reading (corrected for its nonlinearity) was on average 1.3 +/- 3.6% below the model's predicted output flow (range: -9.0 to 1. 5%). The mini-Wright meter would be deemed outside ATS limits for accuracy for three of the seven profiles when compared with the pump's input PEF, but this would be true for only one profile when compared with the pump's output PEF as predicted by the model. Our study shows that the output flow from pump systems can differ from the input waveform depending on the operating configuration. This effect can be predicted with reasonable accuracy using a model based on nonsteady flow analysis that takes account of pressure wave reflections within pump systems.
Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )
NASA Astrophysics Data System (ADS)
Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.
2002-04-01
Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.
Development and numerical analysis of low specific speed mixed-flow pump
NASA Astrophysics Data System (ADS)
Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.
2012-11-01
With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.
Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov
2013-07-01
It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial bearing load can be determined using load cells, bearing properties multiplied by shaft displacement, or bearing bracket stiffness multiplied by housing compression or movement. Different load measurement methods should be used depending on the design of the machine and accuracy demands in the load measurement. The methodology presented in the paper is applied to a 40 MW hydropower unit; suggestions are presented for the alarm and trip levels for the machine based on the mechanical properties and radial loads.
Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates
NASA Astrophysics Data System (ADS)
Ueba, H.; Sawabu, T.; Mii, T.
2002-04-01
We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.
Cine: Line excitation by infrared fluorescence in cometary atmospheres
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.
2017-03-01
CINE is a Python module for calculating infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. Excitation by solar radiation of vibrational bands followed by radiative decay to the ground vibrational state is one of the main mechanisms for molecular excitation in comets. This code calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Line transitions are queried from the latest version of the HITRAN spectroscopic repository using the astroquery affiliated package of astropy. Molecular data are obtained from the LAMDA database. These coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes
2015-01-01
Objective To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Methods Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. Results This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Conclusion Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia. PMID:26340159
Pre-compression volume on flow ripple reduction of a piston pump
NASA Astrophysics Data System (ADS)
Xu, Bing; Song, Yuechao; Yang, Huayong
2013-11-01
Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
NASA Astrophysics Data System (ADS)
Nakayama, Tomohito; Yoshizawa, Shunsuke; Hirano, Atsushi; Tanaka, Takeshi; Shiraki, Kentaro; Hase, Muneaki
2017-12-01
Vibrational energy transfer from photoexcited single-wall carbon nanotubes (SWCNTs) to coupled proteins is a key to engineering thermally induced biological reactions, for example, in photothermal therapy. Here, we explored vibrational energy transfer from photoexcited SWCNTs to different adsorbed biological materials by means of a femtosecond pump-probe technique. We show that the vibrational relaxation time of the radial breathing modes in SWCNTs depends significantly on the structure of the coupled materials, that is, proteins or biopolymers, indicating that the vibrational energy transfer is governed by overlapping of the phonon densities of states of the SWCNTs and coupled materials.
Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network
NASA Astrophysics Data System (ADS)
Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.
2006-06-01
The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.
Design flow factors for sewerage systems in small arid communities.
Imam, Emad H; Elnakar, Haitham Y
2014-09-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.
Design flow factors for sewerage systems in small arid communities
Imam, Emad H.; Elnakar, Haitham Y.
2013-01-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521
STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, R.O.; Steamer, A.G.
1960-10-01
Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)
Canned pump having a high inertia flywheel
Veronesi, Luciano; Raimondi, ALbert A.
1989-01-01
A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.
Canned pump having a high inertia flywheel
Veronesi, L.; Raimondi, A.A.
1989-12-12
A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.
Coherent control of the formation of cold heteronuclear molecules by photoassociation
NASA Astrophysics Data System (ADS)
de Lima, Emanuel F.
2017-01-01
We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.
Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho
2015-06-18
Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.
Active control of panel vibrations induced by a boundary layer flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1995-01-01
The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.
Coherent beam combining performance in harsh environment
NASA Astrophysics Data System (ADS)
Lombard, L.; Canat, G.; Durecu, A.; Bourdon, P.
2014-03-01
Coherent beam combining (CBC) is a promising solution for high power directed energy weapons. We investigate several particular issues for this application: First, we study the evolution of phase noise spectrum for increasing pump power in 100 W MOPFA. The main variations in the spectrum are located in the low frequency region corresponding to thermal transfer between the fiber core heated by the pump absorption and the fiber environment. The phase noise root mean square evolves linearly with the pump power. Noise spectrum is not shifted to higher frequencies. Second, we investigate the influence of fiber packaging and amplifier packaging on the phase noise and estimate the LOCSET controller bandwidth (BW) requirement in each case. Results show large variation of BW depending on the packaging, and not on the power. Then, we investigate the performances of CBC in harsh environment. For this purpose, we implement CBC of a 20-W fiber amplifier and a passive fiber using the LOCSET technique and simulate harsh environment by applying strong vibrations with a hammering drill on the optical table. The applied vibration spectrum ranges from 1 Hz to ~10 kHz with a standard deviation of 9 m/s2. CBC of the amplifier output and the passive fiber output is performed on a second table, isolated from vibrations. Measurements of the phase difference between both outputs and of the applied vibrations are simultaneously performed. Residual phase error of λ/40 (i.e. > 99 % CBC efficiency) is achieved under strong vibrations at 20 W. The -3 dB bandwidth of the LOCSET controller has been measured to be ~4.5 kHz. Results are in agreement with simulations.
Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B
2014-12-11
Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states.
NASA Astrophysics Data System (ADS)
Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao
2017-06-01
High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.
Analysis and design of optically pumped far infrared oscillators and amplifiers
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1978-01-01
A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.
Modeling and simulation of flow field in giant magnetostrictive pump
NASA Astrophysics Data System (ADS)
Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo
2017-09-01
Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.
Apparatus and method for suppressing vibration and displacement of a bellows
Kuklo, Thomas C.
1985-01-01
Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems (FIG. 3B) to separate them from each other, or to maintain the bellows in unsupported relationship between these systems (FIG. 4B). In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement (FIG. 4B), the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube (20) in surrounding relationship about a bellows (14) to suppress vibration and displacement thereof. A method for isolating first and second systems (11,12) from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows (14) between the systems (11,12), surrounding the bellows with an inflatable tube (20), and maintaining a predetermined pressure in the tube (20) to urge the tube in flexible contact with at least some of the convolutions of the bellows (14).
Three-dimensional spectroscopy of vibrational energy in liquids: nitromethane and acetonitrile.
Sun, Yuxiao; Pein, Brandt C; Dlott, Dana D
2013-12-12
We introduce a novel type of three-dimensional (3D) spectroscopy to study vibrational energy transfer, where an IR pulse tunable through the CH-stretching and CD-stretching regions was used to create parent vibrational excitations in liquids and a visible probe pulse was used to generate both Stokes and anti-Stokes Raman spectra as a function of delay time. The Raman spectra determine how much vibrational excitation was present in each probed state. The three dimensions are the wavenumber of the pumped state, the wavenumber of the probed state, and the time interval. The technique was used to study nitromethane (NM) and acetonitrile (ACN) and their deuterated analogues at ambient temperature. The 3D spectra were quite complicated. Three types of artifacts due to nonlinear light scattering were observed. Along the diagonal were two fundamental CH-stretch (or CD-stretch) transitions and several weaker combination bands or overtone transitions. Because Raman spectroscopy allows us to simultaneously probe a wide wavenumber region, for every diagonal peak, there were ∼10 off-diagonal peaks. The cross-peaks at shorter delay times reveal the nature of the initial excitation by showing which lower-wavenumber excitations were produced along with the pumped CH-stretch or CD-stretch. The longer-time spectra characterized vibrational energy relaxation processes, and showed how daughter vibrations were generated by different parent excitations.
Spin-lattice relaxation and the calculation of gain, pump power, and noise temperature in ruby
NASA Technical Reports Server (NTRS)
Lyons, J. R.
1989-01-01
The use of a quantitative analysis of the dominant source of relaxation in ruby spin systems to make predictions of key maser amplifier parameters is described. The spin-lattice Hamiltonian which describes the interaction of the electron spins with the thermal vibrations of the surrounding lattice is obtained from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's rule is used to calculate the spin transition rates between the maser energy levels. The spin population rate equations are solved for the spin transition relaxation times, and a comparison with previous calculations is made. Predictions of ruby gain, inversion ratio, and noise temperature as a function of physical temperature are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming pump saturation). A specific calculation relating pump power to inversion ratio is given for a single channel of the 32-GHz reflected wave maser.
Shin, Jae Yoon; Shaloski, Michael A; Crim, F Fleming; Case, Amanda S
2017-03-23
We present evidence for vibrational enhancement of the rate of bimolecular reactions of Br atoms with dimethylsulfoxide (DMSO) and methanol (CH 3 OH) in the condensed phase. The abstraction of a hydrogen atom from either of these solvents by a Br atom is highly endoergic: 3269 cm -1 for DMSO and 1416 or 4414 cm -1 for CH 3 OH, depending on the hydrogen atom abstracted. Thus, there is no thermal abstraction reaction at room temperature. Broadband electronic transient absorption shows that following photolysis of bromine precursors Br atoms form van der Waals complexes with the solvent molecules in about 5 ps and this Br • -solvent complex undergoes recombination. To explore the influence of vibrational energy on the abstraction reactions, we introduce a near-infrared (NIR) pump pulse following the photolysis pulse to excite the first overtone of the C-H (or O-H) stretch of the solvent molecules. Using single-wavelength detection, we observe a loss of the Br • -solvent complex that requires the presence of both photolysis and NIR pump pulses. Moreover, the magnitude of this loss depends on the NIR wavelength. Although this loss of reactive Br supports the notion of vibrationally driven chemistry, it is not concrete evidence of the hydrogen-abstraction reaction. To verify that the loss of reactive Br results from the vibrationally driven bimolecular reaction, we examine the pH dependence of the solution (as a measure of the formation of the HBr product) following long-time irradiation of the sample with both photolysis and NIR pump beams. We observe that when the NIR beam is on-resonance, the hydronium ion concentration increases fourfold as compared to that when it is off-resonance, suggesting the formation of HBr via a vibrationally driven hydrogen-abstraction reaction in solution.
NASA Astrophysics Data System (ADS)
Li, Lei; Yan, Hao; Zhang, Hengxuan; Li, Jing
2018-01-01
In the pilot stage of nozzle-flapper servo valve, the flow force on the flapper is the key reason that leads to forced vibration of the armature assembly, which may result in the fatigue of the flexure tube in torque motor. To master the principles and features of the flow force and the source of the forced vibration of the armature assembly, mathematical models of flow force and the forced vibration are deduced in this paper. For validating the model, a three-dimensional model is built and a finite element analysis of the flow force with different inlet pressure and deflections is presented and an innovative and experimental rig for measuring the steady and dynamic frequency of flow force is also designed. The characteristic of the main flow force, minor flow force and total flow force are analyzed contrastively, and the experimental results agree well with the CFD results and mathematical model analysis. To find the source of forced vibration of the armature assembly, a knocking method is proposed to measure the natural frequency of armature assembly. By comparing the spectrum of the pressure and vibration movement through experiments, a conclusion can be drawn that the inlet pressure fluctuation near the natural frequency of armature assembly and the asymmetric structure of pilot stage are the necessary and sufficient conditions to make the armature assembly yield forced vibration. In the end, some suggestions have been made to decrease the intensity of forced vibration of the pilot stage according to the findings.
Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis.
Games, Kenneth E; Sefton, JoEllen M; Wilson, Alan E
2015-05-01
The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or decreased depending on the location. Acute bouts of WBV increase peripheral blood flow but do not alter skeletal muscle oxygenation. Vibration type appears to be the most important factor influencing both muscle oxygenation and peripheral blood flow.
Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis
Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.
2015-01-01
Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation; however, when the measurement site was considered, muscle oxygenation increased or decreased depending on the location. Conclusions: Acute bouts of WBV increase peripheral blood flow but do not alter skeletal muscle oxygenation. Vibration type appears to be the most important factor influencing both muscle oxygenation and peripheral blood flow. PMID:25974682
Pump tank divider plate for sump suction sodium pumps
George, John A.; Nixon, Donald R.
1977-01-01
A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Design and optimization of mixed flow pump impeller blades by varying semi-cone angle
NASA Astrophysics Data System (ADS)
Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik
2018-03-01
The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.
Numerical investigation of the effect of number of blades on centrifugal pump performance
NASA Astrophysics Data System (ADS)
Kocaaslan, O.; Ozgoren, M.; Babayigit, O.; Aksoy, M. H.
2017-07-01
In this study, the flow structure in a centrifugal pump was numerically investigated for the different blade numbers in the impeller between 5 and 9. The pump used in the study is a single-stage horizontal shafted centrifugal pump. The original pump impeller was designed as 7 blades for the parameters of flow rate Q=100 mł/h, head Hm=180 kPa and revolution n=1480 rpm. First, models of impellers with the different blade numbers between 5 and 9 and the volute section of the centrifugal pump were separately drawn using Solidworks software. Later, grid structures were generated on the flow volume of the pump. Last, the flow analyses were performed and the flow characteristics under different operational conditions were determined numerically. In the numerical analyses, k-ɛ turbulence model and standard wall functions were used to solve turbulent flow. Balance holes and surface roughness, which adversely affect the hydraulic efficiency of pumps, were also considered. The obtained results of the analyses show that the hydraulic torque and head values have increased with the application of higher number of the impeller blades. For the impellers with 5 and 9 blades on the design flow rate of 100 mł/h (Q/Qd=1), the hydraulic torque and head were found 49/59.1 Nm and 153.1/184.4 kPa, respectively. Subsequently the hydraulic efficiencies of each pump were calculated. As a result, the highest hydraulic efficiency on the design flow rate was calculated as 54.16% for the pump impeller having 8 blades.
Experimental study on hydraulic characteristic around trash rack of a pumping station
NASA Astrophysics Data System (ADS)
Zhou, MinZhe; Li, TongChun; Lin, XiangYang; Liu, XiaoQing; Ding, Yuan; Liu, GuangYuan
2017-11-01
This paper focuses on flow pattern around trash rack of intake of a pumping station project. This pumping station undertake the task of supplying up to 3,500,000 m3 water per day for a megacity. Considering the large flow rate, high lift, multi-pipe supply and long-time operation in this water conveyance pumping station, we built a physical model test to measure the flow velocity and observe the flow pattern to verify the reasonability of preliminary design. In this test, we set 3 layers of current meters around each trash rack of intake in reservoir to collect the flow velocity. Furthermore, we design 2 operating conditions of 9 pumps to observe the change of flow pattern. Finally, we found the velocity data were in a normal range under 2 different operating conditions of the 9 pump units.
Analytical and experimental studies of flow-induced vibration of SSME components
NASA Technical Reports Server (NTRS)
Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.
1987-01-01
Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.
Ultrasonic technique for imaging tissue vibrations: preliminary results.
Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin
2005-02-01
We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.
Two-dimensional vibrational-electronic spectroscopy
NASA Astrophysics Data System (ADS)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional vibrational-electronic spectroscopy.
Courtney, Trevor L; Fox, Zachary W; Slenkamp, Karla M; Khalil, Munira
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Coherent acoustic vibrations of metal nanoshells
NASA Astrophysics Data System (ADS)
Kirakosyan, A. S.; Shahbazyan, T. V.; Guillon, C.; Langot, P.; Del Fatti, N.; Vallee, F.; Cardinal, T.; Treguer, M.
2007-03-01
We study vibrational modes of gold nanoshells grown on dielectric core by means of time-resolved pump-probe spectroscopy. The fundamental breathing mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of the nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger while the period is longer than in a gold nanoparticle of the same overall size. A theoretical model describing breathing mode frequency and damping for a nanoshell in a medium is developed. A distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.
Acoustic vibrations of metal nanoparticles: high order radial mode detection
NASA Astrophysics Data System (ADS)
Nelet, A.; Crut, A.; Arbouet, A.; Del Fatti, N.; Vallée, F.; Portalès, H.; Saviot, L.; Duval, E.
2004-03-01
The vibrational radial modes of silver nanospheres embedded in a glass matrix are investigated using a high sensitivity femtosecond pump-probe technique. The results yield evidence for coherent launching of the fundamental and higher order radial modes in agreement with a sphere dilation mediated excitation model. The results are consistent with low-frequency Raman scattering experiments.
Hydrodynamic performance and heat generation by centrifugal pumps.
