Study on vacuum packaging reliability of micromachined quartz tuning fork gyroscopes
NASA Astrophysics Data System (ADS)
Fan, Maoyan; Zhang, Lifang
2017-09-01
Packaging technology of the micromachined quartz tuning fork gyroscopes by vacuum welding has been experimentally studied. The performance of quartz tuning fork is influenced by the encapsulation shell, encapsulation method and fixation of forks. Alloy solder thick film is widely used in the package to avoid the damage of the chip structure by the heat resistance and hot temperature, and this can improve the device performance and welding reliability. The results show that the bases and the lids plated with gold and nickel can significantly improve the airtightness and reliability of the vacuum package. Vacuum packaging is an effective method to reduce the vibration damping, improve the quality factor and further enhance the performance. The threshold can be improved nearly by 10 times.
Quartz tuning-fork oscillations in He II and drag coefficient
NASA Astrophysics Data System (ADS)
Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.
2011-07-01
The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.
Chemical and biological sensing using tuning forks
Tao, Nongjian; Boussaad, Salah
2012-07-10
A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.
Gao, Fengli; Li, Xide
2018-01-01
Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing. PMID:29364847
NASA Astrophysics Data System (ADS)
Lee, Sungkyu
2001-08-01
Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.
Yong, Yook-Kong; Patel, Mihir S; Tanaka, Masako
2010-08-01
A novel analytical/numerical method for calculating the resonator Q and its equivalent electrical parameters due to viscoelastic, conductivity, and mounting supports losses is presented. The method presented will be quite useful for designing new resonators and reducing the time and costs of prototyping. There was also a necessity for better and more realistic modeling of the resonators because of miniaturization and the rapid advances in the frequency ranges of telecommunication. We present new 3-D finite elements models of quartz resonators with viscoelasticity, conductivity, and mounting support losses. The losses at the mounting supports were modeled by perfectly matched layers (PMLs). A previously published theory for dissipative anisotropic piezoelectric solids was formulated in a weak form for finite element (FE) applications. PMLs were placed at the base of the mounting supports to simulate the energy losses to a semi-infinite base substrate. FE simulations were carried out for free vibrations and forced vibrations of quartz tuning fork and AT-cut resonators. Results for quartz tuning fork and thickness shear AT-cut resonators were presented and compared with experimental data. Results for the resonator Q and the equivalent electrical parameters were compared with their measured values. Good equivalences were found. Results for both low- and high-Q AT-cut quartz resonators compared well with their experimental values. A method for estimating the Q directly from the frequency spectrum obtained for free vibrations was also presented. An important determinant of the quality factor Q of a quartz resonator is the loss of energy from the electrode area to the base via the mountings. The acoustical characteristics of the plate resonator are changed when the plate is mounted onto a base substrate. The base affects the frequency spectra of the plate resonator. A resonator with a high Q may not have a similarly high Q when mounted on a base. Hence, the base is an energy sink and the Q will be affected by the shape and size of this base. A lower-bound Q will be obtained if the base is a semi-infinite base because it will absorb all acoustical energies radiated from the resonator.
A High-Q AFM Sensor Using a Balanced Trolling Quartz Tuning Fork in the Liquid
Li, Yingzi; Song, Zihang; Lin, Rui; Chen, Yifu; Qian, Jianqiang
2018-01-01
A quartz tuning fork (QTF) has been widely used as a force sensor of the frequency modulation atomic force microscope due to its ultrahigh stiffness, high quality factor and self-sensing nature. However, due to the bulky structure and exposed surface electrode arrangement, its application is limited, especially in liquid imaging of in situ biological samples, ionic liquids, electrochemical reaction, etc. Although the complication can be resolved by coating insulating materials on the QTF surface and then immersing the whole QTF into the liquid, it would result in a sharp drop of the quality factor, which will reduce the sensitivity of the QTF. To solve the problem, a novel method, called the balanced trolling quartz tuning fork (BT-QTF), is introduced here. In this method, two same probes are glued on both prongs of the QTF separately while only one probe immersed in the liquid. With the method, the hydrodynamic interaction can be reduced, thus the BT-QTF can retain a high quality factor and constant resonance frequency. The stable small vibration of the BT-QTF can be achieved in the liquid. Initially, a theoretical model is presented to analyze the sensing performance of the BT-QTF in the liquid. Then, the sensing performance analysis experiments of the BT-QTF have been performed. At last, the proposed method is applied to atomic force microscope imaging different samples in the liquid, which proves its feasibility. PMID:29783740
QEPAS nitric oxide sensor based on a mid-infrared fiber-coupled quantum cascade laser
NASA Astrophysics Data System (ADS)
Ren, Wei; Shi, Chao; Wang, Zhen; Yao, Chenyu
2017-04-01
We report a quartz-enhanced photoacoustic sensor (QEPAS) for nitric oxide (NO) detection using a mid-infrared fibercoupled quantum cascade laser (QCL) near 5.2 μm. The QCL radiation was coupled into an InF3 fiber (100 μm core diameter) for light delivery to the quartz tuning fork, a tiny piezoelectric element converting the acoustic wave induced mechanical vibration to the gas-absorption associated electrical signal. This mid-infrared fiber can achieve nearly single-mode light delivery for the target wavelength. The off-beam configuration was adopted for the fiber-coupled detection considering its simpler installation, optical alignment and comparative sensitivity to the traditional on-beam setup.
ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan
2013-12-01
Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.
McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G
2013-01-01
Motorized vibrating manure forks were used in beach-cleaning operations following the massive Deepwater Horizon oil spill in the Gulf of Mexico during the summer of 2010. The objectives of this study were to characterize the vibration emissions of these motorized forks and to provide a first approximation of hand-transmitted vibration exposures to workers using these forks for beach cleaning. Eight operators were recruited to operate the motorized forks during this laboratory study. Four fork configurations were used in the study; two motor speeds and two fork basket options were evaluated. Accelerations were measured near each hand as the operators completed the simulated beach-cleaning task. The dominant vibration frequency for these tools was identified to be around 20 Hz. Because acceleration was found to increase with motor speed, workers should consider operating these tools with just enough speed to get the job done. These forks exhibited considerable acceleration magnitudes when unloaded. The study results suggest that the motor should not be operated with the fork in the unloaded state. Anti-vibration gloves are not effective at attenuating the vibration frequencies produced by these forks, and they may even amplify the transmitted vibration and increase hand/arm fatigue. While regular work gloves are suitable, vibration-reducing gloves may not be appropriate for use with these tools. These considerations may also be generally applicable for the use of motorized forks in other workplace environments.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
A Quasiparticle Detector for Imaging Quantum Turbulence in Superfluid He-B
NASA Astrophysics Data System (ADS)
Ahlstrom, S. L.; Bradley, D. I.; Fisher, S. N.; Guénault, A. M.; Guise, E. A.; Haley, R. P.; Holt, S.; Kolosov, O.; McClintock, P. V. E.; Pickett, G. R.; Poole, M.; Schanen, R.; Tsepelin, V.; Woods, A. J.
2014-06-01
We describe the development of a two-dimensional quasiparticle detector for use in visualising quantum turbulence in superfluid He-B at ultra-low temperatures. The detector consists of a matrix of pixels, each a 1 mm diameter hole in a copper block containing a miniature quartz tuning fork. The damping on each fork provides a measure of the local quasiparticle flux. The detector is illuminated by a beam of ballistic quasiparticles generated from a nearby black-body radiator. A comparison of the damping on the different forks provides a measure of the cross-sectional profile of the beam. Further, we generate a tangle of vortices (quantum turbulence) in the path of the beam using a vibrating wire resonator. The vortices cast a shadow onto the face of the detector due to the Andreev reflection of quasiparticles in the beam. This allows us to image the vortices and to investigate their dynamics. Here we give details of the design and construction of the detector and show some preliminary results for one row of pixels which demonstrates its successful application to measuring quasiparticle beams and quantum turbulence.
Starecki, Tomasz
2017-01-01
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude. PMID:29099765
Starecki, Tomasz; Wieczorek, Piotr Z
2017-11-03
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.
2006-10-01
We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 ?m between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz) and delivered a modest 5.3 mW at the tuning fork. This spectrometer was calibrated using the infrared absorbermore » Freon-134a by performing a simultaneous absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10{sup -8} W cm-1 Hz{sup -1/2}. A corresponding theoretical analysis of the instrument sensitivity is presented and is capable of quantitatively reproducing the experimental NEAS, indicating that the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.« less
Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todoshchenko, I., E-mail: todo@boojum.hut.fi; Kaikkonen, J.-P.; Hakonen, P. J.
We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid {sup 3}He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid {sup 3}He. We show that themore » fork oscillator can be considered as self-calibrating in superfluid {sup 3}He at the crossover point from hydrodynamic into ballistic quasiparticle regime.« less
Note: a transimpedance amplifier for remotely located quartz tuning forks.
Kleinbaum, Ethan; Csáthy, Gábor A
2012-12-01
The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.
Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko
2016-02-01
High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yufei, E-mail: mayufei@hit.edu.cn; Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001; He, Ying
An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.
Principles and Applications of the qPlus Sensor
NASA Astrophysics Data System (ADS)
Giessibl, Franz J.
The concept of the atomic force microscope (AFM) is a very simple one: map the surface of a sample by a sharp probe that scans over the surface similar to the finger of a blind person that reads Braille characters. In AFM, the role of that finger is taken by the probe tip that senses the presence of the sample surface by detecting the force between the tip of the probe and a sample. The qPlus sensor is a self sensing cantilever based on a quartz tuning fork that supplements the traditional microfabricated cantilevers made of silicon. Quartz tuning forks are used in the watch industry in quantities of billions annually, with the positive effects on quality and perfection. Three properties of these quartz-based sensors simplify the AFM significantly: (1) the piezoelectricity of quartz allows simple self sensing, (2) the mechanical properties of quartz show very small variations with temperature, and (3) the given stiffness of many quartz tuning forks is close to the ideal stiffness of cantilevers. The key properties of the qPlus sensor are a large stiffness that allows small amplitude operation, the large size that allows to mount single-crystal probe tips, and the self-sensing piezoelectric detection mechanism.
Superfluidity of 4He in dense aerogel studied using quartz tuning fork
NASA Astrophysics Data System (ADS)
Matsumoto, K.; Okamoto, R.; Nakajima, A.; Abe, S.
2018-03-01
Superfluid 4He in aerogel is of interest because it has a normal component coupling to gel strand due to viscosity and a superfluid component with zero viscosity. Superfluid helium in aerogel has two sound modes, a slow critical mode and a fast one. In this study, quartz tuning fork was used in order to study acoustic properties of liquid 4He in aerogel with 90% porosity. Two pieces of aerogel were glued on both prongs of quartz tuning fork that had a resonance frequency of 33 kHz. The tuning fork was immersed in liquid 4He from 2 to 20 bar. The resonance frequency increased in the superfluid phase due to decrease in loaded mass. Temperature variation of resonance frequency was explained by that of superfluid density. Superfluid transition in aerogel was 2 mK lower than that without gel. Additional dissipation was observed in the temperature range between 1 K and transition temperature.
High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.
Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K
2018-01-04
A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.
High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance
Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin
2018-01-01
A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor. PMID:29300310
NASA Astrophysics Data System (ADS)
Aboktef, Adel
This study documents the distribution of diagenetic alterations in Williams Fork fluvial sandstones, assess sequence stratigraphic controls on diagenetic features, and addresses diagenetic impacts on porosity. Petrographic point counts of 220 thin sections from six wells forms the database. The near absence of potassium feldspar and volcanic rock fragments in the lower Williams Fork interval and increasing plagioclase content upward represent changes in sediment provenance rather than stratigraphic variability in diagenesis. The lower Williams Fork sands are from sedimentary sources whereas middle and upper Williams Fork sands include input from magmatic arcs and basement uplifts. Compaction, early and late cementation, dissolution, and replacement by calcite or clay minerals combined to alter Williams Fork sandstones. Infiltration of clays occurred prior to any burial. Chlorite, quartz, non-ferroan calcite, compaction and dissolution features, and kaolinite formed during eo-diagenesis at <70°C. More quartz, compaction and dissolution features, plus albite, illite, mixed-layer illite/smectite, ferroan calcite, and dolomite formed in the meso-diagenetic realm (>70°C). Four of these features show spatial variability with respect to systems tracts. Infiltrated clays are concentrated in lowstand systems tracts (LST) and highstand systems tracts (HST) because accommodation space rose slow or fell during deposition of those sands, which led to prolonged sand body exposure on floodplain and ample opportunities for downward percolation of mud during flood events. Concentration of pseudomatrix (mud intraclasts) in HST and LST deposits resulted from floodplain erosion when base-level fell with decreasing accommodation space. Authigenic chlorite formed in the HST and transgressive systems tracts (TST) of the upper half of the Williams Fork Formation because volcanic clasts are abundant in that interval. Quartz overgrowths are more likely to exceed 7% in TST deposits for reasons that are unknown. High total clay content (infiltrated, grain coatings, pseudomatrix) does inhibit quartz overgrowths in all systems tracts. Williams Fork sandstones form low-permeability tight-gas reservoirs. Primary porosity was almost entirely destroyed by compaction and cementation. Reservoir rock resulted from one of two pathways. Eogenetic authigenic chlorite and/or calcite inhibited quartz cementation, minimized compaction and protected some primary porosity. Alternately, dissolution of framework grains or cements created secondary porosity. The later pathway tends to be the more dominant.
Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis
NASA Astrophysics Data System (ADS)
Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.
2011-01-01
A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.
Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio
2015-01-14
The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Li, Quanfeng; Lu, Qingyou
2011-05-01
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).
Quartz-Enhanced Photoacoustic Spectroscopy: A Review
Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo
2014-01-01
A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729
Little Known Facts about the Common Tuning Fork.
ERIC Educational Resources Information Center
Ong, P. P.
2002-01-01
Explains the physical principles of the tuning fork which has a common use in teaching laboratories. Includes information on its vibration, frequency of vibration, elasticity, and reasons for having two prongs. (YDS)
A Novel QEPAS with Microresonator in the Open Environment
NASA Astrophysics Data System (ADS)
Lin, Cheng; Zhu, Yong; Wei, Wei; Wang, Ning; Bao, Weiyi
2013-09-01
An improved quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system for trace gas detection is proposed. The optical fiber Fabry-Perot (F-P) demodulation method is used to replace the conventional electrical one in the QEPAS system. The experimental QEPAS system, which has a microresonator consisting of two stainless steel tubes with a length of 2.3 mm and an inner diameter of 0.9 mm, is implemented to detect the absorption of water vapor in the open environment. The structure parameters of the quartz tuning fork (QTF) are optimized in order to make the sensing system work more stably and reliably. Demonstration experiments are carried out. The vibration signal of the QTF was picked up by the optical fiber F-P demodulator and the conventional electrical scheme at the same time. Normalized noise equivalent absorption coefficients of and are obtained, respectively. The experimental result demonstrates that the sensitivity of the improved QEPAS sensing system with an optical fiber F-P demodulator is about 5.9 times higher than that of the conventional QEPAS system.
Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K
2015-03-27
A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.
Tuning Forks and Monitor Screens.
ERIC Educational Resources Information Center
Harrison, M. A. T.
2000-01-01
Defines the vibrations of a tuning fork against a computer monitor screen as a pattern that can illustrate or explain physical concepts like wave vibrations, wave forms, and phase differences. Presents background information and demonstrates the experiment. (Author/YDS)
Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bontempi, Alexia; Teyssieux, Damien; Thiery, Laurent
2014-10-13
A photo-thermal excitation of a Quartz Tuning Fork (QTF) for topographic studies is introduced. The non-invasive photo-thermal excitation presents practical advantages compared to QTF mechanical and electrical excitations, including the absence of the anti-resonance and its associated phase rotation. Comparison between our theoretical model and experiments validate that the optical transduction mechanism is a photo-thermal rather than photo-thermoacoustic phenomenon. Topographic maps in the context of near-field microscopy distance control have been achieved to demonstrate the performance of the system.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
NASA Astrophysics Data System (ADS)
Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian
2016-09-01
A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.
Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo
2015-11-01
We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.
Numerical performance analysis of quartz tuning fork-based force sensors
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur E.; Schwarz, Udo D.
2017-01-01
Quartz tuning fork-based force sensors where one prong is immobilized onto a holder while the other one is allowed to oscillate freely (‘qPlus’ configuration) are in widespread use for high-resolution scanning probe microscopy applications. Due to the small size of the tuning forks (≈3 mm) and the complexity of the sensor assemblies, the reliable and repeatable manufacturing of the sensors has been challenging. In this paper, we investigate the contribution of the amount and location of the epoxy glue used to attach the tuning fork to its holder on the sensor’s performance. Towards this end, we use finite element analysis to model the entire sensor assembly and to perform static and dynamic numerical simulations. Our analysis reveals that increasing the thickness of the epoxy layer between prong and holder results in a decrease of the sensor’s spring constant, eigenfrequency, and quality factor while showing an increasing deviation from oscillation in its primary modal shape. Adding epoxy at the sides of the tuning fork also leads to a degradation of the quality factor even though in this case, spring constant and eigenfrequency rise in tandem with a lessening of the deviation from its ideal modal shape.
Feldmann, H
1997-02-01
G. Cardano, physician, mathematician, and astrologer in Pavia, Italy, in 1550 described how sound may be perceived through the skull. A few years later H. Capivacci, also a physician in Padua, realized that this phenomenon might be used as a diagnostic tool for differentiating between hearing disorders located either in the middle ear or in the acoustic nerve. The German physician G. C. Schelhammer in 1684 was the first to use a common cutlery fork in further developing the experiments initiated by Cardano and Capivacci. For a long time to come, however, there was no demand for this in practical otology. The tuning fork was invented in 1711 by John Shore, trumpeter and lutenist to H. Purcell and G.F. Händel in London. A picture of Händel's own tuning fork, probably the oldest tuning fork in existence, is presented here for the first time. There are a number of anecdotes connected with the inventor of the tuning fork, using plays on words involving the name Shore, and mixing up pitch-pipe and pitchfork. Some of these are related here. The tuning fork as a musical instrument soon became a success throughout Europe. The German physicist E. F. F. Chladni in Wittenberg around 1800 was the first to systematically investigate the mode of vibration of the tuning fork with its nodal points. Besides this, he and others tried to construct a complete musical instrument based on sets of tuning forks, which, however, were not widely accepted. J. H. Scheibler in Germany in 1834 presented a set of 54 tuning forks covering the range from 220 Hz to 440 Hz, at intervals of 4 Hz. J. Lissajous in Paris constructed a very elaborate tuning fork with a resonance box, which was intended to represent the international standard of the musical note A with 435 vibrations per second, but this remained controversial. K. R. Koenig, a German physicist living in Paris, invented a tuning fork which was kept in continuous vibration by a clockwork. H. Helmholtz, physiologist in Heidelberg, in 1863 used sets of electromagnetically powered tuning forks for his famous experiments on the sensations of tone. Until the invention of the electronic valve, tuning forks remained indispensible instruments for producing defined sinusoidal vibrations. The history of this development is presented in detail. The diagnostic use of the tuning fork in otology will be described in a separate article.
A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift
Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli
2017-01-01
Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798
Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal
2016-06-01
A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland
A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.
Spring constant of a tuning-fork sensor for dynamic force microscopy
Lange, Manfred; Schmuck, Merlin; Schmidt, Nico; Möller, Rolf
2012-01-01
Summary We present an overview of experimental and numerical methods to determine the spring constant of a quartz tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed taking account of the real geometry including the glue that is used to mount the tuning fork. PMID:23365793
Finite Element Analysis and Vibration Control of Lorry’s Shift Mechanism
NASA Astrophysics Data System (ADS)
Qiangwei, Li
2017-11-01
The transmission is one of the important parts of the automobile’s transmission system, Shift mechanism’s main function of transmission is to adjust the position of the shift fork, toggle the synchronizer’s tooth ring, so that the gears are separated and combined to achieve the shift. Therefore, in order to ensure the reliability and stability of the shift process, the vibration characteristics of the shift mechanism cannot be ignored. The static analysis of the shift fork is carried out, and the stress distribution of the shift fork is obtained according to the operating characteristics of the shift mechanism of the lorry transmission in this paper. The modal analysis of the shift mechanism shows the low-order vibration frequencies and the corresponding modal vibration shapes, and the vibration control analysis is carried out according to the simulation results. The simulation results provide the theoretical basis for the reasonable optimization design of the shift mechanism of the lorry transmission.
1982-01-28
by the South Fork of the 6 I. .. . ... . .. . . . Catawba Piver. The South Fork is a major upper tributary of the Santee drainage system. :t rises in...streams in the survey area are first order tributaries . Several of the smaller streams are not depicted an the 1:24,000 topographic sheet. The South Fork...of i-ost.oid O’. Cultura aate’rial density in the s=r2eJ and deflated sample area is 0.35 piecei1.0 szuare meter. Anite quartz ncdules w€ere eroded
An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator.
Deng, Weili; Jin, Long; Chen, Yueqi; Chu, Wenjun; Zhang, Binbin; Sun, Huan; Xiong, Da; Lv, Zekai; Zhu, Minhao; Yang, Weiqing
2018-01-03
In this paper, a piezoelectric nanogenerator (PENG) based on a tuning fork-shaped cantilever was designed and fabricated, aiming at harvesting low frequency vibration energy in the environment. In the PENG, a tuning fork-shaped elastic beam combined with ZnO nanorods (NRs), instead of conventional rectangular cantilever beams, was adopted to extract vibration energy. Benefiting from the high flexibility and the controllable shape of the substrate, this PENG was extremely sensitive to vibration and can harvest weak vibration energy at a low frequency. Moreover, a series of simulation models were established to compare the performance of the PENG with that of different shapes. On this basis, the experimental results further verify that this designed energy harvester could operate at a low frequency which was about 13 Hz. The peak output voltage and current could respectively reach about 160 mV and 11 nA, and a maximum instantaneous peak power of 0.92 μW cm -3 across a matched load of 9 MΩ was obtained. Evidently, this newly designed PENG could harvest vibration energy at a lower frequency, which will contribute to broaden the application range of the PENG in energy harvesting and self-powered systems.
NASA Astrophysics Data System (ADS)
Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.
2018-01-01
During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.
Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy
NASA Astrophysics Data System (ADS)
Ding, Junya; He, Tianbo; Zhou, Sheng; Zhang, Lei; Li, Jingsong
2018-05-01
In this paper, we report a new type of photoelectric detector based on a standard quartz crystal tuning fork (QCTF) with resonant frequency of 32 kHz for spectroscopic applications. Analogous to the photoelectric effect of traditional semiconductor detectors, we utilize the piezoelectric effect of the QCTF to gauge the light intensity. To explore the capabilities of this technique, the impact of incident light beam excitation positions with respect to QCTF on signal amplitude, resonant frequency and Q factor, as well as the dependence on incident light intensity, ambient pressure and temperature, was investigated in detail. Finally, the QCTF-based photodetector was successfully demonstrated for qualitative analysis of gasoline components by combing a broadband tunable external cavity quantum cascade laser.
The conventional tuning fork as a quantitative tool for vibration threshold.
Alanazy, Mohammed H; Alfurayh, Nuha A; Almweisheer, Shaza N; Aljafen, Bandar N; Muayqil, Taim
2018-01-01
This study was undertaken to describe a method for quantifying vibration when using a conventional tuning fork (CTF) in comparison to a Rydel-Seiffer tuning fork (RSTF) and to provide reference values. Vibration thresholds at index finger and big toe were obtained in 281 participants. Spearman's correlations were performed. Age, weight, and height were analyzed for their covariate effects on vibration threshold. Reference values at the fifth percentile were obtained by quantile regression. The correlation coefficients between CTF and RSTF values at finger/toe were 0.59/0.64 (P = 0.001 for both). Among covariates, only age had a significant effect on vibration threshold. Reference values for CTF at finger/toe for the age groups 20-39 and 40-60 years were 7.4/4.9 and 5.8/4.6 s, respectively. Reference values for RSTF at finger/toe for the age groups 20-39 and 40-60 years were 6.9/5.5 and 6.2/4.7, respectively. CTF provides quantitative values that are as good as those provided by RSTF. Age-stratified reference data are provided. Muscle Nerve 57: 49-53, 2018. © 2017 Wiley Periodicals, Inc.
A Z-Axis Quartz Cross-Fork Micromachined Gyroscope Based on Shear Stress Detection
Xie, Liqiang; Wu, Xuezhong; Li, Shengyi; Wang, Haoxu; Su, Jianbin; Dong, Peitao
2010-01-01
Here we propose a novel quartz micromachined gyroscope. The sensor has a simple cross-fork structure in the x-y plane of quartz crystal. Shear stress rather than normal stress is utilized to sense Coriolis’ force generated by the input angular rate signal. Compared to traditional quartz gyroscopes, which have two separate sense electrodes on each sidewall, there is only one electrode on each sidewall of the sense beam. As a result, the fabrication of the electrodes is simplified and the structure can be easily miniaturized. In order to increase sensitivity, a pair of proof masses is attached to the ends of the drive beam, and the sense beam has a tapered design. The structure is etched from a z-cut quartz wafer and the electrodes are realized by direct evaporation using the aperture mask method. The drive mode frequency of the prototype is 13.38 kHz, and the quality factor is approximately 1,000 in air. Therefore, the gyroscope can work properly without a vacuum package. The measurement ability of the shear stress detection design scheme is validated by the Coriolis’ force test. The performance of the sensor is characterized on a precision rate table using a specially designed readout circuit. The experimentally obtained scale factor is 1.45 mV/°/s and the nonlinearity is 3.6% in range of ±200 °/s. PMID:22294887
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.
Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.
Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor
Wang, Rui; Tsow, Francis; Zhang, Xuezhi; Peng, Jhih-Hong; Forzani, Erica S.; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo; Tao, Nongjian
2009-01-01
A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of ∼2 pg/mm2 and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. PMID:22346720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongpeng; Liu, Xiaoli; Zheng, Huadan
2015-09-14
A quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplified laser source and a custom quartz tuning fork (QTF) with its two prongs spaced ∼800 μm apart, is reported. The sensor employs an acoustic micro-resonator (AmR) which is assembled in an “on-beam” QEPAS configuration. Both length and vertical position of the AmR are optimized in terms of signal-to-noise ratio, significantly improving the QEPAS detection sensitivity by a factor of ∼40, compared to the case of a sensor using a bare custom QTF. The fiber-amplifier-enhanced QEPAS sensor is applied to H{sub 2}S trace gas detection, reaching a sensitivity of ∼890 ppbmore » at 1 s integration time, similar to those obtained with a power-enhanced QEPAS sensor equipped with a standard QTF, but with the advantages of easy optical alignment, simple installation, and long-term stability.« less
Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia
2015-06-01
A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.
The Sound Field around a Tuning Fork and the Role of a Resonance Box
ERIC Educational Resources Information Center
Bogacz, Bogdan F.; Pedziwiatr, Antoni T.
2015-01-01
Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: (1) Why is a bare tuning fork such a weak emitter of sound? (2) What is the role of the…
On the sound field radiated by a tuning fork
NASA Astrophysics Data System (ADS)
Russell, Daniel A.
2000-12-01
When a sounding tuning fork is brought close to the ear, and rotated about its long axis, four distinct maxima and minima are heard. However, when the same tuning fork is rotated while being held at arm's length from the ear only two maxima and minima are heard. Misconceptions concerning this phenomenon are addressed and the fundamental mode of the fork is described in terms of a linear quadrupole source. Measured directivity patterns in the near field and far field of several forks agree very well with theoretical predictions for a linear quadrupole. Other modes of vibration are shown to radiate as dipole and lateral quadrupole sources.
TT-Cut Torsional Quartz Crystal Resonators of Free-Free Bar-Type
NASA Astrophysics Data System (ADS)
Kawashima, Hirofumi; Nakazato, Mitsuhiro
1994-05-01
This paper describes a TT-cut torsional quartz crystal resonator of free-free bar type. An object of this paper is to clarify the frequency temperature behavior, series resistance and a quality factor for TT-cut torsional quartz crystal resonators of free-free bar-type. The analysis results are then compared with the measured data. The principal results indicate that the calculated values of frequency temperature behavior for resonators of free-free bar-type agree comparatively well with the measured ones. Similar to the torsional resonators of tuning fork-type, a torsional quartz crystal resonator of free-free bar-type is also found to have an absolute value of the second order temperature coefficient β smaller than half a value of that for a flexural mode quartz crystal resonator.
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
NASA Astrophysics Data System (ADS)
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance.
Fang, Xiang; Dong, Linxi; Zhao, Wen-Sheng; Yan, Haixia; Teh, Kwok Siong; Wang, Gaofeng
2018-05-29
This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes (TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions, and the vibration sensitivities of four TFG designs with imbalance are simulated and compared. It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies. However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to vibrations with in-phase frequencies is amplified.
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes
Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857
Emerging technologies in microguidance and control
NASA Technical Reports Server (NTRS)
Weinberg, Marc S.
1993-01-01
Employing recent advances in microfabrication, the Charles Stark Draper Laboratory has developed inertial guidance instruments of very small size and low cost. Microfabrication employs the batch processing techniques of solid state electronics, such as photolithography, diffusion, and etching, to carve mechanical parts. Within a few years, microfabricated gyroscopes should perform in the 10 to 100 deg/h range. Microfabricated accelerometers have demonstrated performance in the 50 to 500 microgravity range. These instruments will result in not only the redesign of conventional military products, but also new applications that could not exist without small, inexpensive sensors and computing. Draper's microfabricated accelerometers and gyroscopes will be described and test results summarized. Associated electronics and control issues will also be addressed. Gimballed, vibrating gyroscopes and force rebalance accelerometers constructed from bulk silicon, polysilicon surface-machined tuning fork gyroscopes, and quartz resonant accelerometers and gyroscopes are examined. Draper is pursuing several types of devices for the following reasons: to address wide ranges of performance, to realize construction in a flat pack, and to lessen the risks associated with emerging technologies.
Allan Deviation Plot as a Tool for Quartz-Enhanced Photoacoustic Sensors Noise Analysis.
Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo
2016-04-01
We report here on the use of the Allan deviation plot to analyze the long-term stability of a quartz-enhanced photoacoustic (QEPAS) gas sensor. The Allan plot provides information about the optimum averaging time for the QEPAS signal and allows the prediction of its ultimate detection limit. The Allan deviation can also be used to determine the main sources of noise coming from the individual components of the sensor. Quartz tuning fork thermal noise dominates for integration times up to 275 s, whereas at longer averaging times, the main contribution to the sensor noise originates from laser power instabilities.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
Bagherzadeh Cham, Masumeh; Mohseni-Bandpei, Mohammad Ali; Bahramizadeh, Mahmood; Kalbasi, Saeed; Biglarian, Akbar
2018-06-01
Peripheral sensory neuropathy seems to be the main risk factor for diabetic foot ulceration. Previous studies demonstrated that stochastic resonance can improve the vibrotactile sensation of diabetic patients. The aim of this study was to evaluate the effects of Vibro-medical insole on pressure and vibration sensation in diabetic patients with mild-to-moderate peripheral neuropathy. A total of 20 patients with mild-to-moderate diabetic neuropathy were included in the pre-test and post-test clinical trial study. Vibro-medical insole consists of medical insole and vibratory system. Medical insole was made independently for each participant and vibratory system was inserted in it. Pressure and vibration sensation were evaluated before and after 30-min walking with Vibro-medical insole. Semmes-Weinstein monofilaments and tuning fork were used to evaluate pressure and vibration sensation, respectively. Pressure sensation showed significantly improvement using Vibro-medical insole at the heel, first and fifth metatarsophalangeal heads, and hallux of both feet in all participants (p < 0.001). Vibration sensation also improved at the big toe of both feet with 256 Hz tuning fork (p < 0.05) but no statistically significant effect was found with 128 Hz tuning fork (p > 0.05). Vibro-medical insole significantly improved pressure and vibration sensation of the foot in diabetic patients with mild-to-moderate peripheral neuropathy. The results suggest that Vibro-medical insole can be used for daily living activities to overcome sensory loss in diabetic neuropathy patients.
Piezoelectrically forced vibrations of rectangular SC-cut quartz plates
NASA Astrophysics Data System (ADS)
Lee, P. C. Y.; Lin, W. S.
1998-06-01
A system of two-dimensional first-order equations for piezoelectric crystal plates with general symmetry and with electroded faces was recently deduced from the three-dimensional equations of linear piezoelectricity. Solutions of these equations for AT-cut plates of quartz were shown to give accurate dispersion curves without corrections, and the resonances predicted agree closely with the experimental data of Koga and Fukuyo [I. Koga and H. Fukuyo, J. Inst. Electr. Commun. Eng. Jpn. 36, 59 (1953)] and that of Nakazawa, Horiuchi, and Ito (M. Nakazawa, K. Horiuchi, and H. Ito, Proceedings of the 1990 IEEE Ultrasonics Symposium, pp. 547-555). In this article, these equations are employed to study the free as well as the forced vibrations of doubly rotated quartz plates. Solutions of straight-crested vibrational modes varying in the x1 and x3 directions of SC-cut quartz plates of infinite extent are obtained and from which dispersion curves are computed. Comparison of those dispersion curves with those from the three-dimensional equations shows that the agreement is very close without any corrections. Resonance frequencies for free vibrations and capacitance ratios for piezoelectrically forced vibrations are computed and examined for various length-to-thickness or width-to-thickness ratios of rectangular SC-cut quartz plates. The capacitance ratio as a function of forcing frequency is computed for a rectangular AT-cut quartz and compared with the experimental data of Seikimoto, Watanabe, and Nakazawa (H. Sekimoto, Y. Watanabe, and M. Nakazawa, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 532-536) and is in close agreement.
Development of Tuning Fork Based Probes for Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood
2014-03-01
This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.
The Sound Field Around a Tuning Fork and the Role of a Resonance Box
NASA Astrophysics Data System (ADS)
Bogacz, Bogdan F.; Pedziwiatr, Antoni T.
2015-02-01
Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: Why is a bare tuning fork such a weak emitter of sound?What is the role of the resonance box?Where does energy connected with larger intensity of emitted acoustic waves come from?
Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K
2017-03-04
The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm -1 ) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure.
Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter.
Zhao, Zinan; Qian, Zhenghua; Wang, Bin; Yang, Jiashi
2015-04-01
We studied thickness-shear and thickness-twist vibrations of a monolithic, two-pole crystal filter made from a plate of AT-cut quartz. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded quartz plates were employed which are valid for both the fundamental and the overtone modes. Exact solutions for the free vibration resonant frequencies and modes were obtained from the equations. For a structurally symmetric filter, the modes can be separated into symmetric and antisymmetric ones. Trapped modes with vibrations mainly under the electrodes were found. The effect of the distance between the two pairs of electrodes was examined. Copyright © 2015 Elsevier B.V. All rights reserved.
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
Double resonator cantilever accelerometer
Koehler, Dale R.
1984-01-01
A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.
Recent advances of mid-infrared compact, field deployable sensors: principles and applications
NASA Astrophysics Data System (ADS)
Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek
2016-04-01
The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor system using a custom quartz tuning fork (QTF) with a new geometry and a QCL emitting at 2.913 THz [4]. Furthermore, two new approaches aimed to achieve enhanced detection sensitivities with QEPAS based sensing can be realized. The first method will make use of a compact optical power buildup cavity, which achieves significantly lower minimum detectable trace gas concentration levels of < 10 pptv. The second approach will use custom fabricated QTFs capable of improved detection sensitivity. Acknowledgements F.K. Tittel acknowledges support by the National Science Foundation (NSF) ERC MIRTHE award, the Robert Welch Foundation (Grant C-0586) and DOE ARPA-E Monitor Proram. L. Dong acknowledges support by NSF-China (Grant #s. 61275213, 61108030), J. Wojtas acknowledges support by The National Centre for Research and Development, Poland (project ID: 179616). References [1] L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin and F. K. Tittel;" Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser", Appl. Phys Lett. 108, 011106 (2016). [2] L. Dong, Y. Yu, C. Li, S. So, and F.K. Tittel, "Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass cell" Optics Express; 23, 19821-19830 (2015). [3] V. Spagnolo, P. Patimisco, R. Pennetta, A. Sampaolo, G. Scamarcio, M. Vitiello, and F.K. Tittel, "THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection", Opt. Exp. 23, 7574-7582 (2015). [4] A. Sampaolo, P. Patimisco, L. Dong , A. Geras, S, G. Scamarcio' T. Starecki, F.K Tittel, V. Spagnolo; "Quartz-Enhanced Photoacoustic Spectroscopy exploiting tuning fork overtone modes", Appl. Phys Lett. 107, 231102 (2015).
Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K.
2017-01-01
The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm−1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure. PMID:28273836
Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen
2013-05-01
An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.
Silicon micromachined vibrating gyroscopes
NASA Astrophysics Data System (ADS)
Voss, Ralf
1997-09-01
This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.
Feldmann, H
1997-07-01
Weber's and Rinne's tuning-fork tests were for a long time considered unreliable, as they often seemed to yield inconsistent results. The sources of error were manifold and lay in the fields of physics, physiology, pathophysiology, and psychology. When the problems came to be understood, more sophisticated instruments and techniques were developed. The prongs of the tuning fork were fitted with clamps to deaden overtones when it was put into vibration (Politzer 1870). By shifting the clamps along the prongs the tone of the tuning fork could be varied in a range up to one octave (Könlg 1878). A knob of hom or metal was fixed to the end of the shaft to ensure a good coupling to the skull when testing bone conduction (Lucae 1886). A small hammer fixed to the shaft and driven by a spring would activate the tuning fork with reproducible strength (Lucae 1899). A wedge-shaped figure drawn on the lateral surface of the clamps would allow one to optically control the amplitude of vibration (Gradenigo 1899). The time during which a patient hears the tuning fork after it has been struck as compared to that of a normal hearing subject was measured as parameter of hearing acutiy (v. Conta 1864). A number of tuning forks at intervals of one octave each were assembled in sets to cover the whole frequency range of hearing. The most sophisticated example of these sets was the Bezold-Edelmann continuous tone series (1894). It comprised ten tuning forks with sliding clamps, two pipes of the organ type, and a Galton whistle. With this instrumentation it was possible to test the whole range of hearing. The results of testing the hearing via air conduction and bone conduction measured in duration and calculated as percentage of normal hearing were presented in charts (Hartmann 1885, Gradenigo 1893) which can be considered precursors of modern audiograms. The evolution of these instruments and methods is described in detail and illustrated by exhibits from the museum.
The Quartz Analog Watch: A Wonder Machine.
ERIC Educational Resources Information Center
Crane, H. Richard, Ed.
1993-01-01
Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)
Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser.
Wang, Zhen; Li, Zhili; Ren, Wei
2016-02-22
A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor has been developed for the sensitive detection of ethylene (C2H4) at 10.5 µm using a continuous-wave distributed-feedback quantum cascade laser. At this long-wavelength infrared, the key acoustic elements of quartz tuning fork and micro-resonators were optimized to improve the detection signal-to-noise ratio by a factor of >4. The sensor calibration demonstrated an excellent linear response (R2>0.999) to C2H4 concentration at the selected operating pressure of 500 and 760 Torr. With a minimum detection limit of 50 parts per billion (ppb) achieved at an averaging time of 70 s, the sensor has been deployed for measuring the C2H4 efflux during the respiration of biological samples in an agronomic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafashi, Sajad, E-mail: skafashi@uncc.edu; Strayhorn, Ralph; Smith, Stuart T.
2016-06-15
This paper presents two models for predicting the frequency response of micro-scale oscillatory probes. These probes are manufactured by attaching a thin fiber to the free end of one tine of a quartz tuning fork oscillator. In these studies, the attached fibers were either 75 μm diameter tungsten or 7 μm diameter carbon with lengths ranging from around 1 to 15 mm. The oscillators used in these studies were commercial 32.7 kHz quartz tuning forks. The first theoretical model considers lateral vibration of two beams serially connected and provides a characteristic equation from which the roots (eigenvalues) are extracted tomore » determine the natural frequencies of the probe. A second, lumped model approximation is used to derive an approximate frequency response function for prediction of tine displacements as a function of a modal force excitation corresponding to the first mode of the tine in the absence of a fiber. These models are used to evaluate the effect of changes in both length and diameter of the attached fibers. Theoretical values of the natural frequencies of different modes show an asymptotic relationship with the length and a linear relationship with the diameter of the attached fiber. Similar results are observed from experiment, one with a tungsten probe having an initial fiber length of 14.11 mm incrementally etched down to 0.83 mm, and another tungsten probe of length 8.16 mm incrementally etched in diameter, in both cases using chronocoulometry to determine incremental volumetric material removal. The lumped model is used to provide a frequency response again reveals poles and zeros that are consistent with experimental measurements. Finite element analysis shows mode shapes similar to experimental microscope observations of the resonating carbon probes. This model provides a means of interpreting measured responses in terms of the relative motion of the tine and attached fibers. Of particular relevance is that, when a “zero” is observed in the response of the tine, one mode of the fiber is matched to the tine frequency and is acting as an absorber. This represents an optimal condition for contact sensing and for transferring energy to the fiber for fluid mixing, touch sensing, and surface modification applications.« less
Kafashi, Sajad; Strayhorn, Ralph; Eldredge, Jeff D; Kelly, Scott D; Woody, Shane C; Smith, Stuart T
2016-06-01
This paper presents two models for predicting the frequency response of micro-scale oscillatory probes. These probes are manufactured by attaching a thin fiber to the free end of one tine of a quartz tuning fork oscillator. In these studies, the attached fibers were either 75 μm diameter tungsten or 7 μm diameter carbon with lengths ranging from around 1 to 15 mm. The oscillators used in these studies were commercial 32.7 kHz quartz tuning forks. The first theoretical model considers lateral vibration of two beams serially connected and provides a characteristic equation from which the roots (eigenvalues) are extracted to determine the natural frequencies of the probe. A second, lumped model approximation is used to derive an approximate frequency response function for prediction of tine displacements as a function of a modal force excitation corresponding to the first mode of the tine in the absence of a fiber. These models are used to evaluate the effect of changes in both length and diameter of the attached fibers. Theoretical values of the natural frequencies of different modes show an asymptotic relationship with the length and a linear relationship with the diameter of the attached fiber. Similar results are observed from experiment, one with a tungsten probe having an initial fiber length of 14.11 mm incrementally etched down to 0.83 mm, and another tungsten probe of length 8.16 mm incrementally etched in diameter, in both cases using chronocoulometry to determine incremental volumetric material removal. The lumped model is used to provide a frequency response again reveals poles and zeros that are consistent with experimental measurements. Finite element analysis shows mode shapes similar to experimental microscope observations of the resonating carbon probes. This model provides a means of interpreting measured responses in terms of the relative motion of the tine and attached fibers. Of particular relevance is that, when a "zero" is observed in the response of the tine, one mode of the fiber is matched to the tine frequency and is acting as an absorber. This represents an optimal condition for contact sensing and for transferring energy to the fiber for fluid mixing, touch sensing, and surface modification applications.
Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano; Bernacki, Bruce E; Kriesel, Jason
2012-11-01
A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 μm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-IR fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor. The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and microresonator tubes. SF(6) was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7×10(-10) W·cm(-1)/Hz(1/2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spagnolo, V.; Patimisco, P.; Borri, Simone
2012-10-23
A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with amore » QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.« less
Recent advances in quartz enhanced photoacoustic sensing
NASA Astrophysics Data System (ADS)
Patimisco, Pietro; Sampaolo, Angelo; Dong, Lei; Tittel, Frank K.; Spagnolo, Vincenzo
2018-03-01
This review aims to discuss the latest advancements in quartz-enhanced photoacoustic spectroscopy (QEPAS) based trace-gas sensing. Starting from the QEPAS basic physical principles, the most used QEPAS configurations will be described. This is followed by a detailed theoretical analysis and experimental study regarding the influence of quartz tuning forks (QTFs) geometry on their optoacoustic transducer performance. Furthermore, an overview of the latest developments in QEPAS trace-gas sensor technology employing custom QTFs will be reported. Results obtained by exploiting novel micro-resonator configurations, capable of increasing the QEPAS signal-to-noise ratio by more than two orders of magnitude and the utilization of QTF overtone flexural modes for QEPAS based sensing will be presented. A comparison of the QEPAS performance of different spectrophone configurations is reported based upon signal-to-noise ratio. Finally, a novel QEPAS approach allowing simultaneous dual-gas detection will be described.
A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module.
Yang, Xiaotao; Xiao, Youhong; Ma, Yufei; He, Ying; Tittel, Frank K
2017-07-31
A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor and is reported for the first time. The acoustic detection module (ADM) was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C₂H₂) was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.
Macdermid, Paul W; Miller, Matthew C; Fink, Philip W; Stannard, Stephen R
2017-11-01
Cross-country mountain bike suspension reportedly enhances comfort and performance through reduced vibration and impact exposure. This study analysed the effectiveness of three different front fork systems at damping accelerations during the crossing of three isolated obstacles (stairs, drop, and root). One participant completed three trials on six separate occasions in a randomised order using rigid, air-sprung, and carbon leaf-sprung forks. Performance was determined by time to cross obstacles, while triaxial accelerometers quantified impact exposure and damping response. Results identified significant main effect of fork type for performance time (p < 0.05). The air-sprung and leaf-sprung forks were significantly slower than the rigid forks for the stairs (p < 0.05), while air-sprung suspension was slower than the rigid for the root protocol (p < 0.05). There were no differences for the drop protocol (p < 0.05). Rigid forks reduced overall exposure (p < 0.05), specifically at the handlebars for the stairs and drop trials. More detailed analysis presented smaller vertical accelerations at the handlebar for air-sprung and leaf-sprung forks on the stairs (p < 0.05), and drop (p < 0.05) but not the root. As such, it appears that the suspension systems tested were ineffective at reducing overall impact exposure at the handlebar during isolated aspects of cross-country terrain features which may be influenced to a larger extent by rider technique.
Development of a Novel Translational Model of Vibration Injury to the Spine to Study Acute Injury
2013-10-01
to Dr. Nicolas Jaumard for input on device fabrica- tion and mechanical analyses. REFERENCES 1. Boshuizen HC, Bongers PM, Hulshof CT. 1992. Self...reported back pain in fork-lift truck and freight-container tractor drivers exposed to whole-body vibration. Spine 17:59–65. 2. Bovenzi M, Hulshof CTJ. 1988...Occup Environ Health 72:351–365. 3. Boshuizen HC, Bongers PM, Hulshof CT. 1999. Effect of whole body vibration on low back pain. Spine 24:2506–2515. 4
NASA Astrophysics Data System (ADS)
Gu, Yu; Li, Qiang; Xu, Bao-Jun; Zhao, Zhe
2014-01-01
We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance (QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fsp of 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fsp was found and subsequently became one of the most important parameters in the new sensor design.
Introduction to Piezoelectric Actuators and Transducers
2003-06-17
a piezo-device and a metal fork. A piezoelectric buzzer is shown in Fig. 12, which has merits such as high electric power efficiency, compact size...coefficient for surface acoustic wave and so is used for SAW devices with high -stabilized frequencies. The another distinguished characteristic of...quartz is an extremely high mechanical quality factor Qm > 10 5. Lithium niobate and lithium tantalate belong to an isomorphous crystal system and
NASA Astrophysics Data System (ADS)
Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.
2013-05-01
In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D.
2014-03-15
Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently,more » applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.« less
Low Back Pain in Port Machinery Operators
NASA Astrophysics Data System (ADS)
BOVENZI, M.; PINTO, I.; STACCHINI, N.
2002-05-01
The occurrence of several types of low back pain (LBP) was investigated by a standardized questionnaire in a group of 219 port machinery operators exposed to whole-body vibration (WBV) and postural load and in a control group of 85 maintenance workers employed at the same transport company. The group of port machinery operators included 85 straddle carrier drivers, 88 fork-lift truck drivers, and 46 crane operators. The vector sum of the frequency-weighted r.m.s. acceleration of vibration measured on the seatpan of port vehicles and machines averaged 0·90 m/s2 for fork-lift trucks, 0·48 m/s2 for straddle carriers, 0·53 m/s2 for mobile cranes, and 0·22 m/s2 for overhead cranes. The 12-month prevalence of low back symptoms (LBP, sciatic pain, treated LBP, sick leave due to LBP) was significantly greater in the fork-lift truck drivers than in the controls and the other two groups of port machinery operators. After adjusting for potential confounders, the prevalence of low back symptoms was found to increase with the increase of WBV exposure expressed as duration of exposure (driving years), equivalent vibration magnitude (m/s2), or cumulative vibration exposure (yr m2/s4). An excess risk for lumbar disc herniation was observed in the port machinery operators with prolonged driving experience. In both the controls and the port machinery operators, low back complaints were strongly associated with perceived postural load assessed in terms of frequency and/or duration of awkward postures at work. Multivariate analysis showed that vibration exposure and postural load were independent predictors of LBP. Even though the cross-sectional design of the present study does not permit firm conclusions on the relationship between WBV exposure and low back disorders, the findings of this investigation provide additional epidemiological evidence that seated WBV exposure combined with non-neutral trunk postures, as while driving, is associated with an increased risk of long-term adverse health effects on the lower back.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.
Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo
2012-01-15
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.
Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.
2017-01-01
Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065
Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.; Repetski, John E.
1999-01-01
Deep-water facies, chiefly hemipelagic deposits and turbidites, of Cambrian through Devonian age are widely exposed in the Medfra and Mt. McKinley quadrangles. These strata include the upper part of the Telsitna Formation (Middle-Upper Ordovician) and the Paradise Fork Formation (Lower Silurian-Lower Devonian) in the Nixon Fork terrane, the East Fork Hills Formation (Upper Cambrian-Lower Devonian) in the East Fork subterrane of the Minchumina terrane, and the chert and argillite unit (Ordovician) and the argillite and quartzite unit (Silurian- Devonian? and possibly older) in the Telida subterrane of the Minchumina terrane.In the western part of the study area (Medfra quadrangle), both hemipelagic deposits and turbidites are largely calcareous and were derived from the Nixon Fork carbonate platform. East- ern exposures (Mt. McKinley quadrangle; eastern part of the Telida subterrane) contain much less carbonate; hemipelagic strata are mostly chert, and turbidites contain abundant rounded quartz and lesser plagioclase and potassium feldspar. Deep-water facies in the Medfra quadrangle correlate well with rocks of the Dillinger terrane exposed to the south (McGrath quadrangle), but coeval strata in the Mt. McKinley quadrangle are compositionally similar to rocks to the northeast (Livengood quadrangle). Petrographic data thus suggest that the Telida subterranes presently defined is an artificial construct made up of two distinct sequences of disparate provenance.Restoration of 90 and 150 km of dextral strike-slip on the Iditarod and Farewell faults, respectively, aligns the deep-water strata of the Minchumina and Dillinger terranes in a position east of the Nixon Fork carbonate platform. This restoration supports the interpretation that lower Paleozoic rocks in the Nixon Fork and Dillinger terranes, and in the western part of the Minchumina terrane (East Fork subterrane and western part of the Telida subterrane), formed along a single continental margin. Rocks in the eastern part of the Telida subterrane are compositionally distinct from those to the west and may have had a different origin and history.
Ogi, Hirotsugu; Nagai, Hironao; Naga, Hironao; Fukunishi, Yuji; Hirao, Masahiko; Nishiyama, Masayoshi
2009-10-01
We develop a highly sensitive quartz crystal microbalance (QCM) biosensor with a fundamental resonance frequency of 170 MHz. A naked AT-cut quartz plate of 9.7 microm thick is set in a sensor cell. Its shear vibration is excited by the line wire, and the vibration signals are detected by the other line wire, achieving the noncontacting measurement of the resonance frequency. The mass sensitivity of the 170 MHz QCM biosensor is 15 pg/(cm2 Hz), which is better than that of a conventional 5 MHz QCM by 3 orders of magnitude. Its high sensitivity is confirmed by detecting human immunoglobulin G (hIgG) via Staphylococcus protein A immobilized nonspecifically on both surfaces of the quartz plate. The detection limit is 0.5 pM. Limitation of the high-frequency QCM measurement is then theoretically discussed with a continuum mechanics model for a plate with point masses connected by elastic springs. The result indicates that a QCM measurement will break down at frequencies one-order-of-magnitude higher than the local resonance frequency at specific binding cites.
Quartz crystal resonator g sensitivity measurement methods and recent results.
Driscoll, M M
1990-01-01
A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5x10(-10) per g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators. Oscillator sustaining stage vibration sensitivity was characterized by an equivalent open-loop phase modulation of 10(-6) rad/g.
Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions
NASA Astrophysics Data System (ADS)
Gonzalez, Laura; Rodrigues, Mafalda; Benito, Angel Maria; Pérez-García, Lluïsa; Puig-Vidal, Manel; Otero, Jorge
2015-12-01
The quantitative measurement of biomolecular interactions is of great interest in molecular biology. Atomic force microscopy (AFM) has proved its capacity to act as a biosensor and determine the affinity between biomolecules of interest. Nevertheless, the detection scheme presents certain limitations when it comes to developing a compact biosensor. Recently, piezoelectric quartz tuning forks (QTFs) have been used as laser-free detection sensors for AFM. However, only a few studies along these lines have considered soft biological samples, and even fewer constitute quantified molecular recognition experiments. Here, we demonstrate the capacity of QTF probes to perform specific interaction measurements between biotin-streptavidin complexes in buffer solution. We propose in this paper a variant of dynamic force spectroscopy based on representing adhesion energies E (aJ) against pulling rates v (nm s-1). Our results are compared with conventional AFM measurements and show the great potential of these sensors in molecular interaction studies.
Quartz crystal resonator g sensitivity measurement methods and recent results
NASA Astrophysics Data System (ADS)
Driscoll, M. M.
1990-09-01
A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5 x 10 to the -10th/g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators.
NASA Astrophysics Data System (ADS)
Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi
1999-07-01
Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.
NASA Astrophysics Data System (ADS)
Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi
1998-10-01
The soot containing C_60 and C_70 was synthesized in helium plasmas generated in a quartz tube by microwave discharge. We used reticulated vitreous carbon (RVC) that was heated by electric field of TE_10 mode microwave and the plasma. During soot deposition, optical emission of plasmas was observed with a monochromator. The soot deposited on the quartz tube was analyzed by the laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). Up to the present, the most intense C_60 mass spectrum intensity was obtained for the condition of absorbed microwave power 200W and pressure 100Torr, where C2 vibrational temperature was about 5500K.
Siciliano, E; Rossi, A; Nori, L
2007-01-01
Efficient warehouse management and item transportation is of fundamental importance in the commercial outlet in exam. Whole body vibrations have been measured in various types of machines, some of which not widely studied yet, like the electrical pallet truck. In some tasks (fork lifts drivers) vibrations propagate through the driving seat whereas in some other tasks (electrical pallet trucks, stackers), operated in a standing posture, vibrations propagate through the lower limbs. Results have been provided for a homogeneous job tasks. In particular conditions, the action level of the Italian national (and European) regulations on occupational exposure to WBV may be exceeded. The authors propose a simple system of probabilistic classification of the risk of exposure to whole body vibrations, based on the respective areas of the distribution which lay within the three risk classes.
NASA Astrophysics Data System (ADS)
Gong, Xun; Sekimoto, Hitoshi; Goka, Shigeyoshi; Watanabe, Yasuaki
2003-07-01
Past experiments indicated that the mass loading (R) results in a shift of the apparent orientation angle of the quartz plate and this shift is proportional to the thickness of the metal film and the difference between the thermal expansion coefficients (α) of the electrode and the substrate. In this study, first we make a new model that includes the anisotropy of quartz based on the model of EerNisse [Proc. 29th Annu. Freq. Control Symp., 1975, p. 1] to obtain the thermally induced strain bias. Then, we deduce a simple relationship for the thickness shear vibrations from Lee and Tang’s [IEEE Trans. Ultrason. Ferroelect. & Freq. Control 34 (1987) 659] theory of small-magnitude vibration superposing on the bias strain field. A new method which can enable a strict analysis of the phenomenon is thus developed. The simulation of several kinds of metal films is performed. The results agree well with the above-mentioned experimental results.
Quartz-Enhanced Photoacoustic Spectroscopy with Right-Angle Prism.
Liu, Yongning; Chang, Jun; Lian, Jie; Liu, Zhaojun; Wang, Qiang; Qin, Zengguang
2016-02-06
A right-angle prism was used to enhance the acoustic signal of a quartz-enhanced photoacoustic spectroscopy (QEPAS) system. The incident laser beam was parallelly inverted by the right-angle prism and passed through the gap between two tuning fork prongs again to produce another acoustic excitation. Correspondingly, two pairs of rigid metal tubes were used as acoustic resonators with resonance enhancement factors of 16 and 12, respectively. The QEPAS signal was enhanced by a factor of 22.4 compared with the original signal, which was acquired without resonators or a prism. In addition, the system noise was reduced a little with double resonators due to the Q factor decrease. The signal-to-noise ratio (SNR) was greatly improved. Additionally, a normalized noise equivalent absorption coefficient (NNEA) of 5.8 × 10(-8) W·cm(-1)·Hz(-1/2) was achieved for water vapor detection in the atmosphere.