Ganushchak, Y; van Marken Lichtenbelt, W; van der Nagel, T; de Jong, D S
2006-11-01
For over a century, centrifugal pumps (CP) have been used in various applications, from large industrial pumps to flow pumps for aquariums. However, the use of CP as blood pumps has a rather short history. Consequently, the hydraulic performance data for a blood CP are limited. The aim of our investigation was to study the hydraulic performance and the heat generation of three commercially available CP: Bio-Medicus Bio-Pump BP80 (Medtronic), Rotaflow (Jostra Medizintechnik), and DeltaStream DP2 (MEDOS Medizintechnik AQ). The study was performed using a circuit primed with a water-glycerin mixture with a dynamic viscosity of 0.00272 pa/s. Pressure-flow curves were obtained by a stepwise stagnation of the pump outlet or inlet. The temperature changes were observed using ThermaCAM SC2000 (Flir Systems). The pumps' performance in close to clinical conditions ('operating region') was analysed in this report. The 'operating region' in the case of the BP80 is positioned around the pressure-flow curve at a pump speed of 3000 rpm. In the case of the Rotaflow, the 'operating region' was between the pump pressure-flow curves at a speed of 3000 and 4000 rpm, and the DP2 was found between 7000 and 8000 rpm. The standard deviation of mean pressure through the pump was used to characterise the stability of the pump. In experiments with outlet stagnation, the BP80 demonstrated high negative association between flow and pressure variability (r = -0.68, p < 0.001). In experiments with the DP2, this association was positive (r = 0.68, p < 0.001). All pumps demonstrated significantly higher variability of pressure in experiments with inlet stagnation in comparison to the experiments with outlet stagnation. The rise of relative temperature in the inlet of a pump was closely related to the flow rate. The heating of fluid was more pronounced in the 'zero-flow' mode, especially in experiments with inlet stagnation. In summary, (1) the 'zero-flow' regime, which is described in the manuals of some commercially-available pumps, is the use of the pump outside the allowable operating region. It is potentially dangerous and should, therefore, never be used in clinical settings. (2) Using centrifugal pumps for kinetic-assisted venous return can only be performed safely when the negative pressure at the inlet of the pump is monitored continuously. The maximum allowable negative pressure has to be defined for each type of pump, and must be based on pump performance.
SHINE Vacuum Pump Test Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Gregg A; Peters, Brent
2013-09-30
Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to themore » movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ''booster pump'' is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of 3/4 inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.« less
In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.
Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine
2011-01-01
Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro. The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals). In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively. The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.
Electroosmotic pumps for microflow analysis
Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong
2009-01-01
With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021
A case study of the fluid structure interaction of a Francis turbine
NASA Astrophysics Data System (ADS)
Müller, C.; Staubli, T.; Baumann, R.; Casartelli, E.
2014-03-01
The Francis turbine runners of the Grimsel 2 pump storage power plant showed repeatedly cracks during the last decade. It is assumed that these cracks were caused by flow induced forces acting on blades and eventual resonant runner vibrations lead to high stresses in the blade root areas. The eigenfrequencies of the runner were simulated in water using acoustic elements and compared to experimental data. Unsteady blades pressure distribution determined by a transient CFD simulation of the turbine were coupled to a FEM simulation. The FEM simulation enabled analyzing the stresses in the runner and the eigenmodes of the runner vibrations. For a part-load operating point, transient CFD simulations of the entire turbine, including the spiral case, the runner and the draft tube were carried out. The most significant loads on the turbine runner resulted from the centrifugal forces and the fluid forces. Such forces effect temporally invariant runner blades loads, in contrast rotor stator interaction or draft tube instabilities induce pressure fluctuations which cause the temporally variable forces. The blades pressure distribution resulting from the flow simulation was coupled by unidirectional-harmonic FEM simulation. The dominant transient blade pressure distribution of the CFD simulation were Fourier transformed, and the static and harmonic portion assigned to the blade surfaces in the FEM model. The evaluation of the FEM simulation showed that the simulated part load operating point do not cause critical stress peaks in the crack zones. The pressure amplitudes and frequencies are very small and interact only locally with the runner blades. As the frequencies are far below the modal frequencies of the turbine runner, resonant vibrations obviously are not excited.
NASA Astrophysics Data System (ADS)
Buryan, Yu. A.; Babichev, D. O.; Silkov, M. V.; Shtripling, L. O.; Kalashnikov, B. A.
2017-08-01
This research refers to the problems of processing equipment protection from vibration influence. The theory issues of vibration isolation for vibroactive objects such as engines, pumps, compressors, fans, piping, etc. are considered. The design of the perspective air spring with the parallel mounted mechanical inertial motion converter is offered. The mathematical model of the suspension, allowing selecting options to reduce the factor of the force transmission to the base in a certain frequency range is obtained.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
Porous glass electroosmotic pumps: design and experiments.
Yao, Shuhuai; Hertzog, David E; Zeng, Shulin; Mikkelsen, James C; Santiago, Juan G
2003-12-01
An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system.
Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens
NASA Astrophysics Data System (ADS)
Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua
2017-12-01
A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.
Downhole hydraulic seismic generator
Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.
1992-01-01
A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.
Electric analog of three-dimensional flow to wells and its application to unconfined aquifers
Stallman, Robert W.
1963-01-01
Electric-analog design criteria are established from the differential equations of ground-water flow for analyzing pumping-test data. A convenient analog design was obtained by transforming the cylindrical equation of flow to a rectilinear form. The design criteria were applied in the construction of an electric analog, which was used for studying pumping-test data collected near Grand Island, Nebr. Data analysis indicated (1) vertical flow components near pumping wells in unconfined aquifers may be much more significant in the control of water-table decline than radial flow components for as much as a day of pumping; (2) the specific yield during the first few minutes of pumping appears to be a very small fraction of that observed after pumping for more than 1 day; and (3) estimates of specific yield made from model studies seem much more sensitive to variations in assumed flow conditions than are estimates of permeability. Analysis of pumping-test data where vertical flow components are important requires that the degree of anisotropy be known. A procedure for computing anisotropy directly from drawdowns observed at five points was developed. Results obtained in the analog study emphasize the futility of calculating unconfined aquifer properties from pumping tests of short duration by means of equations based on the assumptions that vertical flow components are negligible and specific yield is constant.
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Design and Construction of Aquaculture Facilities in Dredged Material Containment Areas
1993-07-01
detail. The following discussion of centrifugal and axial flow pumps is adapted from Wheaton (1977), Baker (1987), and Baker and Bankston (1988...at a right angle to the impeller shaft. Axial flow propeller pumps are also used, especially in high-volume low-lift situations. The propeller may look...horizontal centrifugal pump or the axial flow pump may be used. Both of these pumps provide large volumes of water under low head conditions. Many
Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa; Shimizu, Nobtaka; Kawano, Yoshiaki; Kumasaka, Takashi; Yamamoto, Masaki; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2010-06-01
SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors—thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions un der scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.
Fuchs, Gabriel; Berg, Niclas; Eriksson, Anders
2016-01-01
Abstract As of today, there exist no reliable, objective methods for early detection of thrombi in the extracorporeal membrane oxygenators (ECMO) system. Within the ECMO system, thrombi are not always fixed to a certain component or location in the circuit. Thus, clot fragments of different shapes and consistencies may circulate and give rise to vibrations and sound generation. By bedside sound measurements and additional laboratory experiments (although not detailed herein), we found that the presence of particles (clots or aggregates and fragments of clots) can be detected by analyzing the strength of infra‐sound (< 20 Hz) modes of the spectrum near the inlet and outlet of the centrifugal pump in the ECMO circuit. For the few patients that were considered in this study, no clear false positive or negative examples were found when comparing the spectral approach with clinical observations. A laboratory setup provided insight to the flow in and out of the pump, confirming that in the presence of particles a low‐amplitude low‐frequency signal is strongly amplified, enabling the identification of a clot. PMID:27654663
Ultrafast vibrational dynamics of BH{sub 4}{sup −} ions in liquid and crystalline environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyborski, Tobias, E-mail: tyborski@mbi-berlin.de; Costard, Rene; Woerner, Michael
2014-07-21
Ultrafast vibrational dynamics of BH{sub 4}{sup −} ions, the key units in boron hydride materials for hydrogen storage, are studied in diluted polar liquid solution and in NaBH{sub 4} crystallites by femtosecond infrared spectroscopy. Two-color pump-probe experiments reveal v = 1 lifetimes of 3 ps for the asymmetric BH{sub 4}{sup −} stretching mode ν{sub 3} and of 3.6 ps for the asymmetric bending mode ν{sub 4} in the solvent isopropylamine. We provide direct evidence for the BH{sub 4}{sup −} stretching relaxation pathway via the asymmetric bending mode ν{sub 4} by probing the latter after femtosecond excitation of ν{sub 3}. Pump-probemore » traces measured in the crystalline phase show signatures of radiative coupling between the densely packed BH{sub 4}{sup −} oscillators, most clearly manifested in an accelerated subpicosecond depopulation of the v = 1 state of the ν{sub 4} mode. The radiative decay is followed by incoherent vibrational relaxation similar to the liquid phase. The excess energy released in the relaxation processes of the BH{sub 4}{sup −} intramolecular modes is transferred into the environment with thermal pump-probe signals being much more pronounced in the dense solid than in the diluted solution.« less
Pump Coupling & Motor bearing damage detection using Condition Monitoring at DTPS
NASA Astrophysics Data System (ADS)
Bari, H. M.; Deshpande, A. A.; Jalkote, P. S.; Patil, S. S.
2012-05-01
This paper shares a success story out of the implementation of Co-ordinated Condition Monitoring techniques at DTPS, wherein imminent Mis-alignment of HT auxiliary BFP - 1B and Motor bearing failure of ID FAN - 1B was diagnosed. On 30/12/2010, Booster Pump DE horizontal reading increased from 4.8 to 5.1 and then upto 5.9 mm/sec. It was suspected that Booster pump was mis-aligned with Motor. To confirm misalignment, Phase Analysis was also done which showed that Coupling phase difference was 180 Degrees. Vibration & Phase Analysis helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 104,071. On 06/01/2011, ID fan 1B Motor NDE & DE horizontal vibration readings deviated from 0.5 to 0.8 and 0.6 to 0.8 mm/sec (RMS) respectively. Noise level increased from 99.1 to 101.9 db. It was suspected that Motor bearings had loosened over the shaft. Meanwhile, after opening of Motor, Inner race of NDE side was found cracked and loosened over the shaft. Vibration Analysis & Noise Monitoring helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 308,857.
Vibration Test of a SNAP-8 Sodium-Potassium Alloy Pump
1970-01-21
Aeronautics and Space Administration (NASA) Lewis Research Center. Aerojet General was contracted to design the SNAP-8 generator which employed a mercury Rankine system to convert the reactor’s heat into electrical power. The hermetically-sealed pump was designed to generate from 35 to 90 kilowatts of electrical power. In 1964 a SNAP-8 test rig with a mercury boiler and condenser was set up in cell W-1 of Lewis’ Engine Research Building to study the transients in the system’s three loops. In 1967 a complete Rankine system was operated for 60 days in W-1 to verify the integrity of the Lewis-developed mercury boiler. Further tests in 1969 verified the shutdown and startup of the system under normal and emergency conditions. Aerojet operated the first full-Rankine system in June 1966 and completed a 2500-hour endurance test in early 1969. Lewis and Aerojet’s success on the Rankine system was acknowledged with NASA Group Achievement Award in November 1970. The 1970 vibration tests, seen here, were conducted in Lewis’ Engine Research Building’s environmental laboratory. The testing replicated the shock and vibration expected to occur during the launch into space and subsequent maneuvering. The pump was analyzed on each of its major axes.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period
NASA Astrophysics Data System (ADS)
Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong
2017-05-01
Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.
1974-11-01
double resonance experiments to study vibration to rotation energy transfer; chemical laser initiation and pumping by electrical discharges in...8217) + HF(v=0,J2’). (7) Ihe experiment consists of the use of one HF laser to pump the IIFfv^jp molecules in less than 500 nanoseconds and the...each stage of diöüUaUcm, Ihc mid- dle 90’c of the .-.ample was rolained." The distilled sam- ple was condensed and pumped on at TV K in r
NASA Astrophysics Data System (ADS)
Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.
In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.
Flow determination of a pump-turbine at zero discharge
NASA Astrophysics Data System (ADS)
Edinger, G.; Erne, S.; Doujak, E.; Bauer, C.
2014-03-01
When starting up a reversible Francis pump-turbine in pump mode, the machine may operate at zero flow at a given gate opening. Besides reversal flow and prerotation in the draft tube cone, the onset of a fully separated flow in the vaned diffuser is observable at zero- discharge condition. In this paper, the occurrence of prerotation and reversal flow in the conical draft tube and the flow in one stay vane channel of a pump-turbine are examined experimentally and compared to numerical simulations. In order to assess the strongly three-dimensional flow in the stay vane channel, measurements with a 2D laser doppler velocimeter (LDV) were performed at various positions. The inlet flow in the draft tube cone, which becomes significantly at zero discharge in pump mode, is investigated by velocity measurements at two different positions. Pressure fluctuations in the draft tube cone induced by complex flow patterns are also recorded and analyzed. It is found that the swirl number at zero discharge does not significant differ from the values obtained at very low load pumping. Experimental investigations combined with CFD have shown that in the stay vane channel flow velocity components different from zero occur even at no discharge. Streamline plots show the fully separated flow structure.
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1986-01-01
Molecular flow velocity (one component), translational temperature, and static pressure of N2 are measured in a supersonic wind tunnel using inverse Raman spectroscopy. For velocity, the technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counterpropagating (backward scattering). A retrometer system is employed to yield an optical configuration insensitive to mechanical vibration, which has the additional advantage of simultaneously obtaining both the forward and backward scattered spectra. The forward and backward line breadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the technique was performed in a continuous airflow supersonic wind tunnel in which data were obtained under the following conditions: (1) free-stream operation at five set Mach number levels over the 2.50-4.63 range; (2) free-stream operation over a range of Reynolds number (at a fixed Mach number) to vary systematically the static pressure; and (3) operation in the flow field of a simple aerodynamic model to assess beam steering effects in traversing the attached shock layer.
Active Control of Panel Vibrations Induced by a Boundary Layer Flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1998-01-01
In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal of Acoustic Society of America for publication.
Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode
NASA Astrophysics Data System (ADS)
Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.
2014-03-01
Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.
Medizade, Masoud [San Luis Obispo, CA; Ridgely, John Robert [Los Osos, CA
2009-12-15
An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.
do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent
2007-02-07
The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.
NASA Astrophysics Data System (ADS)
Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas
2018-04-01
Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.
Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng
2016-03-03
The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
NASA Astrophysics Data System (ADS)
Leng, Xuefei; Zhang, Jianhui; Jiang, Yan; Wang, Shouyin; Zhao, Chunsheng
2014-07-01
The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.
Ho, Jr-Wei; Chen, Wei-Kan; Cheng, Po-Yuan
2009-10-07
We report studies of ultrafast dynamics of azobenzene cation using femtosecond photoionization-photofragmentation spectroscopy. In our experiments, a femtosecond pump pulse first produces an ensemble of azobenzene cations via photoionization of the neutrals. A delayed probe pulse then brings the evolving ionic system to excited states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cation are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps, suggesting that energy dissipation from the active mode to bath modes takes place in this time scale.
Bai, Shuming; Song, Kai; Shi, Qiang
2015-05-21
Observations of oscillatory features in the 2D spectra of several photosynthetic complexes have led to diverged opinions on their origins, including electronic coherence, vibrational coherence, and vibronic coherence. In this work, effects of these different types of quantum coherence on ultrafast pump-probe polarization anisotropy are investigated and distinguished. We first simulate the isotropic pump-probe signal and anisotropy decay of the Fenna-Matthews-Olson (FMO) complex using a model with only electronic coherence at low temperature and obtain the same coherence time as in the previous experiment. Then, three model dimer systems with different prespecified quantum coherence are simulated, and the results show that their different spectral characteristics can be used to determine the type of coherence during the spectral process. Finally, we simulate model systems with different electronic-vibrational couplings and reveal the condition in which long time vibronic coherence can be observed in systems like the FMO complex.
Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load
NASA Astrophysics Data System (ADS)
Prunières, R.; Inoue, Y.; Nagahara, T.
2016-11-01
Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.