Mid-Infrared Fiber-Coupled QCl-QEPAS Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spagnolo, V.; Patimisco, P.; Borri, Simone
2013-08-01
An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver–silver iodine (Ag–AgI) coatings and internal core diameter of 300 lm. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the lasermore » beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption 2.7 9 10-10 W cm-1 Hz-1/2.« less
ERIC Educational Resources Information Center
Bates, Alan
2017-01-01
The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at…
Excitation of Standing Waves by an Electric Toothbrush
ERIC Educational Resources Information Center
Cros, Ana; Ferrer-Roca, Chantal
2006-01-01
There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…
NASA Astrophysics Data System (ADS)
Bates, Alan
2017-12-01
The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.
The Effect of Vibration on Quartz Crystal Resonators.
1980-05-01
harmonic vibration with maximum acceleration of 5g, the AF is AFmax = yAmax F = (2 x lO- /g)(5g)(5 x 106 Hz) (24) AF = 0.05 Hz max If the vibration...function of (NAF /f ) which can be written as ( yAmax NF /f ). max v mx o v" 14 o0a CL 0 0 0-w w m w l, I- osr tooR- 15w If NI is relabeled ais F, is
NASA Astrophysics Data System (ADS)
Kato, Fumihito; Noguchi, Hiroyuki; Kodaka, Yukinari; Oshida, Naoya; Ogi, Hirotsugu
2018-07-01
We developed a quartz-crystal-microbalance (QCM) biosensor chip that operates wirelessly via electromagnetic waves, using poly(dimethylsiloxane) (PDMS). An AT-cut quartz oscillator (22–30 µm) is packaged in a microchannel, where it is supported by micropillars without mechanical fixing. As a result, the quartz oscillator is little affected by the thermal stress caused by the difference in the thermal expansion coefficients of the components, and the leakage of the vibration energy of the quartz oscillator is reduced. Consequently, high-frequency (∼56 MHz) measurement with a stable baseline (±∼2 ppm) is realized. We succeeded in repeatedly monitoring the binding reaction between immunoglobulin G (IgG) and Staphylococcus aureus protein A (SPA) with the quartz oscillator on which SPA molecules were immobilized nonspecifically. In addition, the affinity between SPA and IgG was calculated from the association and dissociation curves, and the usefulness of our wireless PDMS QCM biosensor was demonstrated.
Azzopardi, Kurt; Gatt, Alfred; Chockalingam, Nachiappan; Formosa, Cynthia
2018-04-01
Diabetic peripheral neuropathy is an important complication and contributes to the morbidity of diabetes mellitus. Evidence indicates early detection of diabetic peripheral neuropathy results in fewer foot ulcers and amputations. The aim of this study was to compare different screening modalities in the detection of diabetic peripheral neuropathy in a primary care setting. A prospective non-experimental comparative multi-centre cross sectional study was conducted in various Primary Health Centres. One hundred participants living with Type 2 diabetes for at least 10 years were recruited using a convenience sampling method. The Vibratip, 128Hz tuning fork and neurothesiometer were compared in the detection of vibration perception. This study showed different results of diabetic peripheral neuropathy screening tests, even in the same group of participants. This study has shown that the percentage of participants who did not perceive vibrations was highest when using the VibraTip (28.5%). This was followed by the neurothesiometer (21%) and the 128Hz tuning fork (12%) (p<0.001). Correct diagnosis and treatment of neuropathy in patients with diabetes is crucial. This study demonstrates that some instruments are more sensitive to vibration perception than others. We recommend that different modalities should be used in patients with diabetes and when results do not concur, further neurological evaluation should be performed. This would significantly reduce the proportion of patients with diabetes who would be falsely identified as having no peripheral neuropathy and subsequently denied the benefit of beneficial and effective secondary risk factor control. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei
2018-06-01
This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.
Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei
2016-01-21
In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.
Note: Sound recovery from video using SVD-based information extraction
NASA Astrophysics Data System (ADS)
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Chang'an
2016-08-01
This note reports an efficient singular value decomposition (SVD)-based vibration extraction approach that recovers sound information in silent high-speed video. A high-speed camera of which frame rates are in the range of 2 kHz-10 kHz is applied to film the vibrating objects. Sub-images cut from video frames are transformed into column vectors and then reconstructed to a new matrix. The SVD of the new matrix produces orthonormal image bases (OIBs) and image projections onto specific OIB can be recovered as understandable acoustical signals. Standard frequencies of 256 Hz and 512 Hz tuning forks are extracted offline from their vibrating surfaces and a 3.35 s speech signal is recovered online from a piece of paper that is stimulated by sound waves within 1 min.
Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method
NASA Technical Reports Server (NTRS)
Chander, R.
1990-01-01
The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.
Chen, C Julian; Schwarz, Alex; Wiesendanger, Roland; Horn, Oliver; Müller, Jörg
2010-05-01
We present a novel quartz cantilever for frequency-modulation atomic force microscopy (FM-AFM) which has three electrodes: an actuating electrode, a sensing electrode, and a ground electrode. By applying an ac signal on the actuating electrode, the cantilever is set to vibrate. If the frequency of actuation voltage closely matches one of the characteristic frequencies of the cantilever, a sharp resonance should be observed. The vibration of the cantilever in turn generates a current on the sensing electrode. The arrangement of the electrodes is such that the cross-talk capacitance between the actuating electrode and the sensing electrode is less than 10(-16) F, thus the direct coupling is negligible. To verify the principle, a number of samples were made. Direct measurements with a Nanosurf easyPPL controller and detector showed that for each cantilever, one or more vibrational modes can be excited and detected. Using classical theory of elasticity, it is shown that such novel cantilevers with proper dimensions can provide optimized performance and sensitivity in FM-AFM with very simple electronics.
NASA Astrophysics Data System (ADS)
Serebryakov, D. V.; Morozov, I. V.; Kosterev, A. A.; Letokhov, V. S.
2010-02-01
A microphotoacoustic highly selective sensor of ammonia is built. Main attention is paid to the operation mechanism of the acoustic sensor based on a quartz tuning fork. The optimal dimensions and configuration of the acoustic resonator are determined, which made it possible to increase the sensor sensitivity by two—three times compared to the sensitivity of the existing devices. The detector sensitivity for ammonia was 60ppb (0.05 mg m-3) for the measurement time of 10s and a 25-mW, 1.53-μm laser beam in the acoustic resonator.
Simple Excitation of Standing Waves in Rubber Bands and Membranes
NASA Astrophysics Data System (ADS)
Cortel, Adolf
2004-04-01
Many methods to excite standing waves in strings, plates, membranes, rods, tubes, and soap bubbles have been described. Usually a loudspeaker or a vibrating reed is driven by the amplified output of an audio oscillator. A novel and simple method consists of using a tuning fork or a singing rod to excite transversal standing waves in stretched rubber membranes sprinkled with fine sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shunli; Fu, Li; Gan, Wei
2016-01-21
In this report we show that the ability to measure the sub-1 cm -1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra (HR-BB-SFG-VS) of the –CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4’-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows for the first time the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral lineshapes in detail. The difference of the full width at half maxima (FWHM) of the imaginary and intensity SFG-VS spectra of the same vibrational mode is the signature of the Voigtmore » lineshape and it measures the relative contribution to the overall lineshape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ±0.02 cm -1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm -1 and 21.6 ± 0.4 cm -1, respectively, for the –CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm -1 agrees quantitatively with a Voigt lineshape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm -1 and a inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm -1. These results shed new lights on the understanding and interpretation of the lineshapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.« less
Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis
NASA Astrophysics Data System (ADS)
Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna
2018-04-01
Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.
Quartz-enhanced photo-acoustic spectroscopy for breath analyses
NASA Astrophysics Data System (ADS)
Petersen, Jan C.; Lamard, Laurent; Feng, Yuyang; Focant, Jeff-F.; Peremans, Andre; Lassen, Mikael
2017-03-01
An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.
Analysis of a monolithic crystal plate acoustic wave filter.
He, Huijing; Liu, Jinxi; Yang, Jiashi
2011-12-01
We study thickness-shear and thickness-twist vibrations of a finite, monolithic, AT-cut quartz plate crystal filter with two pairs of electrodes. The equations of anisotropic elasticity are used with the omission of the small elastic constant c(56). An analytical solution is obtained using Fourier series from which the resonant frequencies, mode shapes, and the vibration confinement due to the electrode inertia are calculated and examined. Copyright © 2011 Elsevier B.V. All rights reserved.
The mini-O, a digital superhet, or a truly low-cost Omega navigation receiver
NASA Technical Reports Server (NTRS)
Burhans, R. W.
1975-01-01
A quartz tuning fork filter circuit and some unique CMOS clock logic methods provide a very simple OMEGA-VLF receiver with true hyperbolic station pair phase difference outputs. An experimental system was implemented on a single battery-operated circuit board requiring only an external antenna preamplifier, and LOP output recorder. A bench evaluation and preliminary navigation tests indicate the technique is viable and can provide very low-cost OMEGA measurement systems. The method is promising for marine use with small boats in the present form, but might be implemented in conjunction with digital microprocessors for airborne navigation aids.
Unraveling fabrication and calibration of wearable gas monitor for use under free-living conditions.
Yue Deng; Cheng Chen; Tsow, Francis; Xiaojun Xian; Forzani, Erica
2016-08-01
Volatile organic compounds (VOC) are organic chemicals that have high vapor pressure at regular conditions. Some VOC could be dangerous to human health, therefore it is important to determine real-time indoor and outdoor personal exposures to VOC. To achieve this goal, our group has developed a wearable gas monitor with a complete sensor fabrication and calibration protocol for free-living conditions. Correction factors for calibrating the sensors, including sensitivity, aging effect, and temperature effect are implemented into a Quick Response Code (QR code), so that the pre-calibrated quartz tuning fork (QTF) sensor can be used with the wearable monitor under free-living conditions.
Manipulation of nanoparticles of different shapes inside a scanning electron microscope
Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar
2014-01-01
Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279
Mobile phone generated vibrations used to detect diabetic peripheral neuropathy.
May, Jonathan David; Morris, Matthew William John
2017-12-01
In the current United Kingdom population the incidence of diabetic peripheral neuropathy is increasing. The presence of diabetic neuropathy affects decision making and treatment options. This study seeks to evaluate if the vibrations generated from a mobile phone can be used to screen patients for diabetic peripheral neuropathy. This study comprised of 61 patients; a control group of 21 patients; a lower limb injury group of 19 patients; a diabetic peripheral neuropathy group of 21 patients. The control and injury group were recruited randomly from fracture clinics. The diabetic peripheral neuropathy group were randomly recruited from the diabetic foot clinic. The 61 patients were examined using a 10g Semmes-Weinstein monofilament, a 128Hz tuning fork and a vibrating mobile phone. The points tested were, index finger, patella, lateral malleoli, medial malleoli, heel, first and fifth metatarsal heads. The most accurate location of all the clinical tests was the head of the 1st metatarsal at 0.86. The overall accuracy of the tuning fork was 0.77, the ten gram monofilament 0.79 and the mobile phone accuracy was 0.88. The control group felt 420 of 441 tests (95%). The injury group felt 349 of 399 tests (87%). The neuropathic group felt 216 of 441 tests (48%). There is a significant difference in the number of tests felt between the control and both the injury and neuropathic groups. p<0.0001 using N-1 Two Proportion Test. A mobile phone is an accurate screening tool for diabetic peripheral neuropathy. The most accurate location to test for diabetic peripheral neuropathy is the head of the 1st metatarsal. Screening for diabetic peripheral neuropathy in the index finger and patella were inaccurate. An injury to the lower limb affects the patient's vibration sensation, we would therefore recommend screening the contralateral limb to the injury. This study represents level II evidence of a new diagnostic investigation. Copyright © 2016 European Foot and Ankle Society. All rights reserved.
Vibration-Resistant Support for Halide Lamps
NASA Technical Reports Server (NTRS)
Kiss, J.
1987-01-01
Lamp envelope protected against breakage. Old and new mounts for halide arc lamp sealed in housing with parabolic refector and quartz window. New version supports lamp with compliant garters instead of rigid brazed joint at top and dimensionally unstable finger stock at bottom.
A Dynamic Analysis of Piezoelectric Strained Elements.
1992-12-01
Type Quartz Crystal Plates ", IEEE SU- 29 (3), pp. 1 2 1 - 1 2 7 (1982). [107] L.K.Chau,High -frequency Long-wave Vibrations of Piezoelectric Ceramic ... Plate Excited with Voltage", Acta Acustica, 8 (5), pp. 300-310 (1983). [265] M.Ting-rong, "Forced Vibrations of Metal-Piezo- ceramic Thin Composite... ceramic and Metal Composite Thin Circular Plate with Different Diameter for Each Layer", Acta Acustica, 9 (5), pp. 298-310 (1984); Chinese J. Acoust., 2(3
Admissible Shape Parameters for a Planar Quasi-Static Constraint Mode Tire Model
2014-01-21
Journal of Vibration, 1988. 110(1): p. 70-75. 4. Zegelaar, P.W.A.P., H. B., The In-plane Dynamics of Tyres on Uneven Roads . Vehicle System Dynamics...ADDRESS(ES) Vehicle Terrain performance laboratory,Virginia Tech Mechanical Engineering Department,635 Prices Fork Road - MC 0238,Blacksburg,VA,24061...such that the upper portion is in direct contact with the lower portion and there is a discontinuous and dramatic increase in apparent stiffness). A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Huadan; Yin, Xukun; Zhang, Guofeng
Quartz-enhanced conductance spectroscopy is developed as an analytical tool to investigate dynamic nanomechanical behaviors of polymer wires, in order to determine the glass transition temperature (T{sub g}). A polymethyl methacrylate (PMMA) microwire with a diameter of 10 μm was bridged across the prongs of a quartz tuning fork (QTF). With the advantage of QTF self-sensing as compared with micro-cantilevers or other resonators, the resonance frequency and Q factor can be directly determined by means of its electrical conductance spectra with respect to the frequency of the external excitation source (dI/dV vs f), and therefore, no optical beam is required. The T{submore » g} of the PMMA microwire was determined by the maximum loss modulus of the QTF, calculated from the resonance frequency and the Q factor as a function of temperature. The measured T{sub g} of the PMMA is 103 °C with an error of ±2 °C. Both heating/cooling and physical aging experiments were carried out, demonstrating that the technique is both reversible and reproducible.« less
Dagdeviren, Omur E.; Schwarz, Udo D.
2017-03-20
Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder (“qPlus” configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on themore » operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagdeviren, Omur E.; Schwarz, Udo D.
Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder (“qPlus” configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on themore » operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.« less
Microbalance accurately measures extremely small masses
NASA Technical Reports Server (NTRS)
Patashnick, H.
1970-01-01
Oscillating fiber microbalance has a vibrating quartz fiber as balance arm to hold the mass to be weighed. Increasing fiber weight decreases its resonant frequency. Scaler and timer measure magnitude of the shift. This instrument withstands considerable physical abuse and has calibration stability at normal room temperatures.
Pressure Rise, Gas Vibrations and Combustion Noises During the Explosion of Fuels
NASA Technical Reports Server (NTRS)
Wawrziniok,
1933-01-01
In the use of piezo-quartz indicators for high-speed automobile engines, the interpretation of pressure-time diagrams made by an oscillograph offers certain difficulties. On the one hand, the scale of the pressure amplitudes is not always the same under all conditions, while, on the other hand, the atmospheric zero line may be shifted from its correct position in the oscillogram. These facts make necessary to verify the readings of the quartz indicators by direct calibration before and after each series of tests and, on the basis of the results, to determine the scale for the oscillograms.
Nosek, Jaroslav; Pustka, Martin
2006-01-01
The quartz homeotype gallium orthophosphate (GaPO4) is a representative of piezoelectric single crystals of large electromechanical coupling factor. It is known that its coupling factor kappa26 associated with the resonators vibrating in the thickness-shear mode is approximately two times greater than that of quartz. This property increases the spacing between the series and parallel resonance frequencies of resonators, as well as the difference between the resonance frequency temperature dependencies of the fundamental and harmonic resonance frequencies of resonators vibrating in the thickness-shear mode. In this paper, the methods for determination of the coupling factor kappa26 are presented, and the computed values are compared with the measured ones. The influence of the coupling factor to the resonance-frequency temperature dependencies of the fundamental and third harmonics of selected rotated Y-cut GaPO4 resonators vibrating in the thickness-shear mode is presented. The purely elastic case for a laterally unbounded plate, which corresponds closely to the limiting case of high harmonic resonance frequency-temperature behavior was assumed for the calculations. The computed temperature coefficients for the Y-cut orientation and calculated turnover point temperatures TTP for different (YX1) orientations are presented.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
MEMS vibrating-beam accelerometer with piezoelectric drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehlow, John; MacGugan, Doug
A high-temperature drive component for a double-ended tuning fork (DETF). The drive component attaches to a surface of at least one of the tines. The drive component includes at least one piezoelectric trace sandwiched at least partially between two electrical traces. At least one of the tines includes a doped silicon base with drive component located thereon. One of the electrical traces is electrically connected to the doped silicon base and the other is electrically isolated from the doped silicon base.
Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S
2014-01-01
Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.
2013-01-01
Background Non-pharmacological options for symptomatic management of cough are desired. Although chest wall mechanical vibration is known to ameliorate cough reflex sensitivity, the effect of mechanical vibrations on perceptions of urge-to-cough has not been studied. Therefore, we investigated the effect of mechanical vibration of cervical trachea, chest wall and femoral muscle on cough reflex sensitivity, perceptions of urge-to-cough as well as dyspnea. Methods Twenty-four healthy male never-smokers were investigated for cough reflex sensitivity, perceptions of the urge-to-cough and dyspnea with or without mechanical vibration. Cough reflex sensitivity and urge-to-cough were evaluated by the inhalation of citric acid. The perception of dyspnea was evaluated by Borg scores during applications of external inspiratory resistive loads. Mechanical vibration was applied by placing a vibrating tuning fork on the skin surface of cervical trachea, chest wall and femoral muscle. Results Cervical trachea vibration significantly increased cough reflex threshold, as expressed by the lowest concentration of citric acid that elicited five or more coughs (C5), and urge-to-cough threshold, as expressed by the lowest concentration of citric acid that elicited urge-to-cough (Cu), but did not significantly affect dypnea sensation during inspiratory resistive loading. On the other hand, the chest wall vibration not only significantly increased C5 and Cu but also significantly ameliorated the load-response curve of dyspnea sensation. Conclusions Both cervical and trachea vibrations significantly inhibited cough reflex sensitivity and perception of urge-to-cough. These vibration techniques might be options for symptomatic cough management. PMID:24088411
Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao
2014-12-01
Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.
3-(Triethoxysilyl)propionitrile sol-gel coating.
Li, Ying-Sing; Xiao, Yun; Wright, Paul B; Tran, Tuan
2005-05-01
3-(Triethoxysilyl)propionitrile (TESPN) sol-gel has been prepared under different conditions. It was employed for coating the surfaces of quartz and aluminum. Infrared (IR) and Raman spectra of TESPN and TESPN sol-gels have been recorded in the study of the sol-gel process. Transmission and reflection absorption IR (RAIR) spectra of TESPN sol-gel coated quartz and aluminum have also been collected for better understanding the film formation on the substrate surfaces. Spectra collected at different temperatures indicated that the silane film on quartz decomposes at 700 degrees C. Results from thermal gravimetric analysis (TGA) supported this result. Based on the group frequencies and the spectral behavior in different states, some vibrational modes were assigned to the observed bands. The anticorrosion behavior of the sol-gel coated aluminum in comparison with the uncoated metal was evaluated by measuring the potentiodynamic polarization and electrochemical impedance spectra (EIS).
Broadband external cavity quantum cascade laser based sensor for gasoline detection
NASA Astrophysics Data System (ADS)
Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong
2018-02-01
A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.
Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Juan; Ding, Junya; Liu, Ningwu; Yang, Guangxiang; Li, Jingsong
2018-02-01
A laser spectroscopy system based on a broadband tunable external cavity quantum cascade laser (ECQCL) and a mini quartz crystal tuning fork (QCTF) detector was developed for standoff detection of volatile organic compounds (VOCs). The self-established spectral analysis model based on multiple algorithms for quantitative and qualitative analysis of VOC components (i.e. ethanol and acetone) was detailedly investigated in both closed cell and open path configurations. A good agreement was obtained between the experimentally observed spectra and the standard reference spectra. For open path detection of VOCs, the sensor system was demonstrated at a distance of 30 m. The preliminary laboratory results show that standoff detection of VOCs at a distance of over 100 m is very promising.
Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva
2006-12-01
Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shun-Li; Fu, Li; Chase, Zizwe A.
Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less
Surface acoustic wave (SAW) vibration sensors.
Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz
2011-01-01
In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
NASA Astrophysics Data System (ADS)
Smith, C. M.; Canil, D.; Rowins, S. M.; Friedman, R.
2012-12-01
The Catface porphyry Cu (Mo-Au) deposit, Vancouver Island, British Columbia was studied to characterize the age, geometry and geochemical affinity of its different intrusive phases, and their tectonic setting. Four different intrusive phases of quartz diorite are broadly calc-alkaline, moderately metaluminous, and have typical arc geochemical affinity. U-Pb age dating of zircons showing two intrusive phases was emplaced at 41.26 ± 0.11 and 41.15 ± 0.10 Ma, and a second two 40.93 ± 0.11 and 40.88 ± 0.10 (95% confidence). The latter ages are identical to the Re-Os age of molybdenite mineralization of 40.9 ± 0.2 Ma. The depth of emplacement is less than 4 km, as determined by amphibole-plagioclase thermobarometry (630-815 °C and 50-300 MPa). A reduced magmatic-hydrothermal system is evidenced by: (1) presence of pyrrhotite and absence of anhydrite and hematite, (2) low SO3 (< 450 ppm) in apatite, and (3) oxygen fugacities (fO2) of 0.5-3.0 log units below the quartz-fayalite-magnetite (QFM) buffer recorded by the assemblage K-feldspar-biotite-ilmenite-quartz. Reduced porphyry-related magmas on Vancouver Island of similar age to those at North Fork, Washington (37 Ma) suggests consanguinity of reduced arc magmatism and related ore deposits within the Paleogene Cascade arc of the Pacific Northwest. Reduced evolved magmas at Catface are atypical in an arc setting, but can be attributed to thorough degassing of S from the magmas as evidenced by low S in apatite.
Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Minhyuk; Lee, Eunho; Cho, Kilwon
2014-08-18
A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. Themore » limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.« less
Baù, Marco; Ferrari, Marco; Ferrari, Vittorio
2017-01-01
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors. PMID:28574459
Baù, Marco; Ferrari, Marco; Ferrari, Vittorio
2017-06-02
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors.
NASA Astrophysics Data System (ADS)
Wu, WenBin; Ren, HaiTao; Peng, ShiXiang; Xu, Yuan; Wen, JiaMei; Zhang, Tao; Zhang, JingFeng; Zhang, AiLin; Sun, Jiang; Guo, ZhiYu; Chen, JiaEr
2018-04-01
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source (ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 mA hydrogen ion beam at 50 kV with a duty factor of 10%. The root-mean-square (RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work, the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10-4 to 1×10-3 Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.
A simple growth method for Nb 2O 5 films and their optical properties
Dash, J. K.; Chen, L.; Topka, Michael R.; ...
2015-04-13
A simple method for the synthesis of Nb₂O₅ films of thicknesses ranging from tens to several hundreds of nanometers on amorphous silicon dioxide or quartz substrates is presented. Nb₂O₅ films were formed by annealing the sputter deposited Nb films under an Ar flow and without oxygen plasma in a quartz tube within a furnace at 850 °C. The structural, compositional, optical, and vibrational properties were characterized by grazing incidence X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, and Raman scattering. Each of the Nb₂O₅ films is polycrystalline with an orthorhombic crystal structure. We observed vibrational modes includingmore » longitudinal optical, transverse optical, and triply degenerate modes, and measured the indirect optical band gap to be ~3.65 eV. The transmittance spectrum of the ~20 nm thick Nb₂O₅ film shows over 90% transmittance below the band gap energy in the visible wavelength range and decreases to less than 20% in the ultraviolet regime. As a result, the optical properties of the films in the UV-vis range show potential applications as UV detectors.« less
New pattern recognition system in the e-nose for Chinese spirit identification
NASA Astrophysics Data System (ADS)
Hui, Zeng; Qiang, Li; Yu, Gu
2016-02-01
This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (Sf), crest factor value (Cf), impulse factor value (If), clearance factor value (CLf), kurtosis factor value (Kv) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-14-120A2).
Calculations of flexibility module in measurements instruments
NASA Astrophysics Data System (ADS)
Wróbel, A.; Płaczek, M.; Baier, A.
2017-08-01
Piezoelectricity has found a lot of applications since it were discovered in 1880 by Pierre and Jacques Curie. There are many applications of the direct piezoelectric effect - the production of an electric potential when stress is applied to the piezoelectric material, as well as the reverse piezoelectric effect - the production of strain when an electric field is applied. This work presents a mathematical model of a new model of vibration sensor. The principle of operation of currently used sensors is based on the idea: changes in thickness of the piezoelectric plates cause the vibration of the mechanical element, so-called “fork”. If the “forks” are not buried by the material deformation of the full tiles broadcasting is transmitted to receiver piezoelectric plate. As a result of vibration of receiver plates the cladding is formed on the potential difference proportional to the force. The value of this voltage is processed by an electronic circuit. In the case of backfilling “forks” the electric signal is lower. At the same time is not generated the potential for cladding tiles. Such construction have a lot of drawbacks, for example: need to use several piezoelectric plates, with the increase in number of components is increased failure of sensors, sensors have now produced two forks resonance, using these sensors in moist materials is often the case that the material remains between the forks and at the same time causes a measurement error. Mentioned disadvantages do not appear in the new proposed sensor design. The Galerkin method of the analysis of considered systems will be presented started from development of the mathematical model, to determine the graphs of flexibility and confirm two methods: exact and approximate. Analyzed beam is a part of the vibration level sensor and the results will be used to identify the electrical parameters of the generator. Designing of technical systems containing piezoelectric transducers is a complex process, due to the phenomena occurring in them. A correct description of the given device in the form of a mathematical model, already in its design phase, is a fundamental condition for its proper functioning. The presented analyzes may be used in the study of any mechanism by piezoelectric sensor, including for the steering column examination.
Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.
McGraw, Joshua D; Niguès, Antoine; Chennevière, Alexis; Siria, Alessandro
2017-10-11
Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.
Interface circuit for a multiple-beam tuning-fork gyroscope with high quality factors
NASA Astrophysics Data System (ADS)
Wang, Ren
This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement this MB-TFG design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface electronics and a thorough comparison between the experimental results and a theoretical analysis is conducted to verify the MB-TFG design and accurately interpret the measured performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0um, the measured rate sensitivity is 80mVpp/°/s with an equivalent impedance of 6MQ. The calculated overall rate resolution of this device is 0.37/hrhiElz, while the measured Angle Random Walk (ARW) and bias instability are 6.67°/'vhr and 95°/hr, respectively.
Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.
Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D
2008-02-01
Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.
Studies on spectroscopy of glycerol in THz range using microfluidic chip-integrated micropump
NASA Astrophysics Data System (ADS)
Su, Bo; Han, Xue; Wu, Ying; Zhang, Cunlin
2014-11-01
Terahertz time-domain spectroscopy (THz-TDS) is a detection method of biological molecules with label-free, non-ionizing, non-intrusive, no pollution and real-time monitoring. But owing to the strong THz absorption by water, it is mainly used in the solid state detection of biological molecules. In this paper, we present a microfluidic chip technique for detecting biological liquid samples using the transmission type of THz-TDS system. The microfluidic channel of the microfluidic chip is fabricated in the quartz glass using Micro-Electro-Mechanical System (MEMS) technology and sealed with polydimethylsiloxane (PDMS) diaphragm. The length, width and depth of the microfluidic channel are 25mm, 100μm and 50μm, respectively. The diameter of THz detection zone in the microfluidic channel is 4mm. The thicknesses of quartz glass and PDMS diaphragm are 1mm and 250μm, individually. Another one of the same quartz glass is used to bond with the PDMS for the rigidity and air tightness of the microfluidic chip. In order to realize the automation of sampling and improve the control precise of fluid, a micropump, which comprises PDMS diaphragm, pump chamber, diffuser and nozzle and flat vibration motor, is integrated on the microfluidic chip. The diffuser and nozzle are fabricated on both sides of the pump chamber, which is covered with PDMS diaphragm. The flat vibration motor is stuck on the PDMS diaphragm as the actuator. We study the terahertz absorption spectroscopy characteristics of glycerol with the concentration of 98% in the microfluidic chip by the aid of the THz-TDS system, and the feasibility of the microfluidic chip for the detection of liquid samples is proved.
Skylab electronic technological advancements
NASA Technical Reports Server (NTRS)
Hornback, G. L.
1974-01-01
The present work describes three electronic devices designed for use in the Skylab airlock module: the teleprinter system, the quartz crystal microbalance contamination monitor (QCM), and the speaker. Design considerations, operation, characteristics, and system development are described for these systems, with accompanying diagrams, graphs, and photographs. The teleprinter is a thermal dot printer used to produce hard copy messages by electrically heating print elements in contact with heat-sensitive paper. The QCM was designed to estimate contamination buildup on optical surfaces of the earth resources experiment package. A vibrating quartz crystal is used as a microbalance relating deposited mass to shifts in the crystal's resonant frequency. Audio devices provide communication between crew members and between crew and STDN, and also provide audible alarms, via the caution and warning system, of out-of-limit-conditions.
Replication fork reversal triggers fork degradation in BRCA2-defective cells.
Mijic, Sofija; Zellweger, Ralph; Chappidi, Nagaraja; Berti, Matteo; Jacobs, Kurt; Mutreja, Karun; Ursich, Sebastian; Ray Chaudhuri, Arnab; Nussenzweig, Andre; Janscak, Pavel; Lopes, Massimo
2017-10-16
Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.
A robust active control system for shimmy damping in the presence of free play and uncertainties
NASA Astrophysics Data System (ADS)
Orlando, Calogero; Alaimo, Andrea
2017-02-01
Shimmy vibration is the oscillatory motion of the fork-wheel assembly about the steering axis. It represents one of the major problem of aircraft landing gear because it can lead to excessive wear, discomfort as well as safety concerns. Based on the nonlinear model of the mechanics of a single wheel nose landing gear (NLG), electromechanical actuator and tire elasticity, a robust active controller capable of damping shimmy vibration is designed and investigated in this study. A novel Decline Population Swarm Optimization (PDSO) procedure is introduced and used to select the optimal parameters for the controller. The PDSO procedure is based on a decline demographic model and shows high global search capability with reduced computational costs. The open and closed loop system behavior is analyzed under different case studies of aeronautical interest and the effects of torsional free play on the nose landing gear response are also studied. Plant parameters probabilistic uncertainties are then taken into account to assess the active controller robustness using a stochastic approach.
77 FR 50668 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... County, Texas, and Incorporated Areas. Specifically, it addresses the flooding sources: Black Fork Creek, Black Fork Creek Tributary BF-1, Black Fork Creek Tributary BF-M-1, Black Fork Creek Tributary D, Black Fork Creek Tributary D-1, Black Fork Creek Tributary D-2, Black Fork Creek Tributary D-3, Butler Creek...
3. View of Clark Fork Vehicle Bridge facing southwest. Bridge ...
3. View of Clark Fork Vehicle Bridge facing southwest. Bridge from north shore of Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
4. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...
4. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shoreof Clark Fork River showing 4 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
2. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...
2. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
7. View of Clark Fork Vehicle Bridge facing northwest. Bridge ...
7. View of Clark Fork Vehicle Bridge facing northwest. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Force-frequency effect of Y-cut langanite and Y-cut langatate.
Kim, Yoonkee; Ballato, Arthur
2003-12-01
Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.
1. View of Clark Fork Vehicle Bridge facing west. Panorama ...
1. View of Clark Fork Vehicle Bridge facing west. Panorama showing the entire span of bridge from north shore of the Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Non-blinking single-photon emitters in silica
Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; ...
2016-02-19
Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters,more » do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.« less
5. View of Clark Fork Vehicle Bridge facing east. Bridge ...
5. View of Clark Fork Vehicle Bridge facing east. Bridge from south shore of Clark Fork River-southernmost span. 1900-era Northern Pacific Railway Bridge in background. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
NASA Astrophysics Data System (ADS)
Li, Peng; Jin, Feng
2018-01-01
The dynamic model about the anti-plane vibration of a contoured quartz plate with thickness changing continuously is established by ignoring the effect of small elastic constant c 56. The governing equation is solved using the power series expansion technique, and the trapped thickness shear modes caused by bulge thickness are revealed. Theoretically, the proposed method is more general, which can be capable of handling various thickness profiles defined mathematically. After the convergence of the series is demonstrated and the correctness is numerically validated with the aid of finite element method results, systematic parametric studies are subsequently carried out to quantify the effects of the geometry parameter upon the trapped modes, including resonant frequency and mode shape. After that, the band structures of thickness shear waves propagation in a periodically contoured quartz plate, as well as the power transmission spectra, are obtained based on the power series expansion technique. It is revealed that broad stop bands below cut-off frequency exist owing to the trapped modes excited by the geometry inhomogeneity, which has little relationship with the structural periodicity, and its physical mechanism is different from the Bragg scattering effect. The outcome is widely applicable, and can be utilized to provide theoretical and practical guidance for the design and manufacturing of quartz resonators and wave filters.
Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.
Niguès, A; Siria, A; Vincent, P; Poncharal, P; Bocquet, L
2014-07-01
Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons-Coulomb. Here, by using a 'Christmas cracker'-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF-AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.
a Simplified Method to Design Suspended Cabs for Counterbalance Trucks
NASA Astrophysics Data System (ADS)
LEMERLE, P.; BOULANGER, P.; POIROT, R.
2002-05-01
A “low-frequency” suspension system, placed between the driving cab and chassis of an existing fork lift truck was designed. The aim of this project was to develop a design procedure which is easy to implement and suitable for all types of fork lift trucks. It was also to show how the use of numerical simulation could be helpful to optimize the efficiency of such suspension systems. The cab specifications were: (1) to achieve a vertical vibration attenuation of at least 50% when this truck is tested under severe but realistic conditions, (2) to operate with no specific adjustment for drivers weighing between 60 and 100 kg, (3) to be efficient with a reasonable dynamic stroke (about 3 cm maximum). The suspended cab was modelled using ADAMS software. In the simplified method, the input acceleration signals (at the four fixing points of the cab) were not computed from a vehicle model (chassis and wheels) but directly measured under various driving conditions (passage of two or four wheels over an obstacle with a loaded or unloaded fork lift truck). This model allowed evaluation of the theoretical attenuation, obtained below the driver's seat along the three axes, in comparison with an infinitely rigid suspension. The attenuation ratio was calculated for several values of the characteristics of the suspension components (stiffness and damping). Similarly, for every design value tested, the design constraints were evaluated and at the end of this parametrical study, optimal suspension components were found. Finally, the suspended cab was built according to the results of the parametrical study and measurements subsequently confirmed that the attenuation of vertical accelerations was more than 50%.
Suresh, S; Gunasekaran, S; Srinivasan, S
2014-11-11
The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.
8. View of Clark Fork Vehicle Bridge facing southwest. Looking ...
8. View of Clark Fork Vehicle Bridge facing southwest. Looking at understructure of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
20. View of Clark Fork Vehicle Bridge facing up. Looking ...
20. View of Clark Fork Vehicle Bridge facing up. Looking at understructure of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
18. View of Clark Fork Vehicle Bridge facing north. Looking ...
18. View of Clark Fork Vehicle Bridge facing north. Looking at north concrete abutment and timber stringers. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
19. View of Clark Fork Vehicle Bridge facing north. Looking ...
19. View of Clark Fork Vehicle Bridge facing north. Looking at north abutment and underside of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
22. View of Clark Fork Vehicle Bridge facing downwest side. ...
22. View of Clark Fork Vehicle Bridge facing down-west side. Looking at road deck and vertical laced channel. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
Vibration modes interference in the MEMS resonant pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Fangfang; Li, Anlin; Bu, Zhenxiang; Wang, Lingyun; Sun, Daoheng; Du, Xiaohui; Gu, Dandan
2017-11-01
A new type of coupled balanced-mass double-ended tuning fork resonator (CBDETF) pressure sensor is fabricated and tested. However, the low accuracy of the CBDETF pressure sensor is not satisfied to us. Based on systematic analysis and tests, the coupling effect between the operational mode and interference mode is considered to be the main cause for the sensor in accuracy. To solve this problem, the stiffness of the serpentine beams is increased to pull up the resonant frequency of the interfering mode and make it separate far from the operational mode. Finally, the accuracy of the CBDETF pressure sensor is improved from + /-0.5% to less than + /-0.03% of the Full Scale (F.S.).
21. View of Clark Fork Vehicle Bridge facing west. Looking ...
21. View of Clark Fork Vehicle Bridge facing west. Looking at bridge deck, guard rail, juncture of two bridge spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
11. View of Clark Fork Vehicle Bridge facing northwest. Southernmost ...
11. View of Clark Fork Vehicle Bridge facing northwest. Southernmost span. Plaque was originally located where striped traffic sign is posted. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae
Szyjka, Shawn J.; Aparicio, Jennifer G.; Viggiani, Christopher J.; Knott, Simon; Xu, Weihong; Tavaré, Simon; Aparicio, Oscar M.
2008-01-01
Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2–Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Δ cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair. PMID:18628397
23. View of Clark Fork Vehicle Bridge facing upwest side. ...
23. View of Clark Fork Vehicle Bridge facing up-west side. Looking at structural connection of top chord, vertical laced channel and diagonal bars. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
13. View of Clark Fork Vehicle Bridge facing south. Concrete ...
13. View of Clark Fork Vehicle Bridge facing south. Concrete barrier blocks access. Plaque was originally located where strioed traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
12. View of Clark Fork Vehicle Bridge facing south. Approach ...
12. View of Clark Fork Vehicle Bridge facing south. Approach from the north road. Plaque was originally located where striped traffic sign is posted. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Schalbetter, Stephanie A; Mansoubi, Sahar; Chambers, Anna L; Downs, Jessica A; Baxter, Jonathan
2015-08-18
Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.
14. View of Clark Fork Vehicle Bridge facing north. Approach ...
14. View of Clark Fork Vehicle Bridge facing north. Approach from the south. Concrete barrier blocks access. Plaque was originally located where striped traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
Code of Federal Regulations, 2013 CFR
2013-07-01
... Creek, Doe Creek, Duck Creek, East Fork Holy Terror Creek, Fawn Creek, Flume Creek, Fly Creek, Forge... Terror Creek, J Fell Creek, Jacobs Ladder Creek, Lewis Creek, Liberty Creek, Lick Creek, Lime Creek... Creek, South Fork Chamberlain Creek, South Fork Holy Terror Creek, South Fork Norton Creek, South Fork...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Creek, Doe Creek, Duck Creek, East Fork Holy Terror Creek, Fawn Creek, Flume Creek, Fly Creek, Forge... Terror Creek, J Fell Creek, Jacobs Ladder Creek, Lewis Creek, Liberty Creek, Lick Creek, Lime Creek... Creek, South Fork Chamberlain Creek, South Fork Holy Terror Creek, South Fork Norton Creek, South Fork...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Creek, Doe Creek, Duck Creek, East Fork Holy Terror Creek, Fawn Creek, Flume Creek, Fly Creek, Forge... Terror Creek, J Fell Creek, Jacobs Ladder Creek, Lewis Creek, Liberty Creek, Lick Creek, Lime Creek... Creek, South Fork Chamberlain Creek, South Fork Holy Terror Creek, South Fork Norton Creek, South Fork...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Creek, Doe Creek, Duck Creek, East Fork Holy Terror Creek, Fawn Creek, Flume Creek, Fly Creek, Forge... Terror Creek, J Fell Creek, Jacobs Ladder Creek, Lewis Creek, Liberty Creek, Lick Creek, Lime Creek... Creek, South Fork Chamberlain Creek, South Fork Holy Terror Creek, South Fork Norton Creek, South Fork...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Creek, Doe Creek, Duck Creek, East Fork Holy Terror Creek, Fawn Creek, Flume Creek, Fly Creek, Forge... Terror Creek, J Fell Creek, Jacobs Ladder Creek, Lewis Creek, Liberty Creek, Lick Creek, Lime Creek... Creek, South Fork Chamberlain Creek, South Fork Holy Terror Creek, South Fork Norton Creek, South Fork...
An epidemiological study of low back pain in professional drivers
NASA Astrophysics Data System (ADS)
Bovenzi, Massimo; Rui, Francesca; Negro, Corrado; D'Agostin, Flavia; Angotzi, Giuliano; Bianchi, Sandra; Bramanti, Lucia; Festa, GianLuca; Gatti, Silvana; Pinto, Iole; Rondina, Livia; Stacchini, Nicola
2006-12-01
The prevalence of low back pain (LBP) was investigated in 598 Italian professional drivers exposed to whole-body vibration (WBV) and ergonomic risk factors (drivers of earth moving machines, fork-lift truck drivers, truck drivers, bus drivers). The control group consisted of a small sample of 30 fire inspectors not exposed to WBV. Personal, occupational and health histories were collected by means of a structured questionnaire. Vibration measurements were performed on representative samples of the machines and vehicles used by the driver groups. From the vibration magnitudes and exposure durations, alternative measures of vibration dose were estimated for each subject. Daily vibration exposure, expressed in terms of 8-h energy-equivalent frequency-weighted acceleration, A(8), averaged 0.28-0.61 (range 0.10-1.18) m s -2 rms in the driver groups. Duration of exposure to WBV ranged between 1 and 41 years. The 7-day and 12-month prevalence of LBP was greater in the driver groups than in the controls. In the professional drivers, the occurrence of 12-month LBP, high intensity of LBP (Von Korff pain scale score ⩾5), and LBP disability (Roland & Morris disability scale score ⩾12) significantly increased with increasing cumulative vibration exposure. Even though several alternative measures of vibration exposure were associated with LBP outcomes, nevertheless a more regular trend of association with LBP was found for vibration dose expressed as ∑ a vit i (m s -2 h), in which the frequency-weighted acceleration, a v, and lifetime exposure duration, t, were given equal weight. In multivariate data analysis, individual characteristics (e.g. age, body mass index) and a physical load index (derived from combining manual materials handling and awkward postures) were significantly associated with LBP outcomes, while psychosocial work factors (e.g. job decision, job support) showed a marginal relation to LBP. This study tends to confirm that professional driving in industry is associated with an increased risk of work-related LBP. Exposure to WBV and physical loading factors at work are important components of the multifactorial origin of LBP in professional drivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Li; Chen, Shunli; Wang, Hongfei
2016-03-03
Reliably determination of the spectral features and their phases in sum-frequency generation vibrational spectroscopy (SFG-VS) for surfaces with closely overlapping peaks has been a standing issue. Here we present two approaches towards resolving such issue. The first utilizes the high resolution and accurate lineshape from the recently developed sub-wavenumber high resolution broadband SFG-VS (HR-BB-SFG-VS), from which the detail spectral parameters, including relative spectral phases, of overlapping peaks can be determined through reliable spectral fitting. These results are further validated by using the second method that utilizes the azimuthal angle phase dependence of the z-cut α-quartz crystal, a common phase standard,more » through the spectral interference between the SFG fields of the quartz surface, as the internal phase reference, and the adsorbed molecular layer. Even though this approach is limited to molecular layers that can be transferred or deposited onto the quartz surface, it is simple and straightforward, as it requires only an internal phase standard with a single measurement that is free of phase drifts. More importantly, it provides unambiguous SFG spectral phase information of such surfaces. Using this method, the absolute phase of the molecular susceptibility tensors of the CH3, CH2 and chiral C-H groups in different Langmuir-Blodgett (LB) molecular monolayers and drop-cast peptide films are determined. These two approaches are fully consistent with and complement to each other, making both easily applicable tools in SFG-VS studies. More importantly, as the HR-BB-SFG-VS technique can be easily applied to various surfaces and interfaces, such validation of the spectral and phase information from HR-BB-SFG-VS measurement demonstrates it as one most promising tool for interrogating the detailed structure and interactions of complex molecular interfaces.« less
1990-09-01
simplest form the modulators are systems. 1) The inter -band absorption edges at operated as non-resonant (single-pass) which the electro-absorption...transitions in -0111- 1,’. three different wavelength bands indicated. It is the NIR inter -band transition which is of interest in this E’l Iwork. 0...quartz crystal resonator is a vector quantity. 12 random vibration at 100 Hz away from the Therefore, the frequency during acceleration carrier. Of
The history of ceramic filters.
Fujishima, S
2000-01-01
The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.
Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*
Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.
2017-01-01
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724
24. View of one of the plaques from Clark Fork ...
24. View of one of the plaques from Clark Fork Vehicle Bridge. Presently located at the Bonner County Historical Museum in Sandpoint, Idaho. A plaque was attached at each end of the bridge. Only one remains. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID
77 FR 76420 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... Fort Gay, confluence. Unincorporated Areas of Wayne County. At the Tug Fork +575 confluence. Mill Creek (backwater effects from From the Tug Fork +575 Town of Fort Gay. Tug Fork). confluence to approximately 1.1 miles upstream of the Tug Fork confluence. Tug Fork At the Big Sandy River +575 Town of Fort Gay...
NASA Astrophysics Data System (ADS)
Lewis, C. H.; Griffin, M. J.
1998-08-01
There are three current standards that might be used to assess the vibration and shock transmitted by a vehicle seat with respect to possible effects on human health: ISO 2631/1 (1985), BS 6841 (1987) and ISO 2631-1 (1997). Evaluations have been performed on the seat accelerations measured in nine different transport environments (bus, car, mobile crane, fork-lift truck, tank, ambulance, power boat, inflatable boat, mountain bike) in conditions that might be considered severe. For each environment, limiting daily exposure durations were estimated by comparing the frequency weighted root mean square (i.e., r.m.s.) accelerations and the vibration dose values (i.e.,VDV), calculated according to each standard with the relevant exposure limits, action level and health guidance caution zones. Very different estimates of the limiting daily exposure duration can be obtained using the methods described in the three standards. Differences were observed due to variations in the shapes of the frequency weightings, the phase responses of the frequency weighting filters, the method of combining multi-axis vibration, the averaging method, and the assessment method. With the evaluated motions, differences in the shapes of the weighting filters results in up to about 31% difference in r.m.s. acceleration between the “old” and the “new” ISO standard and up to about 14% difference between BS 6841 and the “new” ISO 2631. There were correspondingly greater differences in the estimates of safe daily exposure durations. With three of the more severe motions there was a difference of more than 250% between estimated safe daily exposure durations based on r.m.s. acceleration and those based on fourth power vibration dose values. The vibration dose values provided the more cautious assessments of the limiting daily exposure duration.
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently
Yu, Chuanhe; Gan, Haiyun
2017-01-01
ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720
Rinne revisited: steel versus aluminum tuning forks.
MacKechnie, Cheryl A; Greenberg, Jesse J; Gerkin, Richard C; McCall, Andrew A; Hirsch, Barry E; Durrant, John D; Raz, Yael
2013-12-01
(1) Determine whether tuning fork material (aluminum vs stainless steel) affects Rinne testing in the clinical assessment of conductive hearing loss (CHL). (2) Determine the relative acoustic and mechanical outputs of 512-Hz tuning forks made of aluminum and stainless steel. Prospective, observational. Outpatient otology clinic. Fifty subjects presenting May 2011 to May 2012 with negative or equivocal Rinne in at least 1 ear and same-day audiometry. Rinne test results using aluminum and steel forks were compared and correlated with the audiometric air-bone gap. Bench top measurements using sound-level meter, microphone, and artificial mastoid. Patients with CHL were more likely to produce a negative Rinne test with a steel fork than with an aluminum fork. Logistic regression revealed that the probability of a negative Rinne reached 50% at a 19 dB air-bone gap for stainless steel versus 27 dB with aluminum. Bench top testing revealed that steel forks demonstrate, in effect, more comparable air and bone conduction efficiencies while aluminum forks have relatively lower bone conduction efficiency. We have found that steel tuning forks can detect a lesser air-bone gap compared to aluminum tuning forks. This is substantiated by observations of clear differences in the relative acoustic versus mechanical outputs of steel and aluminum forks, reflecting underlying inevitable differences in acoustic versus mechanical impedances of these devices, and thus efficiency of coupling sound/vibratory energy to the auditory system. These findings have clinical implications for using tuning forks to determine candidacy for stapes surgery.
The fecundity of fork-tailed threadfin bream (Nemipterus furcosus) in Bangka, Bangka Belitung
NASA Astrophysics Data System (ADS)
Utami, E.; Safitriyani, E.; Gatra Persada, Leo
2018-04-01
Fork-tailed threadfin bream (Nemipterus furcosus) is one of important economic fishes in Bangka. The sustainability of fork-tailed threadfin bream is threatened by degradation of natural habitat. Information of reproductive is needed for further management. The objective of this study was to examine fecundity of fork-tailed threadfin bream. The mean values of temperature was 28.83 ± 0,37°C, respectively. Sex ratio during sampling showed that female fork-tailed threadfin bream greater than male population. Berried female fork-tailed threadfin bream found from March until November. The greatest number of berried female fork-tailed threadfin bream showed in July with berried female value of 25. Fork-tailed threadfin bream fecundity was 19951 and 66628, respectively. The fecundity data can be used to access the reproductive potential of fish stock and also as an assessment on stock size of their natural population.
Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication.
Morrow, Carl A; Nguyen, Michael O; Fower, Andrew; Wong, Io Nam; Osman, Fekret; Bryer, Claire; Whitby, Matthew C
2017-06-06
Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.
Termination of DNA replication forks: "Breaking up is hard to do".
Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka
2015-01-01
To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component - Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.
Sortal Concepts and Pragmatic Inference in Children's Early Quantification of Objects
ERIC Educational Resources Information Center
Srinivasan, Mahesh; Chestnut, Eleanor; Li, Peggy; Barner, David
2013-01-01
It is typically assumed that count nouns like "fork" act as logical sortals, specifying whether objects are countable units of a kind (e.g., that a whole fork counts as "one fork") or not (e.g., that a piece of a fork does not count as "one fork"). In four experiments, we provide evidence from linguistic and conceptual development that nouns do…
11. Photocopy of photograph (original copy in Edison collection). Photographer ...
11. Photocopy of photograph (original copy in Edison collection). Photographer and date unknown, although photo taken prior to 1930 reconstruction of Project flumes. VIEW OF ORIGINAL SOUTH FORK OF THE TULE RIVER MIDDLE FORK "BOX" WOOD FLUME BRANCH SHOWING NORTH FORK OF TULE RIVER MIDDLE FORK CROSSING. VIEW TO NORTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA
High-pressure infrared sepctra of alpha-quartz, coesite, stishovite and silica glass
NASA Technical Reports Server (NTRS)
Williams, Q.; Hemley, R. J.; Kruger, M. B.; Jeanloz, R.
1993-01-01
High-pressure infrared absorption spectra of alpha-quatz, coesite, stishovite, and SiO2 glass are consistent with the primary compression mechanism of the initially tetrahedrally bonded phases being the bending of the Si-O-Si angle at pressures less than 10-20 GPa. At higher pressures, up to 40 GPa, we observe a decline in the intensity of the infrared SiO4 asymmetric-stretching vibrations of all three phases, with an increase in the relative amplitude between 700 and 900/cm. This change in intensities is attributed to an increase in the average coordination number of silicon through extreme distortion of tetrahedra. At pressures above approximately 20 GPa, the low-pressure crystalline polymorphs gradually become amorphous, and the infrared spectra provide evidence for an increase in silicon coordination in these high-density amorphous phases. The pressure-amorphized samples prepared from quartz and coesite differ structurally both from each other and from silica glass that has been compressed, and the high pressure spectra indicate that these materials are considerably more disordered than stishovite under comparable pressure conditions. Average mode Grueneisen parameters calculated for quartz, stishovite and fused silica from both infrared and Raman spectra are compatible with the corresponding thermodynamic value of the Grueneisen parameter, however, that of coesite is significantly discrepant.
Grand Forks/East Grand Forks ITS strategy plan
DOT National Transportation Integrated Search
2001-01-15
The Grand Forks/East Grand Forks (GF/EGF) Area's Intelligent Transportation Systems (ITS) Strategy Plan is an effort by the GF/EGF Metropolitan Planning Organization (MPO) and its partners to develop a plan for deploying Intelligent Transportation Sy...
77 FR 39675 - Wallowa-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
...-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining AGENCY: Forest Service, USDA... North Fork Burnt River Mining Record of Decision will replace and supercede the 2004 North Fork Burnt...
Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J
2011-10-01
Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.
Holinga, George J; York, Roger L; Onorato, Robert M; Thompson, Christopher M; Webb, Nic E; Yoon, Alfred P; Somorjai, Gabor A
2011-04-27
Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.
Separation Process of Fine Coals by Ultrasonic Vibration Gas-Solid Fluidized Bed
Wei, Hua; Xie, Weining
2017-01-01
Ultrasonic vibration gas-solid fluidized bed was proposed and introduced to separate fine coals (0.5–0.125 mm fraction). Several technological methods such as XRF, XRD, XPS, and EPMA were used to study the composition of heavy products to evaluate the separation effect. Results show that the ultrasonic vibration force field strengthens the particle separation process based on density when the vibration frequency is 35 kHz and the fluidization number is 1.8. The ash difference between the light and heavy products and the recovery of combustible material obtain the maximum values of 47.30% and 89.59%, respectively. The sulfur content of the heavy product reaches the maximum value of 6.78%. Chemical state analysis of sulfur shows that organic sulfur (-C-S-), sulfate-sulfur (-SO4), and pyrite-sulfur (-S2) are confirmed in the original coal and heavy product. Organic sulfur (-C-S-) is mainly concentrated in the light product, and pyrite-sulfur (-S2) is significantly enriched in the heavy product. The element composition, phase composition, backscatter imagery, and surface distribution of elements for heavy product show concentration of high-density minerals including pyrite, quartz, and kaolinite. Some harmful elements such as F, Pb, and As are also concentrated in the heavy product. PMID:28845160
General perspective view of the North Fork Butter Creek Bridge, ...
General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
Approach view of the North Fork Butter Creek Bridge, view ...
Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
General perspective view of the North Fork Butter Creek Bridge, ...
General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
Elevation view of the North Fork Butter Creek Bridge, view ...
Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
Approach view of the North Fork Butter Creek Bridge, view ...
Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
Detail perspective view of the North Fork Butter Creek Bridge, ...
Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
General perspective view of the North Fork Butter Creek Bridge, ...
General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
THE FORK AND THE KINASE: A DNA REPLICATION TALE FROM A CHK1 PERSPECTIVE
González Besteiro, Marina A.; Gottifredi, Vanesa
2014-01-01
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. The checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged-DNA. Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Such findings unveil a puzzling connection between Chk1 and DNA-lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, the multifaceted and versatile functions of Chk1 at ongoing forks and replication origins determine the extent and quality of the cellular response to replication stress. PMID:25795119
Quantum Field Energy Sensor based on the Casimir Effect
NASA Astrophysics Data System (ADS)
Ludwig, Thorsten
The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-01-01
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening. PMID:28561032
Shear thinning in non-Brownian suspensions.
Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie
2018-02-14
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-05-31
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.
Topographic view of the North Fork Butter Creek Bridge (located ...
Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR
RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.
Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J
2015-10-15
We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Exercises in Practical Physics
NASA Astrophysics Data System (ADS)
Schuster, Arthur; Lees, Charles H.