Vengris, Mikas; Larsen, Delmar S; van der Horst, Michael A; Larsen, Olaf F A; Hellingwerf, Klaas J; van Grondelle, Rienk
2005-03-10
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state lifetime of p-coumaric acid. Pigments with ester groups on the coumaryl tail end and charged phenolic moieties show dynamics that are significantly different from those of other pigments. Here, an unrelaxed ground-state intermediate could be observed in pump-probe signals. A similar intermediate could be identified in the sinapinic acid and in isomerization-locked chromophores by means of pump-dump probe spectroscopy; however, in these compounds it is less pronounced and could be due to ground-state solvation and/or vibrational relaxation. Because of strong protonation-state dependencies and the effect of electron donor groups, it is argued that charge redistribution upon excitation determines the twisting reaction pathway, possibly through interaction with the environment. It is suggested that the same pathway may be responsible for the initiation of the photocycle in native PYP.
CINE: Comet INfrared Excitation
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.
2017-08-01
CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK
NASA Astrophysics Data System (ADS)
Berg, L.-E.; Beutter, M.; Hansson, T.
1996-05-01
The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.
Hydraulic induced instability on a vertical service
NASA Technical Reports Server (NTRS)
Bosmans, R. F.
1985-01-01
The case history contained provides insight toward the mechanical and hydraulic behavior of a vertical pump. It clearly demonstrates the need for measurements on the rotor at or near the impeller area. The results are reported of an analysis on a service water pump. This pump is typical of the water pumps used throughout the power generation industry. Although little is known of the mechanical behavior of vertical pumps because of difficulty in modeling the rotor system, recent developments in the application of submersible proximity transducers have made possible the measurement of pump dynamics under operating conditions. The purpose of this study was to determine the proper selection and installation of vibration-monitoring transducers as well as to measure the effects of imbalance, misalignment, and hydraulics on the performance and reliability of vertical pumps. In addition, the cause of shaft failures on this pump was to be determined.
Resonant absorption induced fast melting studied with mid-IR QCLs.
Lu, Jie; Lv, Yankun; Ji, Youxin; Tang, Xiaoliang; Qi, Zeming; Li, Liangbin
2017-02-01
We demonstrate the use of a pump-probe setup based on two mid-infrared quantum cascade lasers (QCLs) to investigate the melting and crystallization of materials through resonant absorption. A combination of pump and probe beams fulfills the two-color synchronous detection. Furthermore, narrow linewidth advances the accuracy of measurements and the character of broad tuning range of QCLs enables wide applications in various sample and multiple structures. 1-Eicosene was selected as a simple model system to verify the feasibility of this method. A pulsed QCL was tuned to the absorption peak of CH 2 bending vibration at 1467 cm -1 to resonantly heat the sample. The other QCL in continuous mode was tuned to 1643 cm -1 corresponding the C=C stretching vibration to follow the fast melting dynamics. By monitoring the transmission intensity variation of pump and probe beams during pump-probe experiments, the resonant absorption induced fast melting and re-crystallization of 1-Eicosene can be studied. Results show that the thermal effect and melting behaviors strongly depend on the pump wavelength (resonant or non-resonant) and energy, as well as the pump time. The realization and detection of melting and recrystallization can be performed in tens of milliseconds, which improves the time resolution of melting process study based on general mid-infrared spectrum by orders of magnitude. The availability of resonant heating and detections based on mid-infrared QCLs is expected to enable new applications in melting study.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
Simons, A P; Lindelauf, A A M A; Ganushchak, Y M; Maessen, J G; Weerwind, P W
2014-01-01
Without volume-buffering capacity in extracorporeal life support (ELS) systems, hypovolemia can acutely reduce support flow. This study aims at evaluating efficacy and safety of strategies for preserving stable ELS during hypovolemia. Flow and/or pressure-guided servo pump control, a reserve-driven control strategy and a volume buffer capacity (VBC) device were evaluated with respect to pump flow, venous line pressure and arterial gaseous microemboli (GME) during simulated normovolemia and hypovolemia. Normovolemia resulted in a GME-free pump flow of 3.1 ± 0.0 L/min and a venous line pressure of -10 ± 1 mmHg. Hypovolemia without servo pump control resulted in a GME-loaded flow of 2.3 ± 0.4 L/min with a venous line pressure of -114 ± 52 mmHg. Servo control resulted in an unstable and GME-loaded flow of 1.5 ± 1.2 L/min. With and without servo pump control, the VBC device stabilised flow (SD = 0.2 and 0.0 L/min, respectively) and venous line pressure (SD=51 and 4 mmHg, respectively) with near-absent GME activity. Reserve-driven pump control combined with a VBC device restored a near GME-free flow of 2.7 ± 0.0 L/min with a venous line pressure of -9 ± 0 mmHg. In contrast to a reserve-driven pump control strategy combined with a VBC device, flow and pressure servo control for ELS show evident deficits in preserving stable and safe ELS flow during hypovolemia.
A handy liquid metal based electroosmotic flow pump.
Gao, Meng; Gui, Lin
2014-06-07
A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.
Flow in water-intake pump bays: A guide for utility engineers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettema, R.
1998-09-01
This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how themore » vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes.« less
NASA Astrophysics Data System (ADS)
Yang, Zhengjun; Wang, Fujun; Zhou, Peijian
2012-09-01
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
Yager, Richard M.; Heywood, Charles E.
2014-01-01
Public-supply wells with long screens in alluvial aquifers can produce waters of differing quality from different depths. Seasonal changes in quality are linked to seasonal changes in pumping rates that influence the distribution of flow into the well screens under pumping conditions and the magnitude and direction of intraborehole flow within the wells under ambient conditions. Groundwater flow and transport simulations with MODFLOW and MT3DMS were developed to quantify the effects of changes in average seasonal pumping rates on intraborehole flow and water quality at two long-screened, public-supply wells, in Albuquerque, New Mexico and Modesto, California, where widespread pumping has altered groundwater flow patterns. Simulation results indicate that both wells produce water requiring additional treatment to maintain potable quality in winter when groundwater withdrawals are reduced because less water is derived from parts of the aquifer that contain water requiring less treatment. Simulation results indicate that the water quality at both wells could be improved by increasing average winter-pumping rates to induce more lateral flow from parts of the aquifer that contain better quality water. Arsenic-bearing water produced by the Albuquerque well could be reduced from 55% to 45% by doubling average winter-pumping rate, while nitrate- and uranium-bearing water produced by the Modesto well could be reduced from 95% to 65% by nearly tripling the average winter-pumping rate. Higher average winter-pumping rates would also reduce the volume of intraborehole flow within both wells and prevent the exchange of poor quality water between shallow and deep parts of both aquifers.
The influence of Reynolds numbers on resistance properties of jet pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Q.; Graduate University of Chinese Academy of Sciences, Beijing 100049; Zhou, G.
2014-01-29
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structuresmore » and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.« less
The influence of Reynolds numbers on resistance properties of jet pumps
NASA Astrophysics Data System (ADS)
Geng, Q.; Zhou, G.; Li, Q.
2014-01-01
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
Lohman, Everett B.; Bains, Gurinder S.; Lohman, Trevor; DeLeon, Michael; Petrofsky, Jerrold Scott
2011-01-01
Summary Background Circulation plays an essential role in tissue healing. Moist heat and warm water immersion have been shown to increase skin circulation; however, these heating modalities can cause burns. Recent research has shown that passive vibration can also increase circulation but without the risk of burns. Material/Methods The aim of this study is to compare the effects of short-duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST). Ten (10) subjects, 5 female and 5 male, aged 20–30 years of age, received two interventions a day for 3 consecutive days: Intervention 1 – Active vibration only (vibration exercise), Intervention 2 – passive vibration only, Intervention 3 – moist heat only, Intervention 4 – passive vibration combined with moist heat, Intervention 5 – a commercial massaging heating pad, and Intervention 6 – no intervention, resting in supine only (control). SBF and ST were measured using a laser Doppler imager during the 10 minute intervention and then throughout the nine minute recovery period. Results The mean skin blood flow following a ten-minute intervention of the combination of passive vibration and moist heat was significantly different from the control, active vibration, and the commercial massaging heating pad. Skin temperature following the ten-minute interventions of moist heat alone and passive vibration alone were both significantly different from the commercial massaging heating pad and active vibration interventions. Conclusions The combination of passive vibration and moist heat produced the greatest increase in skin blood flow and the second highest increase in skin blood flow nine minutes post application. PMID:21873956
Low frequency vibration induced streaming in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.
When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less
NASA Astrophysics Data System (ADS)
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate
NASA Astrophysics Data System (ADS)
Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid
2018-02-01
In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.
NASA Technical Reports Server (NTRS)
Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)
1999-01-01
A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.
Non-Synchronous Vibration of Turbomachinery Airfoils
2006-03-01
study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering
NASA Astrophysics Data System (ADS)
Sek Tee, Kian; Sharil Saripan, Muhammad; Yap, Hiung Yin; Fhong Soon, Chin
2017-08-01
With the advancement in microfluidic technology, fluid flow control for syringe pump is always essential. In this paper, a mechatronic syringe pump will be developed and customized to control the fluid flow in a poly-dimethylsiloxane (PDMS) microfluidic device based on a polyimide laminating film. The syringe pump is designed to drive fluid with flow rates of 100 and 1000 μl/min which intended to drive continuous fluid in a polyimide based microfluidic device. The electronic system consists of an Arduino microcontroller board and a uni-polar stepper motor. In the system, the uni-polar stepper motor was coupled to a linear slider attached to the plunger of a syringe pump. As the motor rotates, the plunger pumps the liquid out of the syringe. The accuracy of the fluid flow rate was determined by adjusting the number of micro-step/revolution to drive the stepper motor to infuse fluid into the microfluidic device. With the precise control of the electronic system, the syringe pump could accurately inject fluid volume at 100 and 1000 μl/min into a microfluidic device.
Ghodsizad, Ali; Badiye, A; Zeriouh, M; Pae, W; Koerner, M M; Loebe, M
2016-12-14
Despite advances in pump technology, thromboembolic events and pump thrombosis are potentially life-threatening complications in patients with continuous flow ventricular assist devices. Here we describe a patient with pump thrombosis following LVAD HeartMate II implantation presenting with Aspirin and Plavix resistance and signs of acute hemolysis as manifested by high LDH, changing pump power, pulse index and reduced pump flows.
Improvement of centrifugal pump performance through addition of splitter blades on impeller pump
NASA Astrophysics Data System (ADS)
Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija
2018-02-01
The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.
Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2014-01-01
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485
Ren, Qinlong
2018-02-10
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro-osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade
NASA Technical Reports Server (NTRS)
Wu, H.; Miorini, R.; Soranna, F.; Katz, J.; Michael, T.; Jessup, S.
2010-01-01
Objectives: Measure the flow structure and turbulence within a Naval, axial waterjet pump. Create a database for benchmarking and validation of parallel computational efforts. Address flow and turbulence modeling issues that are unique to this complex environment. Measure and model flow phenomena affecting cavitation within the pump and its effect on pump performance. This presentation focuses on cavitation phenomena and associated flow structure in the tip region of a rotor blade.
Maiuri, Margherita; Delfino, Ines; Cerullo, Giulio; Manzoni, Cristian; Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Gee, Leland B; Dapper, Christie H; Newton, William E; Cramer, Stephen P
2015-12-01
We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Pao-Lien
1992-09-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1992-01-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
Convective flow reversal in self-powered enzyme micropumps.
Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C
2016-03-08
Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β ), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices.
Convective flow reversal in self-powered enzyme micropumps
Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C.
2016-01-01
Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=DP/DS and expansion coefficients β=βP/βS of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices. PMID:26903618
Chilldown study of the single stage inducer test rig
NASA Technical Reports Server (NTRS)
Kimura, L. A.
1972-01-01
Of the six chilldown tests, data from only one could be used for evaluation. During the rest of the chilldown tests, there was leakage hydrogen flow into the pump cavity prior to the initiation of the chilldown test. In all of the tests the hydrogen condition into the pump was probably 100% vapor. The data from this one test, therefore, can be used to compare only the single phase fluid correlation in the analytical pump chilldown model. In general, the actual pump chilled down much faster than predicted by the analytical pump model. There were insufficient data from the test to measure the pump flow rate and pump inlet fluid condition; therefore, these parameters were extrapolated based on related data which were available. However, even with the highest probable flow rate, the pump chilled faster than predicted.
Two-dimensional vibrational-electronic spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE)more » to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.« less
Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon
NASA Astrophysics Data System (ADS)
Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey
2018-04-01
Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the injection level of the free carriers, charge-carrier scattering time related high-frequency conductivity, and the free-carrier absorption at the midwave infrared range.
NASA Astrophysics Data System (ADS)
Rahmawati, P.; Prajitno, P.
2018-04-01
Vibration monitoring is a measurement instrument used to identify, predict, and prevent failures in machine instruments[6]. This is very needed in the industrial applications, cause any problem with the equipment or plant translates into economical loss and they are mostly monitored component off-line[2]. In this research, a system has been developed to detect the malfunction of the components of Shimizu PS-128BT water pump machine, such as capacitor, bearing and impeller by online measurements. The malfunction components are detected by taking vibration data using a Micro-Electro-Mechanical System(MEMS)-based accelerometer that are acquired by using Raspberry Pi microcomputer and then the data are converted into the form of Relative Power Ratio(RPR). In this form the signal acquired from different components conditions have different patterns. The collected RPR used as the base of classification process for recognizing the damage components of the water pump that are conducted by Artificial Neural Network(ANN). Finally, the damage test result will be sent via text message using GSM module that are connected to Raspberry Pi microcomputer. The results, with several measurement readings, with each reading in 10 minutes duration for each different component conditions, all cases yield 100% of accuracies while in the case of defective capacitor yields 90% of accuracy.
An experimental investigation on fluid dynamics of an automotive torque converter
NASA Astrophysics Data System (ADS)
Dong, Yu
The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors mounted on the stator blade surface. Based on the experimental data and analysis, recommendations are proposed for the hydraulic design and the fluid dynamics research of the torque converter.
Method for eliminating gas blocking in electrokinetic pumping systems
Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.
2001-09-11
A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.
Numerical simulation of the cavitation characteristics of a mixed-flow pump
NASA Astrophysics Data System (ADS)
Chen, T.; Li, S. R.; Li, W. Z.; Liu, Y. L.; Wu, D. Z.; Wang, L. Q.
2013-12-01
As a kind of general equipment for fluid transportation, pumps were widely used in industry which includes many applications of high pressure, temperature and toxic fluids transportations. Performances of pumps affect the safety and reliability of the whole special equipment system. Cavitation in pumps cause the loss of performance and erosion of the blade, which could affect the running stability and reliability of the pump system. In this paper, a kind of numerical method for cavitaion performance prediction was presented. In order to investigate the accuracy of the method, CFD flow analysis and cavitation performance predictions of a mixed-flow pump were carried out. The numerical results were compared with the test results.
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Bipropellant propulsion with reciprocating pumps
NASA Astrophysics Data System (ADS)
Whitehead, John C.
1993-06-01
A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.
The research on flow pulsation characteristics of axial piston pump
NASA Astrophysics Data System (ADS)
Wang, Bingchao; Wang, Yulin
2017-01-01
The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.
Santambrogio, Luisa; Leva, Cristian; Musazzi, Giorgio; Bruno, Piergiorgio; Vailati, Andrea; Zecchillo, Franco; Di Credico, Germano
2009-01-01
During cardiopulmonary bypass the pump flow is usually set on 2.4 L/min/m(2) of body surface area (BSA) to guarantee adequate tissue perfusion without differences for patient constitutional type. The present study attempts to evaluate the adequacy of pump flow rate in obese patients, considering the ideal weight instead of the real one, avoiding the overflow side effects and hemodilution. Obese patients with body mass index (BMI) > 30 presented for cardiac surgery were randomized in two groups: in one the cardiopulmonary bypass was led traditionally, in the other, pump flow rate was calculated on ideal BMI of 25. Demographics, preoperative tests, and monitoring data were registered. Mortality at hospital discharge and 30 days after were analyzed. The pump flow rate between the groups was different (4.46 vs. 4.87; p = 0.004); there were no differences in organ perfusion (SvO(2); diuresis) and mortality, but the study group presented fewer complications and blood transfusions. The BSA is widely used as the biometric unit to normalize physiologic parameters included pump flow rate, but it is disputable if this practice is correct also in obese patients. The study group, in which pump flow rate was set on ideal BSA, presented no difference in diuresis and mixed venous saturation but fewer complications and fewer perioperative blood transfusions.
Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F
2009-04-01
Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
The Shock and Vibration Digest. Volume 14, Number 7
1982-07-01
Yang, ed., pp 93-107, 13 figs, 4 refs Key Words: Tube arrays. Heat exchangers . Wind tunnel testing . Critical speeds. Fluid-induced excitation...the Eighties," Proc. Const. Indus. Res. Inform. Assoc. Conf., Lon- don, UK (Nov 1980). 38 BOOK REVIEWS FLOW-INDUCED HEAT EXCHANGER TUBE...1980 Heat exchanger problems caused by flow-induced vibration are of concern to designers and operators of heat exchangers . Flow-induced vibration
State-to-state modeling of non-equilibrium air nozzle flows
NASA Astrophysics Data System (ADS)
Nagnibeda, E.; Papina, K.; Kunova, O.
2018-05-01
One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.
Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell
NASA Astrophysics Data System (ADS)
Wang, Yun; Zheng, Gangtie
2012-07-01
In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.
Satellite Propellant Pump Research
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan
2005-01-01
NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi
2015-06-07
Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly showsmore » two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.« less
NASA Technical Reports Server (NTRS)
Paganini, L.; Mumma, M. J.
2016-01-01
We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the A(sup 2)Pi(sub I) and B(sup 2)Sum(sup +) electronically excited states followed by cascade to ro-vibrational levels of X(sup 2)Sum(sup +), and direct solar infrared pumping of ro-vibrational levels in the X(sup 2)Sum(sup +) state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for X(sup 2)Sum(sup +) (1-0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.
Koueik, Joyce; Rocque, Brandon G; Henry, Jordan; Bragg, Taryn; Paul, Jennifer; Iskandar, Bermans J
2018-02-01
Continuous irrigation is an important adjunct for successful intraventricular endoscopy, particularly for complex cases. It allows better visualization by washing out blood and debris, improves navigation by expanding the ventricles, and assists with tissue dissection. A method of irrigation delivery using a centrifugal pump designed originally for cardiac surgery is presented. The BioMedicus centrifugal pump has the desirable ability to deliver a continuous laminar flow of fluid that excludes air from the system. A series of modifications to the pump tubing was performed to adapt it to neuroendoscopy. Equipment testing determined flow and pressure responses at various settings and simulated clinical conditions. The pump was then studied clinically in 11 endoscopy cases and eventually used in 310 surgical cases. Modifications of the pump tubing allowed for integration with different endoscopy systems. Constant flow rates were achieved with and without surgical instruments through the working ports. Optimal flow rates ranged between 30 and 100 ml/min depending on endoscope size. Intraoperative use was well tolerated with no permanent morbidity and showed consistent flow rates, minimal air accumulation, and seamless irrigation bag replacement during prolonged surgery. Although the pump is equipped with an internal safety mechanism to protect against pressure buildup when outflow obstructions occur, equipment testing revealed that flow cessation is not instantaneous enough to protect against sudden intracranial pressure elevation. A commonly available cardiac pump system was modified to provide continuous irrigation for intraventricular endoscopy. The system alleviates the problems of inconsistent flow rates, air in the irrigation lines, and delays in changing irrigation bags, thereby optimizing patient safety and surgical efficiency. Safe use of the pump requires good ventricular outflow and, clearly, sound surgical judgment.
Influence of vibrational relaxation on perturbations in a shock layer on a plate
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Maslov, A. A.; Poplavskaya, T. V.; Tsyryul'nikov, I. S.
2015-05-01
The influence of excitation of molecular vibrational degrees of freedom on the mean flow and perturbation development in a hypersonic (M = 6-14) viscous shock layer is studied. The layer originates on a plate placed in a flow of air, carbon dioxide, or their mixture at high stagnation temperatures (2000-3000 K). The mean flow and pressure pulsation on the surface of the plate are measured in an IT-302M pulsed wind tunnel (Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences). Numerical simulation is carried out in terms of a model of a thermally perfect gas using the ANSYS Fluent program package based on solving nonstationary two-dimensional Navier-Stokes equations. External flow perturbations are introduced into the computational domain in the form of plane monochromatic acoustic waves using UDF modules built in the computational code. It is shown that the excitation of vibrational degrees of freedom in carbon dioxide molecules considerably influences the position of the head wave and intensifies perturbations in contrast to air in which the fraction of vibrationally excited molecules is low at the same parameters of the oncoming low. The influence of the excitation of vibrational degrees of freedom is studied both for equilibrium gas and for a vibrationally nonequilibrium gas. Nonequilibrium vibrational degrees of freedom are simulated using a two-temperature model of relaxation flows in which the time variation of the vibrational energy is described by the Landau-Teller equation with regard to a finite time of energy exchange between vibrational and translational-rotational degrees of freedom of molecules. It is found that the vibrational nonequilibrium has a damping effect on perturbations.
Choroidal microcirculation in patients with rotary cardiac assist device.
Polska, Elzbieta; Schima, Heinrich; Wieselthaler, Georg; Schmetterer, Leopold
2007-06-01
In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed. The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging. Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow. Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.
33 CFR 155.780 - Emergency shutdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...
33 CFR 155.780 - Emergency shutdown.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...
33 CFR 155.780 - Emergency shutdown.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...
33 CFR 155.780 - Emergency shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...
33 CFR 155.780 - Emergency shutdown.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...
Design of a high-pressure circulating pump for viscous liquids.
Seifried, Bernhard; Temelli, Feral
2009-07-01
The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.
Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae
Murphy, Christin T.; Eberhardt, William C.; Calhoun, Benton H.; Mann, Kenneth A.; Mann, David A.
2013-01-01
Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the vibrissae. PMID:23922834
Pinotti, M; Paone, N
1996-06-01
A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage.
Pinotti, Marcos; Paone, Nicola
1996-05-01
A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage. © 1996 International Society for Artificial Organs.
Porquez, Jeremy G.; Cole, Ryan A.; Tabarangao, Joel T.; Slepkov, Aaron D.
2016-01-01
We demonstrate spectral-focusing based coherent anti-Stokes Raman scattering (SF-CARS) hyper-microscopy capable of probing vibrational frequencies from 630 cm−1 to 3250 cm−1 using a single Ti:Sapphire femtosecond laser operating at 800 nm, and a commercially-available supercontinuum-generating fibre module. A broad Stokes supercontinuum with significant spectral power at wavelengths between 800 nm and 940 nm is generated by power tuning the fibre module using atypically long and/or chirped ~200 fs pump pulses, allowing convenient access to lower vibrational frequencies in the fingerprint spectral region. This work significantly reduces the instrumental and technical requirements for multimodal CARS microscopy, while expanding the spectral capabilities of an established approach to SF-CARS. PMID:27867735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru
2017-03-15
The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less
Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping
NASA Astrophysics Data System (ADS)
Gasperikova, E.; Zhang, Y.; Hubbard, S.
2008-12-01
Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.
Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F
2015-09-01
Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.
Analyzing wind turbine flow interaction through vibration data
NASA Astrophysics Data System (ADS)
Castellani, Francesco; D'Elia, Gianluca; Astolfi, Davide; Mucchi, Emiliano; Giorgio, Dalpiaz; Terzi, Ludovico
2016-09-01
Wind turbines commonly undergo non-stationary flow and, not rarely, even rather extreme phenomena. In particular, rough terrains represent a challenging testing ground, because of the combination of terrain-driven flow and wakes. It is therefore crucial to assess the impact of dynamic loads on the turbines. In this work, tower and drive-train vibrations are analyzed, from a subcluster of four turbines of a wind farm sited in a very complex terrain. The main outcome of the study is that it is possible to start from the analysis of wind conditions and interpret how wakes manifest in the vibrations of the turbines, both at structural level (tower vibrations) and at the drive-train level. This wind to gear approach therefore allows to build a connection between a flow phenomenon and a mechanical phenomenon (vibrations) and can be precious to assess loads in different working conditions.
Design and optimization of a Holweck pump via linear kinetic theory
NASA Astrophysics Data System (ADS)
Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris
2012-05-01
The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.
Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.
2009-12-01
Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.
Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid
NASA Astrophysics Data System (ADS)
Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali
2016-09-01
Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
Fatigue failure in metal bellows due to flow-induced vibrations
NASA Technical Reports Server (NTRS)
Daniels, C. M.; Fargo, C. G.
1969-01-01
To prevent fatigue due to flow-induced vibrations in metal bellows connected to ducts carrying liquid hydrogen, a study was made which shows that the flexure lines are in general a function of the vibration coupling between the fluid and bellows structure, and the nature of the external environment.
Barmashenko, B D; Rosenwaks, S
2012-09-01
A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20 m/s.
Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling
2016-12-12
In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.
Williams, John H.; Knutson, Kevin D.
2009-01-01
Analysis of flow, temperature, and specific-conductance logs and depth-dependent water-quality samples collected under ambient and pumped conditions provided a preliminary delineation of flow zones and water quality in three deep abandoned water-supply wells. The integrated analysis was completed as part of the characterization of a fractured-sandstone aquifer in the mountainous setting of the Santa Susana Field Laboratory in southern Ventura County, California. In the deepest well, which was 1,768 feet deep and had the highest specific capacity (120 gallons per minute per foot), flow zones were detected at 380 feet (base of casing) and at 440, 595, and 770 feet in the open hole. Under ambient conditions, measured flow was downward from the 380- and 440-foot zones to the 595- and 770-foot zones. Under pumped conditions, most of flow was contributed by the 595-foot zone. Flow from the 380- and 440-foot zones appeared to have lower specific conductance and higher trichloroethylene concentrations than that from the 595-foot zone. In the shallowest well, which was reportedly 940 feet deep but only logged to 915 feet due to blockage, flow zones were detected behind the perforated casing and at 867 feet in the open hole. Under ambient conditions, downward and upward flows appeared to exit at a zone behind the perforated casing at 708 feet. Most of the pumped flow was contributed from zones behind the perforated casing between 565 and 708 feet. Pumped flow also was contributed by zones at 867 feet and below the logged depth. Volatile organic compounds were not detected in the ambient and pumped flows. In the third well, which was 1,272 feet deep and had the lowest specific capacity (3.6 gallons per minute per foot), flow zones were detected in the open hole above and just below the water level near 337 feet and at 615, 785, 995, and 1,070 feet. Under ambient conditions, measured flow in well was downward from the shallowmost zones to the 995-foot zone. Fracture zones at 615, 785, and 995 feet each contributed about one-third of the pumped flow measured below the pump. Volatile organic compounds were not detected in the ambient and pumped flows.
Okuda, Masaki; Ohta, Kaoru; Tominaga, Keisuke
2018-02-01
To investigate the relationship between the structural degrees of freedom around a vibrational probe and the rotational relaxation process of a solute in solution, we studied the anisotropy decays of three different N 3 -derivatized amino acids in primary alcohol solutions. By performing polarization-controlled IR pump-probe measurements, we reveal that the anisotropy decays of the vibrational probe molecules in 1-alcohol solutions possess two decay components, at subpicosecond and picosecond time scales. On the basis of results showing that the fast relaxation component is insensitive to the vibrational probe molecule, we suggest that the anisotropy decay of the N 3 group on a subpicosecond time scale results from a local, small-amplitude fluctuation of the flexible vibrational probe, which does not depend on the details of its molecular structure. However, the slow relaxation component depends on the solute: with longer alkyl chains attached to the N 3 group, the anisotropy decay of the slow component is faster. Consequently, we conclude that the slow relaxation component corresponds to the reorientational motion of the N 3 group correlated with other intramolecular rotational motions (e.g., rotational motions of the neighboring alkyl chain). Our experimental results provide important insight into understanding the rotational dynamics of solutes with multiple single bond axes in solution.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Rotary piston blood pumps: past developments and future potential of a unique pump type.
Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas
2016-08-01
The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.
2018-01-01
A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.
Active hopper for promoting flow of bulk granular or powdered solids
Saunders, Timothy; Brady, John D.
2013-04-02
An apparatus that promotes the flow of materials has a body having an inner shape for holding the materials, a wall having a shape that approximates a portion of the inner shape of the body, and a vibrator attached to the wall. The wall may be disposed vertically within the body close to the body's inner shape. The vibrator transfers vibrations to the wall to agitate the material and encourage material flow.
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.
Computational Study of Nonequilibrium Chemistry in High Temperature Flows
NASA Astrophysics Data System (ADS)
Doraiswamy, Sriram
Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below the dissociation limit. CO and O recombine exclusively to this excited state and then relaxes to the ground electronic state. A simple model is proposed to represent the effect of this intermediate state in the recombination process. Preliminary results show that this excited electronic state is a potential reason for increased shock standoff distance observed in LENS facility. The general role of chemistry-vibrational coupling in modeling recombination dominated flows is also investigated. A state-specific model is developed to analyze the complex chemistry-vibration coupling present in high enthalpy nozzle flows. A basic model is formulated assuming molecules are formed at a specific vibrational level and then allowed to relax through a series of vibration-vibration and vibration-translation processes. This is carried out assuming that the molecules behave as either harmonic or anharmonic oscillators. The results are compared with the standard vibration-chemistry model for high enthalpy nozzle flows. Next, a prior recombination model that accounts for the rotational-vibrational coupling is used to obtain prior recombination distribution. A distribution of recombining states is obtained as a function of the total energy available to the system. The results of this model are compared with recent experiments. Additionally, a reduced model is formulated using the concepts of the state-specific model. The results of this reduced model is compared with the state specific model.
A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.
Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H
2016-06-01
Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.
Theoretical prediction of fast 3D AC electro-osmotic pumps.
Bazant, Martin Z; Ben, Yuxing
2006-11-01
AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).
NaK 22Σ+ → 11Σ+ band optically pumped laser near 1.02 μm
NASA Astrophysics Data System (ADS)
Clark, B. K.; Luh, W. T.; Huennekens, J.
1989-08-01
Optically pumped laser emission has been observed on the NaK 2( A)1Σ+ → 1( X)1Σ+ electronic state transition. The emission occurs between 1.015 and 1.035 μm when a sodium-potassium heat-pipe oven is pumped with 695 745 nm pulsed dye laser radiation. The laser emission occurs on many ro-vibrational transitions without the use of cavity mirrors. However, the addition of a simple cavity increases both the number of observed lasing transitions and the amplitude of the emission on each line. We report our results for the dependence of the emission intensity on pump laser power, oven temperature, and buffer gas pressure.
NASA Technical Reports Server (NTRS)
Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)
1999-01-01
An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.
Estimating Hyrdologic Properties of Groundwater Wells Using Tracer Pulse Dynamic Flow Profiling
NASA Astrophysics Data System (ADS)
Miles, K. A.; Heller, N.
2016-12-01
Traditional groundwater well design places the pump intake above the top of the well screen. It is common in this case to design the well screen for uniform entrance velocity along the profile of the well screen, even though non-uniform flow may occur. Particularly in the case where the pump is set near the very top or bottom of the well, there are instances where the zonal testing with a test pump indicates favorable water quality at one pump depth of the groundwater production well, and the water quality results yielded from the well at another depth are not compliant with federal and state regulatory limits for various naturally occurring and anthropogenic compounds. Well bore flow velocity and chemistry were determined using the USGS Tracer Pulse Dynamic Flow Profiling method along the length of well screens, while varying the pump depth. The information was then used to perform a flow and chemical mass balance to characterize the distribution of flow and chemical contribution, groundwater well screen entrance velocities, and hydrologic parameters. The presented results show pump placement affecting the average chemical discharge, and entrance velocities along the length of well screens.
Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L
2014-09-01
A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
The Shock and Vibration Digest. Volume 12, Number 7,
1980-07-01
clearance of the pump [14]. This external damper controls passage of the and the journal bearing have an effect on the stability shaft through...initial Analytical and experimental investigation with the operation of large Deriaz pumps have been studied squeeze- film damper [15, 16] showed the...existence (251; a procedure for satisfactory operation is de- of an intershaft viscous damper instability. The scribed. squeeze- film damper was explored
NASA Technical Reports Server (NTRS)
Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.
2001-01-01
Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing endwall vibration.
NASA Technical Reports Server (NTRS)
Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.a
2000-01-01
Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing end-wall vibration.
Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.
Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel
2012-04-01
The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.
NASA Technical Reports Server (NTRS)
Perry, Joseph W.; Woodward, Anne M.; Stephenson, John C.