2015-10-01
Preface; Preface to the fifth edition; Part I. Preliminary: 1. Treatment of observations; 2. Measurement of length; 3. Measurement of intervals of time; 4. Calibration of a spirit level; 5. Calibration of a graduated tube; Part II. General Physics: 6. The balance; 7. Accurate weighing with the balance; 8. Density of a solid; 9. Density of a liquid; 10. Moments of inertia; 11. Gravitational acceleration by reversible pendulum; 12. Young's modulus by the bending of beams; 13. Modulus of rigidity; 14. Viscosity; 15. Surface tension; Part III. Heat: 16. Coefficient of expansion of a solid; 17. Thermal expansion of a liquid; 18. Coefficient of increase of pressure of a gas with temperature; 19. Coefficient of expansion of a gas as constant pressure; 20. Effect of pressure on the boiling point of a liquid; 21. Laws of cooling; 22. Cooling correction in calorimetry; 23. Specific heat of quartz; 24. Latent heat of water; 25. Latent heat of steam; 26. Heat of solution of a salt; 27. The mechanical equivalent of heat; Part IV. Sound: 28. Frequency of a tuning fork by the syren; 29. The velocity of sound in air and other bodies by Kundt's method; 30. Study of vibrations of tuning forks by means of Lissajous' figures; Part V. Light: 31. Angles by the optical method; 32. The sextant; 33. Curvatures and powers of lenses; 34. Index of refraction by total reflection; 35. Resolving power of a lens; 36. The prism spectroscope; 37. Reduction of spectroscopic measurements to an absolute scale; 38. The spectrometer; 39. Refractive index and dispersion of a solid by the spectrometer; 40. Refractive index and dispersion of a liquid. Specific refractive powers; 41. Photometry; 42. Interference of light. The biprism; 43. Newton's rings; 44. Wave length of light by the diffraction grating; 45. Rotation of plane by polarisation; 46. Saccharimetry; Part VI. Magnetism and Electricity: 47. Horizontal components of magnetic fields; 48. Magnetic dip; 49. Magnetisation curves; 50. The water voltameter; 51. The copper voltameter; 52. Adjustment and standardisation of galvanometers; 53. The Post Office resistance bridge; 54. High resistances; 55. Low resistances; 56. The resistance of a galvanometer; 57. The resistance of a cell; 58. Comparison of resistance standards; 59. Change of resistance with temperature; 60. The resistance of electrolytes; 61. Construction of a standard cell; 62. Electromotive forces; 63. The potentiometer method of measuring currents; 64. Thermo-electric circuits; 65. The mechanical equivalent of heat by the electric method; 66. Induction of electric currents; 67. Standardisation of a ballistic galvanometer; 68. The self-inductance of a coil; 69. Comparison of self and mutual inductances; 70. Leakage and absorption in condensers; 71. Comparison of condensers; 72. The capacitance of a condenser; 73. High resistance by condenser; 74. The characteristic curves of a triode tube; 75. The quadrant electrometer; 76. Ionisation currents by electrometer; Appendix. Details of dimensions of apparatus; Index.
Ohuchida, Kenoki; Nagai, Eishi; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi
2017-01-01
We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no anastomotic leakage occurred in the movable cartridge group. Although there were no remarkable differences in the short-term outcomes between the movable and fixed cartridge groups, we believe that the modified inverted T-shaped method is technically more feasible and reliable than the conventional method and will contribute to the improved safety of LTG.
Ohuchida, Kenoki; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi
2017-01-01
Background We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. Methods We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). Results We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no anastomotic leakage occurred in the movable cartridge group. Conclusions Although there were no remarkable differences in the short-term outcomes between the movable and fixed cartridge groups, we believe that the modified inverted T-shaped method is technically more feasible and reliable than the conventional method and will contribute to the improved safety of LTG. PMID:28616606
NASA Technical Reports Server (NTRS)
Kersten, Ralf T. (Editor)
1990-01-01
Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.
The fork and the kinase: a DNA replication tale from a CHK1 perspective.
González Besteiro, Marina A; Gottifredi, Vanesa
2015-01-01
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress. Copyright © 2014 Elsevier B.V. All rights reserved.
Vibration Resistant Quartz Crystal Resonators.
1981-01-01
HEADER T - il L~ ?RbiMOUNT:. A. 12 BOND METHOD : MARKING DETAIL SPECIFICATIONS SPEC: Y 1Q3 TOP SERNO’S FREQ. CAL. AT : . . -0!R’F FREQ. TOL. : * zo3 VA...Labs PO Box 12211 ATTN: ETL- TD -EA 002 Rsch Triangle Pk, NC 27709 001 Fort Belvoir, VA 22060 533 Commandant 571 Dir, Applied Tech Lab USA Inst for...D Command ATTN: DELHD-CO, TD (In Turn) 000 Fort Monmouth, NJ 07703 2800 Powder Mill Road 001 Adelphi, MD 20783 1 .DRDCO-COM-RO 1 USMC-LNO 608 Cdr
Particle size distribution of typical ceramic raw materials by laser granulometry
NASA Technical Reports Server (NTRS)
Wojnarovitsne, I. H.; Lenkel, M.
1984-01-01
The principles of the method are explained and the working of the CILAS 715 laser granulometer is described. The particle size distributions of milled glazes, quartz, feldspar and china clay were determined by this instrument and by Andreasen sedimentation. The agreement was good for isometric particles, but the china clay appears finer by sedimentation, because the platelets arrange themselves horizontally during sedimentation, while in the laser granulometer preferred orientation is prevented by circulation between the sample holder and the vibrated and stirred reservoir of the slip.
Buoyancy-Driven Instabilities in Single-Bubble Sonoluminescence
NASA Technical Reports Server (NTRS)
Matula, Thomas J.
2003-01-01
The principal objectives of this study are to determine how gravity affects the emission of light from single-bubble sonoluminescence (SBSL), and whether or not the bubble extinction is directly related to gravity. Our experimental task involves designing glass or quartz spherical levitation cells that generate very stable SL bubbles. The cells must have minimized vibration, and some temperature control. The experimental system will reside in a light-tight enclosure. Aside from acceleration, the frequency, pressure amplitude, and light intensity must be measured. A computer program will be constructed to perform all aspects of the experiment.
21 CFR 882.1525 - Tuning fork.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning fork...
21 CFR 882.1525 - Tuning fork.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning fork...
36 CFR 292.62 - Valid existing rights.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RECREATION AREAS Smith River National Recreation Area § 292.62 Valid existing rights. (a) Definition. For the... “wild” segments of the Wild and Scenic Smith River, Middle Fork Smith River, North Fork Smith River, Siskiyou Fork Smith River, South Fork Smith River, and their designated tributaries, except Peridotite...
Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism
Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S
2017-01-01
To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891
Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David
2015-01-01
SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480
Bhat, Kamakoti P; Bétous, Rémy; Cortez, David
2015-02-13
SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Ostman, J. S.; Loso, M.; Liljedahl, A. K.; Gaedeke, A.; Geck, J. E.
2017-12-01
Many Alaska glaciers are thinning and retreating, and glacier wastage is projected to affect runoff processes from glacierized basins. Accordingly, effective resource management in glacierized watersheds requires quantification of a glacier's role on streamflow generation. The Eklutna catchment (311 km2) supplies water and electricity for Anchorage, Alaska (pop. 300,000) via Eklutna Lake. The Eklutna headwaters include the West Fork (64 km2, 46% glacier), and the East Fork (101 km2, 12% glacier). Total average annual discharge (2009-2015) is similar from the West (42,100 m3) and East (42,200 m3) forks, while specific annual runoff from the West Fork (2940 mm) exceeds that of the East Fork (1500 mm). To better understand what controls runoff, we are simulating the Eklutna annual water budget using a distributed watershed-level hydrological model. We force the Water Flow and Balance Simulation Model (WaSiM) using continuous air temperature, precipitation, wind speed, shortwave incoming radiation, and relative humidity primarily measured in the West Fork basin. We use Eklutna Glacier snow accumulation and ablation to calibrate the snowmelt and glacier sub-modules. Melt season discharge from the West and East forks is used for runoff comparison. Preliminary results show 2013-2015 simulated glacier point balances (accumulation and melt) are within 15% of glacier stake observations. Runoff was effectively modeled in the West Fork (NSE=0.80), while being over-predicted in the East Fork , which we attribute to a lack of forcing data in the less-glacierized basin. The simulations suggest that 78% of West Fork total runoff is from glacier melt, compared with <40% in the East Fork where glacier runoff contribution is higher during low-snow years.
Munz, Carrie S.; Allen, M. Brady; Connolly, Patrick J.
2011-01-01
We monitored bull trout (Salvelinus confluentus) in 2008 and 2009 as a continuation of our work in 2006 and 2007, which involved the tagging of 1,536 bull trout with passive integrated transponder (PIT) tags in the East Fork Jarbidge River and West Fork Jarbidge River and their tributaries in northeastern Nevada and southern Idaho. We installed PIT tag interrogation systems (PTISs) at established locations soon after ice-out, and maintained the PTISs in order to collect information on bull trout movements through December of each year. We observed a marked increase of movement in 2008 and 2009. Bull trout tagged in the uppermost portions of the East Fork Jarbidge River at altitudes greater than 2,100 meters moved to the confluence of the East Fork Jarbidge River and West Fork Jarbidge River in summer and autumn. Ten bull trout tagged upstream of the confluence of Pine Creek and the West Fork Jarbidge River moved downstream and then upstream in the East Fork Jarbidge River, and then past the PTIS at Murphy Hot Springs (river kilometer [rkm] 4.1). Two of these fish ascended Dave Creek, a tributary of the East Fork Jarbidge River, past the PTIS at rkm 0.4. One bull trout that was tagged at rkm 11 in Dave Creek on June 28, 2007 moved downstream to the confluence of the East Fork Jarbidge River and West Fork Jarbidge River (rkm 0) on July 28, 2007, and it was then detected in the West Fork Jarbidge River moving past our PTIS at rkm 15 on May 4, 2008. Combined, the extent and types of bull trout movements observed indicated that the primarily age-1 and age-2 bull trout that we tagged in 2006 and 2007 showed increased movement with age and evidence of a substantial amount of fluvial life history. The movements suggest strong connectivity between spawning areas and downstream mainstem areas, as well as between the East Fork Jarbidge River and West Fork Jarbidge River.
Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Andy; Taki, Doug; Teton, Angelo
2001-11-01
As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valleymore » Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in the South Fork Salmon River (IDFG). The East Fork Salmon River received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are conceivable due to extremely poor escapement. The West Fork Yankee Fork received a single presmolt treatment in 1994. Similarly, no significant future treatments are planned for the WFYF due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive hatchery treatments.« less
27 CFR 9.113 - North Fork of Long Island.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries of...
27 CFR 9.113 - North Fork of Long Island.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries of...
27 CFR 9.113 - North Fork of Long Island.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries of...
Rowan, L.C.; Schmidt, R.G.; Mars, J.C.
2006-01-01
The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.
Zhao, Bo; Zhang, Weidao; Cun, Yixian; Li, Jingzheng; Liu, Yan; Gao, Jing; Zhu, Hongwen; Zhou, Hu; Zhang, Rugang; Zheng, Ping
2018-01-01
Pluripotent stem cells (PSCs) harbor constitutive DNA replication stress during their rapid proliferation and the consequent genome instability hampers their applications in regenerative medicine. It is therefore important to understand the regulatory mechanisms of replication stress response in PSCs. Here, we report that mouse embryonic stem cells (ESCs) are superior to differentiated cells in resolving replication stress. Specifically, ESCs utilize a unique Filia-Floped protein complex-dependent mechanism to efficiently promote the restart of stalled replication forks, therefore maintaining genomic stability. The ESC-specific Filia-Floped complex resides on replication forks under normal conditions. Replication stress stimulates their recruitment to stalling forks and the serine 151 residue of Filia is phosphorylated in an ATR-dependent manner. This modification enables the Filia-Floped complex to act as a functional scaffold, which then promotes the stalling fork restart through a dual mechanism: both enhancing recruitment of the replication fork restart protein, Blm, and stimulating ATR kinase activation. In the Blm pathway, the scaffolds recruit the E3 ubiquitin ligase, Trim25, to the stalled replication forks, and in turn Trim25 tethers and concentrates Blm at stalled replication forks through ubiquitination. In differentiated cells, the recruitment of the Trim25-Blm complex to replication forks and the activation of ATR signaling are much less robust due to lack of the ESC-specific Filia-Floped scaffold. Thus, our study reveals that ESCs utilize an additional and unique regulatory layer to efficiently promote the stalled fork restart and maintain genomic stability.
Effects of Transposable Elements on the Expression of the Forked Gene of Drosophila Melanogaster
Hoover, K. K.; Chien, A. J.; Corces, V. G.
1993-01-01
The products of the forked gene are involved in the formation and/or maintenance of a temporary fibrillar structure within the developing bristle rudiment of Drosophila melanogaster. Mutations in the forked locus alter this structure and result in aberrant development of macrochaetae, microchaetae and trichomes. The locus has been characterized at the molecular level by walking, mutant characterization and transcript analysis. Expression of the six forked transcripts is temporally restricted to midlate pupal development. At this time, RNAs of 6.4, 5.6, 5.4, 2.5, 1.9 and 1.1 kilobases (kb) are detected by Northern analysis. The coding region of these RNAs has been found to be within a 21-kb stretch of genomic DNA. The amino terminus of the proteins encoded by the 5.4- and 5.6-kb forked transcripts contain tandem copies of ankyrin-like repeats that may play an important role in the function of forked-encoded products. The profile of forked RNA expression is altered in seven spontaneous mutations characterized during this study. Three forked mutations induced by the insertion of the gypsy retrotransposon contain a copy of this element inserted into an intron of the gene. In these mutants, the 5.6-, 5.4- and 2.5-kb forked mRNAs are truncated via recognition of the polyadenylation site in the 5' long terminal repeat of the gypsy retrotransposon. These results help explain the role of the forked gene in fly development and further our understanding of the role of transposable elements in mutagenesis. PMID:8244011
NASA Technical Reports Server (NTRS)
Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.
2001-01-01
This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.
NASA Technical Reports Server (NTRS)
Estep, P. A.; Kovach, J. J.; Waldstein, P.; Karr, C., Jr.
1972-01-01
Infrared and Raman vibrational spectroscopic data, yielding direct information on molecular structure, were obtained for single grains ( 150 microns) of minerals, basalts, and glasses isolated from Apollo 11, 12, 14, and 15 rock and dust samples, and for grains in Apollo 14 polished butt samples. From the vibrational data, specification substitutions were determined for the predominant silicate minerals of plagioclase, pyroxene, and olivine. Unique spectral variations for grains of K-feldspar, orthopyroxene, pyroxenoid, and ilmenite were observed to exceed the ranges of terrestrial samples, and these variations may be correlatable with formation histories. Alpha-quartz was isolated as pure single grains, in granitic grains composited with sanidine, and in unique grains that were intimately mixed with varying amounts of glass. Accessory minerals of chromite and ulvospinel were isolated as pure grains and structurally characterized from their distinctive infrared spectra. Fundamental vibrations of the SiO4 tetrahedra in silicate minerals were used to classify bulk compositions in dust sieved fractions, basalt grains and glass particles, and to compare modal characteristics for maria, highland and rille samples. No hydrated minerals were found in any of the samples studied, indicating anhydrous formation conditions.
Physical processes of quartz amorphization due to friction
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Muto, J.; Nagahama, H.; Miura, T.; Arakawa, I.; Shimizu, I.
2011-12-01
Solid state amorphization of minerals occurs in indentations, in shock experiments, and in high pressure metamorphic quartz rock. A production of amorphous material is also reported in experimentally created silicate gouges (Yund et al., 1990), and in San Andreas Fault core samples (Janssen et al., 2010). Rotary-shear friction experiments of quartz rocks imply dynamic weakening at seismic rates (Di Toro et al., 2004). These experiments have suggested that weakening is caused by formation and thixotropic behavior of a silica gel layer which comprises of very fine particles of hydrated amorphous silica on fault gouges (Goldsby & Tullis, 2002; Hayashi & Tsutsumi, 2010). Therefore, physical processes of amorphization are important to better understand weakening of quartz bearing rocks. In this study, we conducted a pin-on-disk friction experiment to investigate details of quartz amorphization (Muto et al, 2007). Disks were made of single crystals of synthetic and Brazilian quartz. The normal load F and sliding velocity V were ranged from 0.01 N to 1 N and from 0.01 m/s to 2.6 m/s, respectively. The friction was conducted using quartz and diamond pins (curvature radii of 0.2 ~ 3 mm) to large displacements (> 1000 m) under controlled atmosphere. We analyzed experiment samples by Raman spectroscopy and FT-IR. Raman spectroscopy (excitation wavelength 532.1 nm) provides lattice vibration modes, and was used to investigate the degree of amorphization of samples. Raman spectra of friction tracks on the disk show clear bands at wavenumbers of 126, 204, 356, 394, and 464 cm-1, characteristic of intact α-quartz. Remarkably, in experiments using diamond pins (F = 0.8 N, normal stress σr calculated by contact area = 293 ~ 440 MPa, V = 0.12 ~ 0.23 m/s), the bands at 204 and 464 cm-1 gradually broaden to reveal shoulders on the higher-wavenumber sides of these peaks. Especially, two distinguished peaks at 490 and 515 cm-1 and a weak broad peak at 606 cm-1 appear sporadically on the track after the slip distance of 43 m. The bands at 490 and 606 cm-1 can be assigned to the symmetric stretching of four-membered Si-O ring (D1 band) and planar three-membered Si-O ring (D2 band) in amorphous silica, respectively. The peak at 515 cm-1 corresponds to the strongest coesite A1 mode arising from four-membered Si-O ring structure. On the other hand, the bands at 464 cm-1 broaden to reveal a shoulder adjacent to the main peak in experiments using quartz pins (F = 1 N, σr = 1 MPa, V = 0.01 ~ 2.6 m/s) after a large displacement (>1000m). These results indicate that quartz change intermediate range structure of SiO2 network during friction, and four or three-membered Si-O rings gradually increase in six-membered quartz. The results of FT-IR analyses on friction tracks showed a broad peak at 3000 -3600 cm-1 which indicates the -OH symmetric stretching band of molecular H2O. It shows that hydration of quartz on friction tracks occur due to friction. The results of Raman spectroscopy and FT-IR imply that Si-O-Si bridging of strained rings preferentially react with water to form hydrated amorphous silica layer on friction surfaces, which is likely to occur weakening.
Water quality of some logged and unlogged California streams
Fredric R. Kopperdahl; James W. Burns; Gary E. Smith
1971-01-01
Water quality was monitored in 1968 and 1969 in six coastal streams in northern California, four of which were subjected to logging and/or road building (Bummer Lake Creek, South Fork Yager Creek, Little North Fork Noyo River, and South Fork Caspar Creek), while the others remained undisturbed (Godwood Creek and North Fork Caspar Creek). The purposes of this study were...
Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery
Murphy, Anar K.; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I.; Chowdhury, Dipanjan; Schildkraut, Carl L.
2014-01-01
Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. PMID:25113031
Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.
Murphy, Anar K; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I; Chowdhury, Dipanjan; Schildkraut, Carl L; Borowiec, James A
2014-08-18
Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. © 2014 Murphy et al.
Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.
Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S
2017-04-01
To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.
Checkpoint-dependent RNR induction promotes fork restart after replicative stress.
Morafraile, Esther C; Diffley, John F X; Tercero, José Antonio; Segurado, Mónica
2015-01-20
The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.
Eukaryotic DNA Replication Fork.
Burgers, Peter M J; Kunkel, Thomas A
2017-06-20
This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.
Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reighn, Christopher A.; Lewis, Bert; Taki, Doug
1999-06-01
Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap was operated on the West Fork Yankee Fork during the spring, summer, and fall of 1998 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997. Supplementation treatments have occurred on the South Fork Salmon River (IDFG), the East Fork Salmon River (EFSR), and the West Fork Yankee Fork of the Salmon River (WFYF). The EFSR received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are planned due to extremely poor escapement. The WFYF received a single presmolt treatment in 1994. There was an egg and adult release treatment in 1998 from the captive rearing program, not part of the original ISS study. Similarly, no significant future treatments are planned for the West Fork Yankee Fork due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive supplementation treatments.« less
Hydraulic geometry and sediment data for the South Fork Salmon River, Idaho, 1985-86
Williams, Rhea P.; O'Dell, Ivalou; Megahan, Walter F.
1989-01-01
Hydraulic geometry, suspended-sediment, and bedload samples were collected at three sites in the upper reach of the South Fork Salmon River drainage basin from April 1985 to June 1986. Sites selected were South Fork Salmon River near Krassel Ranger Station, Buckhorn Creek, and North Fork Lick Creek. Results of the data collection are presented in this report.
1. Roaring Fork Motor Nature Trail, entrance sign. Great ...
1. Roaring Fork Motor Nature Trail, entrance sign. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
Roaring Fork Motor Nature Trail, Title Sheet Great Smoky ...
Roaring Fork Motor Nature Trail, Title Sheet - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
9. Roaring Fork Motor Nature Trail, Reagan House. Great ...
9. Roaring Fork Motor Nature Trail, Reagan House. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
Regulation of Replication Fork Advance and Stability by Nucleosome Assembly
Prado, Felix; Maya, Douglas
2017-01-01
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging. PMID:28125036
NASA Technical Reports Server (NTRS)
1992-01-01
An ingestible mini-thermometer capable of measuring and relaying internal body temperatures is marketed by Human Technologies, Inc. The CorTemp system, developed by Goddard Space Flight Center and Applied Physics Lab, incorporates space technologies, among them telemetry and microminiaturized circuit, sensor and battery technologies. The capsule is ingested and continually monitors temperature with a vibrating quartz crystal sensor, which telemeters signals to a recorder, where data is displayed and stored. The system is very accurate, and because it does not require wires, allows patients to be monitored in everyday situations. The industrial variant (CSC-100) has wide utility in commercial applications.
Sonja N. Oswalt; Sammy L. King
2005-01-01
We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...
At the centre of the tuning fork
2015-11-02
This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Judy Schmidt.
Kolinjivadi, Arun Mouli; Sannino, Vincenzo; De Antoni, Anna; Zadorozhny, Karina; Kilkenny, Mairi; Técher, Hervé; Baldi, Giorgio; Shen, Rong; Ciccia, Alberto; Pellegrini, Luca; Krejci, Lumir; Costanzo, Vincenzo
2017-09-07
Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51 T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA.
López-estraño, C; Schvartzman, J B; Krimer, D B; Hernández, P
1998-03-27
We investigated the replication of the region where transcription terminates in mouse rDNA. It contains a replication fork barrier (RFB) that behaves in a polar manner, arresting only replication forks moving in the direction opposite to transcription. This RFB consists of several closely spaced fork arrest sites that co-localize with the transcription terminator elements, known as Sal boxes. Sal boxes are the target for mTTF-I (murine transcription termination factor I). These results suggest that both termination of rRNA transcription and replication fork arrest may share cis-acting as well as trans-acting factors. Copyright 1998 Academic Press Limited.
8. Roaring Fork Motor Nature Trail, handbuilt rock pile. ...
8. Roaring Fork Motor Nature Trail, hand-built rock pile. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
Rodriguez, Jairo; Tsukiyama, Toshio
2013-01-01
Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks. PMID:23307868
Ward, T R; Hoang, M L; Prusty, R; Lau, C K; Keil, R L; Fangman, W L; Brewer, B J
2000-07-01
In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3' of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to the cis-acting, mitotic hyperrecombination site called HOT1. We have found that the RFB and HOT1 activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB and HOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, while HOT1 activity is independent of replication fork arrest, HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).
LOOKING EASTSOUTHEAST. Showing downstream side of completed bridge, from confluence ...
LOOKING EAST-SOUTHEAST. Showing downstream side of completed bridge, from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
7. Roaring Fork Motor Nature Trail, rocks along edge of ...
7. Roaring Fork Motor Nature Trail, rocks along edge of road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
5. Roaring Fork Motor Nature Trail, vista at stop three. ...
5. Roaring Fork Motor Nature Trail, vista at stop three. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO ...
15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO SETTLING BASIN, SHOWING RIGHT FORK WITH GATE IN PLACE AND A FEW NEEDLES IN PLACE - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
2. Roaring Fork Motor Nature Trail, road view before first ...
2. Roaring Fork Motor Nature Trail, road view before first stop. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
6. Roaring Fork Motor Nature Trail, road view after stop ...
6. Roaring Fork Motor Nature Trail, road view after stop four. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
5. VIEW EAST ACROSS BRIDGE SHOWING RAILING DETAILS AND WATERFALLS ...
5. VIEW EAST ACROSS BRIDGE SHOWING RAILING DETAILS AND WATERFALLS OF THE SOUTH FORK OF THE TUOLUMNE. - South Fork Tuolumne River Bridge, Spanning South Fork Tuolumne River on Tioga Road, Mather, Tuolumne County, CA
Jack Lewis
1998-01-01
Suspended sediment has been sampled at both the North and South Fork weirs of Caspar Creek in northwestern California since 1963, and at 13 tributary locations in the North Fork since 1986. The North Fork gaging station (NFC) was used as a control to evaluate the effects of logging in the South Fork, in the 1970's, on annual sediment loads. In the most...
Duggin, Iain G; Matthews, Jacqueline M; Dixon, Nicholas E; Wake, R Gerry; Mackay, Joel P
2005-04-01
Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.
Wang, Zhihua; Tan, Jun; Zou, Qingze; Jiang, Wei
2013-11-01
In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the "writing" (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the "writing" speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be fabricated at a high speed of ~5 mm/s, with the line width and the line depth at ~95 nm and 2 nm, respectively. A fine pattern of the word "NANO" is also fabricated at the speed of ~5 mm/s.
South Fork Latrine, east elevation showing structure in context, view ...
South Fork Latrine, east elevation showing structure in context, view west - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME
3. Roaring Fork Motor Nature Trail, view between second and ...
3. Roaring Fork Motor Nature Trail, view between second and third stops - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
11. Roaring Fork Motor Nature Trail, boulders along road after ...
11. Roaring Fork Motor Nature Trail, boulders along road after stop 13. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF ...
2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF BRIDGE CROSSING THE SOUTH FORK OF THE TUOLUMNE RIVER. - South Fork Tuolumne River Bridge, Spanning South Fork Tuolumne River on Tioga Road, Mather, Tuolumne County, CA
Distribution and movement of bull trout in the upper Jarbidge River watershed, Nevada
Allen, M. Brady; Connolly, Patrick J.; Mesa, Matthew G.; Charrier, Jodi; Dixon, Chris
2010-01-01
In 2006 and 2007, we surveyed the occurrence of bull trout (Salvelinus confluentus), the relative distributions of bull trout and redband trout (Oncorhynchus mykiss), and stream habitat conditions in the East and West Forks of the Jarbidge River in northeastern Nevada and southern Idaho. We installed passive integrated transponder (PIT) tag interrogation systems at strategic locations within the watershed, and PIT-tagged bull trout were monitored to evaluate individual fish growth, movement, and the connectivity of bull trout between streams. Robust bull trout populations were found in the upper portions of the East Fork Jarbidge River, the West Fork Jarbidge River, and in the Pine, Jack, Dave, and Fall Creeks. Small numbers of bull trout also were found in Slide and Cougar Creeks. Bull trout were numerically dominant in the upper portions of the East Fork Jarbidge River, and in Fall, Dave, Jack, and Pine Creeks, whereas redband trout were numerically dominant throughout the rest of the watershed. The relative abundance of bull trout was notably higher at altitudes above 2,100 m. This study was successful in documenting bull trout population connectivity within the West Fork Jarbidge River, particularly between West Fork Jarbidge River and Pine Creek. Downstream movement of bull trout to the confluence of the East Fork and West Fork Jarbidge River both from Jack Creek (rkm 16.6) in the West Fork Jarbidge River and from Dave Creek (rkm 7.5) in the East Fork Jarbidge River was detected. Although bull trout exhibited some downstream movement during the spring and summer, much of their emigration occurred in the autumn, concurrent with decreasing water temperatures and slightly increasing flows. The bull trout that emigrated were mostly age-2 or older, but some age-1 fish also emigrated. Upstream movement by bull trout was detected less than downstream movement. The overall mean annual growth rate of bull trout in the East Fork and West Fork Jarbidge River was 36 mm. This growth rate is within the range reported in other river systems and is indicative of good habitat conditions. Mark-recapture methods were used to estimate a population of 147 age-1 or older bull trout in the reach of Jack Creek upstream of Jenny Creek.
1984-12-01
architectural or archeotogical evidence was identified. The southern unloading area includes the former sites of a brewery and a sawmill, both of... brewery and a sawmill, both of which were associated with 0 significant historic events and themes in the late nineteenth and early twentieth century...Forks Brewery (1888) . . . . . . . 16 Figure 4. The Grand Forks Lumber Company mill is located at A. -. Building at B is probably the East Grand Forks
Archaeological Investigations on the East Fork of the Salmon River, Custer County, Idaho.