1986-01-01
The vibrational dephasing of the 656/cm mode (nu1, a1g) of CS2 and the 991/cm mode (nu2, a1g) of benzene have been studied as a function of concentration in mixtures with a number of solvents using a ps time-resolved CARS technique. This technique employs two tunable synchronously-pumped mode-locked dye lasers in a stimulated Raman pump, coherent anti-Stokes Raman probe time-resolved experiment. Results are obtained for CS2 in carbon tetrachloride, benzene, nitrobenzene, and ethanol and for benzene nu2 in CS2. The dephasing rates of CS2 nu1 increase on dilution with the polar solvents and decrease or remain constant on dilution with the nonpolar solvents. The CS2/benzene solutions show a contrasting behavior, with the CS2 nu1 dephasing rate being nearly independent of concentration whereas the benzene nu2 dephasing rate decreases on dilution. These results are compared to theoretical models for vibrational dephasing of polyatomic molecules in solution.
NASA Astrophysics Data System (ADS)
Manzanares, Carlos; Diaz, Marlon; Barton, Ann; Nyaupane, Parashu R.
2017-06-01
The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of naphthalene in n-hexane. The pump and probe thermal lens technique is found to be very sensitive for detecting samples of low composition (ppm) in transparent solvents. In this experiment two different probe lasers: one at 488 nm and another 568 nm were used. The C-H fifth vibrational overtone spectrum of benzene is detected at room temperature for different concentrations. A plot of normalized integrated intensity as a function of concentration of naphthalene in solution reveals a non-linear behavior at low concentrations when using the 488 nm probe and a linear behavior over the entire range of concentrations when using the 568 nm probe. The non-linearity cannot be explained assuming solvent enhancement at low concentrations. A two color absorption model that includes the simultaneous absorption of the pump and probe lasers could explain the enhanced magnitude and the non-linear behavior of the thermal lens signal. Other possible mechanisms will also be discussed.
NASA Astrophysics Data System (ADS)
Edler, Julian; Hamm, Peter
2004-06-01
Femtosecond pump-probe and Fourier transform infrared spectroscopy is applied to compare the spectral response of the amide I band and the NH-stretching band of acetanilide (ACN) and N -methylacetamide (NMA), as well as their deuterated derivatives. Both molecules form hydrogen-bonded molecular crystals that are regarded to be model systems for polypeptides and proteins. The amide I bands of both ACN and NMA show a temperature-dependent sideband, while the NH bands are accompanied by a sequence of equidistantly spaced satellite peaks. These spectral anomalies are interpreted as a signature of vibrational self-trapping. Two different types of states can be identified in both crystals in the pump-probe signal: a delocalized free-exciton state and a set of localized self-trapped states. The phonons that mediate self-trapping in ACN and deuterated ACN are identified by their temperature dependence, confirming our previous results. The study shows that the substructure of the NH band in NMA (amide A and amide B bands) originates, at least partly, from vibrational self-trapping and not, as often assumed, from a Fermi resonance.
Microcapillary-Based Flow-Through Immunosensor and Displacement Immunoassay Using the Same.
1997-04-28
an antibody. If desired, an electroosmotic 24 pump may be used to flow fluid through the microcapillary or 25 microcapillaries in the chip...8 for field use. 9 Fig. 1C shows a flow immunosensor chip 100. Buffer flow 10 through microcapillary passage 102 by virtue of an electroosmotic ...Power for an 23 electroosmotic pump or other fluid pump, as well as any other on- 24 chip components, may be provided by a battery incorporated into
Physical and numerical investigation of the flow induced vibration of the hydrofoil
NASA Astrophysics Data System (ADS)
Wu, Q.; Wang, G. Y.; Huang, B.
2016-11-01
The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.
Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy
Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi
2016-01-01
Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states. PMID:27812020
Norman, Mya A; Evans, Christine E; Fuoco, Anthony R; Noble, Richard D; Koval, Carl A
2005-10-01
Electrokinetic flow provides a mechanism for a variety of fluid pumping schemes. The design and characterization of an electrochemically driven pump that utilizes porous carbon electrodes, iodide/triiodide redox electrolytes, and Nafion membranes is described. Fluid pumping by the cell is reversible and controlled by the cell current. Chronopotentiometry experiments indicate that the total available fluid that can be pumped in a single electrolysis without gas evolution is determined solely by the initial concentration of electrolyte and the applied current. The magnitude of the fluid flow at a given current is determined by the nature of the cation in the electrolyte and by the water absorption properties of the Nafion membrane. For 1 M aqueous electrolytes, pumping rates ranging from 1 to 14 microL/min were obtained for current densities of 10-30 mA/cm2 of membrane area. Molar volume changes for the I3-/I- redox couple and for the alkali cation migration contribute little to the observed volumetric flow rates; the magnitude of the flow is dominated by the migration-induced flow of water.
Performance analysis of axial flow pump on gap changing between impeller and guide vane
NASA Astrophysics Data System (ADS)
Wang, W. J.; Liang, Q. H.; Wang, Y.; Yang, Y.; Yin, G.; Shi, X. X.
2013-12-01
In order to study the influence on gap changing of the static and dynamic components in axial flow pump, the axial flow pump model (TJ04-ZL-06) that used in the eastern of south-to-north water diversion project was selected. Steady turbulence field with different gaps was simulated by standard κ-ε turbulence model and double-time stepping methods. Information on the pressure distribution and velocity distribution of impeller surfaces were obtained. Then, calculated results were compared with the test results and analyzed. The results show that the performance of pump is not sensitive with the axial gap width under design conditions and the large flow rate condition. With increasing gap width, it will be improved in low flow rate condition. The attack angle of impeller inlet in small flow rate condition become small and the flow separation phenomenon can be observed in this condition. The axial velocity distribution of impeller outlet is nonlinear and to increase the axial gap is to improve the flow pattern near the hub effectively. The trend of calculating results is identical with test. It will play a guiding role to the axial pump operation and design in south-to-north water diversion project.
Hazardous Chemical Pump Tests.
1980-07-01
hydraulic flow rate is the product of the pump speed and the pump displacement. The pump displacement for each respective pump was constant throughout...speed - rpm T - torque - ft lbs 7= 3.1416 By substituting the product of pump speed and pump displacement for the hydraulic flow rate (Q=NO) in the above...FF:iipr’: iL 40 H FLUID F-’UMPED; FPl H FVIi T’E1l ’HJO I...S Lu FL: H KFITE C F~~:ri FIGURE 2 CC E MT 2, Fi C F . c ;E’C F11 *:;_cl PF fog O ~ \\ 4 1
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo
1984-01-01
Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).
Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Hiroshi; Shimizu, Nobtaka; Kumasaka, Takashi
2010-06-23
SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors--thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in ordermore » to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions under scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.« less
Fuchs, Gabriel; Berg, Niclas; Eriksson, Anders; Prahl Wittberg, Lisa
2017-06-01
As of today, there exist no reliable, objective methods for early detection of thrombi in the extracorporeal membrane oxygenators (ECMO) system. Within the ECMO system, thrombi are not always fixed to a certain component or location in the circuit. Thus, clot fragments of different shapes and consistencies may circulate and give rise to vibrations and sound generation. By bedside sound measurements and additional laboratory experiments (although not detailed herein), we found that the presence of particles (clots or aggregates and fragments of clots) can be detected by analyzing the strength of infra-sound (< 20 Hz) modes of the spectrum near the inlet and outlet of the centrifugal pump in the ECMO circuit. For the few patients that were considered in this study, no clear false positive or negative examples were found when comparing the spectral approach with clinical observations. A laboratory setup provided insight to the flow in and out of the pump, confirming that in the presence of particles a low-amplitude low-frequency signal is strongly amplified, enabling the identification of a clot. © 2016 The Authors Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organ and Transplantation (ICAOT).
Design and evaluation of a single-pivot supported centrifugal blood pump.
Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S
2001-09-01
In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.
NASA Astrophysics Data System (ADS)
Zhang, X.; Burgstaller, R.; Lai, X.; Gehrer, A.; Kefalas, A.; Pang, Y.
2016-11-01
The performance discontinuity of a pump-turbine under pumping mode is harmful to stable operation of units in hydropower station. In this paper, the performance discontinuity phenomenon of the pump-turbine was studied by means of experiment and numerical simulation. In the experiment, characteristics of the pump-turbine with different diffuser vane openings were tested in order to investigate the effect of pumping casing to the performance discontinuity. While other effects such as flow separation and rotating stall are known to have an effect on the discontinuity, the present studied test cases show that prerotation is the dominating effect for the instability, positions of the positive slope of characteristics are almost the same in different diffuser vane opening conditions. The impeller has principal effect to the performance discontinuity. In the numerical simulation, CFD analysis of tested pump-turbine has been done with k-ω and SST turbulence model. It is found that the position of performance curve discontinuity corresponds to flow recirculation at impeller inlet. Flow recirculation at impeller inlet is the cause of the discontinuity of characteristics curve. It is also found that the operating condition of occurrence of flow recirculation at impeller inlet is misestimated with k-ω and SST turbulence model. Furthermore, the original SST model has been modified. We predict the occurrence position of flow recirculation at impeller inlet correctly with the modified SST turbulence model, and it also can improve the prediction accuracy of the pump- turbine performance at the same time.
Pischel, Esther M.; Gannett, Marshall W.
2015-07-24
To better define the effect of increased pumping on drain flow and on the water balance of the groundwater system, the annual water volume pumped from drains in three subareas of the Tule Lake subbasin was estimated and a fine-grid, local groundwater model of the Tule Lake subbasin was constructed. Results of the agricultural-drain flow analysis indicate that groundwater discharge to drains has decreased such that flows in 2012 were approximately 32,400 acre-ft less than the 1997–2000 average flow. This decrease was concentrated in the northern and southeastern parts of the subbasin, which corresponds with the areas of greatest groundwater pumping. Model simulation results of the Tule Lake subbasin groundwater model indicate that increased supplemental pumping is the dominant stress to the groundwater system in the subbasin. Simulated supplemental pumping and decreased recharge from irrigation between 2000 and 2010 totaled 323,573 acre-ft, 234,800 acre-ft (73 percent) of which was from supplemental pumping. The response of the groundwater system to this change in stress included about 180,500 acre-ft (56 percent) of decreased groundwater discharge to drains and a 126,000 acre-ft (39 percent) reduction in aquifer storage. The remaining 5 percent came from reduced groundwater flow to other model boundaries, including the Lost River, the Tule Lake sumps, and interbasin flow.
Frazier, O H; Tuzun, Egemen; Cohn, William E; Conger, Jeffrey L; Kadipasaoglu, Kamuran A
2006-01-01
Continuous-flow pumps are small, simple, and respond physiologically to input variations, making them potentially ideal for total heart replacement. However, the physiological effects of complete pulseless flow during long-term circulatory support without a cardiac interface or with complete cardiac exclusion have not been well studied. We evaluated the feasibility of dual continuous-flow pumps as a total artificial heart (TAH) in a chronic bovine model. Both ventricles of a 6-month-old Corriente crossbred calf were excised and sewing rings attached to the reinforced atrioventricular junctions. The inlet portions of 2 Jarvik 2000 pumps were positioned through their respective sewing rings at the mid-atrial level and the pulseless atrial reservoir connected end-to-end to the pulmonary artery and aorta. Pulseless systemic and pulmonary circulations were thereby achieved. Volume status was controlled, and systemic and pulmonary resistance were managed pharmacologically to keep mean arterial pressures at 100+/-10 mmHg (systemic) and 20+/-5 mmHg (pulmonary) and both left and right atrial pressures at 15+/-5 mmHg. The left pump speed was maintained at 14,000 rpm and its output autoregulated in response to variations in right pump flow, systemic and pulmonary pressures, fluid status, and activity level. Hemodynamics, end-organ function, and neurohormonal status remained normal. These results suggest the feasibility of using dual continuous-flow pumps as a TAH.
Experimental and numerical investigation of centrifugal pumps with asymmetric inflow conditions
NASA Astrophysics Data System (ADS)
Mittag, Sten; Gabi, Martin
2015-11-01
Most of the times pumps operate off best point states. Reasons are changes of operating conditions, modifications, pollution and wearout or erosion. As consequences non-rotational symmetric flows, transient operational conditions, increased risk of cavitation, decrease of efficiency and unpredictable wearout can appear. Especially construction components of centrifugal pumps, in particular intake elbows, contribute to this matter. Intake elbows causes additional losses and secondary flows, hence non-rotational velocity distributions as intake profile to the centrifugal pump. As a result the impeller vanes experience permanent changes of the intake flow angle and with it transient flow conditions in the blade channels. This paper presents the first results of a project, experimentally and numerically investigating the consequences of non-rotational inflow to leading edge flow conditions of a centrifugal pump. Therefore two pumpintake- elbow systems are compared, by only altering the intake elbow geometry: a common single bended 90° elbow and a numerically optimized elbow (improved regarding rotational symmetric inflow conditions and friction coefficient). The experiments are carried out, using time resolved stereoscopic PIV on a full acrylic pump with refractions index matched (RIM) working fluid. This allows transient investigations of the flow field simultaneously for all blade leading edges. Additional CFD results are validated and used to further support the investigation i.e. for comparing an analog pump system with ideal inflow conditions.
Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin
2014-12-01
We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607
Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou
2014-01-01
A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.
NASA Astrophysics Data System (ADS)
McCarl, Bruce A.; Dillon, Carl R.; Keplinger, Keith O.; Williams, R. Lynn
1999-04-01
The Edwards Aquifer, near San Antonio, Texas, is an important water source for both pumping and spring flow, which in turn provides water for recreation and habitat for several endangered species. A management authority is charged with aquifer management and is mandated to reduce pumping, facilitate water markets, protect agricultural rights, and protect the species habitat. This paper examines the economic dimensions of authority duties. A combined hydrologic-economic model is used in the investigation. The results indicate that proposed pumping limits are shown to have large consequences for agricultural usage and to decrease the welfare of current aquifer pumping users. However, the spring flow habitat is found to be protected, and the gains from that protection would have to exceed pumping user losses in order for the protection measures to increase regional economic welfare. Agricultural guarantees are shown to cause use value differences, indicating the opportunity for emergence of an active water market. Fixed quantity pumping limits are found to be an expensive way of insuring adequate spring flow.
Simultaneous mixing and pumping using asymmetric microelectrodes
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.
2007-10-01
This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.
A new efficient far-infrared optically pumped laser Gas - CH3(O-18)(H)
NASA Astrophysics Data System (ADS)
Ioli, N.; Moretti, A.; Pereira, D.; Strumia, F.; Garelli, G.
1989-04-01
The (C-12)(H3)(O-18)(H) molecule has been investigated for new far-infrared laser lines by optically pumping it with a CW waveguide CO2 laser. The larger tunability (318 MHz) with respect to a conventional CO2 laser permits the pumping of many (C-12)(H3)(O-18)(H) lines. As a consequence 100 new laser lines have been discovered, ranging from 34.6 to 653.2-microns in wavelength. The infrared spectrum of (C-12)(H3)(O-18)(H) has been observed and all the fundamental vibration energies measured.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.
Thamsen, Bente; Mevert, Ricardo; Lommel, Michael; Preikschat, Philip; Gaebler, Julia; Krabatsch, Thomas; Kertzscher, Ulrich; Hennig, Ewald; Affeld, Klaus
2016-06-15
In current rotary blood pumps, complications related to blood trauma due to shear stresses are still frequently observed clinically. Reducing the rotor tip speed might decrease blood trauma. Therefore, the aim of this project was to design a two-stage rotary blood pump leading to lower shear stresses. Using the principles of centrifugal pumps, two diagonal rotor stages were designed with an outer diameter of 22 mm. The first stage begins with a flow straightener and terminates with a diffusor, while a volute casing behind the second stage is utilized to guide fluid to the outlet. Both stages are combined into one rotating part which is pivoted by cup-socket ruby bearings. Details of the flow field were analyzed employing computational fluid dynamics (CFD). A functional model of the pump was fabricated and the pressure-flow dependency was experimentally assessed. Measured pressure-flow performance of the developed pump indicated its ability to generate adequate pressure heads and flows with characteristic curves similar to centrifugal pumps. According to the CFD results, a pressure of 70 mmHg was produced at a flow rate of 5 L/min and a rotational speed of 3200 rpm. Circumferential velocities could be reduced to 3.7 m/s as compared to 6.2 m/s in a clinically used axial rotary blood pump. Flow fields were smooth with well-distributed pressure fields and comparatively few recirculation or vortices. Substantially smaller volumes were exposed to high shear stresses >150 Pa. Hence, blood trauma might be reduced with this design. Based on these encouraging results, future in vitro investigations to investigate actual blood damage are intended.