1984-01-01
coniferous environment in addition to pine marten (Martes americana), red squirrel (Tamiasciurus hudsonicus), porcupine (Erithizon dorsatum), mountain vole...can be seen in small herds throughout the East Fork valley from the Salmon River to Big Boulder Creek. Two bands of Rocky Mountain bighorn sheep...utilize the Challis Planning Unit, one on the East Fork and the other in the Birch Creek area. The East Fork herd is comprised of approximately 50-70
Feng, Zhihui; Zhang, Junran
2012-01-01
Homologous recombination (HR) is a major mechanism utilized to repair blockage of DNA replication forks. Here, we report that a sister chromatid exchange (SCE) generated by crossover-associated HR efficiently occurs in response to replication fork stalling before any measurable DNA double-strand breaks (DSBs). Interestingly, SCE produced by replication fork collapse following DNA DSBs creation is specifically suppressed by ATR, a central regulator of the replication checkpoint. BRCA1 depletion leads to decreased RPA2 phosphorylation (RPA2-P) following replication fork stalling but has no obvious effect on RPA2-P following replication fork collapse. Importantly, we found that BRCA1 promotes RAD51 recruitment and SCE induced by replication fork stalling independent of ATR. In contrast, BRCA1 depletion leads to a more profound defect in RAD51 recruitment and SCE induced by replication fork collapse when ATR is depleted. We concluded that BRCA1 plays a dual role in two distinct HR-mediated repair upon replication fork stalling and collapse. Our data established a molecular basis for the observation that defective BRCA1 leads to a high sensitivity to agents that cause replication blocks without being associated with DSBs, and also implicate a novel mechanism by which loss of cell cycle checkpoints promotes BRCA1-associated tumorigenesis via enhancing HR defect resulting from BRCA1 deficiency. PMID:21954437
Foster, Katharine; Kenney, Terry A.
2010-01-01
Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.
Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen
2015-07-21
Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.
NASA Astrophysics Data System (ADS)
Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan
2017-10-01
We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.
South Fork Latrine, oblique view showing south and east sides; ...
South Fork Latrine, oblique view showing south and east sides; view northwest - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME
South Fork Latrine showing north and west sides, general view ...
South Fork Latrine showing north and west sides, general view to southeast - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME
COMPLETED STRUCTURE. View is eastsoutheast of downstream side of bridge, ...
COMPLETED STRUCTURE. View is east-southeast of downstream side of bridge, from beyond confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
7. View to southeast. View of downstream side of bridge ...
7. View to southeast. View of downstream side of bridge from confluence of Trinity and South Fork Trinity Rivers. (90mm Lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Code of Federal Regulations, 2014 CFR
2014-10-01
... form and maintain physical habitat conditions and support juvenile growth and mobility; (ii) Water...); Fossil Creek (39.9447, -123.0403); Middle Fork Eel River (40.0780, -123.0442); North Fork Middle Fork Eel...
Code of Federal Regulations, 2011 CFR
2011-10-01
... form and maintain physical habitat conditions and support juvenile growth and mobility; (ii) Water...); Fossil Creek (39.9447, -123.0403); Middle Fork Eel River (40.0780, -123.0442); North Fork Middle Fork Eel...
Code of Federal Regulations, 2013 CFR
2013-10-01
... form and maintain physical habitat conditions and support juvenile growth and mobility; (ii) Water...); Fossil Creek (39.9447, -123.0403); Middle Fork Eel River (40.0780, -123.0442); North Fork Middle Fork Eel...
Code of Federal Regulations, 2012 CFR
2012-10-01
... form and maintain physical habitat conditions and support juvenile growth and mobility; (ii) Water...); Fossil Creek (39.9447, -123.0403); Middle Fork Eel River (40.0780, -123.0442); North Fork Middle Fork Eel...
Code of Federal Regulations, 2010 CFR
2010-10-01
... form and maintain physical habitat conditions and support juvenile growth and mobility; (ii) Water...); Fossil Creek (39.9447, -123.0403); Middle Fork Eel River (40.0780, -123.0442); North Fork Middle Fork Eel...
The Lake Fork of the Arkansas River Watershed has been adversely affected through mining, water diversion and storage projects, grazing, logging, and other human influences over the past 120 years. It is the goals of the LFWWG to improve the health of Lake fork by addressing th...
12. Roaring Fork Motor Nature Trail, place of a thousand ...
12. Roaring Fork Motor Nature Trail, place of a thousand drips, view from road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator
Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong
2013-01-01
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.
2000-11-01
The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchananmore » 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.« less
Force regulated dynamics of RPA on a DNA fork
Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf
2016-01-01
Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742
Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA
NASA Astrophysics Data System (ADS)
Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.
2018-02-01
Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.
South Fork Telephone Switchboard Building, oblique view of east side; ...
South Fork Telephone Switchboard Building, oblique view of east side; view northwest - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME
South Fork Telephone Switchboard Building, interior west room showing hardwood ...
South Fork Telephone Switchboard Building, interior west room showing hardwood floor; view south - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME
South Fork Latrine, interior showing head with steel tank mounted ...
South Fork Latrine, interior showing head with steel tank mounted to wall; view south - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME
14. Roaring Fork Motor Nature Trail, Place of a thousand ...
14. Roaring Fork Motor Nature Trail, Place of a thousand drips, view with three culvert pipes. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
[Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].
Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo
2015-01-01
Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.
Kehrli, Keffy; Phelps, Michael; Lazarchuk, Pavlo; Chen, Eleanor; Monnat, Ray; Sidorova, Julia M
2016-11-18
The WRN helicase/exonuclease is mutated in Werner syndrome of genomic instability and premature aging. WRN-depleted fibroblasts, although remaining largely viable, have a reduced capacity to maintain replication forks active during a transient hydroxyurea-induced arrest. A strand exchange protein, RAD51, is also required for replication fork maintenance, and here we show that recruitment of RAD51 to stalled forks is reduced in the absence of WRN. We performed a siRNA screen for genes that are required for viability of WRN-depleted cells after hydroxyurea treatment, and identified HDAC1, a member of the class I histone deacetylase family. One of the functions of HDAC1, which it performs together with a close homolog HDAC2, is deacetylation of new histone H4 deposited at replication forks. We show that HDAC1 depletion exacerbates defects in fork reactivation and progression after hydroxyurea treatment observed in WRN- or RAD51-deficient cells. The additive WRN, HDAC1 loss-of-function phenotype is also observed with a catalytic mutant of HDAC1; however, it does not correlate with changes in histone H4 deacetylation at replication forks. On the other hand, inhibition of histone deacetylation by an inhibitor specific to HDACs 1-3, CI-994, correlates with increased processing of newly synthesized DNA strands in hydroxyurea-stalled forks. WRN co-precipitates with HDAC1 and HDAC2. Taken together, our findings indicate that WRN interacts with HDACs 1 and 2 to facilitate activity of stalled replication forks under conditions of replication stress. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
South Fork Telephone Switchboard Building, general view in setting showing ...
South Fork Telephone Switchboard Building, general view in setting showing (N) side; view (S) - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME
South Fork Telephone Switchboard Building, oblique view of (W) and ...
South Fork Telephone Switchboard Building, oblique view of (W) and (S) sides, view to northeast - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME
STEEL ERECTION. View of downstream of bridge, looking southeast from ...
STEEL ERECTION. View of downstream of bridge, looking southeast from confluence of Trinity and South Fork Trinity rivers. The old suspension bridge is in background - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.
Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J
2018-01-25
Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hilton, Benjamin A; Liu, Ji; Cartwright, Brian M; Liu, Yiyong; Breitman, Maya; Wang, Youjie; Jones, Rowdy; Tang, Hui; Rusinol, Antonio; Musich, Phillip R; Zou, Yue
2017-09-01
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is caused by a point mutation in the LMNA gene, resulting in production of a truncated farnesylated-prelamin A protein (progerin). We previously reported that XPA mislocalized to the progerin-induced DNA double-strand break (DSB) sites, blocking DSB repair, which led to DSB accumulation, DNA damage responses, and early replication arrest in HGPS. In this study, the XPA mislocalization to DSBs occurred at stalled or collapsed replication forks, concurrent with a significant loss of PCNA at the forks, whereas PCNA efficiently bound to progerin. This PCNA sequestration likely exposed ds-ssDNA junctions at replication forks for XPA binding. Depletion of XPA or progerin each significantly restored PCNA at replication forks. Our results suggest that although PCNA is much more competitive than XPA in binding replication forks, PCNA sequestration by progerin may shift the equilibrium to favor XPA binding. Furthermore, we demonstrated that progerin-induced apoptosis could be rescued by XPA, suggesting that XPA-replication fork binding may prevent apoptosis in HGPS cells. Our results propose a mechanism for progerin-induced genome instability and accelerated replicative senescence in HGPS.-Hilton, B. A., Liu, J., Cartwright, B. M., Liu, Y., Breitman, M., Wang, Y., Jones, R., Tang, H., Rusinol, A., Musich, P. R., Zou, Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. © FASEB.
Baldys, Stanley; Schalla, Frank E.
2012-01-01
Streamflow was measured at 66 sites from June 6–9, 2010, and at 68 sites from October 16–19, 2010, to identify reaches in the upper Brazos River Basin that were gaining or losing streamflow. Gaining reaches were identified in each of the five subbasins. The gaining reach in the Salt Fork Brazos River Basin began at USGS streamflow-gaging station 08080940 Salt Fork Brazos River at State Highway 208 near Clairemont, Tex. (site SF–6), upstream from where Duck Creek flows into the Salt Fork Brazos River and continued downstream past USGS streamflow-gaging station 08082000 Salt Fork Brazos River near Aspermont, Tex. (site SF–9), to the outlet of the basin. In the Double Mountain Fork Brazos River Basin, a gaining reach from near Post, Tex., downstream to the outlet of the basin was identified. Two gaining reaches were identified in the Clear Fork Brazos River Basin—one from near Roby, Tex., downstream to near Noodle, Tex., and second from Hawley, Tex., downstream to Nugent, Tex. Most of the North Bosque River was characterized as gaining streamflow. Streamflow gains were identified in the main stem of the Brazos River from where the Brazos River main stem forms at the confluence of the Salt Fork Brazos River and Double Mountain Fork Brazos River near Knox City, Tex., downstream to near Seymour, Tex.
An annotated bibliography of the hydrology and fishery studies of the South Fork Salmon River
Kathleen A. Seyedbagheri; Michael L. McHenry; William S. Platts
1987-01-01
A brief summary of the land management history of the South Fork Salmon River (Idaho) watershed includes citations and annotations of published and unpublished reports of fishery and hydrology studies conducted in the South Fork drainage for 1960 to 1986.
OLD SUSPENSION BRIDGE. This view appears to be looking southeast, ...
OLD SUSPENSION BRIDGE. This view appears to be looking southeast, at the downstream side of the suspension bridge, which was replaced by the South Fork Trinity River Bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Impact. The southwest end is down, as the buckled middle ...
Impact. The southwest end is down, as the buckled middle section splashes into the river. View is to southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Aftermath. The remains of the southwest end of the bridge ...
Aftermath. The remains of the southwest end of the bridge lie next to the southwest pier. View is south-southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Dust trailing from the top chord, the bridge falls toward ...
Dust trailing from the top chord, the bridge falls toward the river, as the southwest end (right) falls first. View southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
With water still in midflight, the northeast end of the ...
With water still in mid-flight, the northeast end of the bridge (left) nears total collapse. View is to southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
76 FR 13572 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... Specifically, it addresses the following flooding sources: Left Bank Overflow Main Stem Skagit River, Left Bank Overflow Main Stem Skagit River/South Fork Skagit River, Left Bank Overflow North Fork Skagit River, Main Stem Skagit River, North Fork Skagit River, Overflow from the Main Stem Skagit River between the North...
16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...
16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...
Claspin Promotes Normal Replication Fork Rates in Human Cells
Helleday, Thomas; Caldecott, Keith W.
2008-01-01
The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone. PMID:18353973
Force regulated dynamics of RPA on a DNA fork.
Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf
2016-07-08
Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Properties of nearly perfect crystals at very low temperatures
NASA Technical Reports Server (NTRS)
Weber, J.; Hamilton, J. J.
1994-01-01
Data shows that the frequency stability of 5 MHz AT-cut quartz crystal oscillators is improved by lowering the temperature to 4.3 K. The resultant level of stability is apparently not, at this point, sufficient for a clock accurate to 1 part in 10(exp 17). However, many improvements are possible in the scheme presented here. These would involve better temperature regulation, better crystal mounting and vibration isolation, and lower temperatures. Below the lambda-transition at 2.17 K the residual bubbling of the bath would be eliminated. Thus, the prospect of a successful clock built on this scheme is not ruled out.
Magnetic properties of mixed sulfides MUS/sub 3/ (M = V, Cr, Nb, Ta)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutsubidze, P.V.; Chechernikov, V.I.; Gracheva, N.V.
1985-08-01
The authors synthesized US/sub 2/ (Beta-US/sub 2/), VS, CrS, NbS, and TaS by the vacuum-thermal method in quartz ampules heated to 1170 degrees K. They homogenized and sintered these samples and remixed and sintered appropriate amounts to form MUS/sub 2/, which crystallizes in a rhombic structure. They studied the magnetic properties of MUS/sub 2/ on a vibration magnetometer in the range 75500 degrees K. The results of their analysis of the magnetic coefficients proved consistent with thermodynamic theory. They present their data in a series of four charts and two tables.
NASA Technical Reports Server (NTRS)
Kahan, A.; Euler, F. K.
1983-01-01
Calculations have predicted the existence of crystallographically doubly rotated quartz orientations with turnover temperatures which are considerably less sensitive to angular misorientation then comparable AT- or BT-cuts. These crystals are arbitrarily designated as the AK-cut. Experimental data is given for seven orientations, phi-angle variations between 30-46 deg and theta-angle variations between 21-28 deg measured on 3.3-3.4 MHz fundamental mode resonators vibrating in the thickness shear c-mode. The experimental turnover temperatures of these resonators are between 80 C and 150 C, in general agreement with calculated values. The normalized frequency change as a function of temperature has been fitted with a cubic equation.
Feldmann, H
1997-05-01
Since the 17th centrury it was known that sounds could be perceived via air conduction and bone conduction and that this provided a means of differentiating between hearing disorders located in the middle ear and those located in the acoustic nerve. For a long time to come, however, there was no need for such a differential diagnosis. After the invention of the tuning fork in 1711 this instrument had soon become widely used in music, but it took well over 100 years until it was introduced into physiology and otology. FROM DIRECTIONAL HEARING TO WEBER'S TEST: J. B. Venturi, a physicist in Modena, Italy, in 1802 had shown that the perception of the direction from which a sound is coming is governed by the fact that one ear is hit by the sound more intensely than the other ear. C. T. Tourtual, a physician in Münster, Germany, demonstrated in 1827 that this also holds true for sound conducted via the skull bones. He used a watch as sound source. He found that occlusion of both ear canals would increase the sensation in both ears equally, but that occlusion of only one ear would increase the sensation only in the occluded ear, thus giving the impression that the sound were coming from that side. He was interested in a comparison between vision and audition, and he concluded that with regard to recognizing the direction of a sensory signal vision was superior to audition. In the same year 1827 C. Wheatstone, a physicist in London, investigating the mode of vibration of the tympanic membrane and using a tuning fork found the same phenomena as Tourtual and some more effects. E. H. Weber, an anatomist and physiologist in Leipzig, Germany, described the very same phenomena as Tourtual and Wheatstone once more in 1834. He wanted to prove that airborne sound is perceived by the vestibulum and the semicircular canals, bone conducted sound by the cochlea. None of these investigators was thinking of a clinical use of their findings and made no such suggestion. E. Schmalz, an otologist in Dresden, Germany, in 1845 introduced the tuning fork and the test later named after Weber into otology and explained in great detail all possibilities of a diagnostic evaluation of the test. His grand achievement, however, passed unnoticed at his time. A. Rinne, a physician in Göttingen, Germany. In 1855 described the test which later was named after him, in an elaborate treatise on the physiology of the ear. He wanted to demonstrate that in man and animals living in the air, as opposed to those living in water, the conduction of sound via the bones of the skull is just an unavoidable side effect of sound perception. He mentioned a clinical application of his test only in a footnote and obviously never used it himself in a systematic way. His test was made generally known by Lucae in Berlin only after 1880. The value of Weber's and Rinne's tuning fork tests was much disputed even at the turn of the century and only gradually became generally accepted.
Bacon, Charles R.; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Slack, John F.
2014-01-01
The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ∼50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from <1 km2 to ∼100 km2. Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2.7 Ma lowering of base level of the Yukon River associated with advance of the Cordilleran ice sheet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, D.F.; Brumbaugh, W.G.; DeLonay, A.J.
1994-01-01
The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevatedmore » concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.« less
76 FR 53082 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
..., 201 Saint Andrews Street, Tarboro, NC 27886. Smith County, Texas, and Incorporated Areas Black Fork.... Tributary BF-1 At the Black Fork Creek +434 +436 City of Tyler, confluence. Unincorporated Areas of Smith County. Approximately 1.2 miles None +476 upstream of Loop 323. Tributary BF-M-1 At the Black Fork Creek...
11. DETAIL VIEW OF BRIDGE DATEPLATE AT SOUTHEAST CORNER OF ...
11. DETAIL VIEW OF BRIDGE DATEPLATE AT SOUTHEAST CORNER OF BRIDGE WHICH READS 'NORTH FORK OF WHITE RIVER, VINCENNES STEEL CORP., CONTRACTOR, ARKANSAS STATE HIGHWAY COMMISSION AND THE UNITED STATES BUREAU OF PUBLIC ROADS, 1936' - North Fork Bridge, Spans North Fork of White River at State Highway 5, Norfork, Baxter County, AR
With deck removed and critical members severed, the bridge begins ...
With deck removed and critical members severed, the bridge begins to succumb to tractors, pulling cables attached to its downstream side. View is to the southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Spray and dust hang in the air, as the demolition ...
Spray and dust hang in the air, as the demolition is completed. Only the southeast pier remains standing at right. View is to southeast from confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
76 FR 70397 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... the Ohio River +549 +550 Town of Fort Gay, Unincorporated Areas of Wayne County. confluence. At the... of Fort Gay. Fork). confluence to approximately 1.1 miles upstream of the Tug Fork confluence. Tug Fork At the Big Sandy River +576 +575 Town of Fort Gay. confluence. Approximately 0.5 mile +577 +575...
"The South Fork Nooksack River (SFNR) is an important tributary to the Nooksack River, Bellingham Bay, and the Salish Sea. The South Fork Nooksack River comprises one of the 22 independent populations of spring Chinook in the Puget Sound Chinook Evolutionarily Significant Un...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
..., Nevada; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; South Fork Band (Constituent Band... of Idaho; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; South Fork Band (Constituent... Idaho; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada; South Fork Band; Summit Lake...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... DEPARTMENT OF THE INTERIOR National Park Service [5130-0400-NZM] Draft Oil and Gas Management Plan... Management Plan/ Environmental Impact Statement for Big South Fork National River and Recreation Area and... gas management plan/environmental impact statement (OGMP/DEIS) for the proposed Big South Fork...
Training Guidelines: Fork Lift Truck Driving.
ERIC Educational Resources Information Center
Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).
This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…
This project proposes to analyze regional hydrogeology as it relates to mine workings which discharge significant heavy metals into the Howard Fork of the San Miguel River and recommend strategies to intercept and divert water away from mineralized zones. The study also includes...
Chk1 promotes replication fork progression by controlling replication initiation
Petermann, Eva; Woodcock, Mick; Helleday, Thomas
2010-01-01
DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465
NASA Astrophysics Data System (ADS)
Min, Wookee; Bruhn, Christopher; Grigaravicius, Paulius; Zhou, Zhong-Wei; Li, Fu; Krüger, Anja; Siddeek, Bénazir; Greulich, Karl-Otto; Popp, Oliver; Meisezahl, Chris; Calkhoven, Cornelis F.; Bürkle, Alexander; Xu, Xingzhi; Wang, Zhao-Qi
2013-12-01
Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.
Recolin, Bénédicte; Van Der Laan, Siem; Maiorano, Domenico
2012-01-01
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation. PMID:22187152
O'Brien, Todd; Karem, Joseph
2014-03-01
Diabetic peripheral neuropathy (DPN) is an essential precursor leading to diabetic limb loss. Neurologic screening tests, including the 128-Hz tuning fork (TF), have long been used to identify and track the progression of DPN, thereby guiding the implementation of preventive strategies. Although a sensitive indicator of neuropathy, shortcomings of TF testing include the lack of standardization and quantification of clinical findings. In an attempt to overcome these limitations, a novel 128-Hz electronic TF (ETF) prototype has been developed that is capable of performing accurate timed vibration tests (TVTs). This study was designed to assess the ability of the ETF to detect sensory impairment compared with three established neurologic screening methods: the Semmes-Weinstein monofilament test, the biothesiometer, and the sharp/dull discrimination test. Fifty-five test patients were recruited from the primary author's practice and enrolled according to an approved protocol. The 10-g Semmes-Weinstein monofilament test and the sharp/dull discrimination test were administered in standard fashion to the plantar aspects of digits 1 and 5 bilaterally. The ETF and the biothesiometer (25-V setting) were applied to the dorsal aspects of the distal phalanx of the hallux and fifth metatarsal head bilaterally. The sensitivity and specificity of neuropathy detection for the ETF were 0.953 and 0.761, respectively, using conventional tests as reference standards. Performance of TVTs with the ETF detected sensory impairment compared with three conventional neurologic screening methods. Given these findings, the ETF could facilitate the use of standardized TVTs as an indicator of DPN progression.
Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica
2009-01-01
Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.
Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica
2010-01-01
Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.
Akamatsu, Yufuko; Kobayashi, Takehiko
2015-05-01
In S phase, the replication and transcription of genomic DNA need to accommodate each other, otherwise their machineries collide, with chromosomal instability as a possible consequence. Here, we characterized the human replication fork barrier (RFB) that is present downstream from the 47S pre-rRNA gene (ribosomal DNA [rDNA]). We found that the most proximal transcription terminator, Sal box T1, acts as a polar RFB, while the other, Sal box T4/T5, arrests replication forks bidirectionally. The fork-arresting activity at these sites depends on polymerase I (Pol I) transcription termination factor 1 (TTF-1) and a replisome component, TIMELESS (TIM). We also found that the RFB activity was linked to rDNA copies with hypomethylated CpG and coincided with the time that actively transcribed rRNA genes are replicated. Failed fork arrest at RFB sites led to a slowdown of fork progression moving in the opposite direction to rRNA transcription. Chemical inhibition of transcription counteracted this deceleration of forks, indicating that rRNA transcription impedes replication in the absence of RFB activity. Thus, our results reveal a role of RFB for coordinating the progression of replication and transcription activity in highly transcribed rRNA genes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... Water Agency; Notice of Application Accepted for Filing, Soliciting Motions To Intervene and Protests... Water Agency. e. Name of Project: Middle Fork American River Project. f. Location: The Middle Fork....S. Department of Agriculture-- Forest Service. g. Filed Pursuant to: Federal Power Act 16 U.S.C. 791...
The South Fork Nooksack River (South Fork) is located in northwest Washington State and is home to nine species of Pacific salmon, including Nooksack early Chinook (aka, spring Chinook salmon), an iconic species for the Nooksack Indian Tribe. The quantity of salmon in the South F...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...
76 FR 35909 - Temporary Concession Contract for Big South Fork National Recreation Area, TN/KY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... Recreation Area, TN/KY. SUMMARY: Pursuant to 36 CFR 51.24, public notice is hereby given that the National... Concession Contract for Big South Fork National Recreation Area, TN/KY AGENCY: National Park Service... services within Big South Fork National Recreation Area, Tennessee and Kentucky, for a term not to exceed 3...
9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF ...
9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF LAKE FORK CANAL, UINTAH PROJECT. TWO SLUICEWAYS TWENTY FEET WIDE HAVE BEEN LEFT IN THE DAM TO PASS BOULDERS DURING HIGH WATER. THESE SLUICEWAYS ARE CLOSED BY LOGS AND HAY DURING LOW WATER.' Date unknown - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
16 CFR 1512.14 - Requirements for fork and frame assembly.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...
16 CFR 1512.14 - Requirements for fork and frame assembly.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...
16 CFR 1512.14 - Requirements for fork and frame assembly.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...
16 CFR 1512.14 - Requirements for fork and frame assembly.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...
Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy
2008-08-01
The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.
Ripley, J.; Iwanowicz, L.; Blazer, V.; Foran, C.
2008-01-01
The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. ?? 2008 SETAC.
Gaswirth, Stephanie B.; Marra, Kristen R.
2014-01-01
The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).
A Galaxy at the Center of the Hubble Tuning Fork
2017-12-08
This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is a good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. Credit: ESA/Hubble & NASA and N. Gorin (STScI), Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Low temperature heat capacity of permanently densified SiO2 glasses
NASA Astrophysics Data System (ADS)
Carini, Giovanni; Carini, Giuseppe; Cosio, Daniele; D'Angelo, Giovanna; Rossi, Flavio
2016-03-01
A study of low temperature specific heat capacity (1-30 K) has been performed on samples of vitreous SiO2, which have been compacted under pressures up to 8 GPa to explore different glassy phases having growing density. Increasing densification by more than 21% leads to a progressive reduction of the specific heat capacity Cp and to a shift from 10 K up to about 17 K of the broad hump, the calorimetric Boson peak (BP), observed above 1 K in a Cp(T)/T3 vs. T plot. The revealed changes are not accounted for by the modifications of the elastic continuum, implying a nature of additional vibrations at variance with the extended sound waves. Increasing atomic packing of the glassy network leads to a progressively decreasing excess heat capacity over that of α-quartz, a crystalline polymorph of SiO2. By using the low-frequency Raman intensity measured in these glasses to determine the temperature dependence of the low temperature heat capacity, it has been evaluated the density of low-frequency vibrational states. The observations are compared with some theoretical pictures explaining the nature of the BP, disclosing qualitative agreement with the predictions of the Soft Potential Model and the results of a simulation study concerning the vibrations of jammed particles. This finding leads to evaluate a nanometer length scale which suggests the existence of poorly packed domains formed from several n-membered rings involving SiO4 tetrahedra. These soft regions are believed to be the main source of low-frequency vibrations giving rise to the BP.
ATR prohibits replication catastrophe by preventing global exhaustion of RPA.
Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri
2013-11-21
ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.
Jamali, Akram; Sadeghi-Demneh, Ebrahim; Fereshtenajad, Niloufar; Hillier, Susan
2017-09-01
Somatosensory impairments are common in multiple sclerosis. However, little data are available to characterize the nature and frequency of these problems in people with multiple sclerosis. To investigate the frequency of somatosensory impairments and identify any association with balance limitations in people with multiple sclerosis. The design was a prospective cross-sectional study, involving 82 people with multiple sclerosis and 30 healthy controls. Tactile and proprioceptive sensory acuity were measured using the Rivermead Assessment of Somatosensory Performance. Vibration duration was assessed using a tuning fork. Duration for the Timed Up and Go Test and reaching distance of the Functional Reach Test were measured to assess balance limitations. The normative range of sensory modalities was defined using cut-off points in the healthy participants. The multivariate linear regression was used to identify the significant predictors of balance in people with multiple sclerosis. Proprioceptive impairments (66.7%) were more common than tactile (60.8%) and vibration impairments (44.9%). Somatosensory impairments were more frequent in the lower limb (78.2%) than the upper limb (64.1%). All sensory modalities were significantly associated with the Timed Up and Go and Functional Reach tests (p<0.05). The Timed Up and Go test was independently predicted by the severity of the neurological lesion, Body Mass Index, ataxia, and tactile sensation (R2=0.58), whereas the Functional Reach test was predicted by the severity of the neurological lesion, lower limb strength, and vibration sense (R2=0.49). Somatosensory impairments are very common in people with multiple sclerosis. These impairments are independent predictors of balance limitation. Copyright © 2017 Elsevier B.V. All rights reserved.
A spectroscopic study of mechanochemically activated kaolinite with the aid of chemometrics.
Carmody, Onuma; Kristóf, János; Frost, Ray L; Makó, Eva; Kloprogge, J Theo; Kokot, Serge
2005-07-01
The study of kaolinite surfaces is of industrial importance. In this work we report the application of chemometrics to the study of modified kaolinite surfaces. DRIFT spectra of mechanochemically activated kaolinites (Kiralyhegy, Zettlitz, Szeg, and Birdwood) were analyzed using principal component analysis (PCA) and multicriteria decision making (MCDM) methods, PROMETHEE and GAIA. The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz, are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1)OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). With the MCDM methods, it was shown that useful information on the basis of chemical composition, physical properties and grinding time can be obtained. For example, the effects of the minor chemical components (e.g., MgO, K(2)O, etc.) indicated that the Birdwood kaolinite is arguably the most pure one analyzed. In another MCDM experiment, some support was obtained for the apparent trend with grinding time noted in the PC plot of the OH spectral region.
Habitat-dependent interactions between two size-classes of juvenile steelhead in a small stream
Bret C. Harvey; Rodney J. Nakamoto
1997-01-01
Abstract - The presence of small steelhead (Oncorhynchus mykiss; averaging 55 mm fork length) influenced the growth of larger juvenile steelhead (90 mm fork length) during a 6-week experiment conducted in North Fork Caspar Creek, California, in summer 1994. In fenced replicate deep stream sections in this small stream, growth of the larger steelhead was greater in...
Status of the Mussel Resource in Little South Fork Cumberland River
Melvin L. Warren; Wendell R. Haag; Brooks M. Burr
1999-01-01
As recently as the 198Os, the Little South Fork Cumberland River of southeastern Kentucky supported a diverse freshwater mussel fauna (Starnes and Bogan 1982; Appendix A). The Little South Fork represented one of the last rivers to support a high number of mussel species in the Cumberland River drainage of Kentucky and Tennessee. The river was first surveyed...
A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976
Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman
1979-01-01
The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...
16 CFR § 1512.14 - Requirements for fork and frame assembly.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for fork and frame assembly. Â... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...
,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.
2013-01-01
In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.
Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochnauer, Tim; Claire, Christopher
In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoetemore » densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).« less
Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination
Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H
2015-01-01
Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413
NASA Astrophysics Data System (ADS)
Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.
2011-01-01
Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the possibility to develop compact ozonizers having high ozone yield at the low energy cost of O → O3 conversion.
Michael Brent Napolitano
1996-01-01
Abstract - The old-growth redwood forest of North Fork Caspar Creek was clear-cut between 1864 and 1904. Previous research on logging-related changes in suspended sediment and streamflow would suggest that North Fork Caspar Creek has recovered from historical logging (Rice et al., 1979; Ziemer, 1981); research on the influence of large woody debris (LWD) on channel...
Environmental Assessment Deicer Recovery at Grand Forks AFB, North Dakota
2004-12-15
Air Force Base (AFB), North Dakota. Contacts: 319 CES/CEVA 525 Tuskegee Airmen Boulevard (Blvd) Grand Forks AFB, ND...ACRONYMS, ABBREVIATIONS, AND TERMS AAM Annual Arithmetic Mean ACM Asbestos Containing Material AFB Air Force Base AFI Air Force Instruction AICUZ...meter 10 GFAFB Grand Forks Air Force Base HAP Hazardous Air Pollutants hr Hour H2S Hydrogen Sulfide IRP Installation Restoration
An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Xinpei; Jiang Zhonghe; Xiong Qing
2008-02-25
In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less
NASA Astrophysics Data System (ADS)
Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun
2016-10-01
Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.
Apertureless near-field scanning optical microscope working with or without laser source.
Formanek, F; De Wilde, Y; Aigouy, L; Chen, Y
2004-01-01
An apertureless near-field scanning optical microscope (ANSOM), used indifferent configurations, is presented. Our versatile home-made setup, based on a sharp tungsten tip glued onto a quartz tuning fork and working in tapping mode, allows to perform imaging over a broad spectral range. We have recorded optical images in the visible (wavelength, lambda = 655 nm) and in the infrared (lambda = 10.6 microm), proving that the setup routinely achieves an optical resolution of <50 nm regardless of the illumination wavelength. We have also shown optical images recorded in the visible (lambda = 655 nm) in an inverted configuration where the tip does not perturb the focused spot of the illumination laser. Approach curves as well as image profiles have revealed that on demodulating the optical signal at higher harmonics, we can obtain an effective probe sharpening which results in an improvement of the resolution. Finally, we have presented optical images recorded in the infrared without any illumination, that is, the usual laser source is replaced by a simple heating of the sample. This has shown that the ANSOM can be used as a near-field thermal optical microscope (NTOM) to probe the near field generated by the thermal emission of the sample.
Galloway, Joel M.
2014-01-01
The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.
Rinne test: does the tuning fork position affect the sound amplitude at the ear?
Butskiy, Oleksandr; Ng, Denny; Hodgson, Murray; Nunez, Desmond A
2016-03-24
Guidelines and text-book descriptions of the Rinne test advise orienting the tuning fork tines in parallel with the longitudinal axis of the external auditory canal (EAC), presumably to maximise the amplitude of the air conducted sound signal at the ear. Whether the orientation of the tuning fork tines affects the amplitude of the sound signal at the ear in clinical practice has not been previously reported. The present study had two goals: determine if (1) there is clinician variability in tuning fork placement when presenting the air-conduction stimulus during the Rinne test; (2) the orientation of the tuning fork tines, parallel versus perpendicular to the EAC, affects the sound amplitude at the ear. To assess the variability in performing the Rinne test, the Canadian Society of Otolaryngology - Head and Neck Surgery members were surveyed. The amplitudes of the sound delivered to the tympanic membrane with the activated tuning fork tines held in parallel, and perpendicular to, the longitudinal axis of the EAC were measured using a Knowles Electronics Mannequin for Acoustic Research (KEMAR) with the microphone of a sound level meter inserted in the pinna insert. 47.4 and 44.8% of 116 survey responders reported placing the fork parallel and perpendicular to the EAC respectively. The sound intensity (sound-pressure level) recorded at the tympanic membrane with the 512 Hz tuning fork tines in parallel with as opposed to perpendicular to the EAC was louder by 2.5 dB (95% CI: 1.35, 3.65 dB; p < 0.0001) for the fundamental frequency (512 Hz), and by 4.94 dB (95% CI: 3.10, 6.78 dB; p < 0.0001) and 3.70 dB (95% CI: 1.62, 5.78 dB; p = .001) for the two harmonic (non-fundamental) frequencies (1 and 3.15 kHz), respectively. The 256 Hz tuning fork in parallel with the EAC as opposed to perpendicular to was louder by 0.83 dB (95% CI: -0.26, 1.93 dB; p = 0.14) for the fundamental frequency (256 Hz), and by 4.28 dB (95% CI: 2.65, 5.90 dB; p < 0.001) and 1.93 dB (95% CI: 0.26, 3.61 dB; p = .02) for the two harmonic frequencies (500 and 4 kHz) respectively. Clinicians vary in their orientation of the tuning fork tines in relation to the EAC when performing the Rinne test. Placement of the tuning fork tines in parallel as opposed to perpendicular to the EAC results in a higher sound amplitude at the level of the tympanic membrane.
Geochemical map of the North Fork John Day River Roadless Area, Grant County, Oregon
Evans, James G.
1986-01-01
The North Fork John Day River Roadless Area comprised 21,210 acres in the Umatilla and Wallowa-Whitman National Forests, Grant County, Oregon, about 30 miles northwest of Baker, Oregon. The irregularly shaped area extends for about 1 mile on both sides of a 25-mile segment of the North Fork John Day River from Big Creek on the west to North Fork John Day Campground on the east. Most of the roadless area is in the northern half of the Desolation Butte 15-minute quadrangle. The eastern end of the area is in parts of the Granite and Trout Meadows 7½-minute quadrangles.
Cancer therapy and replication stress: forks on the road to perdition.
Kotsantis, Panagiotis; Jones, Rebecca M; Higgs, Martin R; Petermann, Eva
2015-01-01
Deregulated DNA replication occurs in cancer where it contributes to genomic instability. This process is a target of cytotoxic therapies. Chemotherapies exploit high DNA replication in cancer cells by modifying the DNA template or by inhibiting vital enzymatic activities that lead to slowing or stalling replication fork progression. Stalled replication forks can be converted into toxic DNA double-strand breaks resulting in cell death, i.e., replication stress. While likely crucial for many cancer treatments, replication stress is poorly understood due to its complexity. While we still know relatively little about the role of replication stress in cancer therapy, technical advances in recent years have shed new light on the effect that cancer therapeutics have on replication forks and the molecular mechanisms that lead from obstructed fork progression to cell death. This chapter will give an overview of our current understanding of replication stress in the context of cancer therapy. © 2015 Elsevier Inc. All rights reserved.
Assembly of Slx4 signaling complexes behind DNA replication forks.
Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W
2015-08-13
Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. © 2015 The Authors.
Spence, Porché L
2015-01-01
Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335
Robert D. Ohmart
1996-01-01
Ecological condition of riparian habitats along the East Fork of the Gila River, Main Diamond Creek, lower South Diamond Creek, and Black Canyon Creek are all in very heavily degraded condition. Channel cross-sections show extensive entrenchment, high width-to-depth ratios, and numerous reaches where banks are sloughing into the stream, especially on the East Fork of...
Persistence of historical logging impacts on channel form in mainstem North Fork Caspar Creek
Michael B. Napolitano
1998-01-01
The old-growth redwood forest of North Fork Caspar Creek was clear-cut logged between 1860 and 1904. Transportation of logs involved construction of a splash dam in the headwaters of North Fork Caspar Creek. Water stored behind the dam was released during large storms to enable log drives. Before log drives could be conducted, the stream channel had to be prepared by...
Qualitative Assessment: Evaluating the Impacts of Climate ...
The South Fork Nooksack River (South Fork) is located in northwest Washington State and is home to nine species of Pacific salmon, including Nooksack early Chinook (aka, spring Chinook salmon), an iconic species for the Nooksack Indian Tribe. The quantity of salmon in the South Fork, especially spring Chinook salmon, has dramatically declined from historic levels, due primarily to habitat degradation from the legacy impacts of various land uses such as commercial forestry, agriculture, flood control, and transportation infrastructure. Segments of the South Fork and some of its tributaries exceed temperature criteria established for the protection of cold-water salmonid populations, and were listed on Washington State’s Clean Water Act (CWA) 303(d) list of impaired waterbodies. High water temperatures in the South Fork are detrimental to fish and other native species that depend on cool, clean, well-oxygenated water. Of the nine salmon species, three have been listed as threatened under the federal Endangered Species Act (ESA) and are of high priority to restoration efforts in the South Fork—spring Chinook salmon, summer steelhead trout, and bull trout. Growing evidence shows that climate change will exacerbate legacy impacts. This qualitative assessment is a comprehensive analysis of climate change impacts on freshwater habitat and Pacific salmon in the South Fork. It also evaluates the effectiveness of restoration tools that address Pacific salmon recovery.
Manhart, Carol M.; McHenry, Charles S.
2013-01-01
The PriA protein serves as an initiator for the restart of DNA replication on stalled replication forks and as a checkpoint protein that prevents the replicase from advancing in a strand displacement reaction on forks that do not contain a functional replicative helicase. We have developed a primosomal protein-dependent fluorescence resonance energy transfer (FRET) assay using a minimal fork substrate composed of synthetic oligonucleotides. We demonstrate that a self-loading reaction, which proceeds at high helicase concentrations, occurs by threading of a preassembled helicase over free 5′-ends, an event that can be blocked by attaching a steric block to the 5′-end or coating DNA with single-stranded DNA binding protein. The specificity of PriA for replication forks is regulated by its intrinsic ATPase. ATPase-defective PriA K230R shows a strong preference for substrates that contain no gap between the leading strand and the duplex portion of the fork, as demonstrated previously. Wild-type PriA prefers substrates with larger gaps, showing maximal activity on substrates on which PriA K230R is inactive. We demonstrate that PriA blocks replicase function on forks by blocking its binding. PMID:23264623
Goldstein, J.N.; Woodward, D.F.; Farag, A.M.
1999-01-01
Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.
Aarattuthodiyil, Suja; Byrd, Alicia K.; Raney, Kevin D.
2014-01-01
Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding. PMID:25249618
Design and Theoretical Analysis of a Resonant Sensor for Liquid Density Measurement
Zheng, Dezhi; Shi, Jiying; Fan, Shangchun
2012-01-01
In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m3. The results also confirm that the method to increase the accuracy of liquid density measurement is feasible. PMID:22969378
Design and theoretical analysis of a resonant sensor for liquid density measurement.
Zheng, Dezhi; Shi, Jiying; Fan, Shangchun
2012-01-01
In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m(3). The results also confirm that the method to increase the accuracy of liquid density measurement is feasible.
Advancing the Fork detector for quantitative spent nuclear fuel verification
Vaccaro, S.; Gauld, I. C.; Hu, J.; ...
2018-01-31
The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less
Advancing the Fork detector for quantitative spent nuclear fuel verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccaro, S.; Gauld, I. C.; Hu, J.
The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less
Advancing the Fork detector for quantitative spent nuclear fuel verification
NASA Astrophysics Data System (ADS)
Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.
2018-04-01
The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. The results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.
Harwell, Glenn R.; Mobley, Craig A.
2009-01-01
This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.
1985-01-01
Obion-Forked Deer River and Reelfoot -Indian Creek drainages (Smith 1979a), the Mud Creek drainage (Dye 1975), the Cypress Creek drainages (Peterson 1975...sites have been identified by the presence of Palmer, Cypress Creek, Lost Lake , Decatur, Kirk Stemmed, Big Sandy, Plevna, Haywood, Kirk Corner Notched...necessary to clarify this problem. Several different Mississippian phases, including the Walls, Boxtown, Ensley, Tiptonville and Reelfoot phases have
UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE ...
UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE PIPE TRUSS RAILING AND TRUSSED DECK BEAMS TYPICAL TO BRIDGES BUILT BY FLINN-MOYER COMPANY. TRIPODAL PIPE TOWERS RESEMBLE CLEAR FORK OF THE BRAZOS SUSPENSION BRIDGES TOWERS PRIOR TO ENCASEMENT IN CONCRETE. NOTE COLLAPSED TRUSS IN RIVER. ELEVATION VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX
Behum, Paul T.
1984-01-01
The Devils Fork Roadless Area is located at the eastern edge of the Appalachian coal region and is within the Cumberland Mountain section of the Appalachian Plateau physiographic province. Most of the area is drained by Devil Fork and its tributaries. Clinch Rock Branch of Straight Creek, Roddy Branch of Valley Creek, and Stinking Creek, all tributary to the Clinch River, drain small fringe tracts. Altitudes range from about 1,550 ft on the lower part of Straight Fork to about 3,490 ft at Cox Place on Little Mountain. Vegetation varies from mixed hardwoods in the uplands to thickets of conifer, rhododendron, and laurel in moist protected areas, as in coves along drainage courses.
Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression.
Chang, Emily Yun-Chia; Stirling, Peter C
2017-01-14
Replication-transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription-replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription-replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.
The spectroscopic study of building composites containing natural sorbents.
Król, M; Mozgawa, W
2011-08-15
This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...
NASA Technical Reports Server (NTRS)
Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.
2015-01-01
The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination issues were also examined during the isolator selection period for meeting the SAGE III-ISS instrument requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation Beaver...
Davis, Jerri V.; Barr, Miya N.
2006-01-01
In 1998, a 5 river-mile reach of the Jacks Fork was included on Missouri's list of impaired waters as required by Section 303(d) of the Federal Clean Water Act. The identified pollutant on the Jacks Fork was fecal coliform bacteria. The length of the impaired reach was changed to 7 miles on the Missouri 2002 303(d) list because of data indicating the fecal coliform bacteria problem existed over a broader area. The U.S. Geological Survey, in cooperation with the National Park Service, conducted a study to better understand the extent and sources of microbiological contamination within the Jacks Fork from Alley Spring to the mouth, which includes the 7-mile 303(d) reach. Ten sites were sampled from June 2003 through October 2003 and from June 2004 through October 2004. Water-column and streambed sediment samples were collected from main-stem and tributary sites mostly during base-flow conditions during a variety of recreational season river uses and analyzed for fecal coliform and Escherichia coli bacteria. Isolates of Escherichia coli obtained from water samples collected at five sites were submitted for rep-PCR analysis to identify presumptive sources of fecal indicator bacteria in the Jacks Fork. Results indicate that recreational users (including boaters and swimmers) are not the primary source of fecal coliform bacteria in the Jacks Fork; rather, the presence of fecal coliform bacteria is associated with other animals, of which horses are the primary source. Increases in fecal coliform bacteria densities in the Jacks Fork are associated with cross-country horseback trail-riding events.
Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica
2007-01-01
Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.
Frost, Thomas P.; Box, Stephen E.
2009-01-01
This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.
Smith, S. Jerrod; Schneider, M.L.; Masoner, J.R.; Blazs, R.L.
2003-01-01
Elevated salinity in the North Fork Red River is a major concern of the Bureau of Reclamation W. C. Austin Project at Lake Altus. Understanding the relation between surface-water runoff, ground-water discharge, and surface-water quality is important for maintaining the beneficial use of water in the North Fork Red River basin. Agricultural practices, petroleum production, and natural dissolution of salt-bearing bedrock have the potential to influence the quality of nearby surface water. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, sampled stream discharge and water chemistry at 19 stations on the North Fork Red River and tributaries. To characterize surface-water resources of the basin in a systematic manner, samples were collected synoptically during receding streamflow conditions during July 8-11, 2002. Together, sulfate and chloride usually constitute greater than half of the dissolved solids. Concentrations of sulfate ranged from 87.1 to 3,450 milligrams per liter. The minimum value was measured at McClellan Creek near Back (07301220), and the maximum value was measured at Bronco Creek near Twitty (07301303). Concentrations of chloride ranged from 33.2 to 786 milligrams per liter. The minimum value was measured at a North Fork Red River tributary (unnamed) near Twitty (07301310), and the maximum value was measured at the North Fork Red River near Back (07301190), the most upstream sample station.
Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.
Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A
2017-09-15
Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tan, Kang Wei; Pham, Tuan Minh; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi
2015-01-01
The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response. PMID:25628359
BRCA2 and RAD51 promote double-strand break formation and cell death in response to gemcitabine.
Jones, Rebecca M; Kotsantis, Panagiotis; Stewart, Grant S; Groth, Petra; Petermann, Eva
2014-10-01
Replication inhibitors cause replication fork stalling and double-strand breaks (DSB) that result from processing of stalled forks. During recovery from replication blocks, the homologous recombination (HR) factor RAD51 mediates fork restart and DSB repair. HR defects therefore sensitize cells to replication inhibitors, with clear implications for cancer therapy. Gemcitabine is a potent replication inhibitor used to treat cancers with mutations in HR genes such as BRCA2. Here, we investigate why, paradoxically, mutations in HR genes protect cells from killing by gemcitabine. Using DNA replication and DNA damage assays in mammalian cells, we show that even short gemcitabine treatments cause persistent replication inhibition. BRCA2 and RAD51 are recruited to chromatin early after removal of the drug, actively inhibit replication fork progression, and promote the formation of MUS81- and XPF-dependent DSBs that remain unrepaired. Our data suggest that HR intermediates formed at gemcitabine-stalled forks are converted into DSBs and thus contribute to gemcitabine-induced cell death, which could have implications for the treatment response of HR-deficient tumors. ©2014 American Association for Cancer Research.
BRCA2 and RAD51 promote double-strand break formation and cell death in response to Gemcitabine
Jones, Rebecca M.; Kotsantis, Panagiotis; Stewart, Grant S.; Groth, Petra; Petermann, Eva
2014-01-01
Replication inhibitors cause replication fork stalling and double-strand breaks (DSBs) that result from processing of stalled forks. During recovery from replication blocks, the homologous recombination (HR) factor RAD51 mediates fork restart and DSB repair. HR defects therefore sensitise cells to replication inhibitors, with clear implications for cancer therapy. Gemcitabine is a potent replication inhibitor used to treat cancers with mutations in HR genes such as BRCA2. Here we investigate why, paradoxically, mutations in HR genes protect cells from killing by Gemcitabine. Using DNA replication and -damage assays in mammalian cells, we show that even short Gemcitabine treatments cause persistent replication inhibition. BRCA2 and RAD51 are recruited to chromatin early after removal of the drug, actively inhibit replication fork progression and promote the formation of MUS81- and XPF-dependent DSBs that remain unrepaired. Our data suggest that HR intermediates formed at Gemcitabine-stalled forks are converted into DSBs and thus contribute to Gemcitabine-induced cell death, which could have implications for the treatment response of HR-deficient tumours. PMID:25053826
Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.
Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D
2016-12-15
Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
DNA Replication Origins and Fork Progression at Mammalian Telomeres
Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa
2017-01-01
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373
Petrogenesis of Western Cascades Silicic Volcanics Near Sweet Home, Oregon
NASA Astrophysics Data System (ADS)
Cook, G. W.; White, C. M.
2002-12-01
Silicic lavas in the Menagerie Wilderness east of Sweet Home, Oregon are Oligocene to Miocene in age and range in composition from dacite (low K) to trachydacite (high K) and rhyolite (medium K). Three distinct silicic centers have been distinguished through a combination of field observation, chemistry and petrography. Phenocryst assemblages in rocks of the centers are plagioclase-hornblende-magnetite (Rooster Rock rhyolite), plagioclase-quartz-magnetite (Soda Fork rhyolite) and quartz-plagioclase-biotite-hornblende-magnetite (Moose Mt. rhyolite). The silicic volcanics in the study area are similar in terms of mineral content and overall chemical composition. Despite this, chemical evidence suggests that the three centers are petrologically unrelated. REE variations and least squares modeling of major element compositions are consistent with fractionation of plagioclase and hornblende. The rhyolites have moderate Eu anomalies and have flat MREE and HREE signatures. Least squares models and bivariate plots of major and trace elements also suggest fractionation of the aforementioned phases for both the andesite to dacite, and dacite to rhyolite steps. Comparisons with similar silicic centers show the Menagerie rocks share affinities with High Cascades rocks thought to have been derived through fractional crystallization (Crater Lake and South Sister). Plots of ratios of incompatible trace elements were utilized to determine if assimilation played some role alongside fractional crystallization in differentiation. Plots of Ba/La vs. Ba, Rb/Zr vs. Rb and Rb/Th vs. Rb show systematic positive increases in the ratios between a plausible parent magma (icelandite) and the rhyolites. These increases are not easily explained by fractional crystallization but can be modeled by assimilation of silicic crust. Overall, it seems likely that the three centers evolved independently through similar petrogenetic processes from an andesitic parent. The most plausible petrogenetic scenario involves some combination of fractional crystallization and assimilation of partial melts of silicic crust.
Geologic map of the Yacolt quadrangle, Clark County, Washington
Evarts, R.C.
2006-01-01
The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area. The largest glacier(s) covered the entire map area north of the East Fork Lewis River except for the summit of Yacolt Mountain. As the ice receded, it left behind a sculpted bedrock topography thickly mantled by drift, and deposited outwash in the fault-bounded valley at Yacolt and along the East Fork Lewis River valley. This map is a contribution to a program designed to improve geologic knowledge of the Portland Basin region of the Pacific Northwest urban corridor, the densely populated Cascadia forearc region of western Washington and Oregon. More detailed information on the bedrock and surficial geology of the basin and its surrounding area is necessary to refine assessments of seismic risk, ground-failure hazards and resource availability in this rapidly growing region.
Distinct functions of human RecQ helicases during DNA replication.
Urban, Vaclav; Dobrovolna, Jana; Janscak, Pavel
2017-06-01
DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition. Copyright © 2016 Elsevier B.V. All rights reserved.
Management of heat in laser tissue welding using NIR cover window material.
Sriramoju, Vidyasagar; Savage, Howard; Katz, Alvin; Muthukattil, Ronex; Alfano, Robert R
2011-12-01
Laser tissue welding (LTW) is a novel method of surgical wound closure by the use of laser radiation to induce fusion of the biological tissues. Molecular dynamics associated with LTW is a result of thermal and non-thermal mechanisms. This research focuses exclusively on better heat management to reduce thermal damage of tissues in LTW using a near infrared laser radiation. An infrared continuous-wave (CW) laser radiation at 1,450 nm wavelength corresponding to the absorption band from combination vibrational modes of water is used to weld together ex vivo porcine aorta. In these studies we measured the optimal laser power and scan speed, for better tensile strength of the weld and lesser tissue dehydration. Significant amount of water loss from the welded tissue results in cellular death and tissue buckling. Various thermally conductive optical cover windows were used as heat sinks to reduce thermal effects during LTW for the dissipation of the heat. The optimal use of the method prevents tissue buckling and minimizes the water loss. Diamond, sapphire, BK7, fused silica, and IR quartz transparent optical cover windows were tested. The data from this study suggests that IR-quartz as the material with optimal thermal conductivity is ideal for laser welding of the porcine aorta. Copyright © 2011 Wiley Periodicals, Inc.
Development of a Flow Injection Based High Frequency Dual Channel Quartz Crystal Microbalance
Liang, Jinxing; Zhang, Jing; Zhou, Wenxiang; Ueda, Toshitsugu
2017-01-01
When the quartz crystal microbalance (QCM) is used in liquid for adsorption or desorption monitoring based bio- or chemical sensing applications, the frequency shift is not only determined by the surface mass change, but also by the change of liquid characteristics, such as density and viscosity, which are greatly affected by the liquid environmental temperature. A monolithic dual-channel QCM is designed and fabricated by arranging two QCM resonators on one single chip for cancelling the fluctuation induced by environmental factors. In actual applications, one QCM works as a specific sensor by modifying with functional membranes and the other acts as a reference, only measuring the liquid property. The dual-channel QCM is designed with an inverted-mesa structure, aiming to realize a high frequency miniaturized chip and suppress the frequency interference between the neighbored QCM resonators. The key problem of dual-channel QCMs is the interference between two channels, which is influenced by the distance of adjacent resonators. The diameter of the reference electrode has been designed into several values in order to find the optimal parameter. Experimental results demonstrated that the two QCMs could vibrate individually and the output frequency stability and drift can be greatly improved with the aid of the reference QCM. PMID:28509851
Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy
NASA Astrophysics Data System (ADS)
Faulstich, Fabiano Richard Leite; Castro, Harlem V.; de Oliveira, Luiz Fernando Cappa; Neumann, Reiner
2011-10-01
In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores.
Comparison of Three Biomass Sampling Techniques on Submersed Aquatic Plants in a Northern Tier Lake
2010-07-01
distribution in 3 out of 14 species when comparing the box-core sampler and the rake method. These included forked duckweed (Lemna trisulca L, p...each site did not exhibit differences. These included coontail (p=0.2949), muskgrass (p=0.2746), American elodea (p=0.7622), forked duckweed (p...collected by the PVC-core sampler. These included coontail (p=0.000), chara (p=0.0219), American elodea (p=0.0061), forked duckweed (p=0.0000), najas (p
Grand Forks - East Grand Forks Urban Water Resources Study. East Grand Forks Flood Fight Manual.
1981-07-01
wastewater management, and flood control) were identified, and a "plan of study" was developed. The plan of study outlined the general approach t~i -tiTd...three parts. Part 1 contains a general description and narrative on the need of the unit, Part 2 identifies the Unit Chief, Deputies, and Unit members...other units are discussed only in general terms. Future revisions will hopefully result in a happy medium between detailed specifics and generalities
1989-05-01
AFB Statement of Work. The Phase II Stage 1 investigation of Malmstrom AFB and two off-Base sites at Shelby and Brady, Montana are described in a...Flathead National Forest Headquarters in Kalispell and the Big Fork Ranger Station in Big Fork . Because there has been litigation involved with this...reviewed by phone. An interview at the spill site was held with Mr. William Pedersen, U.S. Forest Service Ranger for the Big Fork District. He personally
1982-02-25
coordinated multidisciplinary study of both the architectural and engineering resources of the National Area. Both research b1 orientation and...South Fork just north of Rugby , and traveled through the site where Jamestown, Tennessee, now stands. A third trail, the Chickamauga Path, left the...Thomas Hughes (1881), the founder of the English colony of Rugby , Tennessee, described his neighbors in the Big South Fork area as mostly poor men
41 CFR 101-25.405 - Materials handling equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 50 45 40 30 25 20 15 10 Straddle truck 15 50 50 50 45 45 45 40 40 35 35 30 25 20 15 10 Electric Fork... percentage of acquisition costs (years in use) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Gasoline Fork truck (2000 pounds to 6000 pounds) 8 50 45 40 30 25 20 15 10 Fork truck (over 6000 pounds) 10 50 45 40 35 30 25 20 15...
Structure of the replication fork in ultraviolet light-irradiated human cells.
Cordeiro-Stone, M; Schumacher, R I; Meneghini, R
1979-01-01
The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork. PMID:233582
Structure of the replication fork in ultraviolet light-irradiated human cells.
Cordeiro-Stone, M; Schumacher, R I; Meneghini, R
1979-08-01
The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork.
Lenfest, L.W.