NASA Technical Reports Server (NTRS)
Ulbricht, T. E.; Hemminger, J. A.
1986-01-01
The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented.
A miniature, nongassing electroosmotic pump operating at 0.5 V.
Shin, Woonsup; Lee, Jong Myung; Nagarale, Rajaram Krishna; Shin, Samuel Jaeho; Heller, Adam
2011-03-02
Electroosmotic pumps are arguably the simplest of all pumps, consisting merely of two flow-through electrodes separated by a porous membrane. Most use platinum electrodes and operate at high voltages, electrolyzing water. Because evolved gas bubbles adhere and block parts of the electrodes and the membrane, steady pumping rates are difficult to sustain. Here we show that when the platinum electrodes are replaced by consumed Ag/Ag(2)O electrodes, the pumps operate well below 1.23 V, the thermodynamic threshold for electrolysis of water at 25 °C, where neither H(2) nor O(2) is produced. The pumping of water is efficient: 13 000 water molecules are pumped per reacted electron and 4.8 mL of water are pumped per joule at a flow rate of 0.13 mL min(-1) V(-1) cm(-2), and a flow rate per unit of power is 290 mL min(-1) W(-1). The water is driven by protons produced in the anode reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-), traveling through the porous membrane, consumed by hydroxide ions generated in the cathode reaction Ag(2)O(s) + 2 H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). A pump of 2 mm thickness and 0.3 cm(2) cross-sectional area produces flow of 5-30 μL min(-1) when operating at 0.2-0.8 V and 0.04-0.2 mA. Its flow rate can be either voltage or current controlled. The flow rate suffices for the delivery of drugs, such as a meal-associated boli of insulin.
A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics
Hu, Jinfei; Tse, Peter W.
2013-01-01
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527
A relevance vector machine-based approach with application to oil sand pump prognostics.
Hu, Jinfei; Tse, Peter W
2013-09-18
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.
Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.
Armenise, Iole; Kustova, Elena
2018-05-21
A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.
Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension
NASA Astrophysics Data System (ADS)
Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo
2017-04-01
The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.
An approach to reducing hemolysis in an axial-flow blood pump.
Anai, H; Nakatani, T; Wakisaka, Y; Araki, K; Taenaka, Y; Tatsumi, E; Masuzawa, T; Baba, Y; Eya, K; Toda, K
1995-01-01
In an attempt to decrease hemolysis caused by an axial-flow blood pump, we studied whether specific speed (Ns) at a design point (determined by flow in m3/min, pump head in m, and pump speeds in rpm), should be kept within the existing engineering standard range (1000 < Ns < 2500) or whether pump speed should be reduced to a minimum (Ns < 1000). Four pumps (A: 14,000 rpm, B: 18,000 rpm, C: 22,000 rpm, and D: 26,000 rpm), each with an impeller 11.8 mm in diameter, were designed to accommodate a flow rate of 5 L/min and a pressure head of 100 mmHg. At this design point, the Ns of each pump was calculated as A:758, B:974, C:1191, and D:1407. Pump performance was observed, and the total efficiency of each pump was calculated. The hemolysis index (HI) was calculated after simultaneous testing in duplicate of all four pumps using fresh goat blood (anticoagulated with citrate-dextrose solution) in a closed mock-loop circuit. Total efficiency of each pump was calculated as A:49%, B:50%, C:45%, and D:22%. In the first hemolytic test, HIs were measured as A:0.066, B:0.18, and C:0.13; a water seal failed in pump D. In the second test, HIs were B:0.077, C:0.0499, and D:0.12; a bearing failed in pump A. It is concluded that a lower level of hemolysis is associated with a pump speed in the minimum range at the design point, even though Ns is outside the standard range.
United States Air Force Research Initiation Program for 1987. Volume 2
1989-04-01
is partly in darkness and partly sunlit with a low angle sun. Solar absorption was added as an additional excitation mechanism in the calculation of...34-7 Also, the sun was assumed to be above the horizon ( solar zenith angle = 880) in the calculation of sunlit vibrational temperature profiles, when...time conditions. This will involve modifying the kinetic equations to include solar pumping at higher sun angles, determining vibrational temperature
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-11-23
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.
NASA Astrophysics Data System (ADS)
Sekiguchi, K.; Shimojima, A.; Kajimoto, O.
2002-04-01
A pump-probe experiment was performed to examine vibrational population relaxation of diiodomethane (CH 2I 2) molecule dissolved in supercritical CO 2. Using an apparatus with femtosecond time resolution, we observed the contributions of intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) separately. IVR and VET rates were measured with varying solvent densities at a constant temperature. It is shown that the IVR rate is not density dependent while the VET rate increases with increasing density from 0.4 to 0.8 g cm-3. This observation suggests that the rate of the VET process is determined by solute-solvent collisions whereas the IVR rate is not much affected by solute-solvent interaction.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
2001-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
The Role of Structural Dynamics and Testing in the Shuttle Flowliner Crack Investigation
NASA Technical Reports Server (NTRS)
Frady, Gregory P.
2005-01-01
During a normal inspection of the main propulsion system at Kennedy Space Center, small cracks were noticed near a slotted region of a gimbal joint flowliner located just upstream from one of the Space Shuttle Main Engines (SSME). These small cracks sparked an investigation of the entire Space Shuttle fleet main propulsion feedlines. The investigation was initiated to determine the cause of the small cracks and a repair method that would be needed to return the Shuttle fleet back to operation safely. The cracks were found to be initiated by structural resonance caused by flow fluctuations from the SSME low pressure fuel turbopump interacting with the flowliner. The pump induced backward traveling wakes that excited the liner and duct acoustics which also caused the liner to vibrate in complex mode shapes. The investigation involved an extensive effort by a team of engineers from the NASA civil servant and contractor workforce with the goal to characterize the root cause of the cracking behavior of the fuel side gimbal joint flowliners. In addition to working to identify the root cause, a parallel path was taken to characterize the material properties and fatigue capabilities of the liner material such that the life of the liners could be ascertained. As the characterization of the material and the most probable cause matured, the combination of the two with pump speed restrictions provided a means to return the Shuttle to flight in a safe manner. This paper traces the flowliner investigation results with respect to the structural dynamics analysis, component level testing and hot-fire flow testing on a static testbed. The paper will address the unique aspects of a very complex problem involving backflow from a high performance pump that has never been characterized nor understood to such detail. In addition, the paper will briefly address the flow phenomena that excited the liners, the unique structural dynamic modal characteristics and the variability of SSME operation which has ultimately ensured the safe and reliable operation of the shuttle main engines for each flight.
Paper pump for passive and programmable transport
Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian
2013-01-01
In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999
Masterson, John P.; Barlow, Paul M.
1997-01-01
Three-dimensional transient ground-water-flow models that simulate both freshwater and saltwater flow were developed for the flow cells of the Cape Cod Basin to determine the effects of long-term pumping and recharge, seasonal fluctuations in pumping and recharge, and prolonged reductions of natural recharge, on the position of the freshwater-saltwater interface, water-table and pond altitudes, and streamflow and discharge to coastal marshes and embayments. Two-dimensional, finite-difference change models were developed for Martha's Vineyard and Nantucket Island basins to determine anticipated drawdowns in response to projected summer season pumping rates for 180 days of no recharge.
NASA Astrophysics Data System (ADS)
Nieratschker, Willi
1989-12-01
An investigation of the thermodynamical and mechanical conditions for extending the flow rate range in the direction of low flow rates with regard to the delivery of liquefied gases at high operating pressures is presented. For low flow rates, the especially critical cavitation problem connected with the pumping of liquefied gases becomes more acute, since with decreasing volume the ratio of heat losses to the hydraulic power becomes ever more unfavorable. A first prototype is designed, produced and investigated to evaluate design-related heat loss and piston seal problems. An approach to the solution is indicated for both problem areas with the application of a new and patented pump principle, and through investigation of a second prototype modified in several respects. By reducing the pump mass when designing the second pump prototype, the nonstationary cooling phase is greatly shortened, so that intermittent pump operation becomes possible when the pump is housed external to the storage tank.
The role of viscous fluid flow in active cochlear partition vibration
NASA Astrophysics Data System (ADS)
Svobodny, Thomas
2001-11-01
Sound transduction occurs via the forcing of the basilar membrane by a traveling wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number (because of the tiny size). The actual transduction occurs through the mechanism of stereocilia of hair cells. Analysis and simulation of the interaction between the microhydrodynamical flow and the basilar membrane vibration will be presented in this talk. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection.
Fenn, Emily E; Wong, Daryl B; Fayer, M D
2011-02-07
Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.
NASA Astrophysics Data System (ADS)
Fenn, Emily E.; Wong, Daryl B.; Fayer, M. D.
2011-02-01
Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w0 = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w0 = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w0, but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl4 system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.
An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump
NASA Technical Reports Server (NTRS)
Lindley, B. K.; Martinson, A. R.
1971-01-01
The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.
Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon
NASA Astrophysics Data System (ADS)
Anderson, Mitchell D.; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe
2018-06-01
We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n =1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n ≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.
Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon.
Anderson, Mitchell D; Tarrago Velez, Santiago; Seibold, Kilian; Flayac, Hugo; Savona, Vincenzo; Sangouard, Nicolas; Galland, Christophe
2018-06-08
We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n=1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution. We observe strongly nonclassical Stokes-anti-Stokes correlations, whose decay maps the single phonon dynamics. Our scheme can be applied to any Raman-active vibrational mode. It can be modified to measure the lifetime of n≥1 Fock states or the phonon quantum coherences through the preparation and detection of two-mode entangled vibrational states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Kai; Lee, Soo-Y., E-mail: sooying@ntu.edu.sg
Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twentymore » four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.« less
NASA Astrophysics Data System (ADS)
Niu, Kai; Lee, Soo-Y.
2015-12-01
Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
Pipeline Optimization Program (PLOP)
2006-08-01
the framework of the Dredging Operations Decision Support System (DODSS, https://dodss.wes.army.mil/wiki/0). PLOP compiles industry standards and...efficiency point ( BEP ). In the interest of acceptable wear rate on the pump, industrial standards dictate that the flow Figure 2. Pump class as a function of...percentage of the flow rate corresponding to the BEP . Pump Acceptability Rules. The facts for pump performance, industrial standards and pipeline and
Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Landry, John Gary
1995-01-01
Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.
Experimental analysis of the flow pattern of a pump turbine model in pump mode
NASA Astrophysics Data System (ADS)
Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian
2016-11-01
Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.
Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi
2012-10-18
A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.
Pumping power considerations in the designs of NASA-Redox flow cells
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.
1981-01-01
Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.
NASA Technical Reports Server (NTRS)
Benjamin, Theodore G.; Garcia, Roberto; Mcconnaughey, Paul K.; Wang, Ten-See; Vu, Bruce T.; Dakhoul, Youssef
1993-01-01
These analyses were undertaken to aid in the understanding of flow phenomena in the Alternate Turbopump Development (ATD) High-pressure Oxidizer Turbopump (HPOTP) Pump-end ball bearing (PEBB) cavities and their roles in turbopump vibration initiation and bearing distress. This effort was being performed to provide timely support to the program in a decision as to whether or not the program should be continued. In the first case, it was determined that a change in bearing through flow had no significant effect on axial preload. This was a follow-on to a previous study which had resulted in a redesign of the bearing exit cavity which virtually eliminated bearing axial loading. In the second case, a three-dimensional analysis of the inner-race-guided cage configuration was performed so as to determine the pressure distribution on the outer race when the shaft is 0.0002 inches off-center. The results indicate that there is virtually no circumferential pressure difference caused by the offset to contribute to bearing tilt. In the third case, axisymmetric analyses were performed on an outer-race guided cage configuration to determine the magnitude of tangential flow entering the bearing. The removed-shoulder case was analyzed as was the static diverter case. A third analysis where the preload spring was shielded by a sheet of metal for the baseline case was also performed. It was determined that the swirl entering the bearing was acceptable and the project decided to use the outer-race-guided cage configuration. In the fourth case, more bearing configurations were analyzed. These analyses included thermal modeling so as to determine the added benefit of injecting colder fluid directly onto the bearing inner-race contact area. The results of these analyses contributed to a programmatic decision to include coolant injection in the design.
A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation
NASA Astrophysics Data System (ADS)
Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.
2017-03-01
Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.
Advances in Valveless Piezoelectric Pump with Cone-shaped Tubes
NASA Astrophysics Data System (ADS)
Zhang, Jian-Hui; Wang, Ying; Huang, Jun
2017-07-01
This paper reviews the development of valveless piezoelectric pump with cone-shaped tube chronologically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its novel principles and deduces the research direction in the future. Firstly, the history of valveless piezoelectric pumps with cone-shaped tubes is reviewed and these pumps are classified into the following types: single pump with solid structure or plane structure, and combined pump with parallel structure or series structure. Furthermore, the function of each type of cone-shaped tubes and pump structures are analyzed, and new directions of potential expansion of valveless piezoelectric pumps with cone-shaped tubes are summarized and deduced. The historical argument, which is provided by the literatures, that for a valveless piezoelectric pump with cone-shaped tubes, cone angle determines the flow resistance and the flow resistance determines the flow direction. The argument is discussed in the reviewed pumps one by one, and proved to be convincing. Finally, it is deduced that bionics is pivotal in the development of valveless piezoelectric pump with cone-shaped tubes from the perspective of evolution of biological structure. This paper summarizes the current valveless piezoelectric pumps with cone-shaped tubes and points out the future development, which may provide guidance for the research of piezoelectric actuators.
Advanced performance of small diaphragm vacuum pumps through the use of mechatronics
NASA Astrophysics Data System (ADS)
Lachenmann, R.; Dirscherl, J.
Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .
LOX/LH2 vane pump for auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Hemminger, J. A.; Ulbricht, T. E.
1985-01-01
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.
Capillary pumping independent of the liquid surface energy and viscosity
NASA Astrophysics Data System (ADS)
Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter
2018-03-01
Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.
Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou
2017-04-05
BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
1999-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.
The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
Telyshev, Dmitry; Denisov, Maxim; Pugovkin, Alexander; Selishchev, Sergey; Nesterenko, Igor
2018-04-01
In this work, the study results of an implantable pediatric rotary blood pump (PRBP) are presented. They show the results of the numerical simulation of fluid flow rates in the pump. The determination method of the backflows and stagnation regions is represented. The operating points corresponding to fluid flow rates of 1, 3, and 5 L/min for 75-80 mm Hg pressure head are investigated. The study results have shown that use of the pump in the 1 L/min operating point can potentially lead to the appearance of backflows and stagnation regions. In the case of using pumps in fluid flow rates ranging from 3 to 5 L/min, the number of stagnation regions decreases and the fluid flow rate changes marginally. Using the pump in this flow rate range is considered judicious. The study shows an increase in shear stress with an increase in fluid flow rates, while there is no increase in shear stress above the critical condition of 150 Pa (which does not allow us to reliably speak about the increased risk of blood cell damage). The aim of this work was to design, prototype, and study interaction of the Sputnik PRBP with the cardiovascular system. A three-dimensional model of Sputnik PRBP was designed with the following geometrical specifications: flow unit length of 51.5 mm, flow unit diameter of 10 mm, and spacing between the rotor and housing of 0.1 mm. Computational fluid dynamics studies were used to calculate head pressure-flow rate (H-Q) curves at rotor speeds ranging from 10 000 to 14 000 rpm (R 2 = 0.866 between numerical simulation and experiment) and comparing flow patterns at various points of the flow rate operating range (1, 3, and 5 L/min) for operating pressures ranging from 75 to 80 mm Hg. It is noted that when fluid flow rate changes from 1 L/min to 3 L/min, significant changes are observed in the distribution of zero flow zones. At the inlet and outlet of the pump, when going to the operating point of 3 L/min, zones of stagnation become minuscule. The shear stress distribution was calculated along the pump volume. The volume in which shear stress exceed 150 Pa is less than 0.38% of the total pump volume at flow rates of 1, 3, and 5 L/min. In this study, a mock circulatory system (MCS) allowing simulation of physiological cardiovascular characteristics was used to investigate the interaction of the Sputnik PRBP with the cardiovascular system. MCS allows reproducing the Frank-Starling autoregulation mechanism of the heart. PRBP behavior was tested in the speed range of 6 000 to 15 000 rpm. Decreased contractility can be expressed in a stroke volume decrease approximately from 18 to 4 mL and ventricle systolic pressure decrease approximately from 92 to 20 mm Hg. The left ventricle becomes fully supported at a pump speed of 10 000 rpm. At a pump speed of 14 000 rpm, the left ventricle goes into a suction state in which fluid almost does not accumulate in the ventricle and only passes through it to the pump. The proposed PRBP showed potential for improved clinical outcomes in pediatric patients with a body surface area greater than 0.6 m 2 and weight greater than 12 kg. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow
NASA Astrophysics Data System (ADS)
Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang
2017-07-01
Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.
The effect of surface wettability on the performance of a piezoelectric membrane pump
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun
2018-04-01
In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.
Flow-induced Vibration of SSME Main Injector Liquid-oxygen Posts
NASA Technical Reports Server (NTRS)
Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.
1985-01-01
The liquid-oxygen (LOX) posts are exposed to hot hydrogen flowing over the tubes on its way to the combustion chamber. Fatigue cracking of some LOX posts was observed after test firing of the SSMEs. A current design modification consists of attaching impingement shields to the LOX posts in the outer row. The modification improved the vibration/fatigue problem of the LOX posts, but resulted in an increased pressure drop that ultimately shortened the life expectancy of other components. A fundamental study of vibration of the LOX posts was initiated to understand the flow-induced vibration problem and to develop techniques to avoid detrimental vibrational effects with the overall objective of improving engine life. This effort, including an assessment of the problem, scoping calculation and experiment, and a work plan for an integrated theoretical/experimental study of the problem is summarized.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
Non-equilibrium vibrational and chemical kinetics in shock heated carbon dioxide
NASA Astrophysics Data System (ADS)
Kosareva, A. A.
2018-05-01
The flows of CO2/CO/O2/O/C and CO2/CO/O mixtures behind shock waves are studied in the three-temperature, two-temperature and one-temperature approximations. The influence of the vibrational relaxation and chemical reactions on the flow composition, temperature and velocity is investigated. It is shown that the vibrational non-equilibrium has a significant effect on the macroscopic parameters of the flow near the front of the shock wave. It was found that the composition of the mixture has the greatest effect on the numerical density of CO molecules and O atoms. Also, significant differences between the values of the vibrational temperature of the asymmetric regime have been revealed.
Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.
Monties, J R; Mesana, T; Havlik, P; Trinkl, J; Demunck, J L; Candelon, B
1990-01-01
This article describes an alternative mode of pumping blood inside the body. The device is a non centrifugal, valveless, low speed rotary pump, electrically powered, based on Wankel engine principle. The authors developed an implantable electrical actuator resulting in a compact, sealed motor-pump unit with electrical and magnetic components insulated from fluids. The results in the flow curve and in the pumping action show some common points but also some basic differences compared to classical pulsatile pumps or centrifugal pumps. The blood coming from the atrium follows a continuous movement without any stop flow but with variations creating pulsatility. Ejection and filling of the pump are simultaneous. It is always an active filling. Hydraulic efficiency depends on clearance in the pumping chamber and outlet port pressure. A 60 cc device allows flows up to 8-9 liters. The implantable motor is cyclindrical in shape, has a moderate weight (490 grams) and presents a good efficiency (32% for a rotary speed of 90 rpm against a mean aortic pressure of 150 mm of Hg). The authors conclude that their device could be proposed after further experimental studies, as an LVAD for shortterm assistance with a good promise for permanent application.
Acoustically and Electrokinetically Driven Transport in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Sayar, Ersin
Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the generated time averaged flow rates. Developed coupled solid and fluid mechanics models can be utilized to integrate flow-through sensors with microfluidic chips.
Research on the performance of low-lift diving tubular pumping system by CFD and Test
NASA Astrophysics Data System (ADS)
Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan
2016-11-01
Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
Influence of different heating types on the pumping performance of a bubble pump
NASA Astrophysics Data System (ADS)
Bierling, Bernd; Schmid, Fabian; Spindler, Klaus
2017-11-01
This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.
Is back-electron transfer process in Betaine-30 coherent?
NASA Astrophysics Data System (ADS)
Rafiq, Shahnawaz; Scholes, Gregory D.
2017-09-01
The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.
Zhang, Nan; Zhou, Juan; Yu, Jinlai; Hua, Ziyu; Li, Yongxue; Wu, Jiangang
2018-05-30
Medical injection pump is a commonly used clinical equipment with high risk. Accurate detection of flow is an important aspect to ensure its reliable operation. In this paper, we carefully studied and analyzed the flow detection methods of three standards being used in medical injection pump detection in our country. The three standards were compared from the aspects of standard device, flow test point selection, length of test time and accuracy judgment. The advantages and disadvantages of these standards were analyzed and suggestions for improvement were put forward.
Energy harvesting by means of flow-induced vibrations on aerospace vehicles
NASA Astrophysics Data System (ADS)
Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu
2016-10-01
This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting technologies in the aerospace field are discussed.
Model Of Bearing With Hydrostatic Damper
NASA Technical Reports Server (NTRS)
Goggin, David G.
1991-01-01
Improved mathematical model of rotational and vibrational dynamics of bearing package in turbopump incorporates effects of hydrostatic damper. Part of larger finite-element model representing rotational and vibrational dynamics of rotor and housing of pump. Includes representations of deadband and nonlinear stiffness and damping of ball bearings, nonlinear stiffness and damping of hydrostatic film, and stiffness of bearing support. Enables incorporation of effects of hydrostatic damper into overall rotor-dynamic mathematical model without addition of mathematical submodel of major substructure.
A microfluidic two-pump system inspired by liquid feeding in mosquitoes
NASA Astrophysics Data System (ADS)
Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan
Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.
Kabei, N; Tuichiya, K; Sakurai, Y
1994-09-01
When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A.; Jumper, Chanelle C.
We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to amore » simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.« less
Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration
NASA Technical Reports Server (NTRS)
Nerem, R. M.
1973-01-01
The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.
A 6-DOF vibration isolation system for hydraulic hybrid vehicles
NASA Astrophysics Data System (ADS)
Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul
2006-03-01
This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of the regenerative system.
A method for gear fatigue life prediction considering the internal flow field of the gear pump
NASA Astrophysics Data System (ADS)
Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang
2018-01-01
Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin
2015-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232–1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form. PMID:24064963
Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin
2014-01-01
This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.
Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.
2012-01-01
The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.
Direct observation of vibrational energy flow in cytochrome c.
Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa
2011-11-10
Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (< ps), excess vibrational energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.
Development of flow separation control system to reduce the vibration of wind turbine blades
NASA Astrophysics Data System (ADS)
Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung
2017-04-01
The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.
Chugreev, Alexey; Nazarkin, Alexander; Abdolvand, Amir; Nold, Johannes; Podlipensky, Alexander; Russell, Philip St J
2009-05-25
Transient stimulated Raman scattering is investigated in methane-filled hollow-core photonic crystal fiber. Using frequency-chirped ps-pulses at 1.06 microm as pump and tunable CW-radiation as Stokes seed, the vibrational excitation of the CH(4) molecules can be controlled on the sub T(2) time-scale. In this way the generated Stokes pulse can be phase-locked to the pump pulse and its spectrum manipulated.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-01-01
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051
Granegger, Marcus; Moscato, Francesco; Casas, Fernando; Wieselthaler, Georg; Schima, Heinrich
2012-08-01
Estimation of instantaneous flow in rotary blood pumps (RBPs) is important for monitoring the interaction between heart and pump and eventually the ventricular function. Our group has reported an algorithm to derive ventricular contractility based on the maximum time derivative (dQ/dt(max) as a substitute for ventricular dP/dt(max) ) and pulsatility of measured flow signals. However, in RBPs used clinically, flow is estimated with a bandwidth too low to determine dQ/dt(max) in the case of improving heart function. The aim of this study was to develop a flow estimator for a centrifugal pump with bandwidth sufficient to provide noninvasive cardiac diagnostics. The new estimator is based on both static and dynamic properties of the brushless DC motor. An in vitro setup was employed to identify the performance of pump and motor up to 20 Hz. The algorithm was validated using physiological ventricular and arterial pressure waveforms in a mock loop which simulated different contractilities (dP/dt(max) 600 to 2300 mm Hg/s), pump speeds (2 to 4 krpm), and fluid viscosities (2 to 4 mPa·s). The mathematically estimated pump flow data were then compared to the datasets measured in the mock loop for different variable combinations (flow ranging from 2.5 to 7 L/min, pulsatility from 3.5 to 6 L/min, dQ/dt(max) from 15 to 60 L/min/s). Transfer function analysis showed that the developed algorithm could estimate the flow waveform with a bandwidth up to 15 Hz (±2 dB). The mean difference between the estimated and measured average flows was +0.06 ± 0.31 L/min and for the flow pulsatilities -0.27 ± 0.2 L/min. Detection of dQ/dt(max) was possible up to a dP/dt(max) level of 2300 mm Hg/s. In conclusion, a flow estimator with sufficient frequency bandwidth and accuracy to allow determination of changes in ventricular contractility even in the case of improving heart function was developed. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Picosecond ultrasonics study of the vibrational modes of a nanostructure
NASA Astrophysics Data System (ADS)
Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.
2002-03-01
We report experiments in which a subpicosecond pump light pulse is used to excite vibrations in a nanostructure consisting of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the measured data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to deduce the vibration patterns of six of the normal modes.
Vibration-based photoacoustic tomography
NASA Astrophysics Data System (ADS)
Li, Rui; Rajian, Justin R.; Wang, Pu; Slipchenko, Mikhail N.; Cheng, Ji-Xin
2013-03-01
Photoacoustic imaging employing molecular overtone vibration as contrast mechanism opens a new avenue for deep tissue imaging with chemical bond selectivity. Here, we demonstrate vibration-based photoacoustic tomography with an imaging depth on the centimeter scale. To provide sufficient pulse energy at the overtone transition wavelengths, we constructed a compact, barium nitrite crystal-based Raman laser for excitation of 2nd overtone of C-H bond. Using a 5-ns Nd:YAG laser as pumping source, up to 105 mJ pulse energy at 1197 nm was generated. Vibrational photoacoutic spectroscopy and tomography of phantom (polyethylene tube) immersed in whole milk was performed. With a pulse energy of 47 mJ on the milk surface, up to 2.5 cm penetration depth was reached with a signal-to-noise ratio of 12.
Temporal evolution of age data under transient pumping conditions
NASA Astrophysics Data System (ADS)
Leray, S.; De Dreuzy, J.; Aquilina, L.; Vergnaud, V.; Labasque, T.; Bour, O.; Le Borgne, T.
2013-12-01
While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution under transient pumping conditions. Starting pumping in a well modifies the natural flow patterns induced by the topographical gradient to a mainly convergent flow to the well. Our study is based on a set of models made up of a shallowly dipping aquifer overlain by a less permeable aquitard. These settings are characteristic of the crystalline aquifer of Plœmeur (Brittany, France) located in a highly fractured zone at the contact between a granite and micaschists. Under a pseudo steady-state flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of the four atmospheric tracers CFC 11, CFC 12, CFC 113 and SF6. We show that apparent ages deduced from these concentrations evolve both because of the flow patterns modifications and because of the non-linear evolution of the atmospheric tracer concentrations. Flow patterns modifications only intervene just after the start of pumping, when the initially piston-like residence time distribution is transformed to a broader distribution mixing residence times from a wide variety of flow lines. Later, while flow patterns and the supplying volume of the pumping well still evolve, the residence time distributions are hardly modified and apparent ages are solely altered by the non-linear atmospheric tracer concentrations that progressively modifies the weighting of the residence time distribution. These results are confirmed by the observations at the site of Plœmeur in the pumping area. First, long term chloride observations confirm the quick evolution of the flow patterns after the start of pumping. Second, posterior and more recent evolutions of apparent ages derived from CFCs are consistent with the modeling results revealing in turn the marginal effect of the 20-year pumping on the first 70 years of the residence time distribution. We conclude that the temporal evolution of apparent ages should be used with great care for identifying the temporal evolution of the flow patterns as the apparent age evolution can have two sources - the transient flow patterns and transient tracer atmospheric concentrations. We argue that both evolutions either controlled by transient flow patterns or by transient tracer atmospheric concentrations provide key information that can be further used for the characterization of the hydrogeological system. This study illustrates that the temporal evolution of apparent ages could be used for models segregation and slightly compensate for the small number of tracers.
Long-term animal experiments with an intraventricular axial flow blood pump.
Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H
1997-01-01
A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
Decker, Gifford Z; Thomson, Scott L
2007-05-01
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.
Inducer analysis/pump model development
NASA Astrophysics Data System (ADS)
Cheng, Gary C.
1994-03-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.
Inducer analysis/pump model development
NASA Technical Reports Server (NTRS)
Cheng, Gary C.
1994-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.
An AC electroosmotic micropump for circular chromatographic applications.
Debesset, S; Hayden, C J; Dalton, C; Eijkel, J C T; Manz, A
2004-08-01
Flow rates of up to 50 microm s(-1) have been successfully achieved in a closed-loop channel using an AC electroosmotic pump. The AC electroosmotic pump is made of an interdigitated array of unequal width electrodes located at the bottom of a channel, with an AC voltage applied between the small and the large electrodes. The flow rate was found to increase linearly with the applied voltage and to decrease linearly with the applied frequency. The pump is expected to be suitable for circular chromatography for the following reasons: the driving forces are distributed over the channel length and the pumping direction is set by the direction of the interdigitated electrodes. Pumping in a closed-loop channel can be achieved by arranging the electrode pattern in a circle. In addition the inherent working principle of AC electroosmotic pumping enables the independent optimisation of the channel height or the flow velocity.
Otto, Mathias; Kuhn, Alexander; Engelke, Wito; Theisel, Holger
2012-01-01
In the 2011 IEEE Visualization Contest, the dataset represented a high-resolution simulation of a centrifugal pump operating below optimal speed. The goal was to find suitable visualization techniques to identify regions of rotating stall that impede the pump's effectiveness. The winning entry split analysis of the pump into three parts based on the pump's functional behavior. It then applied local and integration-based methods to communicate the unsteady flow behavior in different regions of the dataset. This research formed the basis for a comparison of common vortex extractors and more recent methods. In particular, integration-based methods (separation measures, accumulated scalar fields, particle path lines, and advection textures) are well suited to capture the complex time-dependent flow behavior. This video (http://youtu.be/oD7QuabY0oU) shows simulations of unsteady flow in a centrifugal pump.
NASA Astrophysics Data System (ADS)
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
Characterization of an induced pressure pumping force for microfluidics
NASA Astrophysics Data System (ADS)
Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan
2017-05-01
The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.
Redesigned Electron-Beam Furnace Boosts Productivity
NASA Technical Reports Server (NTRS)
Williams, Gary A.
1995-01-01
Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.
1995-01-01
A hydraulically operated pump is described for in-ground filtering and monitoring of wells or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of O-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.
1996-10-29
A hydraulically operated pump is described for in-ground filtering and monitoring of waters or other fluid sources, includes a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis. 5 figs.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, Charles D.; Livingston, Ronald R.; Toole, Jr., William R.
1996-01-01
A hydraulically operated pump for in-ground filtering and monitoring of ws or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.
NASA Astrophysics Data System (ADS)
Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.
2003-03-01
Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.
Initial photoinduced dynamics of the photoactive yellow protein.
Larsen, Delmar S; van Grondelle, Rienk
2005-05-01
The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.
Steady and transient regimes in hydropower plants
NASA Astrophysics Data System (ADS)
Gajic, A.
2013-12-01
Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.
NASA Technical Reports Server (NTRS)
Javan, A.; Guerra, M.
1981-01-01
The possibility of obtaining CW laser oscillation by optical pumping in the infrared at an elevated gas pressure is reviewed. A specific example utilizing a mixture of CO and NO gases is included. The gas pressures considered are in excess of several atmospheres. Laser frequency tuning over a broad region becomes possible at such elevated gas pressures due to collisional broadening of the amplifying transitions. The prior-rate and surprisal analysis are applied to obtain detailed VV and VT rates for CO and NO molecules and the transfer rates in a CO-NO gas mixture. The analysis is capable of giving temperature dependence of the rate constants. Computer estimates of the rates are presented for vibrational levels up to v = 50. The results show that in the high-lying vibrational states the VV transfer rates with Delta nu = 2 become appreciable.
Lif and Raman Spectroscopy in Undergraduate Labs Using Green Diode-Pumped Solid-State Lasers
NASA Astrophysics Data System (ADS)
Gray, Jeffrey A.
2015-06-01
Electronic spectroscopy of molecular iodine vapor has long been studied in undergraduate physical chemistry teaching laboratories, but the effectiveness of emission work has typically been limited by availability of instrumentation. This talk shows how to make inexpensive green diode-pumped solid-state (DPSS) lasers easily tunable for efficient, selective excitation of I2. Miniature fiber-optic spectrometers then enable rotationally resolved fluorescence spectroscopy up to v" = 42 near 900 nm with acquisition times of less than one minute. DPSS lasers are also versatile excitation sources for vibrational Raman spectroscopy, which is another common exercise that has been limited by lack of proper instrumentation in the teaching laboratory. This talk shows how to construct a simple accessory for commercial fluorimeters to record vibrational Raman spectra and depolarization ratios for CCl4 and C2Cl4 as part of a lab exercise featuring molecular symmetry.
Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J
2007-10-01
We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.
3. Credit BG. The interior of the control room appears ...
3. Credit BG. The interior of the control room appears in this view, looking north (0°). The control console in the room center permitted remote control of various propellant grinders and mixers in surrounding buildings. Television monitors (absent from their mounts in this view) permitted direct viewing of operating machinery. From foreground to background: Panel (1) contains OGAR warning light switches for Curing Buildings E-39, E-40, E-41 and E-86; (O=off, G=green safe, A=amber caution, R=red danger) Panel (2) E-85 Oxidizer Dryer Building console: OGAR switch Panel (3) E-84 Oxidizer Grinder Building console: controls for vibrator, feed, and hammer; Panel (4) E-36 Oxidizer Grinder Building console: controls for vibrator, feed, hammer, attritor, and SWECO ("SWECO" undefined) Panels (5) & (6) blank Panel (7) E-38 Mixer & Casting Building console: vacuum pump, blender, heating and cooling controls Panel (8) E-37 Mixer & Casting Building console: motor controls for 1 pint, 1 gallon, 5 gallon and 30 gallon mixers; vacuum pump, deluge (fire suppression), pot up/down, vibrator, feed, and SWECO. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Computation of incompressible viscous flows through turbopump components
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chang, Leon
1993-01-01
Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.
[Feasibility Study on Digital Signal Processor and Gear Pump of Uroflowmeter Calibration Device].
Yuan, Qing; Ji, Jun; Gao, Jiashuo; Wang, Lixin; Xiao, Hong
2016-08-01
It will cause hidden trouble on clinical application if the uroflowmeter is out of control.This paper introduces a scheme of uroflowmeter calibration device based on digital signal processor(DSP)and gear pump and shows studies of its feasibility.According to the research plan,we analyzed its stability,repeatability and linearity by building a testing system and carried out experiments on it.The flow test system is composed of DSP,gear pump and other components.The test results showed that the system could produce a stable water flow with high precision of repeated measurement and different flow rate.The test system can calibrate the urine flow rate well within the range of 9~50mL/s which has clinical significance,and the flow error is less than 1%,which meets the technical requirements of the calibration apparatus.The research scheme of uroflowmeter calibration device on DSP and gear pump is feasible.
Takatani, Setsuo; Hoshi, Hideo; Tajima, Kennichi; Ohuchi, Katsuhiro; Nakamura, Makoto; Asama, Junichio; Shimshi, Tadahiko; Yoshikawa, Masaharu
2005-01-01
In this study, a seal-less, tiny centrifugal rotary blood pump was designed for low-flow circulatory support in children and infants. The design was targeted to yield a compact and priming volume of 5 ml with a flow rate of 0.5-4 l/min against a head pressure of 40-100 mm Hg. To meet the design requirements, the first prototype had an impeller diameter of 30 mm with six straight vanes. The impeller was supported with a needle-type hydrodynamic bearing and was driven with a six-pole radial magnetic driver. The external pump dimensions included a pump head height of 20 mm, diameter of 49 mm, and priming volume of 5 ml. The weight was 150 g, including the motor driver. In the mock circulatory loop, using fresh porcine blood, the pump yielded a flow of 0.5-4.0 l/min against a head pressure of 40-100 mm Hg at a rotational speed of 1800-4000 rpm using 1/4" inflow and outflow conduits. The maximum flow and head pressure of 5.25 l/min and 244 mm Hg, respectively, were obtained at a rotational speed of 4400 rpm. The maximum electrical-to-hydraulic efficiency occurred at a flow rate of 1.5-3.5 l/min and at a rotational speed of 2000-4400 rpm. The normalized index of hemolysis, which was evaluated using fresh porcine blood, was 0.0076 g/100 l with the impeller in the down-mode and a bearing clearance of 0.1 mm. Further refinement in the bearing and magnetic coupler are required to improve the hemolytic performance of the pump. The durability of the needle-type hydrodynamic bearing and antithrombotic performance of the pump will be performed before clinical applications. The tiny centrifugal blood pump meets the flow requirements necessary to support the circulation of pediatric patients.
Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction
Lemoff, Asuncion V [Union City, CA; Lee, Abraham P [Irvine, CA
2010-07-13
A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.
Ultra high vacuum pumping system and high sensitivity helium leak detector
Myneni, Ganapati Rao
1997-01-01
An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.
NASA Astrophysics Data System (ADS)
Maharjan, Madan
Groundwater response to stream stage fluctuations was studied using a year-long time series of stream stage and well heads in Glen Dale and New Martinsville, WV. Stream stage fluctuations exerted primary control over groundwater levels, especially during high flows. The location and operation of river pools created by dams alter groundwater flow paths and velocities. Aquifers are more prone to surface water infiltration in the upper reaches of pools than in lower reaches. Aquifer diffusivity is heterogeneous within and between the two sites. Temperature fluctuations were observed for 2.5 years in 14 wells in three alluvial aquifers. Temperature signals have 2 components corresponding to pump-on and pump-off periods. Both components vary seasonality at different magnitudes. While pump-off temperatures fluctuated up to 3.8o C seasonally, short-term temperature shifts induced by turning the pump on were 0.2 to 2.5o C. Pumping-induced temperature shifts were highest in magnitude in summer and winter. Groundwater temperature lagged behind that of surface water by approximately six months. Pumping induced and seasonal temperature shifts were spatially and temporally complex but indicate stream exfiltration is a major driver for a number of these wells. Numerical simulation of aquifer response to pumping show different conditions before and after well-field development. During pre-development, the stream was losing at high flow and gaining at low flow. During post-development, however, the stream was losing at high flow and spatially variable at low flow. While bank storage gained only during high stage, stream exfiltration occurred year-round. Pumping induced stream exfiltration by creating an extensive cone of depression beneath the stream in both upstream and downstream directions. Spatially and temporally variable groundwater-surface water interaction next to a regulated stream were studied using analytical and numerical models, based on field observations. Seasonality plays an important role in these interactions, but human activity may also alter its intensity.
Development of a microfluidic device for simultaneous mixing and pumping
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Lee, Kyung Heon; Sung, Hyung Jin
2009-01-01
We conducted experimental and numerical studies aimed at developing a microfluidic device capable of simultaneous mixing while pumping. The proposed multifunctional device makes use of alternating current electroosmotic flow and adopts an array of planar asymmetric microelectrodes with a diagonal or herringbone shape. The pumping performance was assessed in terms of the fluid velocity at the center of the microchannel, obtained by micro PIV. To assess the mixing, flow visualizations were carried out over the electrodes to verify the lateral flows. The mixing degree was quantified in terms of a mixing efficiency obtained by three-dimensional numerical simulations. The results showed that simultaneous mixing and pumping was achieved in the channels with diagonal or herringbone electrode configurations. A herringbone electrode configuration showed better pumping compared with a reference, as well as enhanced mixing.
Noncontacting device to indicate deflection of turbopump internal rotating parts
NASA Technical Reports Server (NTRS)
Hamilton, D. B.; Grieser, D. R.; Plummer, A. M.; Ensminger, D.; Saccacio, E. J.
1972-01-01
Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included.
Observation of direct infrared multiphoton pumping of the triplet manifold of biacetyl
NASA Astrophysics Data System (ADS)
Tsao, Jeffrey Y.; Black, Jerry G.; Yablonovitch, Eli; Burak, Itamar
1980-09-01
Direct collisionless multiphoton (MP) excitation of the triplet vibronic manifold of biacetyl is reported. Following a dye laser pulse which prepares some of the biacetyl molecules in the triplet metastable state, the system is irradiated by an intense 20 ns 9.6μ CO2 pulse. The CO2 radiation induces fast quenching of the phosphorescence emission from the 3Au excited molecules. It also induces an emission signal in the fluorescence spectral region of biacetyl. This signal is related to an inverse electronic relaxation (IER) from excited triplet vibronic levels into isoenergetic singlet 1Au vibronic levels. Analysis of the induced luminescence signals provides information on the collisionless MP prompted vibrational distribution. Excitation with 10.6μ CO2 pulses leads to the simultaneous MP pumping of both the ground and triplet manifolds. The generation of blue emission signals in this experiment bears a close resemblance to recent observations of prompt visible emission due to MP pumping of ground state molecules. General expressions for the emission intensities are derived with special emphasis on the specific features of MP vibrational distributions. The detectability of MP induced emission signals is discussed.
Nonlinear nonlocal infrared plasmonic arrays for pump-probe studies on protein monolayers
NASA Astrophysics Data System (ADS)
Erramilli, Shyamsunder; Adato, Ronen; Gabel, Alan; Yanik, Ahmet Ali; Altug, Hatice; Hong, Mi K.
2010-03-01
Infrared spectroscopy is an exquisite bond-specific tool for studying biomolecules with characteristic vibrational normal modes that serve as a molecular ``fingerprint''. Intrinsic absorption cross-sections for proteins are significant (˜10-19 -10-21 cm^2), although small compared to label-based fluorescence methods. We have shown that carefully designed plasmonic nanoantenna arrays can enhance the vibrational signatures by ˜ 10^5 (Adato et al, Proc Natl Acad Sci USA, 2009). Theoretical modeling combined with polarized FTIR-microscopy show that enhancement is due both to localized effects and nonlocal collective effects, governed by the dielectric properties of silicon and gold nanoantennae, coupled to protein molecules. The resonance properties can be modulated by photoinduced excitation of charge carriers and excitons, causing both a shift in the resonance frequency and a change in the enhancement factor. An ultrafast visible pump laser can then be used to extend visible pump-infrared probe studies to protein molecules even when the molecules lack a chromophore. This provides a toolkit for biophysical studies in which the nonlinear, nonlocal interaction between a 35-fs visible or near-infrared laser and the designed plasmonic nanoantenna arrays are used to study dynamics of protein molecules.
Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Jiang, Taofei; Ba, Dexin; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Li, Hui
2017-02-06
We present a slope-assisted BOTDA system based on the vector stimulated Brillouin scattering (SBS) and frequency-agile technique (FAT) for the wide-strain-range dynamic measurement. A dimensionless coefficient K defined as the ratio of Brillouin phase-shift to gain is employed to demodulate the strain of the fiber, and it is immune to the power fluctuation of pump pulse and has a linear relation of the frequency detuning for the continuous pump and Stokes waves. For a 30ns-square pump pulse, the available frequency span of the K spectrum can reach up to 200MHz, which is larger than fourfold of 48MHz-linewidth of Brillouin gain spectrum. For a single-slope assisted BOTDA, dynamic strain measurement with the maximum strain of 2467.4με and the vibration frequency components of 10.44Hz and 20.94Hz is obtained. For a multi-slope-assisted BOTDA, dynamic measurement with the strain variation up to 5372.9με and the vibration frequency components of 5.58Hz and 11.14Hz is achieved by using FAT to extend the strain range.
Fractional flow in fractured chalk; a flow and tracer test revisited.
Odling, N E; West, L J; Hartmann, S; Kilpatrick, A
2013-04-01
A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L(4-n)/T and S(2-n)) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2
Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery
2009-01-01
Logs collected in monitoring well PTX06–1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 200 feet squared per day.
NASA Astrophysics Data System (ADS)
Rinderknecht, Derek
Microfluidics offers an effective means to carry out a wide range of transport processes within a controlled microenvironment by drawing on the benefits imparted by increasing surface area to volume ratio at the microscale. Critical to the impact of microfluidics on integrated devices in the fields of bioengineering and biomedicine is the ability to transport fluids and biomolecules effectively particularly at the size scales involved. In this context a bio-inspired pumping mechanism, the valveless impedance pump, was explored for applications in microfluidics ranging from micro total analysis systems to microchannel cooling. Adhering to the basic principles of the impedance pump mechanism, pumps have been constructed at a variety of size scales from a few centimeters to a few hundred microns. The micro impedance pump is valveless, bidirectional, and can be constructed simply from a wide range of materials. Depending on the size of the pump flow rates range from nL/min to mL/min and pressures can be generated that exceed 20 kPa. Another benefit of the impedance pump is the pulsatile flow output which can be used in the context of microfluidic applications to enhance transport at low Reynolds numbers as well as metering in drug delivery. Pulsatile flow was therefore investigated as a method of augmenting transport in microfluidic systems. Micro PIV was used to study the affect of both steady and pulsatile flows on transport at low Reynolds number was examined in microscale rectangular cavities. Ventilation of the cavity contents was examined in terms of the residence time or average time a particle remains in the cavity region. Lagrangian coherent structures (LCS) were applied to empirical velocity fields to determine the impact of unsteadiness on time dependent boundaries to fluid transport present in the flow. Experimental results show that there are both frequencies which are beneficial and detrimental to cavity ventilation as well as certain frequencies which more evenly distribute particles originating in the cavity throughout the freestream.
Wang, Shigang; Spencer, Shannon B; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif
2017-01-01
The objective of this study is to evaluate the impact of an open or closed recirculation line on flow rate, circuit pressure, and hemodynamic energy transmission in simulated neonatal extracorporeal life support (ECLS) systems. The two neonatal ECLS circuits consisted of a Maquet HL20 roller pump (RP group) or a RotaFlow centrifugal pump (CP group), Quadrox-iD Pediatric oxygenator, and Biomedicus arterial and venous cannulae (8 Fr and 10 Fr) primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). Trials were conducted at flow rates ranging from 200 to 600 mL/min (200 mL/min increments) with a closed or open recirculation line at 36°C. Real-time pressure and flow data were recorded using a custom-based data acquisition system. In the RP group, the preoxygenator flow did not change when the recirculation line was open while the prearterial cannula flow decreased by 15.7-20.0% (P < 0.01). Circuit pressure, total circuit pressure drop, and hemodynamic energy delivered to patients also decreased (P < 0.01). In the CP group, the prearterial cannula flow did not change while preoxygenator flow increased by 13.6-18.8% (P < 0.01). Circuit pressure drop and hemodynamic energy transmission remained the same. The results showed that the shunt of an open recirculation line could decrease perfusion flow in patients in the ECLS circuit using a roller pump, but did not change perfusion flow in the circuit using a centrifugal pump. An additional flow sensor is needed to monitor perfusion flow in patients if any shunts exist in the ECLS circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
PUMPS FOR LIQUID CURRENT-CONDUCTING MATERIAL
Watt, D.A.
1958-12-23
An induction-type liquid conductor pump is described wherein the induced current flow is substantially tnansverse to the flow of the liquid in the duct, thus eliminating parallel current flow that tends to cause unwanted pressures resulting in turbulence, eddy-flow, heating losses, and reduced pumping efficiency. This improvement is achieved by offering the parallel current a path of lower impedance along the duct than that offered by the liquid so that the induced currents remaining in the liquid flow in a substantially transverse directlon. Thick copper bars are brazed to the liquid duct parallel to the flow, and additional induced currents are created in the copper bars of appropriate magnitude to balance the ohmic drop ln the current paths outside of the liquid metal.
NASA Astrophysics Data System (ADS)
Mork, Steven Wayne
High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational mode has been identified as containing C-C torsion, CCF bend and CH_2 rock. As in 2FE, DFE undergoes an isomerization reaction upon excitation of the C-H stretch. Coupling between the C-H stretch and C-C torsion is addressed with respect to the reaction mechanism.