1987-01-01
Quantifying the recharge from ephemeral streams to alluvial and bedrock aquifers will help evaluate the effects of surface mining on alluvial valley floors in Wyoming. Two stream reaches were chosen for study in the Powder River basin. One reach was located along the North Fork Dry Fork Cheyenne River near Glenrock, Wyoming, and the other reach was located along Black Thunder Creek near Hampshire, Wyoming. The reach along the North Fork Dry Fork Cheyenne River was instrumented with 3 gaging stations to measure streamflow and with 6 observation wells to measure groundwater level fluctuations in alluvial and bedrock aquifers in response to streamflow. The 3 streamflow gaging stations were located within the 2.5-mi study reach to measure the approximate gain or loss of discharge along the reach. Computed streamflow losses ranged from 0.43 acre-ft/mi on July 9 , 1982, to 1.44 acre-ft/mi on August 9, 1982. The observation wells completed only in the alluvial aquifer were dry during flow in the North Fork Dry Fork Cheyenne River, whereas water levels in half of the observation wells completed in the bedrock aquifers or the alluvial and bedrock aquifers rose in response to flow in the North Fork Dry Fork Cheyenne River. Groundwater recharge on August 9, 1982, was calculated using a convolution technique using groundwater levels at the upstream site and was estimated to be 26.5 acre-ft/mi. The reach along Black Thunder Creek was instrumented with one gaging station to measure streamflow and with 4 observation wells to measure water level response in alluvial and bedrock aquifers to streamflow. Recharge to the alluvial aquifer from flow in Black Thunder Creek ranged from 3.56 to 12.4 acre-ft/mi. The recharge was estimated using the convolution technique using water level measurements in the observation wells completed in the alluvial aquifer. Water level measurements in the observation wells indicated water level rises in the alluvial and bedrock aquifers in response to flow in Black Thunder Creek. (Author 's abstract)
14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, ...
14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, SHOWING RIGHT FORK TO BYPASS, LEFT FORK TO BASIN - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA
77 FR 41897 - Airworthiness Directives; PZL Swidnik S.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... control system hydraulic actuator fork end. These actions are intended to prevent rotation of the... locking of the longitudinal control system hydraulic actuator fork end. This condition, if not detected...
NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection
Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu
2017-01-01
ABSTRACT Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51. PMID:27892797
NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.
Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu
2017-02-16
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.
Sando, Steven K.; Vecchia, Aldo V.
2016-07-20
During the extended history of mining in the upper Clark Fork Basin in Montana, large amounts of waste materials enriched with metallic contaminants (cadmium, copper, lead, and zinc) and the metalloid trace element arsenic were generated from mining operations near Butte and milling and smelting operations near Anaconda. Extensive deposition of mining wastes in the Silver Bow Creek and Clark Fork channels and flood plains had substantial effects on water quality. Federal Superfund remediation activities in the upper Clark Fork Basin began in 1983 and have included substantial remediation near Butte and removal of the former Milltown Dam near Missoula. To aid in evaluating the effects of remediation activities on water quality, the U.S. Geological Survey began collecting streamflow and water-quality data in the upper Clark Fork Basin in the 1980s.Trend analysis was done on specific conductance, selected trace elements (arsenic, copper, and zinc), and suspended sediment for seven sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site for water years 1996–2015. The most upstream site included in trend analysis is Silver Bow Creek at Warm Springs, Montana (sampling site 8), and the most downstream site is Clark Fork above Missoula, Montana (sampling site 22), which is just downstream from the former Milltown Dam. Water year is the 12-month period from October 1 through September 30 and is designated by the year in which it ends. Trend analysis was done by using a joint time-series model for concentration and streamflow. To provide temporal resolution of changes in water quality, trend analysis was conducted for four sequential 5-year periods: period 1 (water years 1996–2000), period 2 (water years 2001–5), period 3 (water years 2006–10), and period 4 (water years 2011–15). Because of the substantial effect of the intentional breach of Milltown Dam on March 28, 2008, period 3 was subdivided into period 3A (October 1, 2005–March 27, 2008) and period 3B (March 28, 2008–September 30, 2010) for the Clark Fork above Missoula (sampling site 22). Trend results were considered statistically significant when the statistical probability level was less than 0.01.In conjunction with the trend analysis, estimated normalized constituent loads (hereinafter referred to as “loads”) were calculated and presented within the framework of a constituent-transport analysis to assess the temporal trends in flow-adjusted concentrations (FACs) in the context of sources and transport. The transport analysis allows assessment of temporal changes in relative contributions from upstream source areas to loads transported past each reach outflow.Trend results indicate that FACs of unfiltered-recoverable copper decreased at the sampling sites from the start of period 1 through the end of period 4; the decreases ranged from large for one sampling site (Silver Bow Creek at Warm Springs [sampling site 8]) to moderate for two sampling sites (Clark Fork near Galen, Montana [sampling site 11] and Clark Fork above Missoula [sampling site 22]) to small for four sampling sites (Clark Fork at Deer Lodge, Montana [sampling site 14], Clark Fork at Goldcreek, Montana [sampling site 16], Clark Fork near Drummond, Montana [sampling site 18], and Clark Fork at Turah Bridge near Bonner, Montana [sampling site 20]). For period 4 (water years 2011–15), the most notable changes indicated for the Milltown Reservoir/Clark Fork River Superfund Site were statistically significant decreases in FACs and loads of unfiltered-recoverable copper for sampling sites 8 and 22. The period 4 changes in FACs of unfiltered-recoverable copper for all other sampling sites were not statistically significant.Trend results indicate that FACs of unfiltered-recoverable arsenic decreased at the sampling sites from period 1 through period 4 (water years 1996–2015); the decreases ranged from minor (sampling sites 8–20) to small (sampling site 22). For period 4 (water years 2011–15), the most notable changes indicated for the Milltown Reservoir/Clark Fork River Superfund Site were statistically significant decreases in FACs and loads of unfiltered-recoverable arsenic for sampling site 8 and near statistically significant decreases for sampling site 22. The period 4 changes in FACs of unfiltered-recoverable arsenic for all other sampling sites were not statistically significant.Trend results indicate that FACs of suspended sediment decreased at the sampling sites from period 1 through period 4 (water years 1996–2015); the decreases ranged from moderate (sampling site 8) to small (sampling sites 11–22). For period 4 (water years 2011–15), the changes in FACs of suspended sediment were not statistically significant for any sampling sites.The reach of the Clark Fork from Galen to Deer Lodge is a large source of metallic contaminants and suspended sediment, which strongly affects downstream transport of those constituents. Mobilization of copper and suspended sediment from flood-plain tailings and the streambed of the Clark Fork and its tributaries within the reach results in a contribution of those constituents that is proportionally much larger than the contribution of streamflow from within the reach. Within the reach from Galen to Deer Lodge, unfiltered-recoverable copper loads increased by a factor of about 4 and suspended-sediment loads increased by a factor of about 5, whereas streamflow increased by a factor of slightly less than 2. For period 4 (water years 2011–15), unfiltered-recoverable copper and suspended-sediment loads sourced from within the reach accounted for about 41 and 14 percent, respectively, of the loads at Clark Fork above Missoula (sampling site 22), whereas streamflow sourced from within the reach accounted for about 4 percent of the streamflow at sampling site 22. During water years 1996–2015, decreases in FACs and loads of unfiltered-recoverable copper and suspended sediment for the reach generally were proportionally smaller than for most other reaches.Unfiltered-recoverable copper loads sourced within the reaches of the Clark Fork between Deer Lodge and Turah Bridge near Bonner (just upstream from the former Milltown Dam) were proportionally smaller than contributions of streamflow sourced from within the reaches; these reaches contributed proportionally much less to copper loading in the Clark Fork than the reach between Galen and Deer Lodge. Although substantial decreases in FACs and loads of unfiltered-recoverable copper and suspended sediment were indicated for Silver Bow Creek at Warm Springs (sampling site 8), those substantial decreases were not translated to downstream reaches between Deer Lodge and Turah Bridge near Bonner. The effect of the reach of the Clark Fork from Galen to Deer Lodge as a large source of copper and suspended sediment, in combination with little temporal change in those constituents for the reach, contributes to this pattern.With the removal of the former Milltown Dam in 2008, substantial amounts of contaminated sediments that remained in the Clark Fork channel and flood plain in reach 9 (downstream from Turah Bridge near Bonner) became more available for mobilization and transport than before the dam removal. After the removal of the former Milltown Dam, the Clark Fork above Missoula (sampling site 22) had statistically significant decreases in FACs of unfiltered-recoverable copper in period 3B (March 28, 2008, through water year 2010) that continued in period 4 (water years 2011–15). Also, decreases in FACs of unfiltered-recoverable arsenic and suspended sediment were indicated for period 4 at this site. The decrease in FACs of unfiltered-recoverable copper for sampling site 22 during period 4 was proportionally much larger than the decrease for the Clark Fork at Turah Bridge near Bonner (sampling site 20). Net mobilization of unfiltered-recoverable copper and arsenic from sources within reach 9 are smaller for period 4 than for period 1 when the former Milltown Dam was in place, providing evidence that contaminant source materials have been substantially reduced in reach 9.
Von Economo Neurons and Fork Cells: A Neurochemical Signature Linked to Monoaminergic Function.
Dijkstra, Anke A; Lin, Li-Chun; Nana, Alissa L; Gaus, Stephanie E; Seeley, William W
2018-01-01
The human anterior cingulate and frontoinsular cortices are distinguished by 2 unique Layer 5 neuronal morphotypes, the von Economo neurons (VENs) and fork cells, whose biological identity remains mysterious. Insights could impact research on diverse neuropsychiatric diseases to which these cells have been linked. Here, we leveraged the Allen Brain Atlas to evaluate mRNA expression of 176 neurotransmitter-related genes and identified vesicular monoamine transporter 2 (VMAT2), gamma-aminobutyric acid (GABA) receptor subunit θ (GABRQ), and adrenoreceptor α-1A (ADRA1A) expression in human VENs, fork cells, and a minority of neighboring Layer 5 neurons. We confirmed these results using immunohistochemistry or in situ hybridization. VMAT2 and GABRQ expression was absent in mouse cerebral cortex. Although VMAT2 is known to package monoamines into synaptic vesicles, in VENs and fork cells its expression occurs in the absence of monoamine-synthesizing enzymes or reuptake transporters. Thus, VENs and fork cells may possess a novel, uncharacterized mode of cortical monoaminergic function that distinguishes them from most other mammalian Layer 5 neurons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of acid mine drainage on the stream ecosystem of the east fork of the Obey River, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, L.E.; Bulow, F.L.
1973-01-01
The stream ecosystem of the east fork of the Obey River, Tennessee was studied from January through December 1970. Emphasis centered on water quality, macroinvertebrates, fish and aquatic flora affected by acid mine drainage. Two control stations were established within the study area, one located below the zone of pollution. A reservoir station was established to detect any neutralization occurring within Dale Hollow Reservoir below the confluence of the east fork and west fork. An area approximately 40 miles in length was found to be severely degraded by acid mine drainage. Limited macroinvertebrate populations existed within this region. Chironomus andmore » Sialis were the predominate benthic indicator organisms present in the polluted zone. Euglena mutabilis was the most abundant representative organism of the aquatic flora. This organism was found to be characteristic of acid mine pollution. Fish were recovered above and below, but not within, the zone of pollution. Fish recovered were characteristic of the type of habitat in which they were collected, being either typical stream or reservoir fish. A fish kill occurred in the east fork embayment of Dale Hollow on August 15, 1970 from acid mine drainage discharged upstream.« less
The annealing helicase and branch migration activities of Drosophila HARP.
Kassavetis, George A; Kadonaga, James T
2014-01-01
HARP (SMARCAL1, MARCAL1) is an annealing helicase that functions in the repair and restart of damaged DNA replication forks through its DNA branch migration and replication fork regression activities. HARP is conserved among metazoans. HARP from invertebrates differs by the absence of one of the two HARP-specific domain repeats found in vertebrates. The annealing helicase and branch migration activity of invertebrate HARP has not been documented. We found that HARP from Drosophila melanogaster retains the annealing helicase activity of human HARP, the ability to disrupt D-loops and to branch migrate Holliday junctions, but fails to regress model DNA replication fork structures. A comparison of human and Drosophila HARP on additional substrates revealed that both HARPs are competent in branch migrating a bidirectional replication bubble composed of either DNA:DNA or RNA:DNA hybrid. Human, but not Drosophila, HARP is also capable of regressing a replication fork structure containing a highly stable poly rG:dC hybrid. Persistent RNA:DNA hybrids in vivo can lead to replication fork arrest and genome instability. The ability of HARP to strand transfer hybrids may signify a hybrid removal function for this enzyme, in vivo.
Accurate aging of juvenile salmonids using fork lengths
Sethi, Suresh; Gerken, Jonathon; Ashline, Joshua
2017-01-01
Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging.
A three-fingered, touch-sensitive, metrological micro-robotic assembly tool
NASA Astrophysics Data System (ADS)
Torralba, Marta; Hastings, D. J.; Thousand, Jeffery D.; Nowakowski, Bartosz K.; Smith, Stuart T.
2015-12-01
This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere. Finally, assemblies of spheres onto the edge of a razor blade plus assembly of spherical contact probes for micro-meter scale coordinate measurement applications are presented.
CANVAS FINISH TO REMOVE FLOAT MARKS. View is to the ...
CANVAS FINISH TO REMOVE FLOAT MARKS. View is to the northwest of deck finishing operations - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
27 CFR 9.65 - North Fork of Roanoke.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the North... and 697 in Roanoke County. (2) Then the boundary follows State Route 697 northeast over Crawford Ridge...
27 CFR 9.65 - North Fork of Roanoke.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the North... and 697 in Roanoke County. (2) Then the boundary follows State Route 697 northeast over Crawford Ridge...
14. View to southwest. View through truss along centerline from ...
14. View to southwest. View through truss along centerline from below deck. (65mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
20. View to southeast. Aerial view of bridge in setting; ...
20. View to southeast. Aerial view of bridge in setting; downstream side. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
COUNTERWEIGHT FOOTINGS ON EAST SIDE. View is to the north ...
COUNTERWEIGHT FOOTINGS ON EAST SIDE. View is to the north from the old suspension bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
13. View to northeast. View along centerline from Humboldt County ...
13. View to northeast. View along centerline from Humboldt County side of bridge. (90mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
JIGGER STICK USED IN ERECTION. Shown on highline, direction of ...
JIGGER STICK USED IN ERECTION. Shown on highline, direction of view is probably to the north - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
12. View to southwest. View along centerline from Trinity County ...
12. View to southwest. View along centerline from Trinity County side of bridge. (90mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
11. View to southeast. More distant overview of bridge in ...
11. View to southeast. More distant overview of bridge in setting; downstream side. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
26. MOORSE DRILL CABINET AND FORK ART FABRICATED AT SHOP ...
26. MOORSE DRILL CABINET AND FORK ART FABRICATED AT SHOP (L TO R)- LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Woods, Paul F.
2000-01-01
The Coeur d’Alene River near Harrison transported 924 pounds of dissolved lead per day, of which 82.8 pounds came from the South Fork and 11.7 pounds from the North Fork. Only 10.2 percent of the load at Harrison was measured at the Pinehurst and Enaville stations; therefore, a substantial load of dissolved lead is being contributed downstream from the confluence of the North and South Forks.
1981-04-01
and will not be impacted. Remarks: Level II. Father William Sherman, Pastor of St. Michael’s Church can be reached at St. Michael’s Church, 520 North...Trygg, J. William 1967 Composite Map of the Uni- % [ted States Land Surveyors’ L Original Plats and Field Notes, Minnesota Series, Sheet 20, Ely...Investigators/Years: Surveyors’ Original Plats and Notes, ’ 1872 Report/Reference: Trygg, J. William * 1967 Composite Map of United States Surveyors
Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica
2008-01-01
Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.
Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing
NASA Astrophysics Data System (ADS)
Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig
2017-06-01
Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high-pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.
37. BRIDGE 115, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY ...
37. BRIDGE 1-15, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY 199. JOSEPHINE COUNTY, OREGON. LOOKING SSW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA
2. GENERAL VIEW OF BRIDGE FROM ROADBED WITH 4' RANGE ...
2. GENERAL VIEW OF BRIDGE FROM ROADBED WITH 4' RANGE POLE NEAR NORTHWEST CORNER OF BRIDGE, LOOKING SOUTH - North Fork Bridge, Spans North Fork of White River at State Highway 5, Norfork, Baxter County, AR
PIER 2. View is to the northeast, looking from Pier ...
PIER 2. View is to the northeast, looking from Pier 1 toward Pier 2 from beneath completed bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
3. View to southwest. Oblique view of downstream side of ...
3. View to southwest. Oblique view of downstream side of bridge and west pier. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
2. View to east. Oblique view of downstream side of ...
2. View to east. Oblique view of downstream side of bridge and east pier. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
9. View to northeast. Oblique view of upstream side of ...
9. View to northeast. Oblique view of upstream side of bridge from approximately deck level. (90mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
PLACING TOP CHORD CENTER PANEL. View to the northwest from ...
PLACING TOP CHORD CENTER PANEL. View to the northwest from the old suspension bridge. Chord members in place - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
17. View to west. Detail, connection point L2 (see plans), ...
17. View to west. Detail, connection point L2 (see plans), from below deck. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
35. CHARGING DOOR OF CUPOLA FORM LOFT, WITH FORKS FOR ...
35. CHARGING DOOR OF CUPOLA FORM LOFT, WITH FORKS FOR FEEDING COKE, FOUNDRY BELOW-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
6. VIEW FACING EAST ALONG NORTH FACE OF BRIDGE AT ...
6. VIEW FACING EAST ALONG NORTH FACE OF BRIDGE AT CONSTRUCTION DETAILS OF WOOD RAILINGS AND STONE ABUTMENTS. - South Fork Tuolumne River Bridge, Spanning South Fork Tuolumne River on Tioga Road, Mather, Tuolumne County, CA
17. DETAIL VIEW OF WHAT APPEARS TO BE STIRRING FORK ...
17. DETAIL VIEW OF WHAT APPEARS TO BE STIRRING FORK THAT MIXED COFFEE BEANS AS THEY WERE HUSKED - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR
Reheis, M.C.
1988-01-01
A chronosequence of calcic soils formed on granitic glaciofluvial terrace deposits of Rock Creek and the Clarks Fork in south-central Montana shows progressive replacement of aluminosilicate parent-material grains by calcium-magnesium carbonate. The terraces range from late Pliocene to Holocene in age as dated by tephrochronology, correlation, and stream incision rates. Replacement is first seen in soils that are as old as 120,000 yr; the amount and degree of replacement increase in soils older than 120,000 yr along with the development of calcic horizons. Under the petrographic microscope, carbonate replacement of quartz, feldspars, and the groundmass of andesite grains in Rock Creek soils is shown by embayed grains, networks of carbonate along cracks and between parts of polycrystalline grains and optically aligned grain fragments within carbonate masses. Microprobe data suggest that silica is released by replacement because it is absent from carbonate-filled spaces and is depleted in corrosion pits. Little microscopic evidence exists to support displacement of framework grains by carbonate because fragments of a single grain are rarely rotated out of optical alignment. In the calcic soils of Rock Creek, K-fabric (grains floating in a carbonate matrix) may form by both replacement and displacement. ?? 1988.
de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E
2013-02-01
We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.
Is there sufficient evidence for tuning fork tests in diagnosing fractures? A systematic review.
Mugunthan, Kayalvili; Doust, Jenny; Kurz, Bodo; Glasziou, Paul
2014-08-04
To determine the diagnostic accuracy of tuning fork tests for detecting fractures. Systematic review of primary studies evaluating the diagnostic accuracy of tuning fork tests for the presence of fracture. We searched MEDLINE, CINAHL, AMED, EMBASE, Sports Discus, CAB Abstracts and Web of Science from commencement to November 2012. We manually searched the reference lists of any review papers and any identified relevant studies. Two reviewers independently reviewed the list of potentially eligible studies and rated the studies for quality using the QUADAS-2 tool. Data were extracted to form 2×2 contingency tables. The primary outcome measure was the accuracy of the test as measured by its sensitivity and specificity with 95% CIs. We included six studies (329 patients), with two types of tuning fork tests (pain induction and loss of sound transmission). The studies included patients with an age range 7-60 years. The prevalence of fracture ranged from 10% to 80%. The sensitivity of the tuning fork tests was high, ranging from 75% to 100%. The specificity of the tests was highly heterogeneous, ranging from 18% to 95%. Based on the studies in this review, tuning fork tests have some value in ruling out fractures, but are not sufficiently reliable or accurate for widespread clinical use. The small sample size of the studies and the observed heterogeneity make generalisable conclusion difficult. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
15. View to northeast. View along centerline from below deck; ...
15. View to northeast. View along centerline from below deck; detail of bent and floor beams. (65mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
STEEL ERECTION. View of upstream side of bridge, looking north ...
STEEL ERECTION. View of upstream side of bridge, looking north from the old suspension bridge at unjoined cantilever arms - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
16. View to southsouthwest. Detail, connection point U1 (see plans), ...
16. View to south-southwest. Detail, connection point U1 (see plans), from below deck. (135mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
LOWER CHORD ERECTION. View is to northnorthwest from the old ...
LOWER CHORD ERECTION. View is to north-northwest from the old suspension bridge. Chord members suspended from jigger stick - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
STEEL ERECTION. View is to the north from the old ...
STEEL ERECTION. View is to the north from the old suspension bridge, looking at upstream side of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
4. View to westsouthwest. Oblique view of upstream side of ...
4. View to west-southwest. Oblique view of upstream side of bridge from approximately deck level. (90mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
117. Laurel Fork Viaduct. Elevation view of this 545 1939 ...
117. Laurel Fork Viaduct. Elevation view of this 545 1939 steel girder viaduct. Example of structure with plain reinforced concrete arches. Looking northwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
..., 13000637 NORTH DAKOTA Grand Forks County Hariman Sanatorium, 2002 University Ave., Grand Forks, 13000633... Municipal de la Playa de Ponce, 28 Alfonso XII St., Ponce, 13000639 UTAH Salt Lake County Bennion, Howard...
Messinger, Terence; Paybins, Katherine S.
2003-01-01
Large-scale surface mining using valley fills has changed hydrologic storage and processes in the Ballard Fork Watershed in West Virginia. Total unit flow for the 2-year study period (November 15, 1999?November 14, 2001) on the Unnamed Tributary (extensively mined) (11,700 cubic feet per second per square mile) was almost twice that on Spring Branch (unmined) (6,260 cubic feet per second per square mile), and about 1.75 times that on Ballard Fork (downstream, partly mined) (6,690 cubic feet per second per square mile). Unit flow from the Unnamed Tributary exceeded that from the other two streams for all flows analyzed (5?95 percent duration). Unit flow from Ballard Fork exceeded unit flow from Spring Branch about 80 percent of the time, but was about the same for high flows (less than 20 percent duration). The proportional differences among sites were greatest at low flows. Spring Branch was dry for several days in October and November 2000 and for most of October 2001, and the Unnamed Tributary had flow throughout the study period. The increase in flows from mined parts of the Ballard Fork Watershed appears to result from decreases in evapotranspiration caused by removal of trees and soil during mining. During both years, evapotranspiration from the Spring Branch Watershed greatly exceeded that from the Unnamed Tributary Watershed during May through October, when leaves were open. Evapotranspiration from the Unnamed Tributary Watershed slightly exceeded that from the Spring Branch Watershed in February and March during both years. Evapotranspiration, as a percentage of total rainfall, decreased from the first to the second, drier, year from the Unnamed Tributary Watershed (from 61 percent to 49 percent) but changed little from the Spring Branch (from 77 to 76 percent) and Ballard Fork (73 to 76 percent) Watersheds. Precipitation and flow during the study period at three nearby long-term sites, the U.S. Geological Survey stream-gaging station East Fork Twelvepole Creek near Dunlow, West Virginia, and two National Oceanic Atmospheric Administration rain gages at Madison and Dunlow, West Virginia, were less than long-term annual averages. Relations observed among the three streams in the Ballard Fork Watershed during this study may not represent those in years when annual precipitation and flow are closer to long-term averages.
NASA Astrophysics Data System (ADS)
Kafashi, Sajad
A need for dynamic micro-particle manipulation is the ability to position fragile particles without damaging them, for instance biological particles like blood cells, stem cells, neurons, pancreatic ? cells, DNA, chromosomes, for repeated measurement without altering their behavior. An oscillating fiber will induce vortices in a slurry of particles, subsequently the vortex force created by this oscillation attracts and traps the particles located at steady streaming micro-eddies. If multiple oscillatory fibers are placed inside the slurry, depending on frequency and timing of oscillation this method can be used for contact-free particle shepherding and sorting and for transporting particles from one location to another. Due to the complicated dynamics of particles traveling in the fluid and the presence of noise, and significant number of particles, attempts to use commercial PIV softwares to track individual particle paths could not discriminate real particles from noise interference. To enhance identification and tracking of individual particles a novel encoded-particle tracking velocimetry (ePTV) technique is developed in this dissertation work and used in the experiments to track the particle trajectories. An analytic model is developed to determine the number of lost particles due to the finite image size based on a calculation of the probability that imaged particles of a specific mean velocity or having a uniform velocity distribution and encoding pattern will exit the field of view. The encoded pulse technique has been implemented in experiments for which images containing 100-200 objects including encoded trajectories have been measured. Using the developed ePTV algorithm approximately 30 % of the identified objects were classified as an encoded particle trajectory. Two types of oscillation mechanism are used in the experimental component of this study, a PZT flexure-based macro-probe driven at frequencies around 250 Hz and higher frequency dynamic-absorber, quartz-based, micro-probes driven at frequencies around 32 kHz. Two models for predicting the frequency response of micro-scale oscillatory probes are developed in this dissertation. In these studies, the attached fibers were either 75 mum diameter tungsten or 7 mum diameter carbon with lengths ranging from around 1 to 15 mm. The oscillators used in these experiments were commercial 32.768 kHz quartz tuning forks. Theoretical predictions of the values of the natural frequencies for different vibration modes show an asymptotic relationship with the length and a linear relationship with the diameter of the attached fiber. Similar results are observed from experiment, one with a tungsten probe having an initial fiber length of 14.11 mm incrementally etched down to 0.83 mm, and another tungsten probe of length 8.16 mm incrementally etched in diameter, in both cases using chronocoulometry to determine incremental volumetric material removal. Of particular relevance is that, when a 'zero' is observed in the response of the tine, one mode of the fiber is matched to the tine frequency and is acting as an absorber. This represents an optimal condition for contact sensing and for transferring energy to the fiber for fluid mixing, touch sensing and surface modification applications. Consequently the parametric models developed in this dissertation can be utilized for designing probes of arbitrary sizes thereby eliminating the empirical trial and error previously used.
Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.
2008-01-01
The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a wastewater-treatment plant discharge and concentrations at sites farther downstream probably had lesser concentrations because of dilution effects and from algal uptake. Nutrient concentrations generally were significantly greater during high-flow conditions compared to base-flow conditions. Flow-weighted nutrient concentrations were computed for the three streamflow sites and were compared to 82 relatively undeveloped sites identified across the Nation, to the Alum Fork of the Saline River near Reform, Arkansas, and to the Illinois River south of Siloam Springs, Arkansas, a site influenced by numerous point and nonpoint sources of nutrients. Annual flow-weighted nutrient concentrations for MFS06, MFS05, and MFS02 were greater than relatively undeveloped sites, but were substantially less than the Illinois River south of Siloam Springs. Fecal indicator bacteria concentrations were slightly greater at MFS06 and MFS05 compared to concentrations at MFS02 for October 2003 to October 2006. MFS05 had the greatest E.coli concentrations and MFS06 had the greatest fecal coliform concentrations. Overall, fecal indicator bacteria concentrations were significantly greater for samples collected during high-flow conditions compared to samples collected during low-flow conditions at all three sites. Suspended-sediment concentrations did not vary significantly among MFS06, MFS05, and MFS02 for all the samples collected from October 2003 to October 2006. Suspended-sediment concentrations were significantly greater in samples collected during high-flow conditions compared to samples collected during base-flow conditions. Synoptic samples indicated varied total suspended-solids distributions from upstream to downstream in the Middle Fork between January 2004 and October 2006. Overall, total suspended-solids values were the greatest at site MFS02 and decreased at sites upstream and downstream. Turbidity measured when water-quality samples were
Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.
2006-01-01
Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous is present in abundances between 25 and 75 ppm, and P concentrations in quartz show little variation among quartz generations. Iron is the least abundant of these elements in most quartz types and is slightly enriched in CL-dark quartz in pyrite-quartz veins with sericitic alteration. Titanium is directly correlated with both temperature of quartz precipitation, and intensity of quartz luminescence, such that BQM quartz contains hundreds of ppm Ti, whereas Main Stage quartz contains less than 10 ppm Ti. Our results suggest that Ti concentration in quartz is controlled by temperature of quartz precipitation and that increased Ti concentrations in quartz may be responsible for increased CL intensities.
Impedance method for measuring shear elasticity of liquids
NASA Astrophysics Data System (ADS)
Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.
2017-11-01
Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.
NASA Astrophysics Data System (ADS)
Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.
2018-02-01
The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.
PLACING DIAGONALS IN CENTER PANEL. View is northnorthwest from the ...
PLACING DIAGONALS IN CENTER PANEL. View is north-northwest from the old suspension bridge, looking at upstream side of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA