ERIC Educational Resources Information Center
McKenna, Victoria S.; Llico, Andres F.; Mehta, Daryush D.; Perkell, Joseph S.; Stepp, Cara E.
2017-01-01
Purpose: This study examined the relationship between the magnitude of neck-surface vibration (NSV[subscript Mag]; transduced with an accelerometer) and intraoral estimates of subglottal pressure (P'[subscript sg]) during variations in vocal effort at 3 intensity levels. Method: Twelve vocally healthy adults produced strings of /p?/ syllables in 3…
System for estimating fatigue damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonds, Jeffrey; Guzzo, Judith Ann; Liu, Shaopeng
In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual risermore » components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.« less
Balloon-Borne, High Altitude Gravimetry: The Flight of DUCKY Ia (11 October 1983)
1985-12-31
three rate gyros, three-axis magnetometer and two tiltmeters ) combined with ground tracking (X, Y and Z position and velocity) will allow fqX_.,ep ar a...2.3 Sensors 9 2.3.1 Vibrating String Accelerometer (VSA) 9 2.3.1.1 Mechanical Liyout of’ System 10 2.3.i.2 VSA System Description i0 2.3.1.3 Method for...Block Diagram 11 2.2 A Sketch of the VSA Sensor 12 3.1 A Photograph of the Payload, Named DUCKY Ia, Just After Transport to the Launch Site 22 3.2 A
Vibration sensing in smart machine rotors using internal MEMS accelerometers
NASA Astrophysics Data System (ADS)
Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.
2016-09-01
This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.
Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers
NASA Astrophysics Data System (ADS)
Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.
2018-04-01
Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
ERIC Educational Resources Information Center
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
Display-And-Alarm Circuit For Accelerometer
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.
Vibration of a string against multiple spring-mass-damper stoppers
NASA Astrophysics Data System (ADS)
Shin, Ji-Hwan; Talib, Ezdiani; Kwak, Moon K.
2018-02-01
When a building sways due to strong wind or an earthquake, the elevator rope can undergo resonance, resulting in collision with the hoist-way wall. In this study, a hard stopper and a soft stopper comprised of a spring-mass-damper system installed along the hoist-way wall were considered to prevent the string from undergoing excessive vibrations. The collision of the string with multiple hard stoppers and multiple spring-mass-damper stoppers was investigated using an analytical method. The result revealed new formulas and computational algorithms that are suitable for simulating the vibration of the string against multiple stoppers. The numerical results show that the spring-mass-damper stopper is more effective in suppressing the vibrations of the string and reducing structural failure. The proposed algorithms were shown to be efficient to simulate the motion of the string against a vibration stopper.
NASA Astrophysics Data System (ADS)
Irwandi; Rusydy, Ibnu; Muksin, Umar; Rudyanto, Ariska; Daryono
2018-05-01
Wave vibration confined in the boundary will produce stationary wave solution in discrete states called modes. There are many physics applications related to modal solutions such as air column resonance, string vibration, and emission spectrum of the atomic Hydrogen. Naturally, energy is distributed in several modes so that the complete calculation is obtained from the sum of the whole modes called modal summation. The modal summation technique was applied to simulate the surface wave propagation above crustal structure of the earth. The method is computational because it uses 1D structural model which is not necessary to calculate the overall wave propagation. The simulation results of the magnitude 6.5 Pidie Jaya earthquake show the response spectral of the Summation Technique has a good correlation to the observed seismometer and accelerometer waveform data, especially at the KCSI (Kotacane) station. On the other hand, at the LASI (Langsa) station shows the modal simulation result of response is relatively lower than observation. The lower value of the reaction spectral estimation is obtained because the station is located in the thick sedimentary basin causing the amplification effect. This is the limitation of modal summation technique, and therefore it should be combined with different finite simulation on the 2D local structural model of the basin.
Pitch glide effect induced by a nonlinear string-barrier interaction
NASA Astrophysics Data System (ADS)
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
The three-dimensional simulation analysis of dynamic response on perforated strings
NASA Astrophysics Data System (ADS)
Li, M. F.; Liu, H. F.; Dou, Y. H.; Cao, L. H.; Liu, Y. X.
2018-06-01
It analyzes the dynamic response and stresses of perforating tubular string to detonating impact load in oil-gas well in ANSYS, obtains the response of vibration displacement, velocity and acceleration of perforating tubularstring caused by detonating impact load, finds the influence of the length and wall thickness of perforating tubular string to working stresses. The result shows that:when the detonating impact load exerts the perforating tubular string with compressive and tensile axial force alternatively;the vibration displacement, velocity and acceleration of perfora-ting tubular string change periodically at same cycle;the closer to the perforating gun, the larger the amplitude of vi-bration velocity and acceleration;the closer to the packer the smaller the vibration displacement, the larger the work-ing equivalent stress of perforating tubular string;the longer or the thicker the perforating tubular string, the smaller the working equivalent stress and the higher the strength safety. Therefore, it uses the damping tube between packer and perforating gun as well as thick walled tubing to increase the strength safety of perforating tubular string.
A Simple Accelerometer Calibrator
NASA Astrophysics Data System (ADS)
Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal
2016-08-01
High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
NASA Astrophysics Data System (ADS)
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
Determination of shuttle orbiter center of gravity from flight measurements
NASA Technical Reports Server (NTRS)
Hinson, E. W.; Nicholson, J. Y.; Blanchard, R. C.
1991-01-01
Flight measurements of pitch, yaw, and roll rates and the resultant rotationally induced linear accelerations during three orbital maneuvers on Shuttle mission space transportation system (STS) 61-C were used to calculate the actual orbiter center-of-gravity location. The calculation technique reduces error due to lack of absolute calibration of the accelerometer measurements and compensates for accelerometer temperature bias and for the effects of gravity gradient. Accuracy of the technique was found to be limited by the nonrandom and asymmetrical distribution of orbiter structural vibration at the accelerometer mounting location. Fourier analysis of the vibration was performed to obtain the power spectral density profiles which show magnitudes in excess of 10(exp 4) ug (sup 2)/Hz for the actual vibration and over 500 ug (sup 2)/Hz for the filtered accelerometer measurements. The data from this analysis provide a characterization of the Shuttle acceleration environment which may be useful in future studies related to accelerometer system application and zero-g investigations or processes.
GPS-aided gravimetry at 30 km altitude from a balloon-borne platform
NASA Technical Reports Server (NTRS)
Lazarewicz, Andrew R.; Evans, Alan G.
1989-01-01
A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.
Computer Corner: Computer Graphics for the Vibrating String.
ERIC Educational Resources Information Center
Smith, David A.; Cunningham, R. Stephen
1986-01-01
Computer graphics are used to display the sum of the first few terms of the series solution for the problem of the vibrating string frequently discussed in introductory courses on differential equations. (MNS)
Tool enables proper mating of accelerometer and cable connector
NASA Technical Reports Server (NTRS)
Steed, C. N.
1966-01-01
Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.
Hydromonochord: Visualizing String Vibration by Water Swirls
ERIC Educational Resources Information Center
Sommer, Wilfried; Meier-Boke, Ralf; Meinzer, Nicholas
2010-01-01
The hydromonochord is a horizontal vibrating string that just makes contact with the surface of a water bath. The motion of the string sets up a pattern of swirls on the surface of the water, thus complementing the usual pattern of nodes and antinodes. The device is based on the traditional monochord. A water basin (Fig. 1) has two slits in the…
Active damping of spacecraft structural appendage vibrations
NASA Technical Reports Server (NTRS)
Fedor, Joseph V. (Inventor)
1990-01-01
An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.
Accelerometer having integral fault null
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1995-08-01
An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.
Accelerometer having integral fault null
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1995-01-01
An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.
NASA Astrophysics Data System (ADS)
Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.
2017-12-01
The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ω<ωc, the wave transition cannot be attained for a string on an elastic foundation, but is possible if the string is on a viscoelastic foundation. Although this study is primarily formulated for a harmonic boundary excitation at one end of the string, generalization of the mode complexity can be deduced for the steady-state forced response of the string-foundation system to synchronous end excitations and is confirmed numerically. This work represents a novel study to understand the wave transitions in a dispersive structural system and lays the groundwork for potentially effective passive vibration control strategies.
Simple wave drivers: electric toothbrush, shaver and razor
NASA Astrophysics Data System (ADS)
Kağan Temiz, Burak; Yavuz, Ahmet
2018-05-01
This study was conducted to develop simple and low-cost wave drivers that can be used in experiments on string waves. These wave drivers were made using a toothbrush (Oral-B Vitality), an electric shaver (Braun 7505) and a razor (Gillette Fusion Proglide Power). A common feature of all of these product is that they have vibration motors. In the experiments, string waves were generated by transferring these vibrations to a stretched string. By changing the tightness and length of the string, standing waves were generated, and various harmonics were observed.
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
Thrailkill, Elizabeth A; Lowndes, Bethany R; Hallbeck, M Susan
2013-01-01
A sulky is a single-wheeled platform attachment on which the operator of a commercial walk-behind lawn mower rides while standing. The effects of sulky vibration on operator comfort and health have not been investigated. In this study, tri-axial accelerometers measured sulky vibration during mower use by two commercial mowers on varied terrain and 12 volunteer mowers over a controlled course. The accelerometer data were processed according to methods established in ISO 2631. Results indicate the mean frequency-weighted root mean square (RMS) acceleration sums fall into the 'very uncomfortable' range for vibration of standing persons (1.9 ± 0.48 m s⁻²). Additionally, vibration dose values indicated that the mean vibration dosages exceeded the daily exposure limit values established in Directive 2002 /44/EC (z-axis A(8) value of 1.30 ± 34 m s⁻²; VDV(exp) value of 28.1 ± 6.25 m s⁻¹·⁷⁵). This information suggests that modifications including vibration damping should be added to the sulky to reduce rider discomfort and health risks. This study investigated the effects of vibration during use of a commercial lawn mowing sulky. Findings from accelerometer data suggest that the vibration experienced by sulky operators is significant enough to cause discomfort and health risks which may lead to personnel turnover or long-term effects for the operator.
NASA Astrophysics Data System (ADS)
Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.
2016-06-01
We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël
We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. Wemore » show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.« less
Self Diagnostic Accelerometer Testing on the C-17 Aircraft
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.
Choice and Effects of Instrument Sound in Aural Training
ERIC Educational Resources Information Center
Loh, Christian Sebastian
2007-01-01
A musical note produced through the vibration of a single string is psychoacoustically simpler/purer than that produced via multiple-strings vibration. Does the psychoacoustics of instrument sound have any effect on learning outcomes in music instruction? This study investigated the effect of two psychoacoustically distinct instrument sounds on…
Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen
2016-02-23
An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.
Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen
2016-01-01
An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297
Accelerometer method and apparatus for integral display and control functions
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-06-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily mountable on the machinery being monitored and having capabilities described will be appreciated by those working in the art.
Accelerometer method and apparatus for integral display and control functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily mountable on the machinery being monitored and having capabilities described will be appreciated by those working in the art.
Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.
Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W
2015-08-21
Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.
Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging
NASA Astrophysics Data System (ADS)
Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.
2015-08-01
Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.
Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.
Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas
2016-12-16
In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.
Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection
Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas
2016-01-01
In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering. PMID:27999245
Whiteheadian Actual Entitities and String Theory
NASA Astrophysics Data System (ADS)
Bracken, Joseph A.
2012-06-01
In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.
Vibration Measurement Method of a String in Transversal Motion by Using a PSD.
Yang, Che-Hua; Wu, Tai-Chieh
2017-07-17
A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string's natural frequency, increase while the speed of motion increases.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2014-09-01
The differential equation of damped string vibrations was obtained with the finite speed of extension and strain propagation in the Hooke's law formula taken into account. In contrast to the well-known equations, the obtained equation contains the first and third time derivatives of the displacement and the mixed derivative with respect to the space and time variables. Separation of variables was used to obtain its exact closed-form solution, whose analysis showed that, for large values of the relaxation coefficient, the string return to the initial state after its escape from equilibrium is accompanied by high-frequency low-amplitude damped vibrations, which occur on the initial time interval only in the region of positive displacements. And in the limit, for some large values of the relaxation coefficient, the string return to the initial state occurs practically without any oscillatory process.
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Self diagnostic accelerometer ground testing on a C-17 aircraft engine
NASA Astrophysics Data System (ADS)
Tokars, Roger P.; Lekki, John D.
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachiv, Ivo, E-mail: stachiv@fzu.cz; Institute of Physics, Czech Academy of Sciences, Prague; Fang, Te-Hua
2015-11-15
Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string andmore » string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.« less
Fourier analysis of a vibrating string through a low-cost experimental setup and a smartphone
NASA Astrophysics Data System (ADS)
Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.
2018-07-01
In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This dependence was studied using the Fourier analysis of the sound produced by the vibration of the string with a smartphone. The simplicity of the proposed activity makes it suitable to be implemented in any classroom to illustrate the concept of normal modes and as an example of Fourier series in a real system that is also familiar for the students.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Free and forced vibrations of an eccentrically rotating string on a viscoelastic foundation
NASA Astrophysics Data System (ADS)
Soedel, S. M.; Soedel, W.
1989-12-01
Equations of motion of an eccentrically rotating cord on a viscoelastic foundation, derived by way of Hamilton's principle, are solved for free and forced vibrations. The natural frequencies during rotation are bifurcations of the stationary string values. The natural modes are complex and can be interpreted as mode pairs spinning with and against the string rotation. The general forced solution is expanded in terms of these complex modes. Results are given for an example of steady state harmonic response because of its practical significance to aircraft or automobile tire design.
NASA Astrophysics Data System (ADS)
Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.
2014-05-01
The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.
Analysis of STS-3 Get Away Special (GAS) flight data and vibration specification for gas payloads
NASA Technical Reports Server (NTRS)
Talapatra, D. C.
1983-01-01
During the Space Transportation System (STS)-3 mission, a Get Away Special (GAS) canister was flown. In order to determine the flight environment for GAS payloads, triaxial accelerometers and a microphone were installed inside the GAS canister. Data from these accelerometers and the microphone were analyzed. The microphone data is presented as overall sound pressure level (SPL) and one-third octave band time history plots. And the accelerometer data is provided in the forms of instantaneous time history, RMS time history and power spectral density plots. Also based on this flight data, vibration test specification for GAS payloads was developed and the recommended specification is presented here.
The Illusive Sound of a Bundengan String
ERIC Educational Resources Information Center
Parikesit, Gea O. F.; Kusumaningtyas, Indraswari
2017-01-01
The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses.…
NASA Astrophysics Data System (ADS)
Rossing, Thomas D.
In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano - probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.
NASA Astrophysics Data System (ADS)
Mandal, A. K.; Wahi, P.
2015-03-01
We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.
Generation of longitudinal vibrations in piano strings: From physics to sound synthesis
NASA Astrophysics Data System (ADS)
Bank, Balázs; Sujbert, László
2005-04-01
Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano notes. In this paper a simplified modal model is developed, which describes the generation of phantom partials and longitudinal free modes jointly. The model is based on the simplification that the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The modal formulation makes it possible to predict the prominent components of longitudinal vibration as a function of transverse modal frequencies. This provides a qualitative insight into the generation of longitudinal vibration, while the model is still capable of explaining the empirical results of earlier works. The semi-quantitative agreement with measurement results implies that the main source of phantom partials is the transverse to longitudinal coupling, while the string termination and the longitudinal to transverse coupling have only small influence. The results suggest that the longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike peaks at the longitudinal modal frequencies. The model is further simplified and applied for the real-time synthesis of piano sound with convincing sonic results. .
DOT National Transportation Integrated Search
2012-03-01
Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...
Vibration Analysis and the Accelerometer
ERIC Educational Resources Information Center
Hammer, Paul
2011-01-01
Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…
Melde's Experiment on a Vibrating Liquid Foam Microchannel
NASA Astrophysics Data System (ADS)
Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe
2017-12-01
We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.
Melde's Experiment on a Vibrating Liquid Foam Microchannel.
Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe
2017-12-08
We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.
3. Credit WCT. Original 4"x5" black and white negative is ...
3. Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view of the vibrator shows a large mounted ATS (Advanced Technology Satellite) motor. Accelerometer instrumentation has been added. JPL caption reads "C-210E Vibration Exciter ATS Accelerometer Installation on Q4TX AXIS" (JPL negative no. 384-5848B, 31 March 1966). - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.
Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong
2017-01-22
To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.
Rail passenger equipment collision tests : analysis of structural measurements
DOT National Transportation Integrated Search
2000-11-01
A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...
NASA Astrophysics Data System (ADS)
Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian
2015-04-01
Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.
NASA Astrophysics Data System (ADS)
Evans, David J.
2002-11-01
The documentary standards defining internationally adopted methodologies and protocols for calibrating transducers used to measure vibration are currently developed under the International Organization for Standardization (ISO) Technical Committee 108 Sub Committee 3 (Use and calibration of vibration and shock measuring instruments). Recent revisions of the documentary standards on primary methods for the calibration of accelerometers used to measure rectilinear motion have been completed. These standards can be, and have been, used as references in the technical protocols of key international and regional comparisons between National Measurement Institutes (NMIs) on the calibration of accelerometers. These key comparisons are occurring in part as a result of the creation of the Mutual Recognition Arrangement between NMIs which has appendices that document the uncertainties, and the comparisons completed in support of the uncertainties, claimed by the National Laboratories that are signatories of the MRA. The measurements for the first international and the first Interamerican System of Metrology (SIM) regional key comparisons in vibration have been completed. These intercomparisons were promulgated via the relatively new Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV) of the International Committee for Weights and Measures (CIPM) and SIM Metrology Working Group (MWG) 9, respectively.
Possibilities of three-component geoacoustic logging at hydrocarbon deposits.
NASA Astrophysics Data System (ADS)
Trojanov, Alexandr; Astrakhantsev, Yurie; Nachapkin, Nikolay; Beloglasova, Nadejda; Bajenova, Evgenia; Vdovin, Alexey
2013-04-01
The geophysical method of oil-gas borehole investigation devised at the Institute of geophysics UB of RAS studies characteristics of geoacoustic emission (GAE) over the frequency range of 0.1÷5 kHz which displays peculiarities of fluid-gas dynamic processes in a volume of geological environment. More over: 1. The second displacement derivative (acceleration) of borehole walls' vibrations is recorded. 2. The three-component system of orthogonal transducers-accelerometers in a protecting casing of a borehole instrument with the diameter of 40-42 mm enabling to divide geoenvironment microvibrations into three directions is applied. 3. Frequency composition of recorded geoacoustic signals is analyzed. 4. Values of measured and calculated parameters representing distribution of signal amplitudes according to three components at four frequency bands are evaluated. Three-component geoacoustic logging at hydrocarbon deposits solves the following problems: · Estimation of fluid saturation character at a qualitative level; · Detection of fluid flow outside and inside the casing string with division into fluid types; · Detection of fluid flow position in chambers of a cement ring with division into fluid types; · Detection of non-sealed points of borehole equipment; · Location of gas-water, gas-oil ad water-oil contacts; · Study of inflow section in a perforated interval of casing string which determines the boundaries of efficient intervals; · Detection of sections with high absorption of drilling fluid in an open shaft; · Test for leaks of the column (together with thermometry); · Detection of intervals of fluid movement in horizontal direction outside a casing string within seams (it is impossible to determine them by other methods); · Detection of industrial deposits; · Revelation of water-flooded intervals of a hydrocarbon deposit. Transducers-accelerometers with relative coefficient of transverse conversion not more than 6% allow confident division of signals into three directions. Transverse sensitivity of a transducer is determined by its maximum sensitivity to oscillations in a direction perpendicular to its main axis that is parallel to the surface where it is placed. The equipment [1] has sensitivity that enables to record an acoustic response of geoenvironment to deformations in the order of 10-8 - 10-11 m. Geoacoustic signals in sedimentary rocks are recorded by three orthogonal transducers-accelerometers of PVT type (piezoelectric vibromeasuring transducer). Transducers with coefficients of conversion not less than 6-10 µV*s2/mm are installed into a borehole instrument. Amplitude level of signals at different frequency bands is presented in units of recorded acceleration mm/s2. Small amplitude of geoenvironment microvibrations is an additional optimum condition to divide signals from three directions. Thus, signals from three directions are fixed at preset depth in a borehole which makes it possible to compare their amplitude at different frequency bands. References: 1. Yu. G. Astrakhantsev and A. K. Troyanov, RF Patent No. 2 445 653, 2012.
Detection of keyboard vibrations and effects on perceived piano quality.
Fontana, Federico; Papetti, Stefano; Järveläinen, Hanna; Avanzini, Federico
2017-11-01
Two experiments were conducted on an upright and a grand piano, both either producing string vibrations or conversely being silent after the initial keypress, while pianists were listening to the feedback from a synthesizer through insulating headphones. In a quality experiment, participants unaware of the silent mode were asked to play freely and then rate the instrument according to a set of attributes and general preference. Participants preferred the vibrating over the silent setup, and preference ratings were associated to auditory attributes of richness and naturalness in the low and middle ranges. Another experiment on the same setup measured the detection of vibrations at the keyboard, while pianists played notes and chords of varying dynamics and duration. Sensitivity to string vibrations was highest in the lowest register and gradually decreased up to note D5. After the percussive transient, the tactile stimuli exhibited spectral peaks of acceleration whose perceptibility was demonstrated by tests conducted in active touch conditions. The two experiments confirm that piano performers perceive vibratory cues of strings mediated by spectral and spatial summations occurring in the Pacinian system in their fingertips, and suggest that such cues play a role in the evaluation of quality of the musical instrument.
Improved Technique for Finding Vibration Parameters
NASA Technical Reports Server (NTRS)
Andrew, L. V.; Park, C. C.
1986-01-01
Filtering and sample manipulation reduce noise effects. Analysis technique improves extraction of vibrational frequencies and damping rates from measurements of vibrations of complicated structure. Structural vibrations measured by accelerometers. Outputs digitized at frequency high enough to cover all modes of interest. Use of method on set of vibrational measurements from Space Shuttle, raised level of coherence from previous values below 50 percent to values between 90 and 99 percent
High-precision and low-cost vibration generator for low-frequency calibration system
NASA Astrophysics Data System (ADS)
Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao
2018-03-01
Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.
Fourier Analysis of a Vibrating String through a Low-Cost Experimental Setup and a Smartphone
ERIC Educational Resources Information Center
Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.
2018-01-01
In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This…
NASA Astrophysics Data System (ADS)
Kağan Temiz, Burak; Yavuz, Ahmet
2015-08-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the wheel starts to turn at a constant angular speed. A rod that is fixed on the wheel turns at the same constant angular speed, too. A tight string that the wave will be created on is placed at a distance where the rod can touch the string. During each rotation of the wheel, the rod vibrates the string up and down. The vibration frequency of this rod equals the wheel’s rotation frequency, and this frequency value can be measured easily with a small magnet and a bicycle speedometer. In this way, the frequency of the waves formed in the rope can also be measured.
Lincoln, Don
2018-01-16
The quest to find the ultimate building blocks of nature is one of the oldest in all of physics. While we are far from knowing the answer to that question, one intriguing proposed answer is that all matter is composed of tiny âstrings.â The known particles are simply different vibrational patterns of these strings. In this video, Fermilabâs Dr. Don Lincoln explains this idea, using interesting and accessible examples of real-world vibrations.
Software-centric View on OVMS for LBT
NASA Astrophysics Data System (ADS)
Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.
2012-09-01
The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2007-05-22
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2008-05-27
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison
2012-08-14
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison
2014-03-04
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2011-08-16
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison
2015-02-03
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
VibeComm: radio-free wireless communication for smart devices using vibration.
Hwang, Inhwan; Cho, Jungchan; Oh, Songhwai
2014-11-10
This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.
Dynamic tire pressure sensor for measuring ground vibration.
Wang, Qi; McDaniel, James Gregory; Wang, Ming L
2012-11-07
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.
Vibration condition measure instrument of motor using MEMS accelerometer
NASA Astrophysics Data System (ADS)
Chen, Jun
2018-04-01
In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.
Dynamic Tire Pressure Sensor for Measuring Ground Vibration
Wang, Qi; McDaniel, James Gregory; Wang, Ming L.
2012-01-01
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206
A new sensors-based covert channel on android.
Al-Haiqi, Ahmed; Ismail, Mahamod; Nordin, Rosdiadee
2014-01-01
Covert channels are not new in computing systems, and have been studied since their first definition four decades ago. New platforms invoke thorough investigations to assess their security. Now is the time for Android platform to analyze its security model, in particular the two key principles: process-isolation and the permissions system. Aside from all sorts of malware, one threat proved intractable by current protection solutions, that is, collusion attacks involving two applications communicating over covert channels. Still no universal solution can countermeasure this sort of attack unless the covert channels are known. This paper is an attempt to reveal a new covert channel, not only being specific to smartphones, but also exploiting an unusual resource as a vehicle to carry covert information: sensors data. Accelerometers generate signals that reflect user motions, and malware applications can apparently only read their data. However, if the vibration motor on the device is used properly, programmatically produced vibration patterns can encode stolen data and hence an application can cause discernible effects on acceleration data to be received and decoded by another application. Our evaluations confirmed a real threat where strings of tens of characters could be transmitted errorless if the throughput is reduced to around 2.5-5 bps. The proposed covert channel is very stealthy as no unusual permissions are required and there is no explicit communication between the colluding applications.
A New Sensors-Based Covert Channel on Android
2014-01-01
Covert channels are not new in computing systems, and have been studied since their first definition four decades ago. New platforms invoke thorough investigations to assess their security. Now is the time for Android platform to analyze its security model, in particular the two key principles: process-isolation and the permissions system. Aside from all sorts of malware, one threat proved intractable by current protection solutions, that is, collusion attacks involving two applications communicating over covert channels. Still no universal solution can countermeasure this sort of attack unless the covert channels are known. This paper is an attempt to reveal a new covert channel, not only being specific to smartphones, but also exploiting an unusual resource as a vehicle to carry covert information: sensors data. Accelerometers generate signals that reflect user motions, and malware applications can apparently only read their data. However, if the vibration motor on the device is used properly, programmatically produced vibration patterns can encode stolen data and hence an application can cause discernible effects on acceleration data to be received and decoded by another application. Our evaluations confirmed a real threat where strings of tens of characters could be transmitted errorless if the throughput is reduced to around 2.5–5 bps. The proposed covert channel is very stealthy as no unusual permissions are required and there is no explicit communication between the colluding applications. PMID:25295311
High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
High performance, accelerometer-based control of the Mini-MAST structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1992-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
Medium-high frequency FBG accelerometer with integrative matrix structure.
Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna
2015-04-10
To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200 pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.
In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture
NASA Technical Reports Server (NTRS)
Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.
2002-01-01
Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.
Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application
NASA Astrophysics Data System (ADS)
Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.
2017-05-01
Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.
Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Huff, Edward M.
2001-01-01
Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.
Distributed control using linear momentum exchange devices
NASA Technical Reports Server (NTRS)
Sharkey, J. P.; Waites, Henry; Doane, G. B., III
1987-01-01
MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.
Rapid cable tension estimation using dynamic and mechanical properties
NASA Astrophysics Data System (ADS)
Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.
2016-04-01
Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.
Linear stiff string vibrations in musical acoustics: Assessment and comparison of models.
Ducceschi, Michele; Bilbao, Stefan
2016-10-01
Strings are amongst the most common elements found in musical instruments and an appropriate physical description of string dynamics is essential to modelling, analysis, and simulation. For linear vibration in a single polarisation, the most common model is based on the Euler-Bernoulli beam equation under tension. In spite of its simple form, such a model gives unbounded phase and group velocities at large wavenumbers, and such behaviour may be interpreted as unphysical. The Timoshenko model has, therefore, been employed in more recent works to overcome such shortcoming. This paper presents a third model based on the shear beam equations. The three models are here assessed and compared with regard to the perceptual considerations in musical acoustics.
Vibration Measurement Method of a String in Transversal Motion by Using a PSD
Yang, Che-Hua; Wu, Tai-Chieh
2017-01-01
A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string’s natural frequency, increase while the speed of motion increases. PMID:28714915
Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing
NASA Astrophysics Data System (ADS)
Murugan, S.; Prasad, M. V. N.; Jayakumar, K.
2016-05-01
An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.
2012-10-01
were collected at 500 Hz. In addition, for the ST1 tests only, positional data were collected using the Optotrak at 200 Hz. Acceleration was measured...the accelerometer in order to characterize the skin-accelerometer system. Optotrak position data were measured during ST1 using markers on the spinous...particular, we have analyzed transmissibility at T3 and L4, corresponding to where the accelerometers were placed, and using the Optotrak data at
Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology
NASA Astrophysics Data System (ADS)
Norling, Brian L.
Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.
NASA Astrophysics Data System (ADS)
Collins, Cheri D.
Is it possible for students to achieve better tone quality from even their factory-made violins? All violins, regardless of cost, have a common capacity for good tone in certain frequencies. These signature modes outline the first position range of a violin (196-600 hertz). To activate this basic capacity of all violins, the string must fully vibrate. To accomplish this the bow must be pulled across the string with enough pressure (relative to its speed and contact point) for the horsehairs to catch. This friction permits the string to vibrate in Helmholtz Motion, which produces a corner that travels along the edge of the string between the bridge and the nut. Creating this corner is the most fundamental technique for achieving good tone. The findings of celebrated scientists Ernest Chladni, Hermann von Helmholtz, and John Schelleng will be discussed and the tone-production pedagogy of master teachers Carl Flesch, Ivan Galamian, Robert Gerle, and Simon Fischer will be investigated. Important connections between the insights of these scientists and master teachers are evident. Integrating science and art can provide teachers with a better understanding of the characteristics of good tone. This can help their students achieve the best possible sound from their instruments. In the private studio the master teacher may not use the words "Helmholtz Motion." Yet through modeling and listening students are able to understand and create a quality tone. Music teachers without experience in string performance may be assigned to teach strings in classroom and ensembles settings. As a result modeling good tone is not always possible. However, all teachers and conductors can understand the fundamental behavior of string vibration and adapt their instruction strategies towards student success. Better tonal quality for any string instrument is ultimately achieved. Mastery and use of the Helmholtz Motion benefits teachers and students alike. Simple practice exercises for teaching and conducting, based on student discovery rather than modeling, are presented in Appendix A: Application. This approach to teaching good tone can be applied successfully in all string settings and levels.
Research on the Mechanism of In-Plane Vibration on Friction Reduction
Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang
2017-01-01
A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679
Digital active material processing platform effort (DAMPER), SBIR phase 2
NASA Technical Reports Server (NTRS)
Blackburn, John; Smith, Dennis
1992-01-01
Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.
Digital active material processing platform effort (DAMPER), SBIR phase 2
NASA Astrophysics Data System (ADS)
Blackburn, John; Smith, Dennis
1992-11-01
Applied Technology Associates, Inc., (ATA) has demonstrated that inertial actuation can be employed effectively in digital, active vibration isolation systems. Inertial actuation involves the use of momentum exchange to produce corrective forces which act directly on the payload being actively isolated. In a typical active vibration isolation system, accelerometers are used to measure the inertial motion of the payload. The signals from the accelerometers are then used to calculate the corrective forces required to counteract, or 'cancel out' the payload motion. Active vibration isolation is common technology, but the use of inertial actuation in such systems is novel, and is the focus of the DAMPER project. A May 1991 report was completed which documented the successful demonstration of inertial actuation, employed in the control of vibration in a single axis. In the 1 degree-of-freedom (1DOF) experiment a set of air bearing rails was used to suspend the payload, simulating a microgravity environment in a single horizontal axis. Digital Signal Processor (DSP) technology was used to calculate in real time, the control law between the accelerometer signals and the inertial actuators. The data obtained from this experiment verified that as much as 20 dB of rejection could be realized by this type of system. A discussion is included of recent tests performed in which vibrations were actively controlled in three axes simultaneously. In the three degree-of-freedom (3DOF) system, the air bearings were designed in such a way that the payload is free to rotate about the azimuth axis, as well as translate in the two horizontal directions. The actuator developed for the DAMPER project has applications beyond payload isolation, including structural damping and source vibration isolation. This report includes a brief discussion of these applications, as well as a commercialization plan for the actuator.
Vibration parameters affecting vibration-induced reflex muscle activity.
Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir
2017-03-01
To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.
Influence of Installation Errors On the Output Data of the Piezoelectric Vibrations Transducers
NASA Astrophysics Data System (ADS)
Kozuch, Barbara; Chelmecki, Jaroslaw; Tatara, Tadeusz
2017-10-01
The paper examines an influence of installation errors of the piezoelectric vibrations transducers on the output data. PCB Piezotronics piezoelectric accelerometers were used to perform calibrations by comparison. The measurements were performed with TMS 9155 Calibration Workstation version 5.4.0 at frequency in the range of 5Hz - 2000Hz. Accelerometers were fixed on the calibration station in a so-called back-to-back configuration in accordance with the applicable international standard - ISO 16063-21: Methods for the calibration of vibration and shock transducers - Part 21: Vibration calibration by comparison to a reference transducer. The first accelerometer was calibrated by suitable methods with traceability to a primary reference transducer. Each subsequent calibration was performed when changing one setting in relation to the original calibration. The alterations were related to negligence and failures in relation to the above-mentioned standards and operating guidelines - e.g. the sensor was not tightened or appropriate substance was not placed. Also, there was modified the method of connection which was in the standards requirements. Different kind of wax, light oil, grease and other assembly methods were used. The aim of the study was to verify the significance of standards requirements and to estimate of their validity. The authors also wanted to highlight the most significant calibration errors. Moreover, relation between various appropriate methods of the connection was demonstrated.
Polyvinylidene fluoride (PVDF) vibration sensor for stethoscope and contact microphones
NASA Astrophysics Data System (ADS)
Toda, Minoru; Thompson, Mitchell
2005-09-01
This paper describes a new type of contact vibration sensor made by bonding piezoelectric PVDF film to a curved frame structure. The concave surface of the film is bonded to a rubber piece having a front contact face. Vibration is transmitted from this face through the rubber to the surface of the PVDF film. Pressure normal to the surface of the film is converted to circumferential strain, and an electric field is induced by the piezoelectric effect. The frequency response of the device was measured using an accelerometer mounted between the rubber face and a rigid vibration exciter plate. Sensitivity (voltage per unit displacement) was deduced from the device output and measured acceleration. The sensitivity was flat from 16 Hz to 3 kHz, peaking at 6 kHz due to a structural resonance. Calculations predicting performance against human tissue (stethoscope or contact microphone) show results similar to data measured against the metal vibrator. This implies that an accelerometer can be used for calibrating a stethoscope or contact microphone. The observed arterial pulse waveform showed more low-frequency content than a conventional electronic stethoscope.
Vibration control for the ARGOS laser launch path
NASA Astrophysics Data System (ADS)
Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.
2012-07-01
Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.
Flutter prediction for a wing with active aileron control
NASA Technical Reports Server (NTRS)
Penning, K.; Sandlin, D. R.
1983-01-01
A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.
Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1
2012-04-03
vehicle specification and/or the detailed test plan. This (half-round obstacle) accelerometer will be low-pass filtered ( post test ) at 30 Hz...Engineers TARADCOM Tank-Automotive Research and Development Command TOP Test Operations Procedure VDV Vibration Dose Value WBV Whole Body...
The production of phantom partials due to nonlinearities in the structural components of the piano.
Rokni, Eric; Neldner, Lauren M; Adkison, Camille; Moore, Thomas R
2017-10-01
Phantom partials are anomalous overtones in the spectrum of the piano sound that occur at sum and difference frequencies of the natural overtones of the string. Although they are commonly assumed to be produced by forced longitudinal waves in the string, analysis of the sound of a piano produced by mechanically vibrating the soundboard while all the strings are damped indicates that phantom partials can occur in the absence of string motion. The magnitude of the effect leads to the conclusion that nonlinearity in the non-string components may be responsible for some of the power in the phantom partials.
Smart accelerometer. [vibration damage detection
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.
Vibration assessment for thrombus formation in the centrifugal pump.
Nakazawa, T; Makinouchi, K; Takami, Y; Glueck, J; Tayama, E; Nosé, Y
1997-04-01
To clarify the correlation of vibration and thrombus formation inside a rotary blood pump, 40 preliminary vibration studies were performed on pivot bearing centrifugal pumps. No such studies were found in the literature. The primary data acquisition equipment included an accelerometer (Isotron PE accelerometer, ENDEVCO, San Juan Capistrano, CA, U.S.A.), digitizing oscilloscope (TDS 420, Tektronix Inc., Pittsfield, MA, U.S.A.), and pivot bearing centrifugal pumps. The pump impeller was coupled magnetically to the driver magnet. The accelerometer was mounted on the top of the pump casing to sense radial and axial accelerations. To simulate the 3 common areas of thrombus formation, a piece of silicone rubber was attached to each of the following 3 locations as described: a circular shape on the center bottom of the impeller (CI), an eccentric shape on the bottom of the impeller (EI), and a circular shape on the center bottom casing (CC). A fast Fourier transform (FFT) method at 5 L/min against 100 mm Hg, with a pump rotating speed of 1,600 rpm was used. The frequency response of the vibration sensors used spans of 40 Hz to 2 kHz. The frequency domain was already integrated into the oscilloscope, allowing for comparison of the vibration results. The area of frequency domain at a radial direction was 206 +/- 12.7 mVHz in CI, 239.5 +/- 12.1 mVHz in EI, 365 +/- 12.9 mVHz in CC, and 163 +/- 7.9 mVHz in the control (control vs. CI p = 0.07, control vs. EI p < 0.001, control vs. CC p < 0.001, EI vs. CC p < 0.001, CI vs. CC p < 0.001). Three types of imitation thrombus formations were roughly distinguishable. These results suggested the possibility of detecting thrombus formation using vibration signals, and these studies revealed the usefulness of vibration monitoring to detect thrombus formation in a centrifugal pump.
Vibration Suppression Strategies for Large Tension-Aligned Array Structures
2013-11-19
show vibration suppression. Practical issues related to actuator bandwidth were also addressed. 40 Dr. Ranjan Mukherjee (517) 355-1834 FINAL...third strategies, Lyapunov stability theory was used to show vibration suppression. Practical issues related to actuator bandwidth were also addressed...1 Publications Journal Papers : • Alsahlani, A. and Mukherjee, R., “Vibration Control of a String Using a Scabbard-Like Actuator”, Journal of Sound and
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-08-14
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-01-01
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203
Mohandhas, Badri R; Makaram, Navnit; Drew, Tim S; Wang, Weijie; Arnold, Graham P
2016-01-01
Background Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions. Methods Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading. Results Statistically significant differences (p < 0.05) were observed when average peak acceleration at the elbow at 200 N string-tension (acceleration of 5.58 m/s2) was compared with that at 222 N tension (acceleration of 6.83 m/s2) and 245 N tension (acceleration of 7.45 m/s2). The 200 N racket induced the least acceleration at the elbow. Conclusions Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE. PMID:27583017
Guitar Strings as Standing Waves: A Demonstration
ERIC Educational Resources Information Center
Davis, Michael
2007-01-01
The study demonstrates the induction of one-dimensional standing waves, called "natural-harmonics" on a guitar to provide a unique tone. The analysis shows that a normally complex vibration is composed of a number of simple and discrete vibrations.
ERIC Educational Resources Information Center
Tsutsumanova, Gichka; Russev, Stoyan
2013-01-01
A simple experiment demonstrating the excitation of a standing wave in a metal string is presented here. Several tasks using the set-up are considered, which help the students to better understand the standing waves, the interaction between electric current and magnetic field and the resonance phenomena. This can serve also as a good lecture…
NASA Astrophysics Data System (ADS)
Trautmann, L.; Petrausch, S.; Bauer, M.
2005-09-01
The functional transformation method (FTM) is an established mathematical method for accurate simulation of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. It is a frequency-domain method based on the decomposition into eigenvectors and eigenfrequencies of the underlying physical problem. In this article, the FTM is applied to real-time simulations of vibrating strings which are ideally fixed at one end while the fixing at the other end is modeled by a frequency-dependent input impedance. Thus, boundary conditions of third kind are applied to the model at the end fixed with the input impedance. It is shown that accurate and stable simulations are achieved with nearly the same computational cost as with strings ideally fixed at both ends.
Inertia-Wheel Vibration-Damping System
NASA Technical Reports Server (NTRS)
Fedor, Joseph V.
1990-01-01
Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.
A comparison between swallowing sounds and vibrations in patients with dysphagia
Movahedi, Faezeh; Kurosu, Atsuko; Coyle, James L.; Perera, Subashan
2017-01-01
The cervical auscultation refers to the observation and analysis of sounds or vibrations captured during swallowing using either a stethoscope or acoustic/vibratory detectors. Microphones and accelerometers have recently become two common sensors used in modern cervical auscultation methods. There are open questions about whether swallowing signals recorded by these two sensors provide unique or complementary information about swallowing function; or whether they present interchangeable information. The aim of this study is to present a broad comparison of swallowing signals recorded by a microphone and a tri-axial accelerometer from 72 patients (mean age 63.94 ± 12.58 years, 42 male, 30 female), who underwent videofluoroscopic examination. The participants swallowed one or more boluses of thickened liquids of different consistencies, including thin liquids, nectar-thick liquids, and pudding. A comfortable self-selected volume from a cup or a controlled volume by the examiner from a 5ml spoon was given to the participants. A comprehensive set of features was extracted in time, information-theoretic, and frequency domains from each of 881 swallows presented in this study. The swallowing sounds exhibited significantly higher frequency content and kurtosis values than the swallowing vibrations. In addition, the Lempel-Ziv complexity was lower for swallowing sounds than those for swallowing vibrations. To conclude, information provided by microphones and accelerometers about swallowing function are unique and these two transducers are not interchangeable. Consequently, the selection of transducer would be a vital step in future studies. PMID:28495001
Accuracy improvement in a calibration test bench for accelerometers by a vision system
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Emilia, Giulio, E-mail: giulio.demilia@univaq.it; Di Gasbarro, David, E-mail: david.digasbarro@graduate.univaq.it; Gaspari, Antonella, E-mail: antonella.gaspari@graduate.univaq.it
2016-06-28
A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behaviormore » if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.« less
Improved Tennis Racquets Have Tapered Strings
NASA Technical Reports Server (NTRS)
Noever, David A.
1995-01-01
Design concept for better performing tennis racquet. Essence of concept to taper strings in such way as to shift center of percussion (also called "sweet spot") toward the toe (outer end of racquet, farthest from player's hand). In addition to increasing power on serves, also improves player's control and feel of racquet in player's hand. Racquet less likely to twist in player's hand on off-center shots. Important element of better feel is better absorption of vibrations; especially for players having chronic arm problems. String material nylon, animal gut, or other naturally or artifically spun threads. String can be attached to conventional racquet frame.
Initial Movement and Continuity in Vibrato among High School and University String Players
ERIC Educational Resources Information Center
Geringer, John M.; Allen, Michael L.; MacLeod, Rebecca B.
2005-01-01
The purpose of the present study was to investigate aspects of vibrato performance among high school and university string players. The main questions were to determine whether students consistently initiate vibrato in an upward or downward direction and whether players vibrate continuously when performing slurs. Forty high school and university…
Variable-Tension-Cord Suspension/Vibration-Isolation System
NASA Technical Reports Server (NTRS)
Villemarette, Mark L.; Boston, Joshua; RInks, Judith; Felice, Pat; Stein, Tim; Payne, Patrick
2006-01-01
A system for mechanical suspension and vibration isolation of a machine or instrument is based on the use of Kevlar (or equivalent aromatic polyamide) cord held in variable tension between the machine or instrument and a surrounding frame. The basic concept of such a tensioned-cord suspension system (including one in which the cords are made of aromatic polyamide fibers) is not new by itself; what is new here is the additional provision for adjusting the tension during operation to optimize vibration- isolation properties. In the original application for which this system was conceived, the objective is to suspend a reciprocating cryocooler aboard a space shuttle and to prevent both (1) transmission of launch vibrations to the cryocooler and (2) transmission of vibrations from the cryocooler to samples in a chamber cooled by the cryocooler. The basic mechanical principle of this system can also be expected to be applicable to a variety of other systems in which there are requirements for cord suspension and vibration isolation. The reciprocating cryocooler of the original application is a generally axisymmetric object, and the surrounding frame is a generally axisymmetric object with windows (see figure). Two cords are threaded into a spoke-like pattern between attachment rings on the cryocooler, holes in the cage, and cord-tension- adjusting assemblies. Initially, the cord tensions are adjusted to at least the level necessary to suspend the cryocooler against gravitation. Accelerometers for measuring vibrations are mounted (1) on the cold tip of the cryocooler and (2) adjacent to the cage, on a structure that supports the cage. During operation, a technician observes the accelerometer outputs on an oscilloscope while manually adjusting the cord tensions in an effort to minimize the amount of vibration transmitted to and/or from the cryocooler. A contemplated future version of the system would include a microprocessor-based control subsystem that would include cord-tension actuators. This control subsystem would continually adjust the cord tension in response to accelerometer feedback to optimize vibration-isolation properties as required for various operating conditions. The control system could also adjust cord tensions (including setting the two cords to different tensions) to suppress resonances. Other future enhancements could include optimizing the cord material, thickness, and braid; optimizing the spoke patterns; and adding longitudinal cords for applications in which longitudinal stiffness and vibration suppression are required.
Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle
Bencsik, Martin; Le Conte, Yves; Reyes, Maritza; Pioz, Maryline; Whittaker, David; Crauser, Didier; Simon Delso, Noa; Newton, Michael I.
2015-01-01
Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time. PMID:26580393
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
Mode tuning of a simplified string instrument using time-dimensionless state-derivative control
NASA Astrophysics Data System (ADS)
Benacchio, Simon; Chomette, Baptiste; Mamou-Mani, Adrien; Finel, Victor
2015-01-01
In recent years, there has been a growing interest in smart structures, particularly in the field of musical acoustics. Control methods, initially developed to reduce vibration and damage, can be a good way to shift modal parameters of a structure in order to modify its dynamic response. This study focuses on smart musical instruments and aims to modify their radiated sound. This is achieved by controlling the modal parameters of the soundboard of a simplified string instrument. A method combining a pole placement algorithm and a time-dimensionless state-derivative control is used and quickly compared to a usual state control method. Then the effect of the mode tuning on the coupling between the string and the soundboard is experimentally studied. Controlling two vibration modes of the soundboard, its acoustic response and the damping of the third partial of the sound are modified. Finally these effects are listened in the radiated sound.
Kaeding, T S
2015-06-01
Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.
Citizen sensors for SHM: use of accelerometer data from smartphones.
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-29
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.
Vibration characteristics of OH-58A helicopter main rotor transmission
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Coy, John J.
1987-01-01
Experimental vibration tests covering a range of torque and speed conditions were performed on the OH-58A helicopter main rotor transmission at the NASA Lewis Research Center. Signals from accelerometers located on the transmission housing were analyzed by using Fourier spectra, power spectral density functions, and averaging techniques. Most peaks of the Fourier spectra occurred at the spiral bevel and planetary gear mesh harmonics. The highest level of vibration occurred at the spiral bevel meshing frequency. Transmission speed and vibration measurement location had a significant effect on measured vibration; transmission torque and measurement direction had a small effect.
NASA Astrophysics Data System (ADS)
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-08-16
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.
Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-01-01
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243
Coupling of transverse and longitudinal waves in piano strings.
Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R
2015-04-01
The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play.
NASA Astrophysics Data System (ADS)
Glück, Martin; Pott, Jörg-Uwe; Sawodny, Oliver
2017-06-01
Adaptive Optics (AO) systems in large telescopes do not only correct atmospheric phase disturbances, but they also telescope structure vibrations induced by wind or telescope motions. Often the additional wavefront error due to mirror vibrations can dominate the disturbance power and contribute significantly to the total tip-tilt Zernike mode error budget. Presently, these vibrations are compensated for by common feedback control laws. However, when observing faint natural guide stars (NGS) at reduced control bandwidth, high-frequency vibrations (>5 Hz) cannot be fully compensated for by feedback control. In this paper, we present an additional accelerometer-based disturbance feedforward control (DFF), which is independent of the NGS wavefront sensor exposure time to enlarge the “effective servo bandwidth”. The DFF is studied in a realistic AO end-to-end simulation and compared with commonly used suppression concepts. For the observation in the faint (>13 mag) NGS regime, we obtain a Strehl ratio by a factor of two to four larger in comparison with a classical feedback control. The simulation realism is verified with real measurement data from the Large Binocular Telescope (LBT); the application for on-sky testing at the LBT and an implementation at the E-ELT in the MICADO instrument is discussed.
NASA Astrophysics Data System (ADS)
Lewis, Ray A.; Modanese, Giovanni
Vibrating media offer an important testing ground for reconciling conflicts between General Relativity, Quantum Mechanics and other branches of physics. For sources like a Weber bar, the standard covariant formalism for elastic bodies can be applied. The vibrating string, however, is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized energy-momentum tensor. Renormalization (in a classical sense) is necessary to take into account the effect of external constraints, which affect the emission considerably. Our computation also relaxes usual simplifying assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and absence of internal interference. In a further step towards unification, the method is then adapted to give the radiation field of a transversal Alfven wave in a rarefied astrophysical plasma, where the tension is produced by an external static magnetic field.
Mechanism of Tennis Racket Spin Performance
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko
Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.
On coherent oscillations of a string.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1972-01-01
Vibrations of an elastic string when the separation between the ends varies randomly are studied. The emphasis is on the evolution of the coherent, or ordered, oscillations of the string. Using a perturbation technique borrowed from quantum field theory and the modified Kryloff-Bogoliuboff method, the 'multiple scattering' effect of the random separation between the ends on the linear and nonlinear coherent oscillations are investigated. It is found that due to the random interactions the coherent fundamental oscillation as well as the harmonies are damped. Their frequencies are also modified.
NASA Astrophysics Data System (ADS)
Serafin, Stefania
2005-04-01
The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.
Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-01
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056
Terrestrial Applications of a Nano-g Accelerometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
1996-01-01
The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.
Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.
Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang
2013-09-20
A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.
Dynamic Loads Generation for Multi-Point Vibration Excitation Problems
NASA Technical Reports Server (NTRS)
Shen, Lawrence
2011-01-01
A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-02-01
The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-05-01
The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.
Whole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?
Supej, Matej; Ogrin, Jan; Holmberg, Hans-Christer
2018-01-01
Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which forms of skiing involve stronger vibrations and whether these exceed safety thresholds set by existing standards and directives. Therefore, this study was designed to examine whole-body vibrations connected with different types of skiing and the associated potential risk of developing low back pain. Eight highly skilled ski instructors, all former competitive ski racers and equipped with five accelerometers and a Global Satellite Navigation System to measure vibrations and speed, respectively, performed six different forms of skiing: straight running, plowing, snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate exposure to periodic, random and transient vibrations the power spectrum density (PSD) and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square acceleration (RMS), crest factor, maximum transient vibration value and the fourth-power vibration dose value (VDV)] were calculated. Ground reaction forces were estimated from data provided by accelerometers attached to the pelvis. The major novel findings were that all of the forms of skiing tested produced whole-body vibrations, with highest PSD values of 1.5–8 Hz. Intensified PSD between 8.5 and 35 Hz was observed only when skidding was involved. The RMS values for 10 min of short swinging or carved turns, as well as all 10-min equivalent VDV values exceeded the limits set by European Directive 2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection with high ground reaction forces, contribute to a high risk for low back pain among active alpine skiers. PMID:29593563
Milosevic, Matija; McConville, Kristiina M Valter
2012-01-01
Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.
NASA Technical Reports Server (NTRS)
Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.
2008-01-01
External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.
NASA Technical Reports Server (NTRS)
Walker, B. E.; Panda, B. E.; Sutliff, D. L.
2008-01-01
External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first two minutes of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.
NASA Technical Reports Server (NTRS)
Zazhivikhina, A. I.; Rosin, G. S.; Ryzhov, Y. I.
1973-01-01
The dynamic characteristics of a man were investigated by the resonance method, by means of recordings of the amplitude-frequency characteristics of a vibrator straight arm human body system on a standard automatic recorder. Experiments were carried out with a specially constructed vibrator, the moving system of which was fastened to a bronze suspension with small losses. Vibrations of the handle, fastened to the moving system, were recorded with an accelerometer. The mass of the moving system m, rigidity of the suspension k and friction coefficient r of the vibrator (calibration) were determined by exact formulas.
Can mobile phones used in strong motion seismology?
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonino; D'Anna, Giuseppe
2013-04-01
Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Hand-arm vibration exposure monitoring with wearable sensor module.
Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M
2013-01-01
Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Black, Mike; Hovenga, Mike; Mcclure, Paul; Miller, Patrice
1988-01-01
The application of vibration monitoring to the rotating machinery typical of ECLSS components in advanced NASA spacecraft was studied. It is found that the weighted summation of the accelerometer power spectrum is the most successful detection scheme for a majority of problem types. Other detection schemes studied included high-frequency demodulation, cepstrum, clustering, and amplitude processing.
A Comparison of PSD Enveloping Methods for Nonstationary Vibration
NASA Technical Reports Server (NTRS)
Irvine, Tom
2015-01-01
There is a need to derive a power spectral density (PSD) envelope for nonstationary acceleration time histories, including launch vehicle data, so that components can be designed and tested accordingly. This paper presents the results of the three methods for an actual flight accelerometer record. Guidelines are given for the application of each method to nonstationary data. The method can be extended to other scenarios, including transportation vibration.
The structural dynamics of the American five-string banjo
NASA Astrophysics Data System (ADS)
Dickey, Joe
2003-11-01
The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.
Acoustics of Idakkā: An Indian snare drum with definite pitch.
Jose, Kevin; Chatterjee, Anindya; Gupta, Anurag
2018-05-01
The vibration of a homogeneous circular membrane backed by two taut strings is shown to yield several harmonic overtones for a wide range of physical and geometric parameters. Such a membrane is present at each end of the barrel of an idakkā, an Indian snare drum well known for its rich musicality. The audio recordings of the musical drum are analyzed and a case is made for the strong sense of pitch associated with the drum. A computationally inexpensive model of the string-membrane interaction is proposed assuming the strings to be without inertia. The interaction essentially entails wrapping/unwrapping of the string around a curve on the deforming membrane unlike the colliding strings in Western snare drums. The range of parameters for which harmonicity is achieved is examined and is found to be conforming with what is used in actual drum playing and construction.
ACCELEROMETERS IN FLOW FIELDS: A STRUCTURAL ANALYSIS OF THE CHOPPED DUMMY INPILE TUBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, T. K.; Marcum, W. R.; Latimer, G. D.
2016-06-01
Four tests characterizing the structural response of the Chopped-Dummy In-Pile tube (CDIPT) experiment design were measured in the Hydro-Mechanical Fuel Test Facility (HMFTF). Four different test configurations were tried. These configurations tested the pressure drop and flow impact of various plate configurations and flow control orifices to be used later at different reactor power levels. Accelerometers were placed on the test vehicle and flow simulation housing. A total of five accelerometers were used with one on the top and bottom of the flow simulator and vehicle, and one on the outside of the flow simulator. Data were collected at amore » series of flow rates for 5 seconds each at an acquisition rate of 2 kHz for a Nyquist frequency of 1 kHz. The data were then analyzed using a Fast Fourier Transform (FFT) algorithm. The results show very coherent vibrations of the CDIPT experiment on the order of 50 Hz in frequency and 0.01 m/s2 in magnitude. The coherent vibrations, although small in magnitude pose a potential design problem if the frequencies coincide with the natural frequency of the fueled plates or test vehicle. The accelerometer data was integrated and combined to create a 3D trace of the experiment during the test. The merits of this data as well as further anomalies and artifacts are also discussed as well as their relation to the instrumentation and experiment design.« less
The illusive sound of a Bundengan string
NASA Astrophysics Data System (ADS)
Parikesit, Gea O. F.; Kusumaningtyas, Indraswari
2017-09-01
The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses. The first surprise comes from the gong-like sounds produced by the string, which we usually associate with metallic instruments rather than string instruments. The second surprise comes from the fact that when we shift the clip we perceive an increase of pitch, even though the measured value of the frequency with the maximum amplitude is actually decreased. We use high-speed video recording as well as audio spectral analysis to elucidate the physics behind these two surprises. A set of student activities is prepared to help them follow up their curiosity. Students can make their own clipped string, which is found in Indonesia in an instrument called Bundengan, by setting up their own prepared piano as invented by John Cage.
Experimental validation of a damage detection approach on a full-scale highway sign support truss
NASA Astrophysics Data System (ADS)
Yan, Guirong; Dyke, Shirley J.; Irfanoglu, Ayhan
2012-04-01
Highway sign support structures enhance traffic safety by allowing messages to be delivered to motorists related to directions and warning of hazards ahead, and facilitating the monitoring of traffic speed and flow. These structures are exposed to adverse environmental conditions while in service. Strong wind and vibration accelerate their deterioration. Typical damage to this type of structure includes local fatigue fractures and partial loosening of bolted connections. The occurrence of these types of damage can lead to a failure in large portions of the structure, jeopardizing the safety of passing traffic. Therefore, it is important to have effective damage detection approaches to ensure the integrity of these structures. In this study, an extension of the Angle-between-String-and-Horizon (ASH) flexibility-based approach [32] is applied to locate damage in sign support truss structures at bay level. Ambient excitations (e.g. wind) can be considered as a significant source of vibration in these structures. Considering that ambient excitation is immeasurable, a pseudo ASH flexibility matrix constructed from output-only derived operational deflection shapes is proposed. A damage detection method based on the use of pseudo flexibility matrices is proposed to address several of the challenges posed in real-world applications. Tests are conducted on a 17.5-m long full-scale sign support truss structure to validate the effectiveness of the proposed method. Damage cases associated with loosened bolts and weld failures are considered. These cases are realistic for this type of structure. The results successfully demonstrate the efficacy of the proposed method to locate the two common forms of damage on sign support truss structures instrumented with a few accelerometers.
NASA Technical Reports Server (NTRS)
Islam, Akm Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris
2014-01-01
Health monitoring of rotorcraft components, currently being performed by Health and Usage Monitoring Systems through analyses of vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. HUMS analyze vibration signatures associated with faults and quantify them as condition indicators to predict component behavior. Vibration transfer paths are characterized by frequency response functions derived from the input/output relationship between applied force and dynamic response through a structure as a function of frequency. With an objective to investigate the differences in transfer paths, transfer path measurements were recorded under similar conditions in the left and right nose gearboxes of an AH-64 helicopter and in an isolated left nose gearbox in a test fixture at NASA Glenn Research Center. The test fixture enabled the application of measured torques-common during an actual operation. An impact hammer as well as commercial and lab piezo shakers, were used in conjunction with two types of commercially available accelerometers to collect the vibration response under various test conditions. The frequency response functions measured under comparable conditions of both systems were found to be consistent. Measurements made on the fixture indicated certain real-world installation and maintenance issues, such as sensor alignments, accelerometer locations and installation torques, had minimal effect. However, gear vibration transfer path dynamics appeared to be somewhat dependent on the presence of oil, and the transfer path dynamics were notably different if the force input was on the internal ring gear rather than on the external gearbox case.
ERIC Educational Resources Information Center
South Carolina Univ., Columbia. Dept. of Physics.
This book contains 65 physics experiments. The experiments are for a college-level physics course for music and art majors. The initial experiments are devoted to the general concept of vibration and cover vibrating strings, air columns, reflection, and interference. Later experiments explore light, color perception, cameras, mirrors and symmetry,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com
The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. Themore » result of measurements can be altered by varying brake fluid pressure.« less
NASA Astrophysics Data System (ADS)
Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul
2016-03-01
The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.
ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.
2003-01-01
In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.
Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas
2013-08-22
Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
1981-01-01
51’ 7.6 TOTAL 159.6 B. Equipment (Non add) 1. Active Control Hardware LS (30.0) 2. Tiltmeters LS (20.0) 3. Accelerometers LS (40.0) C. Design (Non...p, rtion of the MSHP consists of two missions each involving the launch of two payloads ( sensor module and liquid engine module) by a non-standard...of non-contract vibration sensors , accelerometers, aind tern- I>er,)turo sensors with associated monitors and alarms will be installed on all ma Vtr
NASA Astrophysics Data System (ADS)
McBride, William R.; McBride, Daniel R.
2016-08-01
The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets with the lowest level of external interference. Similar testing was performed on the telescope enclosure during the factory test campaign. The vibration of the enclosure altitude and azimuth mechanisms were characterized. This paper details jitter tests using accelerometers placed in locations that allowed the motion of the assemblies to be measured while the control system performed various moves typical of on-sky observations. The measurements were converted into the rigid body motion of the structures and mapped into image motion using the telescope's optical sensitivity analysis.
Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.
NASA Astrophysics Data System (ADS)
Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre
1996-09-01
An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.
Airplane wing vibrations due to atmospheric turbulence
NASA Technical Reports Server (NTRS)
Pastel, R. L.; Caruthers, J. E.; Frost, W.
1981-01-01
The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.
Possible Mechanisms of Low Back Pain due to Whole-Body Vibration
NASA Astrophysics Data System (ADS)
Pope, M. H.; Wilder, D. G.; Magnusson, M.
1998-08-01
The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.
NASA Astrophysics Data System (ADS)
Casali, Eduardo; Tourkine, Piotr
2018-03-01
Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.
Emerging technologies in microguidance and control
NASA Technical Reports Server (NTRS)
Weinberg, Marc S.
1993-01-01
Employing recent advances in microfabrication, the Charles Stark Draper Laboratory has developed inertial guidance instruments of very small size and low cost. Microfabrication employs the batch processing techniques of solid state electronics, such as photolithography, diffusion, and etching, to carve mechanical parts. Within a few years, microfabricated gyroscopes should perform in the 10 to 100 deg/h range. Microfabricated accelerometers have demonstrated performance in the 50 to 500 microgravity range. These instruments will result in not only the redesign of conventional military products, but also new applications that could not exist without small, inexpensive sensors and computing. Draper's microfabricated accelerometers and gyroscopes will be described and test results summarized. Associated electronics and control issues will also be addressed. Gimballed, vibrating gyroscopes and force rebalance accelerometers constructed from bulk silicon, polysilicon surface-machined tuning fork gyroscopes, and quartz resonant accelerometers and gyroscopes are examined. Draper is pursuing several types of devices for the following reasons: to address wide ranges of performance, to realize construction in a flat pack, and to lessen the risks associated with emerging technologies.
Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert
2005-01-01
Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '
CM-2 Environmental / Modal Testing of Spacehab Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.
Dynamics of a distributed drill string system: Characteristic parameters and stability maps
NASA Astrophysics Data System (ADS)
Aarsnes, Ulf Jakob F.; van de Wouw, Nathan
2018-03-01
This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.
2008-05-07
CAPE CANAVERAL, Fla. -- Vibration and laser testing is being conducted on Ares I-X segments at NASA's Kennedy Space Center. Here, technicians in the Vehicle Assembly Building configure the Inert Solid Rocket Motor Segment with an accelerometer to collect test data. Photo credit: NASA/Dimitri Gerondidakis
Vibration Damping Workshop Proceedings Held at Long Beach, California on 27-29 February 1984.
1984-11-11
control system with a sensing accelerometer plus a differentiating network is an extremely effective damping system, if - the magnitude of the... devopment /operating cost by 340M UU -2 p 0 i -L . ..’ - . , ,.. . ,, _,_ ... . .-; .. :: -- _. . , .:... : . -.. .*. - - -.- 2 -,-i-. . i
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi
While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.
NASA Astrophysics Data System (ADS)
Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Saddam Khairuddin, Amir
2017-03-01
This paper presents the study on vibration and surface roughness of Inconel 718 workpiece produced by micro end-milling using Mikrotools Integrated Multi-Process machine tool DT-110 with control parameters; spindle speed (15000 rpm and 30000 rpm), feed rate (2 mm/min and 4 mm/min) and depth of cut (0.10 mm and 0.15mm). The vibration was measured using DYTRAN accelerometer instrument and the average surface roughness Ra was measured using Wyko NT1100. The analysis of variance (ANOVA) by using Design Expert software revealed that feed rate and depth of cut are the most significant factors on vibration meanwhile for average surface roughness, Ra, spindle speed is the most significant factor.
Passive Wireless Vibration Sensing for Measuring Aerospace Structural Flutter
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.
2017-01-01
To reduce energy consumption, emissions, and noise, NASA is exploring the use of high aspect ratio wings on subsonic aircraft. Because high aspect ratio wings are susceptible to flutter events, NASA is also investigating methods of flutter detection and suppression. In support of that work a new remote, non-contact method for measuring flutter-induced vibrations has been developed. The new sensing scheme utilizes a microwave reflectometer to monitor the reflected response from an aeroelastic structure to ultimately characterize structural vibrations. To demonstrate the ability of microwaves to detect flutter vibrations, a carbon fiber-reinforced polymer (CFRP) composite panel was vibrated at various frequencies from 1Hz to 130Hz. The reflectometer response was found to closely resemble the sinusoidal response as measured with an accelerometer up to 100 Hz. The data presented demonstrate that microwaves can be used to measure flutter-induced aircraft vibrations.
Wearable Sensing of Cardiac Timing Intervals from Cardiogenic Limb Vibration Signals
Wiens, Andrew D.; Johnson, Ann; Inan, Omer T.
2017-01-01
In this paper we describe a new method to measure aortic valve opening (AVO) and closing (AVC) from cardiogenic limb vibrations (i.e., wearable ballistocardiogram [BCG] signals). AVO and AVC were detected for each heartbeat with accelerometers on the upper arm (A), wrist (W), and knee (K) of 22 subjects following isometric exercise. Exercise-induced changes were recorded with impedance cardiography. The method, Filter BCG, detects peaks in distal vibrations after filtering with individually-tuned bandpass filters. In agreement with recent studies, we did not find peaks at AVO and AVC in limb vibrations directly. Interestingly, distal vibrations filtered with FilterBCG yielded reliable peaks at AVO (r2 = 0.95 A, 0.94 W, 0.77 K) and AVC (r2= 0.92 A, 0.89 W, 0.68 K). FilterBCG measures AVO and AVC accurately from arm, wrist, and knee vibrations, and it outperforms the standard R-J interval method. PMID:29123459
Castleberry, Kimberly N.
1983-01-01
A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.
CM-2 Environmental/Modal Testing of SPACEHAB Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.
System and method for damping vibration in a drill string using a magnetorheological damper
Wassell, Mark Ellsworth; Burgess, Daniel E.; Barbely, Jason R.; Thompson, Fred Lamar
2018-05-22
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid. A remanent magnetic field is induced in the valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils except temporarily when changing the amount of damping required. The current to be supplied to the coil for inducing a desired magnetic field in the valve is determined based on the limiting hysteresis curve of the valve and the history of the magnetization of the value using a binary search methodology. The history of the magnetization of the valve is expressed as a series of sets of current and it resulting magnetization at which the current experienced a reversal compared to prior values of the current.
Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight
NASA Astrophysics Data System (ADS)
Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang
2017-12-01
The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.
NASA Astrophysics Data System (ADS)
Sabol, Jason A.
Cantico delle Creature is an original piece of music for soprano and string quartet composed in 72 tone per octave equal temperament, dividing each semitone into six equal parts called twelfth-tones. This system of tuning makes it possible to combine just intonation and spectral principles based on the harmonic series with real imitation, modulation, and polyphony. Supplemental text discusses several aspects of microtonal structure and pedagogy, including the representation of the first 64 partials of the harmonic series in 72 tone equal temperament, performance of natural string harmonics, the relationship between interval size and vibration ratio, pitch to frequency conversion, and analysis of several passages in the musical score.
NASA Technical Reports Server (NTRS)
Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.
2015-01-01
The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.
NASA Astrophysics Data System (ADS)
Mc Leod, Roger David; Mc Leod, David M.
2007-10-01
Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.
The vibration compensation system for ARGOS
NASA Astrophysics Data System (ADS)
Peter, D.; Gaessler, W.; Borelli, J.; Kulas, M.
2011-09-01
For every adaptive optics system telescope vibrations can strongly reduce the performance. This is true for the receiver part of the system i.e. the telescope and wave front sensor part as well as for the transmitter part in the case of a laser guide star system. Especially observations in deep fields observed with a laser guide star system without any tip-tilt star will be greatly spoiled by telescope vibrations. The ARGOS GLAO system actually being built for the LBT aims to implement this kind of mode where wave front correction will rely purely on signals from the laser beacons. To remove the vibrations from the uplink path a vibration compensation system will be installed. This system uses accelerometers to measure the vibrations and corrects their effect with a small fast tip-tilt mirror. The controller of the system is built based on the assumption that the vibrations take place at a few distinct frequencies. Here I present a lab set-up of this system and show first results of the performance.
NASA Astrophysics Data System (ADS)
Gusev, Nikolay; Svatovskaya, Larisa; Kucherenko, Alexandr
2018-03-01
The article is devoted to the problem of improving the reliability of monitoring systems for the technical conditions of high-rise buildings. The improvement is based on string sensors with an impulsed excitation method ensuring the maximum signal-to-noise ratio at their output. The influence of the parameters of the monitoring system on the shape of the excitation impulses of the string, and, consequently, on the amplitude of the string vibration of the string converter is also considered in the article. It has been experimentally proved that the parameters of the excitation impulses of the string converters. The article presents the results of the experiments showing the effect of the fronts duration of the excitation impulses on the amplitude of the oscillations of the strings. The influence of the fronts duration of the excitation impulse with the frontal lengths up to 0.5 ms is studied at the excitation impulse duration not exceeding 0.5 times the duration of natural oscillation periods of the string. The experimental data are compared with the theoretical ones and hypotheses explaining their difference are advanced. The article suggests some methods of reducing the influence of the cable-switching equipment system parameters on the amplitude of string oscillations. The possibilities of improving the reliability of the systems developed on the basis of string sensors with an impulsed excitation method and used for monitoring the technical conditions of the high-rise buildings are proposed.
Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang
2013-08-30
The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vilão, Rui C.; Melo, Santino L. S.
2014-12-01
We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.
Quantitative Accelerated Life Testing of MEMS Accelerometers
Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul
2007-01-01
Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1. PMID:28903265
NASA Astrophysics Data System (ADS)
Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar
2012-04-01
Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.
The Atwood machine revisited using smartphones
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.
2015-09-01
The Atwood machine is a simple device used for centuries to demonstrate Newton's second law. It consists of two supports containing different masses joined by a string. Here we propose an experiment in which a smartphone is fixed to one support. With the aid of the built-in accelerometer of the smartphone, the vertical acceleration is registered. By redistributing the masses of the supports, a linear relationship between the mass difference and the vertical acceleration is obtained. In this experiment, the use of a smartphone contributes to enhance a classical demonstration.
NASA Technical Reports Server (NTRS)
Hopson, Charles B.
1987-01-01
The results of an analysis performed on seven successive Space Shuttle Main Engine (SSME) static test firings, utilizing envelope detection of external accelerometer data are discussed. The results clearly show the great potential for using envelope detection techniques in SSME incipient failure detection.
Composite Bending Box Section Modal Vibration Fault Detection
NASA Technical Reports Server (NTRS)
Werlink, Rudy
2002-01-01
One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.
Can an iPod Touch be used to assess whole-body vibration associated with mining equipment?
Wolfgang, Rebecca; Di Corleto, Luke; Burgess-Limerick, Robin
2014-11-01
The cost and complexity of commercially available whole-body vibration measurement devices is a barrier to the systematic collection of the information required to manage this hazard. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by collecting 58 simultaneous pairs of acceleration measurements in three dimensions from a fifth-generation iPod Touch and gold standard whole-body vibration measurement devices, while a range of heavy mining equipment was operated at three surface coal mines. The results suggest that accelerometer data gathered from a consumer electronic device are able to be used to measure whole-body vibration amplitude with 95% confidence of ±0.06 m s(-2) root mean square for the vertical direction (1.96 × standard deviation of the constant error). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
Energy conserving schemes for the simulation of musical instrument contact dynamics
NASA Astrophysics Data System (ADS)
Chatziioannou, Vasileios; van Walstijn, Maarten
2015-03-01
Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.
NASA Astrophysics Data System (ADS)
Singh, Harkirat; Wahi, Pankaj
2017-08-01
The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.
Does a String-Particle Dualism Indicate the Uncertainty Principle's Philosophical Dichotomy?
NASA Astrophysics Data System (ADS)
Mc Leod, David; Mc Leod, Roger
2007-04-01
String theory may allow resonances of neutrino-wave-strings to account for all experimentally detected phenomena. Particle theory logically, and physically, provides an alternate, contradictory dualism. Is it contradictory to symbolically and simultaneously state that λp = h, but, the product of position and momentum must be greater than, or equal to, the same (scaled) Plank's constant? Our previous electron and positron models require `membrane' vibrations of string-linked neutrinos, in closed loops, to behave like traveling waves, Tws, intermittently metamorphosing into alternately ascending and descending standing waves, Sws, between the nodes, which advance sequentially through 360 degrees. Accumulated time passages as Tws detail required ``loop currents'' supplying magnetic moments. Remaining time partitions into the Sws' alternately ascending and descending phases: the physical basis of the experimentally established 3D modes of these ``particles.'' Waves seem to indicate that point mass cannot be required to exist instantaneously at one point; Mott's and Sneddon's Wave Mechanics says that a constant, [mass], is present. String-like resonances may also account for homeopathy's efficacy, dark matter, and constellations' ``stick-figure projections,'' as indicated by some traditional cultures, all possibly involving neutrino strings. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.5
Ground vibration test of the XV-15 Tiltrotor Research Aircraft and pretest predictions
NASA Technical Reports Server (NTRS)
Studebaker, Karen; Abrego, Anita
1994-01-01
The first comprehensive ground vibration survey was performed on the XV-15 Tiltrotor Research Aircraft to measure the vibration modes of the airframe and to provide data critical for determining whirl flutter stability margins. The aircraft was suspended by the wings with bungee cords and cables. A NASTRAN finite element model was used in the design of the suspension system to minimize its interference with the wing modes. The primary objective of the test was to measure the dynamic characteristics of the wings and pylons for aeroelastic stability analysis. In addition, over 130 accelerometers were placed on the airframe to characterize the fuselage, wing, and tail vibration. Pretest predictions were made with the NASTRAN model as well as correlations with the test data. The results showed that the suspension system provided the isolation necessary for modal measurements.
Intelligent vibration control of ELTs and large AO hardware
NASA Astrophysics Data System (ADS)
Pott, J.-U.; Kürster, M.; Trowitzsch, J.; Borelli, J.; Rohloff, R.-R.; Herbst, T.; Böhm, M.; Keck, A.; Ruppel, T.; Sawodny, O.
2012-07-01
MPIA leads the construction of the LINC-NIRVANA instrument, the MCAO-supported Fizeau imager for the LBT, serves as pathfinder for future ELT-AO imagers in terms of size and technology. In this contribution, we review recent results and significant progress made on the development of key items of our stratgey to achieve a piston stability of up to 100nm during a science exposure. We present an overview of our vibration control strategies for optical path and tip-tilt stabilization, involving accelerometer based real-time vibration measurements, vibration sensitive active control of actuators, and the development of a dynamical model of the LBT. MPIA also co-develops the E-ELT first-light NIR imager MICADO (both SCAO and MCAO assisted). Our experiences, made with LINC-NIRVANA, will be fed into the MICADO structural AO design to reach highest on-sky sensitivity.
High frequency modal identification on noisy high-speed camera data
NASA Astrophysics Data System (ADS)
Javh, Jaka; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.
Development of a Practical Broadband Active Vibration Control System
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.
2011-01-01
The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.
Development of a Transient Thrust Stand with Sub-Millisecond Resolution
NASA Astrophysics Data System (ADS)
Spells, Corbin Fraser
The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.
Vibration Testing of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.
2000-01-01
The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Connolly, Walter
1986-01-01
A relatively simple opto-electronic setup is described that utilizes a cadmium sulphide (CdS) photoconductive cell to detect resonance of a stretched vibrating string or wire. The display may be either an oscilloscope or a frequency counter. Also describes an inexpensive socket for flanged-base light bulbs. (JN)
NASA Astrophysics Data System (ADS)
Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying
2018-06-01
The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Dongming; Feng, Maria Q.
2017-10-01
State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.
Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films
NASA Astrophysics Data System (ADS)
Wang, Li-Peng
2001-12-01
In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.
Using accelerometers to determine the calling behavior of tagged baleen whales.
Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L
2014-07-15
Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring. © 2014. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.
1998-01-01
The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.
System and method for damping vibration in a drill string using a magnetorheological damper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wassell, Mark Ellsworth; Burgess, Daniel E; Barbely, Jason R
2012-01-03
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field thatmore » alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.« less
Vibration characteristics of a steadily rotating slender ring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1980-01-01
Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.
NASA Technical Reports Server (NTRS)
1971-01-01
A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.
NASA Astrophysics Data System (ADS)
Bartoli, Claire; Hermawanto, Denny
2017-01-01
The results of a Pilot Study EURAMET.AUV.V-P1 between LNE (France) and RCM-LIPI (Indonesia) are reported. This bilateral comparison of sinusoidal vibration was organized after the implementation of various improvements at RCM-LIPI following a previous (unpublished) comparison that had revealed discrepancies in their results at frequencies above 5 kHz. The results of this Pilot Study, using the same accelerometers as the earlier comparison, demonstrate that the discrepancies at high frequencies have been resolved. For both the back-to-back and the single-ended accelerometers tested, the sensitivities of the RCM-LIPI and the LNE over the frequency range from 10 Hz to 10 kHz now agree within their declared uncertainties. Main text To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV.
Planetary Gearbox Fault Detection Using Vibration Separation Techniques
NASA Technical Reports Server (NTRS)
Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.
Oosterhuis, H J; Bouwsma, C; van Halsema, B; Hollander, R A; Kros, C J; Tombroek, I
1992-10-03
Quantification of vibration perception and fingertip sensation in routine neurological examination. Neurological Clinic, University Hospital, Groningen, the Netherlands. Prospective, controlled investigation. Vibration perception and fingertip sensation were quantified in a large group of normal control persons of various ages and in neurological patients and compared with the usual sensory tests at routine neurological examination. The vibration perception limit was measured with a biothesiometer without accelerometer, the fingertip sensation with a device for two-point discrimination slightly modified according to Renfrew ('Renfrew meter'). Concordance of the tests was studied by calculating kappa values. The normal values of both sensory qualities had a log-normal distribution and increased with age. The values obtained with the Renfrew meter correlated well with those of the two-point discrimination and stereognosis but were systematically higher than those indicated by Renfrew. Both methods appear useful at routine neurological examination if certain measuring precautions are taken.
NASA Technical Reports Server (NTRS)
Banerjee, B. B.; Allaire, P. E.; Grodsinsky, C. M.
1996-01-01
Microgravity experiments will require active vibration isolation in the low to mid frequency range of 0.1 Hz to 10 Hz. Approximately two orders of acceleration reduction (40 dB) will be required. Previous works have reported results for accelerations transmitted through the umbilical. This paper describes experimental and theoretical results for vibration isolation in one dimension (horizontal) where the simulated experiment is connected to the spacecraft by a spring umbilical. The experiment consisted of a spacecraft (shaker), experiment (mass), umbilical, accelerometer, control electronics, and Lorentz actuator. The experiment mass was supported in magnetic bearings to avoid any stiction problems. Acceleration feedback control was employed to obtain the vibration isolation. Three different spring umbilicals were employed. Acceleration reductions on the order of 40 dB were obtained over the frequency range of 0.1 Hz to 10 Hz. Good agreement was obtained between theory and experiment.
Goldberg, J M; Lindblom, U
1979-01-01
Vibration threshold determinations were made by means of an electromagnetic vibrator at three sites (carpal, tibial, and tarsal), which were primarily selected for examining patients with polyneuropathy. Because of the vast variation demonstrated for both vibrator output and tissue damping, the thresholds were expressed in terms of amplitude of stimulator movement measured by means of an accelerometer, instead of applied voltage which is commonly used. Statistical analysis revealed a higher power of discimination for amplitude measurements at all three stimulus sites. Digital read-out gave the best statistical result and was also most practical. Reference values obtained from 110 healthy males, 10 to 74 years of age, were highly correlated with age for both upper and lower extremities. The variance of the vibration perception threshold was less than that of the disappearance threshold, and determination of the perception threshold alone may be sufficient in most cases. PMID:501379
Fault detection of gearbox using time-frequency method
NASA Astrophysics Data System (ADS)
Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.
2017-04-01
This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).
Identification of bearing faults using time domain zero-crossings
NASA Astrophysics Data System (ADS)
William, P. E.; Hoffman, M. W.
2011-11-01
In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.
NASA Astrophysics Data System (ADS)
Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.
2015-04-01
In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.
2010-03-01
Characterization Solutions Enabled by Laser Doppler Vibrometer Measurements, Proc. SPIE, Fifth International Conference on Vibration Measurements by Laser ...commercial capabilities: Ring Laser Gyros, Fiber Optic Gyros, and Micro-Electro-Mechanical Systems (MEMS) gyros and accelerometers. RLGs and FOGs are now...augmentation sensors have been tied into the inertial systems; e.g., GPS, velocity meters, seekers, star trackers, magnetometers, lidar , etc. The
An In-Process Surface Roughness Recognition System in End Milling Operations
ERIC Educational Resources Information Center
Yang, Lieh-Dai; Chen, Joseph C.
2004-01-01
To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…
Aligned Carbon Nanotube Tape for Sensor Applications
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
2013-01-01
For this effort, will concentrate on three applications: Vibration Gyroscope utilizes piezoelectric properties of the tape and Coriolis effect Accelerometer utilizes the piezoresistive property Strain Gauge utilizes piezoresistive property Accelerometer and Strain Gauge can also utilize piezoelectric effect Test piezoelectric properties using facilities at the Microfabrication Laboratory (AMRDEC) . Enhance piezoelectric effect using polyvinylidine fluoride and P(VDF ]TrFE) which is readily polarizable .Spray matrix solution while winding fiber; Sandwich of CNT tape and PVDF film (DOE .Two Level) . Construct and test prototype vibration gyroscope . Construct and test prototype accelerometer using cantilever design . Test strain sensitivity of CNT tape against industrial strain gauge . Embed CNT tape in composite samples as well as on surface and test to failure (4 ]point bend) A piezoelectric device exhibits an electrical response from a mechanical applied stress. . A piezoelectric device has both capacitance and resistance properties in which by applying an electric field from a waveform will exert a mechanical stress that can be monitored for a response. . The typical waveform applied is a sinusoidal waveform of a defined voltage for a defined period. The defined voltage is driven from 0 volts to the positive defined volts then back to 0 and driven to negative defined volts then back to 0. . Example. Vmax set to 10V and period set to 10 ms. . Voltage will start at zero, go to 10 volts, return to zero, go to ]10 volts and return to zero during 10 ms. . Applying this electrical field to a DUT, the capacitance response and resistance response can be observed. CNT tape is easier to manufacture and cheaper than micromachining silicon or other ceramic piezoelectric used in gyroscopes and accelerometers CNT tape properties can be modified during manufacture for specific application CNT tape has enhanced mechanical and thermal properties in addition to unique electrical properties CNT tape as a strain gauge in Structural Health Monitoring will provide an excellent material to embed within composite structures
Discrete mathematical physics and particle modeling
NASA Astrophysics Data System (ADS)
Greenspan, D.
The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.
Teaching Mathematics Using a Computer Algebra.
ERIC Educational Resources Information Center
Westermann, Thomas
2001-01-01
Demonstrates the principal concept and the application of MAPLE in mathematical education in various examples. Discusses lengthy and abstract topics like the convergence of Fourier series to a given function, performs the visualization of the wave equation in the case of a vibrating string, and computes the oscillations of an idealized skyscraper…
Moreno, Javier; Clotet, Eduard; Tresanchez, Marcel; Martínez, Dani; Casanovas, Jordi; Palacín, Jordi
2017-01-01
This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16. PMID:28505108
Ergonomic analysis of fastening vibration based on ISO Standard 5349 (2001).
Joshi, Akul; Leu, Ming; Murray, Susan
2012-11-01
Hand-held power tools used for fastening operations exert high dynamic forces on the operator's hand-arm, potentially causing injuries to the operator in the long run. This paper presents a study that analyzed the vibrations exerted by two hand-held power tools used for fastening operations with the operating exhibiting different postures. The two pneumatic tools, a right-angled nut-runner and an offset pistol-grip, are used to install shearing-type fasteners. A tri-axial accelerometer is used to measure the tool's vibration. The position and orientation of the transducer mounted on the tool follows the ISO-5349 Standard. The measured vibration data is used to compare the two power tools at different operating postures. The data analysis determines the number of years required to reach a 10% probability of developing finger blanching. The results indicate that the pistol-grip tool induces more vibration in the hand-arm than the right-angled nut-runner and that the vibrations exerted on the hand-arm vary for different postures. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Transference of 3D accelerations during cross country mountain biking.
Macdermid, Paul W; Fink, Philip W; Stannard, Stephen R
2014-06-03
Investigations into the work demands of Olympic format cross country mountain biking suggest an incongruent relationship between work done and physiological strain experienced by participants. A likely but unsubstantiated cause is the extra work demand of muscle damping of terrain/surface induced vibrations. The purpose of this study was to describe the relationship between vibration mechanics and their interaction with terrain, bicycle and rider during a race pace effort on a cross country mountain bike track, on both 26″ and 29″ wheels. Participants completed one lap of a cross country track using 26″ and 29″ wheels, at race pace. Power, cadence, speed, heart rate and geographical position were sampled and logged every second for control purposes. Tri-axial accelerometers located on the bicycle and rider, recorded accelerations (128Hz) and were used to quantify vibrations experienced during the whole lap and over terrain sections (uphill and downhill). While there were no differences in power output (p=0.3062) and heart rate (p=0.8423), time to complete the lap was significantly (p=0.0061) faster on the 29″ wheels despite increased vibrations in the larger wheels (p=0.0020). Overall accelerometer data (RMS) showed location differences (p<0.0001), specifically between the point of interface of bike-body compared to those experienced at the lower back and head. The reduction in accelerations at both the lower back and head are imperative for injury prevention and demonstrates an additional non-propulsive, muscular, challenge to riding. Stress was greatest during downhill sections as acceleration differences between locations were greater when compared to uphill sections, and thus possibly prevent the recovery processes that may occur during non-propulsive load. Copyright © 2014 Elsevier Ltd. All rights reserved.
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy
1992-01-01
The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.
NASA Technical Reports Server (NTRS)
Lo, C. F.; Wu, K.; Whitehead, B. A.
1993-01-01
The statistical and neural networks methods have been applied to investigate the feasibility in detecting anomalies in turbopump vibration of SSME. The anomalies are detected based on the amplitude of peaks of fundamental and harmonic frequencies in the power spectral density. These data are reduced to the proper format from sensor data measured by strain gauges and accelerometers. Both methods are feasible to detect the vibration anomalies. The statistical method requires sufficient data points to establish a reasonable statistical distribution data bank. This method is applicable for on-line operation. The neural networks method also needs to have enough data basis to train the neural networks. The testing procedure can be utilized at any time so long as the characteristics of components remain unchanged.
NASA Astrophysics Data System (ADS)
Xu, Roger; Stevenson, Mark W.; Kwan, Chi-Man; Haynes, Leonard S.
2001-07-01
At Ford Motor Company, thrust bearing in drill motors is often damaged by metal chips. Since the vibration frequency is several Hz only, it is very difficult to use accelerometers to pick up the vibration signals. Under the support of Ford and NASA, we propose to use a piezo film as a sensor to pick up the slow vibrations of the bearing. Then a neural net based fault detection algorithm is applied to differentiate normal bearing from bad bearing. The first step involves a Fast Fourier Transform which essentially extracts the significant frequency components in the sensor. Then Principal Component Analysis is used to further reduce the dimension of the frequency components by extracting the principal features inside the frequency components. The features can then be used to indicate the status of bearing. Experimental results are very encouraging.
Integrated cable vibration control system using wireless sensors
NASA Astrophysics Data System (ADS)
Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han
2017-04-01
As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.
Whole-body vibration exposure of occupational horseback riding in agriculture: A ranching example.
Zeng, Xiaoke; Trask, Catherine; Kociolek, Aaron M
2017-02-01
Horse riding is common in many occupations; however, there is currently no research evaluating exposure to whole-body vibration and mechanical shock on horseback. Whole-body vibration was measured on a cattle rancher during two 30 min horseback rides using a tri-axial accelerometer mounted on a western saddle. Vibration was summarized into standardized metrics, including the 8 hr equivalent root-mean-squared acceleration (A[8]) and the daily 4th power vibration dose value (VDV). The resulting exposures were compared to the exposure limit and action values provided by European Union Directive 2002/44/EC. The highest vibration for both rides was in the vertical axis, with average A(8) and VDV of 0.56 m/s 2 and 26.24 m/s 1.75 , respectively. The A(8) value indicated moderate risk while the VDV suggested high risk of harmful health effects. Exposure to whole-body vibration and mechanical shock during occupational horseback riding may pose deleterious health risks and increased susceptibility to low back pain. Am. J. Ind. Med. 60:215-220, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Violin Pedagogy and the Physics of the Bowed String
NASA Astrophysics Data System (ADS)
McLeod, Alexander Rhodes
The paper describes the mechanics of violin tone production using non-specialist language, in order to present a scientific understanding of tone production accessible to a broad readership. As well as offering an objective understanding of tone production, this model provides a powerful tool for analyzing the technique of string playing. The interaction between the bow and the string is quite complex. Literature reviewed for this study reveals that scientific investigations have provided important insights into the mechanics of string playing, offering explanations for factors which both contribute to and limit the range of tone colours and dynamics that stringed instruments can produce. Also examined in the literature review are significant works of twentieth century violin pedagogy exploring tone production on the violin, based on the practical experience of generations of teachers and performers. Hermann von Helmholtz described the stick-slip cycle which drives the string in 1863, which replaced earlier ideas about the vibration of violin strings. Later, scientists such as John Schelleng and Lothar Cremer were able to demonstrate how the mechanics of the bow-string interaction can create different tone colours. Recent research by Anders Askenfelt, Knut Guettler, and Erwin Schoonderwaldt have continued to refine earlier research in this area. The writings of Lucien Capet, Leopold Auer, Carl Flesch, Paul Rolland, Kato Havas, Ivan Galamian, and Simon Fischer are examined and analyzed. Each author describes a different approach to tone production on the violin, representing a different understanding of the underlying mechanism. Analyzing these writings within the context of a scientific understanding of tone production makes it possible to compare these approaches more consistently, and to synthesize different concepts drawn from the diverse sources evaluated.
On-Orbit System Identification
NASA Technical Reports Server (NTRS)
Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.
1987-01-01
Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.
Application of nodes with multiple orthogonal sensors in moving light vehicles study
NASA Astrophysics Data System (ADS)
Ekimov, Alexander
2012-06-01
A sensor node having two types of sensors: sound and seismic units was used for signal collection in a test with different moving light vehicles on a gravel road in a quiet area. An analysis of signals from the node at low frequencies (less than 100 Hz) shows the possibility of tested vehicles detection at long distance. The sound signals for the vehicle motion were detected above the lowest frequencies of 15-20 Hz only while the seismic signals had the maxima in that frequency band. Another test was conducted on the ground to find the common vibrations of a light vehicle and the ground due to vehicle passby in frequencies below 100 Hz. For this signal collection the same sensor node was used. An additional 3-x accelerometer was installed in the vehicle cabin above the transmission. For start time synchronization of recorded signals from the node on the ground and 3-x accelerometer in the vehicle cabin a radio channel was used. Results for this test revealed the vehicle vibrations due to motion were detected on the ground with all three components of the 3-axes geophone for the test track entire distance.
An SVM-based solution for fault detection in wind turbines.
Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús
2015-03-09
Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.
Ground Vibration Test of the Aerostructure Test Wing 2
NASA Technical Reports Server (NTRS)
Herrera, Claudia; Moholt, Matthew
2009-01-01
The Aerostructures Test Wing (ATW) was developed to test unique concepts for flutter prediction and control synthesis. A follow-on to the successful ATW, denoted ATW2, was fabricated as a test bed to validate a variety of instrumentation in flight and to collect data for development of advanced signal processing algorithms for flutter prediction and aviation safety. As a means to estimate flutter speed, a ground vibration test (GVT) was performed. The results of a GVT are typically utilized to update structural dynamics finite element (FE) models used for flutter analysis. In this study, two GVT methodologies were explored to determine which nodes provide the best sensor locations: (i) effective independence and (ii) kinetic energy sorting algorithms. For measurement, ten and twenty sensors were used for three and 10 target test modes. A total of six accelerometer configurations measured frequencies and mode shapes. This included locations used in the original ATW GVT. Moreover, an optical measurement system was used to acquire data without mass effects added by conventional sensors. A considerable frequency shift was observed in comparing the data from the accelerometers to the optical data. The optical data provided robust data for use of the ATW2 finite element model update.
Niskanen, Arto; Tuononen, Ari J
2015-08-05
Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.
Niskanen, Arto; Tuononen, Ari J.
2015-01-01
Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced. PMID:26251914
"Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera
ERIC Educational Resources Information Center
Ng, Pun-hon; Chan, Kin-lok
2015-01-01
In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…
NASA Astrophysics Data System (ADS)
Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan
2011-08-01
Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2014-11-01
Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2015-03-01
We have recently found that a long length of fiber of up to 1 km terminated with an in-fiber cavity structure can detect vibrations over a frequency range from 5 Hz to 2 kHz. We want to determine whether the sensor (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to maintenance cost. The sensor may also help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that requires the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Acoustic vibration monitoring may need sensing at even higher frequencies (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed longgauge vibration sensor depends on packaging.
Effects of seated posture on erector spinae EMG activity during whole body vibration.
Zimmermann, C L; Cook, T M; Goel, V K
1993-06-01
The purpose of this study was to evaluate the electromyographic (EMG) response of the erector spinae to whole body vibration in three different unsupported seated postures: neutral upright, forward lean, and posterior lean. Subjects were 11 healthy college-age men. EMG was collected using bipolar surface electrodes placed bilaterally over the erector spinae at the L4 level. A modified chair with attached accelerometer was affixed to an induction type vibrator. Subjects were vibrated vertically at 4.5 Hz and 6.21 m.s-2 RMS. Data were collected in each of the three postures for 30 s pre- and post-vibration and for 2 min during vibration. Mean EMG values were determined for each sampling period and compared using ANOVA. The mean value for anterior lean was significantly larger (p < 0.05) than that for posterior lean and neutral. EMG data analysed by triggered averaging showed a phase-dependent response to the vibratory cycle for the forward leaning and neutral upright postures. The results of this study indicate that the magnitude of the vibration synchronous response of the erector spinae musculature is dependent upon body posture. This response may be an important factor in the onset of muscular fatigue and the increased incidence of back disorders among individuals exposed to whole body vibration.
Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E
2015-01-01
Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes. PMID:26632783
Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E
2015-11-01
Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes.
Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik
2011-01-01
In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Knight, Brent; Parsons, David; Smith, Andrew; Hunt, Ron; LaVerde, Bruce; Towner, Robert; Craigmyle, Ben
2013-01-01
Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from a series of acoustically excited tests to determine the effectiveness of these dampers for equipment mounted to a curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are examined for variations in particle damper fill level, component mass, and excitation energy. A significant response reduction at the component level was achieved, suggesting that comparatively small, strategically placed, particle damper devices might be advantageously used in launch vehicle design. These test results were compared to baseline acoustic response tests without particle damping devices, over a range of isolation and damping parameters. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.
A novel implementation of homodyne time interval analysis method for primary vibration calibration
NASA Astrophysics Data System (ADS)
Sun, Qiao; Zhou, Ling; Cai, Chenguang; Hu, Hongbo
2011-12-01
In this paper, the shortcomings and their causes of the conventional homodyne time interval analysis (TIA) method is described with respect to its software algorithm and hardware implementation, based on which a simplified TIA method is proposed with the help of virtual instrument technology. Equipped with an ordinary Michelson interferometer and dual channel synchronous data acquisition card, the primary vibration calibration system using the simplified method can perform measurements of complex sensitivity of accelerometers accurately, meeting the uncertainty requirements laid down in pertaining ISO standard. The validity and accuracy of the simplified TIA method is verified by simulation and comparison experiments with its performance analyzed. This simplified method is recommended to apply in national metrology institute of developing countries and industrial primary vibration calibration labs for its simplified algorithm and low requirements on hardware.
In vivo measurement of mechanical properties of human long bone by using sonic sound
NASA Astrophysics Data System (ADS)
Hossain, M. Jayed; Rahman, M. Moshiur; Alam, Morshed
2016-07-01
Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.
Optical fiber sensors for the non-destructive evaluation of materials
NASA Technical Reports Server (NTRS)
1986-01-01
The operation of the modal domain vibration sensor was demonstrated in several simple vibrational systems. Two apparent advantages are the sensors bandwidth and sensitivity. An inherent drawback of standard vibration detection devices is their rapid cost increase with high frequency bandwidth. This sensor showed consistent response in the freqency range of 1.5 to 400 Hz. By imparting very small but measurable excitations in the structures, the sensors ability to respond to very low order vibration induced strain was established. Dynamic ranges on the order of 18 to 22 dB for the CF beam and string systems respectively were observed. The sensor itself represents a very simple system: a coherent source, a single fiber and a low bandwidth detector. The inherent advantages of ruggedness and immunity to external radiation can also be added. Finally, the sensor minimally impairs structural motion through loading, an advantage in monitoring small vibrations or lightweight structures. Some drawbacks of the sensor are also noted.
The acoustics of the violin: a review
NASA Astrophysics Data System (ADS)
Woodhouse, Jim
2014-11-01
To understand the design and function of the violin requires investigation of a range of scientific questions. This paper presents a review: the relevant physics covers the nonlinear vibration of a bowed string, the vibration of the instrument body, and the consequent sound radiation. Questions of discrimination and preference by listeners and players require additional studies using the techniques of experimental psychology, and these are also touched on in the paper. To address the concerns of players and makers of instruments requires study of the interaction of all these factors, coming together in the concept of ‘playability’ of an instrument.
Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-04-01
Dynamic fibre-optic curvature sensing is demonstrated by interrogating chains of fibre segments, separated by broadband Bragg grating reflectors, using range-resolved interferometry (RRI). Four fibre strings, containing four fibre segments each of gauge length 20 cm, are attached to the opposing sides of a support structure and the resulting differential strain measurements allow inference of lateral displacements of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range at an interferometric bandwidth of 21 kHz demonstrate the suitability of this approach for highly sensitive and cost-effective fibre-optic directional vibration measurements of smart structures.
Active current-noise cancellation for Scanning Tunneling Microscopy
NASA Astrophysics Data System (ADS)
Pabbi, Lavish; Shoop, Conner; Banerjee, Riju; Dusch, Bill; Hudson, E. W.
The high sensitivity of the scanning tunneling microscope (STM) poses a barrier to its use in a noisy environment. Vibrational noise, whether structural or acoustic in source, manifests as relative motion between the probe tip and the sample, then appearing in the Z feedback that tries to cancel it. Here we describe an active noise cancellation process that nullifies this motion by adding a drive signal into the existing Z feedback loop. The drive is digitally calculated by actively monitoring vibrations measured by an accelerometer placed in-situ close to the STM head. By transferring the vibration cancellation effort to this drive signal, vibration-created noise in the Z-feedback (during topography) or current (during spectroscopy) is significantly reduced. This inexpensive and easy solution, requiring no major instrumental modifications, is ideal for those looking to place their STM in a noisier environment, for example in the presence of active refrigeration systems (e.g. pulse tube cryocoolers) or coupled to high-vibration instrumentation. This material is based upon work supported by the National Science Foundation under Grant No. 1229138.
Wind Turbine Bearing Diagnostics Based on Vibration Monitoring
NASA Astrophysics Data System (ADS)
Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.
2018-05-01
Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.
Coherent-Phase Monitoring Of Cavitation In Turbomachines
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.
Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1991-01-01
The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.
Quantitative Accelerated Life Testing of MEMS Accelerometers.
Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul
2007-11-20
Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10 -7 h -1 .
Microscope in orbit calibration procedure for a test of the equivalence principle at 10(-15).
Pradels, G; Touboul, P
2003-01-01
The scientific objectives of the MICROSCOPE space mission impose a very fine calibration of the on-board accelerometers. However the required performance cannot be achieved on ground because of the presence of high disturbing sources. On-board the CHAMP satellite, accelerometers similar in the concept to the MICROSCOPE instrument, have already flown and analysis of the provided data then allowed to characterise the vibration environment at low altitude as well as the fluctuation of the drag. The requirements of the in-orbit calibration procedure for the MICROSCOPE instrument are demonstrated by modelling the expected applied acceleration signals with the developed analytic model of the mission. The proposed approach exploits the drag-free system of the satellite and the sensitivity of the accelerometers. A specific simulator of the attitude control system of the satellite has been developed and tests of the proposed solution are performed using nominal conditions or disturbing conditions as observed during the CHAMP mission. c2003 International Astronautical Federation. Published by Elsevier Science Ldt. All rights reserved.
A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift
Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli
2017-01-01
Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798
NASA Technical Reports Server (NTRS)
Beck, Benjamin; Schiller, Noah
2013-01-01
This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.
Whole body vibration exposure patterns in Canadian prairie farmers.
Zeng, Xiaoke; Kociolek, Aaron M; Khan, Muhammad Idrees; Milosavljevic, Stephan; Bath, Brenna; Trask, Catherine
2017-08-01
Whole body vibration is a significant physical risk factor associated with low back pain. This study assessed farmers' exposure to whole body vibration on the Canadian prairies according to ISO 2631-1. Eighty-seven vibration measurements were collected with a triaxial accelerometer embedded in a rubber seat pad at the operator-seat interface of agricultural machinery, including tractors, combines, pickup trucks, grain trucks, sprayers, swathers, all-terrain vehicles, and skid steers. Whole body vibration was highest in the vertical axis, with a mean (range) frequency-weighted root mean squared acceleration of 0.43 m/s 2 (0.19-1.06 m/s 2 ). Mean crest factors exceeded 9 in all 3 axes, indicating high mechanical shock content. The vertical axis vibration dose value was 7.55 m/s 1.75 (2.18-37.59 m/s 1.75 ), with 41.4% of measurements within or above the health guidance caution zone. These high exposures in addition to an ageing agricultural workforce may increase health risks even further, particularly for the low back. Practitioner Summary: Agricultural workers are frequently exposed to whole body vibration while operating farm equipment, presenting a substantial risk to musculoskeletal health including the low back. Assessing vibration exposure is critical in promoting a safe occupational environment, and may inform interventions to reduce farmer's exposure to vibration.
He, Yi-San; Chen, Kuan-Fu; Lin, Chien-Hung; Lin, Min-Tsung; Chen, Chien-Chung; Lin, Cheng-Huang
2013-03-19
The use of an accelerometer as a gas detector in gas chromatography (GC) is described for the first time. A milli-whistle was connected to the outlet of the GC capillary. When the eluted and GC carrier gases pass through the capillary and milli-whistle, a sound is produced. After a fast Fourier transform (FFT), the sound wave generated from the milli-whistle is picked up by a microphone and the resulting vibration of the milli-whistle body can be recorded by an accelerometer. The release of hydrogen gas, as the result of thermal energy, from ammonia borane (NH3BH3), which has been suggested as a storage medium for hydrogen, was selected as the model sample. The findings show that the frequencies generated, either by sound or by the vibration from the whistle body, were identical. The concentration levels of the released hydrogen gas can be determined online, based on the frequency changes. Ammonia borane was placed in a brass reservoir, heated continually, and the released hydrogen gas was directly injected into the GC inlet at 0.5 min intervals, using a home-built electromagnetic pulse injector. The concentration of hydrogen for each injection can be calculated immediately. When the ammonia borane was encapsulated within a polycarbonate (PC) microtube array membrane, the temperature required for the release of hydrogen can be decreased, which would make such a material more convenient for use. The findings indicate that 1.0 mg of ammonia borane can produce hydrogen in the range of 1.0-1.25 mL, in the temperature range of 85-115 °C.
Excitation of Standing Waves by an Electric Toothbrush
ERIC Educational Resources Information Center
Cros, Ana; Ferrer-Roca, Chantal
2006-01-01
There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…
Guitar Strings as Standing Waves: A Demonstration
NASA Astrophysics Data System (ADS)
Davis, Michael
2007-08-01
An undergraduate student's first exposure to modern atomic theory tends to start with Bohr's model of the atom. This familiar introduction to atomic structure also marks a general chemistry student's first foray into waves. Many popular chemistry textbooks illustrate the concept of a standing wave in the development of the modern quantum model by using the phrase “as seen on a guitar string”. In these illustrations, the wave itself is often small and difficult to discern. The same phenomenon, however, can be easily and audibly observed. This demonstration uses an acoustic guitar to produce three unique harmonic vibrations, each of which is representative of a standing wave and illustrates the concept of quantization. Manipulation of the guitar string to produce a standing wave is pervasive in popular music and is audibly recognizable. Lightly placing a finger on the 12th, 7th, or 5th fret and strumming any one or all six strings can produce an audible example of a standing wave on a guitar. This corresponds to a standing wave with 1, 2, or 3 nodes, respectively. Attempting to induce a node at other points on a guitar string does not generate a standing wave, due to destructive interference, thus no audible tone is produced.
Cabin attendants’ exposure to vibration and shocks during landing
NASA Astrophysics Data System (ADS)
Burström, Lage; Lindberg, Lennart; Lindgren, Torsten
2006-12-01
The Scandinavian Airlines System (SAS) has noted that cabin attendants have reported an increase in health problems associated with landing. The European Union reports cover health problems related to neck, shoulder, and lower-back injuries. Moreover, analysis of these reports shows that the problems are often associated with specific airplanes that have a longer tail behind the rear wheels and appear more often in attendants who sit in the back of planes rather then the front. Against this background, this study measures and describes the vibration during landing in specific airplanes to evaluate the health risk for the cabin attendants. Measurements were conducted on regular flights with passengers in the type of airplane, Boeing 737-800, which was related to the highest per cent of reported health problems. All measurements were performed the same day during three landings in one airplane with the same pilots and cabin attendants. The measurements were carried out simultaneously on the cabin crew seats in the back and front of the passenger cabin. Under the cabin crew's seat cushions, a triaxiell seat-accelerometer was placed to measure the vibration in three axes. The signals from the accelerometers were amplified by charge amplifiers and stored on tape. The stored data were analysed with a computer-based analyse system. For the cabin attendants, the dominant direction for the vibration load during landing is the up-and-down direction although some vibration also occurs in the other horizontal directions. The exposure to vibration is higher on the rear crew seat compared to the front seat. For instance, both the vibration dose value (VDV) and the frequency-weighted acceleration in the dominant direction are more then 50% higher on the rear seat. The frequency-weighted acceleration and the VDV measured at the crew seats are below the exposure limits as described by the European vibration directive. The evaluation of the cabin attendants' exposure to multiple shocks during landing shows that the potential of an adverse health effect for the cabin attendants is low in the front of the airplane and increases to moderate in the rear. Although this is a limited study, it could be conclude that there could be a risk for cabin attendants due to the exposure of multiple shocks. Therefore, efforts should be spent to minimize their risk by developing a better seat cushion and back support to lessen the effects of shocks. In addition, attendants should be informed about the most suitable posture to take during landing.
NASA Technical Reports Server (NTRS)
Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)
2001-01-01
NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.
Noise elimination algorithm for modal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn; Li, C. L.; Xiong, C. B.
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides amore » fundamental mechanism of noise elimination using structured low rank approximation in physical fields.« less
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.
2014-06-01
Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
The Shock and Vibration Digest. Volume 14, Number 8
1982-08-01
generating interest in averaged transfer functions. Broadband transfer functions are derived using the methods of statistical energy analysis (SEA...Accelerometer, Endevco Corp., San Juan Capis- trano,CA(1982). 7. Lyon, R.H., Statistical Energy Analysis of Dy- namical Systems, MIT Press, Cambridge, MA...A fairly new technique known as statistical energy analysis , or SEA, [35-44] has been useful for many problems of noise transmission. The difficulty
An SVM-Based Solution for Fault Detection in Wind Turbines
Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús
2015-01-01
Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051
In vivo measurement of mechanical properties of human long bone by using sonic sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed
Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with themore » previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.« less
Experiments on active isolation using distributed PVDF error sensors
NASA Technical Reports Server (NTRS)
Lefebvre, S.; Guigou, C.; Fuller, C. R.
1992-01-01
A control system based on a two-channel narrow-band LMS algorithm is used to isolate periodic vibration at low frequencies on a structure composed of a rigid top plate mounted on a flexible receiving plate. The control performance of distributed PVDF error sensors and accelerometer point sensors is compared. For both sensors, high levels of global reduction, up to 32 dB, have been obtained. It is found that, by driving the PVDF strip output voltage to zero, the controller may force the structure to vibrate so that the integration of the strain under the length of the PVDF strip is zero. This ability of the PVDF sensors to act as spatial filters is especially relevant in active control of sound radiation. It is concluded that the PVDF sensors are flexible, nonfragile, and inexpensive and can be used as strain sensors for active control applications of vibration isolation and sound radiation.
Tendon reflex is suppressed during whole-body vibration.
Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı
2016-10-01
In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent
2013-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.
Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.
2014-01-01
Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.
Hand-arm vibration syndrome among a group of construction workers in Malaysia.
Su, Ting Anselm; Hoe, Victor Chee Wai; Masilamani, Retneswari; Awang Mahmud, Awang Bulgiba
2011-01-01
To determine the extent of hand transmitted vibration exposure problems, particularly hand-arm vibration syndrome (HAVS), among construction workers in Malaysia. A cross-sectional study was conducted on a construction site in Kuala Lumpur, Malaysia. 243 workers were recruited. Questionnaire interviews and hand examinations were administered to 194 respondents. Vibration magnitudes for concrete breakers, drills and grinders were measured using a 3-axis accelerometer. Clinical outcomes were compared and analysed according to vibration exposure status. Vibration total values for concrete breakers, impact drills and grinders were 10.02 ms(-2), 7.72 ms(-2) and 5.29ms(-2), respectively. The mean 8 h time-weighted hand transmitted vibration exposure, A(8), among subjects on current and previous construction sites was 7.52 (SD 2.68) ms(-2) and 9.21 (SD 2.48) ms(-2), respectively. Finger tingling, finger numbness, musculoskeletal problems of the neck, finger coldness, abnormal Phalen's test and abnormal light touch sensation were significantly more common in the high vibration exposure group (n=139) than the low-moderate vibration exposure group (n=54). Mean total lifetime vibration dose among exposed subjects was 15.2 (SD 3.2) m(2) h(3) s(-4) (ln scale). HAVS prevalence was 18% and the prevalence ratio of stage 1 and higher disease in the high vibration exposure group versus the low-moderate vibration exposure group was 4.86 (95% CI 1.19 to 19.80). Hand transmitted vibration is a recognisable problem in tropical countries including Malaysia. The current study has identified clinical symptoms and signs suggesting HAVS among construction workers exposed to hand transmitted vibration in a warm environment.
NASA Technical Reports Server (NTRS)
Peterson, Randall L.; Hoque, Muhammed S.
1994-01-01
A shake test was conducted in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center, using the NASA Ames Rotor Test Apparatus (RTA) and the Sikorsky S-76 rotor hub. The primary objective of this shake test was to determine the modal properties of the RTA, the S-76 rotor hub, and the model support system installed in the wind tunnel. Random excitation was applied at the rotor hub, and vibration responses were measured using accelerometers mounted at various critical locations on the model and the model support system. Transfer functions were computed using the load cell data and the accelerometer responses. The transfer function data were used to compute the system modal parameters with the aid of modal analysis software.
Are there reliable constitutive laws for dynamic friction?
Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew
2015-09-28
Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).
Non-material finite element modelling of large vibrations of axially moving strings and beams
NASA Astrophysics Data System (ADS)
Vetyukov, Yury
2018-02-01
We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.
Vertical Vibration Transmission Through the Lumbar Spine of the Seated SUBJECT—FIRST Results
NASA Astrophysics Data System (ADS)
El-Khatib, A.; Guillon, F.; Dômont, A.
1998-08-01
Seven fresh, not embalmed, cadavers (58·1±6·6 years, 73±10·3 kg, 170·7±6·5 cm) were submitted, in the week following their death (7·1±3·1 days), to a whole-body vertical broad-band white random vibration in the bandwidth 0·8 to 25 Hz of about 1·5 m/s2r.m.s. Two postures were tested using the same rigid seat, each one with and without a lumbar support: seated erect and seated as in a car. Vibration was monitored on the floor, the seating in the vertical direction (buttocks-to-head), the five lumbar vertebrae and the sternum: vertical (buttocks to head) and longitudinal (back to chest). Biaxial accelerometers were mounted rigidly on the anterior face of the vertebral body, after the removal of the abdominal viscera. Analogue recordings of each channel were passed through an antialising filter (Fc=40 Hz) then sampled at 80 Hz (4096 samples/channel). The inclination of each accelerometer (α) was measured on the lateral X-ray taken for every trial, then the data were set in order to be in the same reference (Z=z/cos α,X=xcos α). Spectral analysis was performed with a frequency resolution of 0·3 Hz, on the basis of Welch's method. Thirty one overlapping sections (256 samples per section using a Hanning window with an overlap rate of 128 samples) of the estimated periodograms were averaged. Transfer and coherence functions were than estimated between the vertical seating acceleration and the measured accelerations at the upper levels. The first results showed that the vertical vibration transmission was constant throughout the lumbar spine. Inter-subject variability was the major source of disparity. Resonance phenomena were observed between 4 and 9 Hz and depended on posture.
Dynamically tuned vibratory micromechanical gyroscope accelerometer
NASA Astrophysics Data System (ADS)
Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.
1997-11-01
A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (mV/deg/sec) sensitivity.
NASA Astrophysics Data System (ADS)
Kürster, M.; Bertram, T.; Borelli, J. L.; Brix, M.; Gässler, W.; Herbst, T. M.; Naranjo, V.; Pott, J.-U.; Trowitzsch, J.; Connors, T. E.; Hinz, P. M.; McMahon, T. J.; Ashby, D. S.; Brynnel, J. G.; Cushing, N. J.; Edgin, T.; Esguerra, J. D.; Green, R. F.; Kraus, J.; Little, J.; Beckmann, U.; Weigelt, G. P.
2010-07-01
Characterisation, mitigation and correction of telescope vibrations have proven to be crucial for the performance of astronomical infrared interferometers. The project teams of the interferometers for the LBT, LINC-NIRVANA and LBTI, and LBT Observatory (LBTO) have embarked on a joint effort to implement an accelerometer-based vibration measurement system distributed over the optical elements of the LBT. OVMS, the Optical Path Difference and Vibration Monitoring System will serve to (i) ensure conditions suitable for adaptive optics (AO) and interferometric (IF) observations and (ii) utilize vibration information, converted into tip-tilt and optical path difference data, in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers. The system hardware is mainly developed by Steward Observatory's LBTI team and its installation at the LBT is underway. The OVMS software development and associated computer infrastructure is the responsibility of the LINC-NIRVANA team at MPIA Heidelberg. Initially, the OVMS will fill a data archive provided by LBTO that will be used to study vibration data and correlate them with telescope movements and environmental parameters thereby identifiying sources of vibrations and to eliminate or mitigate them. Data display tools will help LBTO staff to keep vibrations within predefined thresholds for quiet conditions for AO and IF observations. Later-on real-time data from the OVMS will be fed into the control loops of the AO systems and IF instruments in order to permit the correction of vibration signals with frequencies up to 450 Hz.
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi
2016-09-01
This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.
Sound power and vibration levels for two different piano soundboards
NASA Astrophysics Data System (ADS)
Squicciarini, Giacomo; Valiente, Pablo Miranda; Thompson, David J.
2016-09-01
This paper compares the sound power and vibration levels for two different soundboards for upright pianos. One of them is made of laminated spruce and the other of solid spruce (tone-wood). These differ also in the number of ribs and manufacturing procedure. The methodology used is defined in two major steps: (i) acoustic power due to a unit force is obtained reciprocally by measuring the acceleration response of the piano soundboards when excited by acoustic waves in reverberant field; (ii) impact tests are adopted to measure driving point and spatially-averaged mean-square transfer mobility. The results show that, in the midhigh frequency range, the soundboard made of solid spruce has a greater vibrational and acoustic response than the laminated soundboard. The effect of string tension is also addressed, showing that is only relevant at low frequencies.
Disk Crack Detection for Seeded Fault Engine Test
NASA Technical Reports Server (NTRS)
Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)
2004-01-01
Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.
Preatoni, Ezio; Colombo, Alessandro; Verga, Monica; Galvani, Christel; Faina, Marcello; Rodano, Renato; Preatoni, Ennio; Cardinale, Marco
2012-09-01
The aims of this study were to assess the behavior of a vibrating platform under different conditions and to compare the effects of an 8-week periodized training program with whole-body vibration (WBV) alone or in combination with conventional strength training (ST). Vibrating frequencies, displacements, and peak accelerations were tested through a piezoelectric accelerometer under different conditions of load and subjects' position. Eighteen national-level female athletes were assigned to 1 of 3 different groups performing WBV, conventional ST, or a combination of the 2 (WBV + ST). Isometric maximal voluntary contraction, dynamic maximal concentric force, and vertical jump tests were performed before and after the conditioning program. Vibrating displacements and maximum accelerations measured on the device were not always consistent with their expected values calculated from the display and manufacturers' information (sinusoidal waveforms). The WBV alone or in combination with low-intensity resistance exercise did not seem to induce significant enhancements in force and power when compared with ST. It appears that WBV cannot substitute parts of ST loading in a cohort of young female athletes. However, vibration effects might be limited by the behavior of the commercial platforms as the one used in the study. More studies are needed to analyze the performances of devices and the effectiveness of protocols.
Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.
Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat
2014-09-01
Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Feasibility of heart sounds measurements from an accelerometer within an ICD pulse generator.
Siejko, Krzysztof Z; Thakur, Pramodsingh H; Maile, Keith; Patangay, Abhilash; Olivari, Maria-Teresa
2013-03-01
The feasibility of detecting heart sounds (HS) from an accelerometer sensor enclosed within an implantable cardioverter defibrillator (ICD) pulse generator (PG) was explored in a noninvasive pilot study on heart failure (HF) patients with audible third HS (S3). Accelerometer circuitry enhanced for HS was incorporated into non-functional ICDs. A study was conducted on 30 HF patients and 10 normal subjects without history of cardiac disease. The devices were taped to the skin surface over both left and right pectoral regions to simulate subcutaneous implants. A lightweight reference accelerometer was taped over the cardiac apex. Waveforms were recorded simultaneously with a surface electrocardiogram for 2 minutes. Algorithms were developed to perform off-line automatic detection of HS and HS time intervals (HSTIs). S1, S2, and S3 vibrations were detected in all accelerometer locations for all 40 subjects, including 16 subjects without an audible S3. A substantial proportion of S3 energy was infrasonic (<20 Hz). Extending the signal bandwidth accordingly increased HS amplitudes and the ability of S3 to separate HF patients from the normal subgroup. HSTIs also separated the subgroups and were less susceptible to patient-dependent acoustic propagation properties than amplitude measures. HS, including S3 amplitude and HSTIs, may be measured using PG-embedded circuitry at implant sites without special purpose leads. Further study is warranted to determine if relative changes in heart sounds measurements can be effective in applications such as remote ambulatory monitoring of HF progression and the detection of the onset of HF decompensation. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1992-01-01
The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.
Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals
Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu
2012-01-01
Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017
NASA Astrophysics Data System (ADS)
Lebat, V.; Foulon, B.; Christophe, B.
2013-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.
Undersafe: Monitoring safety parameters in touristic mines and caves
NASA Astrophysics Data System (ADS)
Parcerisa, David; Sanmiquel, Lluís; Alfonso, Pura; Oliva, Josep
2014-05-01
Tourism is a key sector of the European economy, generating more than 5% of the EU GPD (Gross Domestic Product). Usually, underground touristic sites receive non-expert visitors; nevertheless these activities are poorly regulated or completely deregulated. Nowadays, safety is provided by underground expert professionals whom proceed to regular inspections and by basic safety infrastructures. Even with these measures, some potential personal and environmental dangers are always present and cannot be totally avoided. Therefore, there is a clear need of a new technological product for safety and environmental continuous monitoring of tourist underground attractions. So, the aim of the Undersafe project is to provide underground attractions with a novel and specifically tailored monitoring system, easy to use and maintain. One of the goals of the Undersafe project is to develop a rock falling detection based on a set of cost limited vibration sensors. Based on the technical needs, but with cost constraints, different types of potential sensors are considered: Underground microphone: It is placed in the surface or in the underground. It is based on the consideration that the impact of the stone generates a ground impact vibration which can be understood as a "noise" that is received by a microphone capsule. Airborne sound sensing microphone: It similarly applies to underground use of the microphones, but now the microphone is tested as for its traditional use (I.e. air sound detection). In such case, the microphone detects the environmental noise produced by the impact of the stone falling onto the ground, which will include the impact sound of the stone. Geophone: It is the de facto standard for ground vibrations. Although this technology was initially discarded due to its high cost, recently, low cost geophones have appeared in the market that allows its use inside the underground attractions. Accelerometers: These, can have enough sensibility to act as vibration sensors. Although the costs of the most sensible ones are out of the limits needed for our purposes, but some non-expensive accelerometers will be tested in real environment. All these systems have been tested and it can be concluded that results have been positive for the following technologies: piezoelectric, Electret (airborne and underground) and geophone. On the contrary, accelerometer and movement sensor provided negative results. The most sensible sensor that we have found is Electret that, in turn, is the most sensitive one to out of ground environmental noise (relevant in order to discard surface vibrations effect). All sensors can provide detections in a range of 15m. Low cost rock falling detectors, in cercles of 30 m of diameter are feasible. Also detection for longer distances, up to 80 meters, is feasible, but not advisable for low-cost application. Aknowledgements: Undersafe is an European project under the auspices of the EU 7h Framework Program. EDMA Innovation S.L. deeply contributed to the development of this study.
3D digital image correlation methods for full-field vibration measurement
NASA Astrophysics Data System (ADS)
Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter; Schmidt, Timothy
2011-04-01
In the area of modal test/analysis/correlation, significant effort has been expended over the past twenty years in order to make reduced models and to expand test data for correlation and eventual updating of the finite element models. This has been restricted by vibration measurements which are traditionally limited to the location of relatively few applied sensors. Advances in computers and digital imaging technology have allowed 3D digital image correlation (DIC) methods to measure the shape and deformation of a vibrating structure. This technique allows for full-field measurement of structural response, thus providing a wealth of simultaneous test data. This paper presents some preliminary results for the test/analysis/correlation of data measured using the DIC approach along with traditional accelerometers and a scanning laser vibrometer for comparison to a finite element model. The results indicate that all three approaches correlated well with the finite element model and provide validation for the DIC approach for full-field vibration measurement. Some of the advantages and limitations of the technique are presented and discussed.
NASA Astrophysics Data System (ADS)
Caesarendra, W.; Kosasih, B.; Tjahjowidodo, T.; Ariyanto, M.; Daryl, LWQ; Pamungkas, D.
2018-04-01
Rapid and reliable information in slew bearing maintenance is not trivial issue. This paper presents the online monitoring system to assist maintenance engineer in order to monitor the bearing condition of low speed slew bearing in sheet metal company. The system is able to pass the vibration information from the place where the bearing and accelerometer sensors are attached to the data center; and from the data center it can be access by opening the online monitoring website from any place and by any person. The online monitoring system is built using some programming languages such as C language, MATLAB, PHP, HTML and CSS. Generally, the flow process is start with the automatic vibration data acquisition; then features are calculated from the acquired vibration data. These features are then sent to the data center; and form the data center, the vibration features can be seen through the online monitoring website. This online monitoring system has been successfully applied in School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong.
NASA Astrophysics Data System (ADS)
Zhu, Bing; Han, Jiayi; Zhao, Jian; Deng, Weiwen
2017-04-01
Intelligent tires are essentially a data acquisition system based on a number of complex intelligent sensors inside the tire. Intelligent tires which are capable of boosting the performance of the vehicle have the key problem of energy supply. A practical energy harvester was here designed to support the electric equipment in the intelligent tires and make it feasible for them to work steadily and constantly. This harvester takes the centrifugal force caused by the rotation of the wheel, which could affect the resonance frequency of the piezoelectric cantilever, into account. First, the vibration characteristics of the wheel were analyzed by road test, and the optimal arrangement for vibration energy usage was determined. Then, a piezoelectric vibration energy harvester was designed according to a series of formulas that took the effect of centrifugal force on resonance frequency into account. Finally, a road test was carried out to test the generated energy of the energy harvester excited by the vibration of the wheel. The results showed that the electric power meets the need of general low-power consumption triaxial accelerometers used in intelligent tires.
Vibration test of 1/5 scale H-II launch vehicle
NASA Astrophysics Data System (ADS)
Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.
In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.
Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.
Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny
2016-11-01
Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head.
Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W; Wu, John Z
2017-12-01
Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head
Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.
2016-01-01
Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7–12 Hz, the shoulder resonance was 7–9 Hz, and the back and neck resonances were 6–7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Relevance to industry Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods. PMID:29123326
Experiment on the concrete slab for floor vibration evaluation of deteriorated building
NASA Astrophysics Data System (ADS)
Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.
2014-08-01
Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).
Simple Excitation of Standing Waves in Rubber Bands and Membranes
NASA Astrophysics Data System (ADS)
Cortel, Adolf
2004-04-01
Many methods to excite standing waves in strings, plates, membranes, rods, tubes, and soap bubbles have been described. Usually a loudspeaker or a vibrating reed is driven by the amplified output of an audio oscillator. A novel and simple method consists of using a tuning fork or a singing rod to excite transversal standing waves in stretched rubber membranes sprinkled with fine sand.
Dynamic response characteristics of two transport models tested in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.
1993-01-01
This paper documents recent experiences with measuring the dynamic response characteristics of a commercial transport and a military transport model during full scale Reynolds number tests in the National Transonic Facility. Both models were limited in angle of attack while testing at full scale Reynolds number and cruise Mach number due to pitch or stall buffet response. Roll buffet (wing buzz) was observed for both models at certain Mach numbers while testing at high Reynolds number. Roll buffet was more severe and more repeatable for the military transport model at cruise Mach number. Miniature strain-gage type accelerometers were used for the first time for obtaining dynamic data as a part of the continuing development of miniature dynamic measurements instrumentation for cryogenic applications. This paper presents the results of vibration measurements obtained for both the commercial and military transport models and documents the experience gained in the use of miniature strain gage type accelerometers.
Structural health monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha
2017-11-01
Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.
Vibrating Systems with Singular Mass-Inertia Matrices
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1996-01-01
Vibrating systems with singular mass-inertia matrices arise in recent continuum models of Smart Structures (beams with PZT strips) in assessing the damping attainable with rate feedback. While they do not quite yield 'distributed' controls, we show that they can provide a fixed nonzero lower bound for the damping coefficient at all mode frequencies. The mathematical machinery for modelling the motion involves the theory of Semigroups of Operators. We consider a Timoshenko model for torsion only, a 'smart string,' where the damping coefficient turns out to be a constant at all frequencies. We also observe that the damping increases initially with the feedback gain but decreases to zero eventually as the gain increases without limit.
Gabriel Weinreich: The life and style
NASA Astrophysics Data System (ADS)
Hartmann, William M.
2003-10-01
Gabriel Weinreich (Gabi) was born in Vilna, Poland (now the capitol of Lithuania) one year prior to the founding of the Acoustical Society of America. When the second world war began in central Europe, Gabi's family came, in serial fashion, to New York City-Gabi himself arriving in 1941. Gabi studied physics at Columbia, and received a Ph.D. in 1953 for a thesis on atomic physics directed by the legendary I. I. Rabi. He subsequently worked on fundamental properties of semiconductors, first at Bell Labs, then, starting in 1960, at the University of Michigan. In 1977 he turned his attention to the acoustics of musical instruments, mainly the piano and bowed strings. He studied all phases of the physical elements: string excitation, string vibration, coupling, and radiation. Gabi brought his special style to acoustics-a combination of theory and experiment that imaginatively imports ideas and techniques from one area of physics into another, a willingness to attack traditional problems afresh by returning to first principles, and the ability to present ideas with incisive wit and charm so that information is not only informative but is also entertaining.
Pick-up and impact of flexible bodies
NASA Astrophysics Data System (ADS)
Singh, H.; Hanna, J. A.
2017-09-01
Picking up, laying down, colliding, rolling, and peeling are partial-contact interactions involving moving discontinuities. We examine the balances of momentum and energy across a moving discontinuity in a string, with allowance for injection or dissipation by singular supplies. We split the energy dissipation according to its invariance properties, discuss analogies with systems of particles and connections with the literature on shocks and phase transition fronts in various bodies, and derive a compatibility relation between supplies of momentum and translation-invariant energy. For a moving contact discontinuity between a string and a smooth rigid plane in the presence of gravity, we find a surprising asymmetry between the processes of picking up and laying down, such that steady-state kinks in geometry and associated jumps in tension are not admissible during pick-up. This prediction is consistent with experimental observations. We briefly discuss related problems including the falling folded chain, peeling of an adhesive tape, and the "chain fountain". Our approach is applicable to the study of impact and locomotion, and to systems such as moored floating structures and some musical instruments that feature vibrating string and cable elements interacting with a surface.
Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs
NASA Astrophysics Data System (ADS)
Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil
2011-10-01
Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.
Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil
2011-10-20
Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beammore » which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.« less
The Shock and Vibration Digest. Volume 12, Number 12,
1980-12-01
accelerations is presented. R.G. Schwarz It is shown that while the technique is theoretically cor- Fortschritt-Berichte der VDI -Zt., Series 8, No. 30, rect, it...is subject to experimental limitations due to in- 188 pp, 22 figs, 7 tables (1980). Summary in VDI -Z accuracies in current accelerometer technology...relationship of the so- better understanding of the fatigue life of wind turbine called K-value of the proposed standard VDI 2057 to the pal blades
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohe, Daniel Peter
Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be investedmore » to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.« less
Linear modal stability analysis of bowed-strings.
Debut, V; Antunes, J; Inácio, O
2017-03-01
Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach, at least qualitatively. Notably, the technique provides an instructive and original picture of bowed motions, in terms of groups of well-defined unstable modes, which is physically intuitive to discuss tonal changes observed in real bowed string.
Sensitive ultrasonic vibrometer for very low frequency applications.
Cretin, B; Vairac, P; Jachez, N; Pergaud, J
2007-08-01
Ultrasonic measurement of distance is a well-known low cost method but only a few vibrometers have been developed because sensitivity, spatial resolution, and bandwidth are not high or wide enough for standard laboratory applications. Nevertheless, compared to optical vibrometers, two interesting properties should be considered: very low frequency noise (0.1 Hz to 1 kHz) is reduced and the long wavelength enables rough surfaces to be investigated. Moreover, the ultrasonic probe is a differential sensor, without being a mechanical load for the vibrating structure as usual accelerometers based on contacting transducers are. The main specificity of the presented probe is its ultralow noise electronics including a 3/2 order phase locked loop which extracts the phase modulation related to the amplitude of the detected vibration. This article presents the main useful physical aspects and details of the actual probe. The given application is the measurement of the vibration of an isolated optical bench excited at very low frequency with an electromagnetic transducer.
Estimation of the auto frequency response function at unexcited points using dummy masses
NASA Astrophysics Data System (ADS)
Hosoya, Naoki; Yaginuma, Shinji; Onodera, Hiroshi; Yoshimura, Takuya
2015-02-01
If structures with complex shapes have space limitations, vibration tests using an exciter or impact hammer for the excitation are difficult. Although measuring the auto frequency response function at an unexcited point may not be practical via a vibration test, it can be obtained by assuming that the inertia acting on a dummy mass is an external force on the target structure upon exciting a different excitation point. We propose a method to estimate the auto frequency response functions at unexcited points by attaching a small mass (dummy mass), which is comparable to the accelerometer mass. The validity of the proposed method is demonstrated by comparing the auto frequency response functions estimated at unexcited points in a beam structure to those obtained from numerical simulations. We also consider random measurement errors by finite element analysis and vibration tests, but not bias errors. Additionally, the applicability of the proposed method is demonstrated by applying it to estimate the auto frequency response function of the lower arm in a car suspension.
Exposure to whole-body vibration and seat transmissibility in a large sample of earth scrapers.
Salmoni, Alan; Cann, Adam; Gillin, Kent
2010-01-01
It is often difficult to access a large sample of vehicles in various work environments to evaluate worker exposure to vibration such as in construction and mining. Thus the main purpose of the present research was to test vibration exposure in a relatively large number of earth scrapers. The second aim was to assess vibration exposure values on seat transmissibility. 33earth scrapers were assessed for both exposure to whole-body vibration and seat transmissibility. Two triaxial accelerometers, one placed on the seat and one on the floor directly below the seat, were used to gather whole-body vibration values (a(w)). Each machine was tested for a minimum of three complete work cycles: idling, scraping, travelling full, dumping, travelling empty back to the scrape site. Results showed that idling and scraping produced low levels of vibration when compared to travelling and dumping. Second, when the a(w) values were compared to the EU safety standards for an eight hour work day, the data (z axis) exceeded the exposure action value (0.5 m/s2) in all machines, and the exposure limit value (1.15 m/s2) in some. Implications; Operators of the scrapers were being exposed to unsafe levels of whole-body vibration. When the seats were assessed to see whether they were attenuating operator exposure to vibration, many of the seat effective amplitude transmissibility (SEAT) values exceeded 1.0. This meant that some of the seats were actually amplifying the vibration present at the floor, particularly in the y axis. Travelways should be kept smooth, operating speeds reduced, and new seats, effective in all three axes, designed.
Marcotte, Pierre; Beaugrand, Sylvie; Boutin, Jérôme; Larue, Christian
2010-01-01
Subway operators have complained about discomfort caused by whole-body vibration. To address this problem, a suspension seat with extensive ergonomic features has been adapted to the confined space of the subway operator cab. The suspension was modified from an existing suspension in order to reduce the dominant frequency of the subway vertical vibration (2.4 Hz). The suspension seat has been extensively tested on a vertical hydraulic shaker. These tests have shown that the SEAT value was lower for a higher vibration level, for higher subject weight, and for the suspension adjusted at median height. The seat also produces a lower SEAT value when there was a predominance of the 6 Hz vibration component. The horizontal seat adjustments had no influence on the suspension SEAT value. Removing the suspension damper also decreases the SEAT value for all the tested configurations. The final version of the suspension seat prototype was validated during normal subway operation with 19 different operators having weight in the 5th, 50th and 95th percentile of the operator population. Accelerations were measured with triaxial accelerometers at the seat cushion, above the suspension and on the floor. In addition to the vibration measurements, each operator was asked about his perceived discomfort from vibration exposure. Globally, the suspension seat attenuated the vertical vibration (SEAT values from 0.86 to 0.99), but discomfort due to amplification of the 2.4 Hz component occurred when the suspension height was adjusted at the minimum, even when the global weighted acceleration was lower (SEAT value < 1). These results suggest that in order to reduce the discomfort caused by whole-body vibration, the transmissibility of the seat should also be considered, in particular when there is a dominant frequency in the vibration spectra.
Vibration Analysis Of Automotive Structures Using Holographic Interferometry
NASA Astrophysics Data System (ADS)
Brown, G. M.; Wales, R. R.
1983-10-01
Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.
Evaluating Manufacturing and Assembly Errors in Rotating Machinery to Enhance Component Performance
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Huff, Edward M.; Swanson, Keith (Technical Monitor)
2001-01-01
Manufacturing and assembly phases play a crucial role in providing products that meet the strict functional specifications associated with rotating machinery components. The errors resulting during the manufacturing and assembly of such components are correlated with the vibration and noise emanating from the final system during its operational lifetime. Vibration and noise are especially unacceptable elements in high-risk systems such as helicopters, resulting in premature component degradation and an unsafe flying environment. In such applications, individual components often are subject to 100% inspection prior to assembly, as well as during operation through rigorous maintenance, resulting in increased product development cycles and high production and operation costs. In this work, we focus on providing designers and manufacturing engineers with a technique to evaluate vibration modes and levels for each component or subsystem prior to putting them into operation. This paper presents a preliminary investigation of the correlation between vibrations and manufacturing and assembly errors using an experimental test rig, which simulates a simple bearing and shaft arrangement. A factorial design is used to study the effects of: 1) different manufacturing instances; 2) different assembly instances; and, 3) varying shaft speeds. The results indicate a correlation between manufacturing or assembly errors and vibrations measured from accelerometers. Challenges in developing a tool for DFM are identified, followed by a discussion of future work, including a real-world application to helicopter transmission vibrations.
NASA Astrophysics Data System (ADS)
McBride, William R.; McBride, Daniel R.
2016-08-01
The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.
Spiral Bevel Pinion Crack Detection in a Helicopter Gearbox
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Lewicki, David G.
2003-01-01
The vibration resulting from a cracked spiral bevel pinion was recorded and analyzed using existing Health and Usage Monitoring System (HUMS) techniques. A tooth on the input pinion to a Bell OH-58 main rotor gearbox was notched and run for an extended period at severe over-torque condition to facilitate a tooth fracture. Thirteen vibration-based diagnostic metrics were calculated throughout the run. After 101.41 hours of run time, some of the metrics indicated damage. At that point a visual inspection did not reveal any damage. The pinion was then run for another 12 minutes until a proximity probe indicated that a tooth had fractured. This paper discusses the damage detection effectiveness of the different metrics and a comparison of effects of the different accelerometer locations.
Structural-acoustic coupling in aircraft fuselage structures
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Simpson, Myles A.
1992-01-01
Results of analytical and experimental investigations of structural-acoustic coupling phenomenon in an aircraft fuselage are described. The structural and acoustic cavity modes of DC-9 fuselage were determined using a finite element approach to vibration analysis. Predicted structural and acoustic dispersion curves were used to determine possible occurrences of structural-acoustic coupling for the fuselage. An aft section of DC-9 aircraft fuselage, housed in an anechoic chamber, was used for experimental investigations. The test fuselage was excited by a shaker and vibration response and interior sound field were measured using accelerometer and microphone arrays. The wavenumber-frequency structural and cavity response maps were generated from the measured data. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, fuselage response and structural-acoustic coupling.
In situ damage monitoring in vibration mechanics: diagnostics and predictive maintenance
NASA Astrophysics Data System (ADS)
Basseville, M.; Benveniste, A.; Gach-Devauchelle, B.; Goursat, M.; Bonnecase, D.; Dorey, P.; Prevosto, M.; Olagnon, M.
1993-09-01
A system identification approach is presented for damage monitoring in vibration mechanics. Identification, detection, and diagnostics are performed using accelerometer measurements from the system at work so that the excitation is not controlled, usually not observed and may involve turbulent phenomena. Targeted applications include power engineering (rotating machines, core and pipes of nuclear power plants), civil engineering (large buildings subject to hurricanes or earthquakes, bridges, dams, offshore structures), aeronautics (wings and other structures subject to strength), automobile, rail transportation etc. The method is illustrated by a laboratory example, and the results of 3 years industrial usage. This paper is a progress report on a 10 year project involving three people almost permanently. We describe here the whole approach but omit the technical details which are available in previous papers.
Measurement of whole-body vibration exposure from speed control humps
NASA Astrophysics Data System (ADS)
Khorshid, E.; Alkalby, F.; Kamal, H.
2007-07-01
The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.
Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations
NASA Astrophysics Data System (ADS)
von Martens, Hans-Jürgen
2010-05-01
The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s2). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.
Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises.
Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier
2016-11-01
Whole body vibration (WBV) is used as a training method but its physical risk is not yet clear. Hence, the aim of this study is to assess the exposure to WBV by a measure of acceleration at the lower limb under dynamic and static postural conditions. The hypothesis of this paper is that this assessment is influenced by the frequency, position, and movement of the body. Fifteen healthy males are exposed to vertical sinusoidal vibration at different frequencies (20-60 Hz), while adopting three different static postures (knee extension angle: 180°, 120° and 90°) or performing a dynamic half-squat exercise. Accelerations at input source and at three joints of the lower limb (ankle, knee, and hip) are measured using skin-mounted accelerometers. Acceleration values (g) in static conditions show a decrease in the vibrational dose when it is measured at a more proximal location in the lower extremity. The results of the performed statistical test show statistically significant differences (p < 0.05) in the transmissibility values caused by the frequency, the position, and to the presence of the movement and its direction at the different conditions. The results confirm the initial hypothesis and justify the importance of a vibration assessment in dynamic conditions.
Selective vibration sensing: a new concept for activity-sensing rate-responsive pacing.
Lau, C P; Stott, J R; Toff, W D; Zetlein, M B; Ward, D E; Camm, A J
1988-09-01
A clinically available model of an activity-sensing, rate-responsive pacemaker (Activitrax, Medtronic) utilizes body vibration during exercise as an indicator of the need for a rate increase. Although having the advantage of rapid onset of rate response, this system lacks specificity and the rate response does not closely correlate with the level of exertion. In addition, this pacemaker is susceptible to the effects of extraneous vibration. In this study involving 20 normal subjects fitted with an external Activitrax pacemaker, the rate responses to a variety of exercises were studied and were compared with the corresponding sinus rates. The vibration generated at the level of the pacemaker was also measured by accelerometers in three axes. Only a fair correlation (r = 0.51) was achieved between the pacemaker rate and the sinus rate. The total root mean square value of acceleration in either the anteroposterior or the vertical axes was found to have a better correlation (r = 0.8). As the main accelerations during physical activities were in the lower frequency range (0.1-4 Hz), a low-pass filter was used to reduce the influence of extraneous vibration. Selective sensing of the acceleration level may be usefully implemented in an algorithm for activity pacing.
Spatial patterns of cutaneous vibration during whole-hand haptic interactions
Hayward, Vincent; Visell, Yon
2016-01-01
We investigated the propagation patterns of cutaneous vibration in the hand during interactions with touched objects. Prior research has highlighted the importance of vibrotactile signals during haptic interactions, but little is known of how vibrations propagate throughout the hand. Furthermore, the extent to which the patterns of vibrations reflect the nature of the objects that are touched, and how they are touched, is unknown. Using an apparatus comprised of an array of accelerometers, we mapped and analyzed spatial distributions of vibrations propagating in the skin of the dorsal region of the hand during active touch, grasping, and manipulation tasks. We found these spatial patterns of vibration to vary systematically with touch interactions and determined that it is possible to use these data to decode the modes of interaction with touched objects. The observed vibration patterns evolved rapidly in time, peaking in intensity within a few milliseconds, fading within 20–30 ms, and yielding interaction-dependent distributions of energy in frequency bands that span the range of vibrotactile sensitivity. These results are consistent with findings in perception research that indicate that vibrotactile information distributed throughout the hand can transmit information regarding explored and manipulated objects. The results may further clarify the role of distributed sensory resources in the perceptual recovery of object attributes during active touch, may guide the development of approaches to robotic sensing, and could have implications for the rehabilitation of the upper extremity. PMID:27035957
Effect of skin-transmitted vibration enhancement on vibrotactile perception.
Tanaka, Yoshihiro; Ueda, Yuichiro; Sano, Akihito
2015-06-01
Vibration on skin elicited by the mechanical interaction of touch between the skin and an object propagates to skin far from the point of contact. This paper investigates the effect of skin-transmitted vibration on vibrotactile perception. To enhance the transmission of high-frequency vibration on the skin, stiff tape was attached to the skin so that the tape covered the bottom surface of the index finger from the periphery of the distal interphalangeal joint to the metacarpophalangeal joint. Two psychophysical experiments with high-frequency vibrotactile stimuli of 250 Hz were conducted. In the psychophysical experiments, discrimination and detection thresholds were estimated and compared between conditions of the presence or the absence of the tape (normal bare finger). A method of limits was applied for the detection threshold estimation, and the discrimination task using a reference stimulus and six test stimuli with different amplitudes was applied for the discrimination threshold estimation. The stimulation was given to bare fingertips of participants. Result showed that the detection threshold was enhanced by attaching the tape, and the discrimination threshold enhancement by attaching the tape was confirmed for participants who have relatively large discrimination threshold under normal bare finger. Then, skin-transmitted vibration was measured with an accelerometer with the psychophysical experiments. Result showed that the skin-transmitted vibration when the tape was attached to the skin was larger than that when normal bare skin. There is a correlation between the increase in skin-transmitted vibration and the enhancement of the discrimination threshold.
MEMS vibrating-beam accelerometer with piezoelectric drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehlow, John; MacGugan, Doug
A high-temperature drive component for a double-ended tuning fork (DETF). The drive component attaches to a surface of at least one of the tines. The drive component includes at least one piezoelectric trace sandwiched at least partially between two electrical traces. At least one of the tines includes a doped silicon base with drive component located thereon. One of the electrical traces is electrically connected to the doped silicon base and the other is electrically isolated from the doped silicon base.
Characterization of vibration transfer paths in nose gearboxes of an AH-64 Apache
NASA Astrophysics Data System (ADS)
Islam, A. K. M. Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris
2014-03-01
Health monitoring of rotorcraft components, which is currently being performed by Health and Usage Monitoring Systems (HUMS) through analyzing vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. Vibration diagnostic algorithms in HUMS analyze vibration signatures associated with faults and quantify them as condition indicators (CI) to predict component behavior. Vibration transfer paths (VTP) play important roles in CI response and are characterized by frequency response functions (FRF) derived from vibration signatures of dynamic mechanical components of a helicopter. With an objective to investigate the difference in VTP of a component in a helicopter and test stand, and to relate that to the CI response, VTP measurements were recorded from 0-50 kHz under similar conditions in the left and right nose gearboxes (NGBs) of an AH-64 Apache and an isolated left NGB in a test stand at NASA Glenn Research Center. The test fixture enabled the application of measured torques - common during an actual operation. Commercial and lab piezo shakers, and an impact hammer were used in both systems to collect the vibration response using two types of commercially available accelerometers under various test conditions. The FRFs of both systems were found to be consistent, and certain real-world installation and maintenance issues, such as sensor alignments, locations and installation torques, had minimal effect on the VTP. However, gear vibration transfer path dynamics appeared to be somewhat dependent on presence of oil, and the lightly-damped ring gear produced sharp and closer transfer path resonances.
Eger, Tammy; Thompson, Aaron; Leduc, Mallorie; Krajnak, Kristine; Goggins, Katie; Godwin, Alison; House, Ron
2014-01-01
Workers who stand on platforms or equipment that vibrate are exposed to foot-transmitted vibration (FTV). Exposure to FTV can lead to vibration white feet/toes resulting in blanching of the toes, and tingling and numbness in the feet and toes. The objectives are 1) to review the current state of knowledge of the health risks associated with foot-transmitted vibration (FTV), and 2) to identify the characteristics of FTV and discuss the associated risk of vibration-induced injury. Workers who operated locomotives (n=3), bolting platforms (n=10), jumbo drills (n=7), raise drilling platforms (n=4), and crushers (n=3), participated. A tri-axial accelerometer was used to measure FTV in accordance with ISO 2631-1 guidelines. Frequency-weighted root-mean-square acceleration and the dominant frequency are reported. Participants were also asked to report pain/ache/discomfort in the hands and/or feet. Reports of pain/discomfort/ache were highest in raise platform workers and jumbo drill operators who were exposed to FTV in the 40 Hz and 28 Hz range respectively. Reports of discomfort/ache/pain were lowest in the locomotive and crusher operators who were exposed to FTV below 10 Hz. These findings are consistent with animal studies that have shown vascular and neural damage in exposed appendages occurs at frequencies above 40 Hz. Operators exposed to FTV at 40 Hz appear to be at greater risk of experiencing vibration induced injury. Future research is required to document the characteristics of FTV and epidemiological evidence is required to link exposure with injury.
Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien
2016-03-23
Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician's dominant hand.
Experimental and analytical study of water pipe's rupture for damage identification purposes
NASA Astrophysics Data System (ADS)
Papakonstantinou, Konstantinos G.; Shinozuka, Masanobu; Beikae, Mohsen
2011-04-01
A malfunction, local damage or sudden pipe break of a pipeline system can trigger significant flow variations. As shown in the paper, pressure variations and pipe vibrations are two strongly correlated parameters. A sudden change in the flow velocity and pressure of a pipeline system can induce pipe vibrations. Thus, based on acceleration data, a rapid detection and localization of a possible damage may be carried out by inexpensive, nonintrusive monitoring techniques. To illustrate this approach, an experiment on a single pipe was conducted in the laboratory. Pressure gauges and accelerometers were installed and their correlation was checked during an artificially created transient flow. The experimental findings validated the correlation between the parameters. The interaction between pressure variations and pipe vibrations was also theoretically justified. The developed analytical model explains the connection among flow pressure, velocity, pressure wave propagation and pipe vibration. The proposed method provides a rapid, efficient and practical way to identify and locate sudden failures of a pipeline system and sets firm foundations for the development and implementation of an advanced, new generation Supervisory Control and Data Acquisition (SCADA) system for continuous health monitoring of pipe networks.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Experimental investigation of jet pulse control on flexible vibrating structures
NASA Astrophysics Data System (ADS)
Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios
2016-08-01
The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.
Sensor design for outdoor racing bicycle field testing for human vibration comfort evaluation
NASA Astrophysics Data System (ADS)
Vanwalleghem, Joachim; De Baere, Ives; Loccufier, Mia; Van Paepegem, Wim
2013-09-01
This paper is concerned with the vibrational comfort evaluation of the cyclist when cycling a rough surface. Outdoor comfort tests have so far only been done through instrumenting the bicycle with accelerometers. This work instruments a racing bicycle with custom-made contact force sensors and velocity sensors to acquire human comfort through the absorbed power method. Comfort evaluation is assessed at the hand-arm and seat interface of the cyclist with the bicycle. By means of careful finite-element analysis for designing the force gauges at the handlebar and the seat combined with precise calibration of both force and velocity sensors, all sensors have proven to work properly. Initial field tests are focused on the proper functioning of the designed sensors and their suitability for vibration comfort measurements. Tests on a cobblestone road reveal that the outcome of the absorbed power values is within the same range as those from laboratory tests found in the literature. This sensor design approach for outdoor testing with racing bicycles may give a new interpretation on evaluating the cyclist's comfort since the vibrational load is not only quantified in terms of acceleration but also in terms of force and velocity at the bicycle-cyclist contact points.
Seal Whiskers Vibrate Over Broad Frequencies During Hydrodynamic Tracking.
Murphy, Christin T; Reichmuth, Colleen; Eberhardt, William C; Calhoun, Benton H; Mann, David A
2017-08-21
Although it is known that seals can use their whiskers (vibrissae) to extract relevant information from complex underwater flow fields, the underlying functioning of the system and the signals received by the sensors are poorly understood. Here we show that the vibrations of seal whiskers may provide information about hydrodynamic events and enable the sophisticated wake-tracking abilities of these animals. We developed a miniature accelerometer tag to study seal whisker movement in situ. We tested the ability of the tag to measure vibration in excised whiskers in a flume in response to laminar flow and disturbed flow. We then trained a seal to wear the tag and follow an underwater hydrodynamic trail to measure the whisker signals available to the seal. The results showed that whiskers vibrated at frequencies of 100-300 Hz, with a dynamic response. These measurements are the first to capture the incoming signals received by the vibrissae of a live seal and show that there are prominent signals at frequencies where the seal tactogram shows good sensitivity. Tapping into the mechanoreceptive interface between the animal and the environment may help to decipher the functional basis of this extraordinary hydrodynamic detection ability.
Graphics applications utilizing parallel processing
NASA Technical Reports Server (NTRS)
Rice, John R.
1990-01-01
The results are presented of research conducted to develop a parallel graphic application algorithm to depict the numerical solution of the 1-D wave equation, the vibrating string. The research was conducted on a Flexible Flex/32 multiprocessor and a Sequent Balance 21000 multiprocessor. The wave equation is implemented using the finite difference method. The synchronization issues that arose from the parallel implementation and the strategies used to alleviate the effects of the synchronization overhead are discussed.
Milanese, Chiara; Cavedon, Valentina; Sandri, Marco; Tam, Enrico; Piscitelli, Francesco; Boschi, Federico; Zancanaro, Carlo
2018-01-01
The ability of whole body vibration (WBV) to increase energy expenditure (EE) has been investigated to some extent in the past using short-term single exercises or sets of single exercises. However, the current practice in WBV training for fitness is based on the execution of multiple exercises during a WBV training session for a period of at least 20 min; nevertheless, very limited and inconsistent data are available on EE during long term WBV training session. This crossover study was designed to demonstrate, in an adequately powered sample of participants, the ability of WBV to increase the metabolic cost of exercise vs. no vibration over the time span of a typical WBV session for fitness (20 min). Twenty-two physically active young males exercised on a vibration platform (three identical sets of six different exercises) using an accelerometer-verified vibration stimulus in both the WBV and no vibration condition. Oxygen consumption was measured with indirect calorimetry and expressed as area under the curve (O2(AUC)). Results showed that, in the overall 20-min training session, WBV increased both the O2(AUC) and the estimated EE vs. no vibration by about 22% and 20%, respectively (P<0.001 for both, partial eta squared [η2] ≥0.35) as well as the metabolic equivalent of task (+5.5%, P = 0.043; η2 = 0.02) and the rate of perceived exertion (+13%, P<0.001; ŋ2 = 0.16). Results demonstrated that vibration is able to significantly increase the metabolic cost of exercise in a 20-min WBV training session.
Sandri, Marco; Tam, Enrico; Piscitelli, Francesco; Boschi, Federico
2018-01-01
The ability of whole body vibration (WBV) to increase energy expenditure (EE) has been investigated to some extent in the past using short-term single exercises or sets of single exercises. However, the current practice in WBV training for fitness is based on the execution of multiple exercises during a WBV training session for a period of at least 20 min; nevertheless, very limited and inconsistent data are available on EE during long term WBV training session. This crossover study was designed to demonstrate, in an adequately powered sample of participants, the ability of WBV to increase the metabolic cost of exercise vs. no vibration over the time span of a typical WBV session for fitness (20 min). Twenty-two physically active young males exercised on a vibration platform (three identical sets of six different exercises) using an accelerometer-verified vibration stimulus in both the WBV and no vibration condition. Oxygen consumption was measured with indirect calorimetry and expressed as area under the curve (O2(AUC)). Results showed that, in the overall 20-min training session, WBV increased both the O2(AUC) and the estimated EE vs. no vibration by about 22% and 20%, respectively (P<0.001 for both, partial eta squared [η2] ≥0.35) as well as the metabolic equivalent of task (+5.5%, P = 0.043; η2 = 0.02) and the rate of perceived exertion (+13%, P<0.001; ŋ2 = 0.16). Results demonstrated that vibration is able to significantly increase the metabolic cost of exercise in a 20-min WBV training session. PMID:29385196
Choi, Dong-Min; Kim, Jin-Woo; Park, Se-Hee; Cho, Kyung-Mo; Kwak, Sang Won; Kim, Hyeon-Cheol
2017-07-01
This study aimed to compare the vibration generated by several nickel-titanium (NiTi) file systems and transmitted to teeth under 2 different motions (continuous rotation motion and reciprocating motion). Sixty J-shaped resin blocks (Endo Training Bloc-J; Dentsply Maillefer, Ballaigues, Switzerland) were trimmed to a root-shaped form and divided into 2 groups according to the types of electric motors: WaveOne motor (WOM, Dentsply Maillefer) and X-Smart Plus motor (XSM, Dentsply Maillefer). Each group was further subdivided into 3 subgroups (n = 10 each) according to the designated file systems: ProTaper Next (PTN, Dentsply Maillefer), ProTaper Universal (PTU, Dentsply Maillefer), and WaveOne (WOP, Dentsply Maillefer) systems. Vibration was measured during the pecking motion using an accelerometer attached to a predetermined consistent position. The average vibration values were subjected to 2-way analysis of variance as well as the t test and Duncan test for post hoc comparison at the 95% confidence interval. Both motor types and instrument types produced significantly different ranges of average vibrations. Regardless of the instrument types, the WOM group generated greater vibration than the XSM group (P < .05). Although PTN and PTU did not show significant differences, the WOP group showed significantly greater vibration than the other groups regardless of motor types (P < .05). Under the limitations of this study design, the reciprocating NiTi file system may generate greater vibration than the continuous rotation NiTi file systems. The motor type also has a significant effect to amplify the vibrations. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo
2016-01-01
Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008
The effect of single engine fixed wing air transport on rate-responsive pacemakers.
De Rotte, A A; Van Der Kemp, P
1999-09-01
Insufficient information exists about the safety of patients with accelerometer-based rate-responsive pacemakers in air transport by general aviation aircraft. The response in pacing rate of two types of accelerometer-based rate-responsive pacemakers with data logging capabilities was studied during test flights with single engine fixed wing aircraft. Results were compared with the rate-response of these pacemakers during transportation by car and were also interpreted in respect to physiological heart rate response of aircrew during flights in single engine fixed wing aircraft. In addition, a continuous accelerometer readout was recorded during a turbulent phase of flight. This recording was used for a pacemaker-simulator experiment with maximal sensitive motion-sensor settings. Only a minor increase in pacing rate due to aircraft motion could be demonstrated during all phases of flight at all altitudes with the pacemakers programmed in the normal mode. This increase was of the same magnitude as induced during transport by car and would be of negligible influence on the performance of the individual pacemaker patient equipped with such a pacemaker. Moreover, simultaneous Holter monitoring of the pilots during these flights showed a similar rate-response in natural heart rate compared with the increase in pacing rate induced by aircraft motion in accelerometer-based rate-responsive pacemakers. No sensor-mediated pacemaker tachycardia was seen during any of these recordings. However, a 15% increase in pacing rate was induced by severe air turbulence. Programming the maximal sensitivity of the motion sensor into the pacemaker could, on the other hand, induce a significant increase in pacing rate as was demonstrated by the simulation experiments. These results seem to rule out potentially dangerous or adverse effects from motional or vibrational influences during transport in single engine fixed wing aircraft on accelerometer-based rate-responsive pacemakers with normal activity sensor settings.
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan; Gholibeigian, Ghasem; Amirshahkarami, Azim; Gholibeigian, Kazem
2017-01-01
Four animated sub-particles (sub-strings) as origin of the life and generator of momentum (vibration) of elementary particles (strings) are communicated for transferring information for processing and preparing fundamental particles for the next step. It means that information may be a ``dimension'' of the nature which fundamental particles, dark matter/energy and space-time are floating in it and listening to its whispering and getting quantum information packages about their conditions and laws. So, communication of information which began before the spark to B.B. (Convection Bang), may be a ``Fundamental symmetry'' in the nature because leads other symmetries and supersymmetry as well as other phenomena. The processed information are always carried by fundamental particles as the preserved history and entropy of Universe. So, information wouldn't be destroyed, lost or released by black hole. But the involved fundamental particles of thermal radiation, electromagnetic and gravitational fields carry processed information during emitting from black hole, while they are communicated from fifth dimension for their new movement. AmirKabir University of Technology, Tehran, Iran.
Towards development of a fiber optic-based transmission monitoring system
NASA Astrophysics Data System (ADS)
Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.
2011-06-01
There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.
Drill Bit Noise Illuminates the San Andreas Fault
NASA Astrophysics Data System (ADS)
Vasconcelos, Ivan; Snieder, Roel; Sava, Paul; Taylor, Tom; Malin, Peter; Chavarria, Andres
2008-09-01
Extracting the vibration response of the subsurface from noise is a rapidly growing field of research [Curtis et al., 2006; Larose et al., 2006]. We carried out broadside imaging of the San Andreas fault zone (SAFZ) using drill bit noise created in the main hole of the San Andreas Fault Observatory at Depth (SAFOD), near Parkfield, Calif. Imaging with drill bit noise is not new, but it traditionally requires the measurement of the vibrations of the drill stem [Rector and Marion, 1991]; such measurements provide the waves radiated by the drill bit. At SAFOD, these measurements were not available due to the absence of an accelerometer mounted on the drill stem. For this reason, the new technique of deconvolution interferometry was used [Vasconcelos and Snieder, 2008]. This technique extracts the waves propagating between seismometers from recordings of incoherent noise.
Three-component borehole wall-locking seismic detector
Owen, Thomas E.
1994-01-01
A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.
Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.
Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou
2014-12-01
An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.
Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor
2014-01-01
The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels. PMID:25372618
Dynamic Capability of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Goodnight, Thomas W.; Hughes, William O.; McNelis, Mark E.
2000-01-01
The NASA John H. Glenn Research Center and the US Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. NASA Headquarters has recently identified the Stirling technology generator for potential use as the spacecraft power system for two of NASA's new missions, the Europa Orbiter and the Solar Probe missions (planned for launch in 2006 and 2007 respectively). As part of the development of this power system, a Stirling Technology Demonstration Convertor was vibration tested at NASA John H. Glenn Research Center to verify its survivability and capability of withstanding the harsh dynamic environment typically seen by the spacecraft when it is launched by an expendable launch vehicle. The Technology Demonstration Convertor was fully operational (producing power) during the random vibration testing. The output power of the convertor and other convertor performance indicators were measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges also were used to provide information on the dynamic characteristics of the Technology Demonstration Convertor and as an indication of any possible damage due to the vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling Technology Demonstration Convertor was extremely successful. The Technology Demonstration Convertor survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor
2014-11-03
The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.
Seismic While Drilling Case Study in Shengli Oilfield, Eastern China
NASA Astrophysics Data System (ADS)
Wang, L.; Liu, H.; Tong, S.; Zou, Z.
2015-12-01
Seismic while drilling (SWD) is a promising borehole seismic technique with reduction of drilling risk, cost savings and increased efficiency. To evaluate the technical and economic benefits of this new technique, we carried out SWD survey at well G130 in Shengli Oilfield of Eastern China. Well G130 is an evaluation well, located in Dongying depression at depth more than 3500m. We used an array of portable seismometers to record the surface SWD-data, during the whole drilling progress. The pilot signal was being recorded continuously, by an accelerometer mounted on the top of the drill string. There were also two seismometers buried in the drill yard, one near diesel engine and another near derrick. All the data was being recorded continuously. According to mud logging data, we have processed and analyzed all the data. It demonstrates the drill yard noise is the primary noise among the whole surface wavefield and its dominant frequency is about 20Hz. Crosscorrelation of surface signal with the pilot signal shows its SNR is severely low and there is no any obvious event of drill-bit signals. Fortunately, the autocorrelation of the pilot signal shows clear BHA multiple and drill string multiple. The period of drill string multiple can be used for establishing the reference time (so-called zero time). We identified and removed different noises from the surface SWD-data, taking advantages of wavefield analysis. The drill-bit signal was retrieved from surface SWD-data, using seismic interferometry. And a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth was established. The subsurface images derived from these data compare well with the corresponding images of 3D surface seismic survey cross the well.
Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.
2011-06-01
The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.
Broadband seismic effects from train vibrations
NASA Astrophysics Data System (ADS)
Fuchs, Florian; Bokelmann, Götz
2017-04-01
Seismologists rarely study train induced vibrations which are mainly regarded an unwanted source of noise for classical seismological applications such as earthquake monitoring. A few seismological studies try to utilize train vibrations however as active sources, e.g. for subsurface imaging, but they do not focus on the characteristics of the train signal itself. Most available studies on train induced vibrations take an engineering approach and aim at better understanding the generation and short-distance propagation of train induced vibrations, mainly for mitigation and construction purposes. They mostly rely on numerical simulations and/or short-period or accelerometer recordings obtained directly on the train track or up to few hundred meters away and almost no studies exist with seismic recordings further away from the track. In some of these previous studies sharp and equidistant peaks are present in the vibration spectrum of heavy freight trains, but they do not attempt to explain them. Here we show and analyze various train vibration signals obtained from a set of seismic broadband stations installed in the context of the temporary, large-scale regional seismic network AlpArray. The geometrical restrictions of this seismic network combined with budget and safety considerations resulted in a number of broad-band instruments deployed in the vicinity of busy railway lines. On these stations we observe very characteristic seismic signals associated with different types of trains, typically showing pronounced equidistant spectral lines over a wide frequency range. In this study we analyze the nature of such signals and discuss if they are generated by a source effect or by wave propagation effects in near-surface soil layers.
Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.
Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan
2018-05-01
Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Eger, Tammy; Thompson, Aaron; Leduc, Mallorie; Krajnak, Kristine; Goggins, Katie; Godwin, Alison; House, Ron
2015-01-01
BACKGROUND Workers who stand on platforms or equipment that vibrate are exposed to foot-transmitted vibration (FTV). Exposure to FTV can lead to vibration white feet/toes resulting in blanching of the toes, and tingling and numbness in the feet and toes. OBJECTIVES The objectives are 1) to review the current state of knowledge of the health risks associated with foot-transmitted vibration (FTV), and 2) to identify the characteristics of FTV and discuss the associated risk of vibration-induced injury. PARTICIPANTS Workers who operated locomotives (n = 3), bolting platforms (n = 10), jumbo drills (n = 7), raise drilling platforms (n = 4), and crushers (n = 3), participated. METHODS A tri-axial accelerometer was used to measure FTV in accordance with ISO 2631-1 guidelines. Frequency-weighted root-mean-square acceleration and the dominant frequency are reported. Participants were also asked to report pain/ache/discomfort in the hands and/or feet. RESULTS Reports of pain/discomfort/ache were highest in raise platform workers and jumbo drill operators who were exposed to FTV in the 40 Hz and 28 Hz range respectively. Reports of discomfort/ache/pain were lowest in the locomotive and crusher operators who were exposed to FTV below 10 Hz. These findings are consistent with animal studies that have shown vascular and neural damage in exposed appendages occurs at frequencies above 40 Hz. CONCLUSIONS Operators exposed to FTV at 40 Hz appear to be at greater risk of experiencing vibration induced injury. Future research is required to document the characteristics of FTV and epidemiological evidence is required to link exposure with injury. PMID:24004754
Milosavljevic, Stephan; McBride, David I; Bagheri, Nasser; Vasiljev, Radivoj M; Mani, Ramakrishnan; Carman, Allan B; Rehn, Borje
2011-04-01
The purpose of this study was to determine exposure to whole-body vibration (WBV) and mechanical shock in rural workers who use quad bikes and to explore how personal, physical, and workplace characteristics influence exposure. A seat pad mounted triaxial accelerometer and data logger recorded full workday vibration and shock data from 130 New Zealand rural workers. Personal, physical, and workplace characteristics were gathered using a modified version of the Whole Body Vibration Health Surveillance Questionnaire. WBVs and mechanical shocks were analysed in accordance with the International Standardization for Organization (ISO 2631-1 and ISO 2631-5) standards and are presented as vibration dose value (VDV) and mechanical shock (S(ed)) exposures. VDV(Z) consistently exceeded European Union (Guide to good practice on whole body vibration. Directive 2002/44/EC on minimum health and safety, European Commission Directorate General Employment, Social Affairs and Equal Opportunities. 2006) guideline exposure action thresholds with some workers exceeding exposure limit thresholds. Exposure to mechanical shock was also evident. Increasing age had the strongest (negative) association with vibration and shock exposure with body mass index (BMI) having a similar but weaker effect. Age, daily driving duration, dairy farming, and use of two rear shock absorbers created the strongest multivariate model explaining 33% of variance in VDV(Z). Only age and dairy farming combined to explain 17% of the variance for daily mechanical shock. Twelve-month prevalence for low back pain was highest at 57.7% and lowest for upper back pain (13.8%). Personal (age and BMI), physical (shock absorbers and velocity), and workplace characteristics (driving duration and dairy farming) suggest that a mix of engineered workplace and behavioural interventions is required to reduce this level of exposure to vibration and shock.
NASA Astrophysics Data System (ADS)
Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako
2017-04-01
This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.
Real-time estimation of differential piston at the LBT
NASA Astrophysics Data System (ADS)
Böhm, Michael; Pott, Jörg-Uwe; Sawodny, Oliver; Herbst, Tom; Kürster, Martin
2014-07-01
In this paper, we present and compare different strategies to minimize the effects of telescope vibrations to the differential piston (OPD) for LINC/NIRVANA at the LBT using an accelerometer feedforward compensation approach. We summarize why this technology is of importance for LINC/NIRVANA, but also for future telescopes and instruments. We outline the estimation problem in general and its specifics at the LBT. Model based estimation and broadband filtering techniques can be used to solve the estimation task, each having its own advantages and disadvantages, which will be discussed. Simulation results and measurements at the LBT are shown to motivate and support our choice of the estimation algorithm for the instrument LINC/NIRVANA. We explain our laboratory setup aimed at imitating the vibration behaviour at the LBT in general, and the M2 as main contributor in particular, and we demonstrate the controller's ability to suppress vibrations in the frequency range of 8 Hz to 60 Hz. In this range, telescope vibrations are the most dominant disturbance to the optical path. For our measurements, we introduce a disturbance time series which has a frequency spectrum comparable to what can be measured at the LBT on a typical night. We show promising experimental results, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 5 (RMS), which is significantly better than any currently commissioned system.
Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows
Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen
2012-01-01
This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616
NASA Astrophysics Data System (ADS)
Potter, Jennifer L.
2011-12-01
Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures
Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo
2018-01-01
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.
Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo
2018-04-18
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.
Simultaneous 3D-vibration measurement using a single laser beam device
NASA Astrophysics Data System (ADS)
Brecher, Christian; Guralnik, Alexander; Baümler, Stephan
2012-06-01
Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Background Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Methods Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Results Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Conclusion Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. PMID:27010929
Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon
2017-11-28
A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.
Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements
NASA Technical Reports Server (NTRS)
Stec, Robert C.
1999-01-01
The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.
Three-dimensional time reversal communications in elastic media
Anderson, Brian E.; Ulrich, Timothy J.; Le Bas, Pierre-Yves; ...
2016-02-23
Our letter presents a series of vibrational communication experiments, using time reversal, conducted on a set of cast iron pipes. Time reversal has been used to provide robust, private, and clean communications in many underwater acoustic applications. Also, the use of time reversal to communicate along sections of pipes and through a wall is demonstrated here in order to overcome the complications of dispersion and multiple scattering. These demonstrations utilize a single source transducer and a single sensor, a triaxial accelerometer, enabling multiple channels of simultaneous communication streams to a single location.
Fiber Optic Strain Sensor for Planetary Gear Diagnostics
NASA Technical Reports Server (NTRS)
Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented
Muir, Jesse; Kiel, Douglas P; Rubin, Clinton T
2013-11-01
Whole body vibration devices are used as a means to augment training, and their potential to treat a range of musculoskeletal diseases and injuries is now being considered. The goal of this work is to determine the degree to which acceleration delivered by whole body vibration devices at the plantar surfaces of a standing human is transmitted through the axial and appendicular skeleton, and how this mechanical challenge corresponds to the safety threshold limit values established by the International Standards Organization ISO-2631. Non-blinded laboratory assessment of a range of whole body vibration devices as it pertains to acceleration transmission to healthy volunteers. Using skin and bite-bar mounted accelerometers, transmissibility to the tibia and cranium was determined in six healthy adults standing on a programmable whole body vibration device as a function of frequency and intensity. Measures of transmissibility were then made from three distinct types of whole body vibration platforms, which delivered a 50-fold range of peak-to-peak acceleration intensities (0.3-15.1 gp-p; where 1g is Earth's gravitational field). For a given frequency, transmissibility was independent of intensity when below 1g. Transmissibility declined non-linearly with increasing frequency. Depending on the whole body vibration device, vibration ranged from levels considered safe by ISO-2631 for up to 8h each day (0.3 gp-p @ 30 Hz), to levels that were seven times higher than what is considered a safe threshold for even 1 min of exposure each day (15.1 gp-p @ 30 Hz). Transmissibility to the cranium was markedly attenuated by the degree of flexion in the knees. Vibration can have adverse effects on a number of physiologic systems. This work indicates that readily accessible whole body vibration devices markedly exceed ISO guidelines for safety, and extreme caution must be practiced when considering their use. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Cramer, Gregory D.; Budavich, Matthew; Bora, Preetam; Ross, Kim
2017-01-01
Objective This feasibility study used novel accelerometry (vibration) and microphone (sound) methods to assess crepitus originating from the lumbar spine before and after side-posture spinal manipulation (SMT). Methods This study included 5 healthy and 5 low back pain (LBP) subjects. Nine accelerometers and 1 specialized directional microphone were applied to the lumbar region, allowing assessment of crepitus. Each subject underwent full lumbar ranges of motion (ROM), bilateral lumbar SMT, and repeated full ROM. Following full ROMs the subjects received side-posture lumbar SMT on both sides by a licensed doctor of chiropractic. Accelerometer and microphone recordings were made during all pre- and post-SMT ROMs. Primary outcome was a descriptive report of crepitus prevalence (average number of crepitus events/subject). Subjects were also divided into 3 age groups for comparisons (18–25, 26–45, and 46–65 years). Results Overall, crepitus prevalence decreased pre-post SMT (average pre= 1.4 crepitus/subject vs. post= 0.9). Prevalence progressively increased from the youngest to oldest age groups (pre-SMT= 0.0, 1.67, and 2.0, respectively; and post-SMT= 0.5, 0.83, and 1.5). Prevalence was higher in LBP subjects compared to healthy (pre-SMT-LBP= 2.0, vs. pre-SMT-healthy= 0.8; post-SMT-LBP= 1.0 vs. post-SMT-healthy= 0.8), even though healthy subjects were older than LBP subjects (40.8 years vs. 27.8 years); accounting for age: pre-SMT-LBP= 2.0 vs. pre-SMT-healthy= 0.0; post-SMT-LBP= 1.0 vs. post-SMT-healthy= 0.3. Conclusions Our findings showed that a larger study is feasible. Other findings included that crepitus prevalence increased with age, was higher in LBP than healthy subjects, and overall decreased following SMT. This study showed that crepitus assessment using accelerometers has the potential of being an outcome measure/biomarker for assessing spinal joint (facet/Z joint) function during movement and the effects of LBP treatments (eg, SMT) on Z joint function. PMID:28268027
Application of a movable active vibration control system on a floating raft
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mak, Cheuk Ming
2018-02-01
This paper presents a theoretical study of an inertial actuator connected to an accelerometer by a local feedback loop for active vibration control on a floating raft. On the criterion of the minimum power transmission from the vibratory machines to the flexible foundation in the floating raft, the best mounting positions for the inertial actuator on the intermediate mass of the floating raft are investigated. Simulation results indicate that the best mounting positions for the inertial actuator vary with frequency. To control time-varying excitations of vibratory machines on a floating raft effectively, an automatic control system based on real-time measurement of a cost function and automatically searching the best mounting position of the inertial actuator is proposed. To the best of our knowledge, it is the first time that an automatic control system is proposed to move an actuator automatically for controlling a time-varying excitation.
Planning Experiments for a Microgravity Environment
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1998-01-01
Prior to performing science experiments in a microgravity environment, scientists must understand and appreciate a variety of issues related to that environment. The microgravity conditions required for optimum performance of the experiment will help define an appropriate carrier, drop facility, sounding rocket, free-flyer, or manned orbiting spacecraft. Within a given carrier, such as the International Space Station, experiment sensitivity to vibrations and quasi-steady accelerations should also influence the location and orientation of the experiment apparatus; the flight attitude of the carrier (if selectable); and the scheduling of experiment operations in conjunction with other activities. If acceptable microgravity conditions are not expected from available carriers or experiment scheduling cannot avoid disruptive activities, then a vibration isolation system should be considered. In order to best interpret the experimental results, appropriate accelerometer data must be collected contemporaneously with the experimental data. All of this requires a good understanding of experiment sensitivity to the microgravity environment.
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2014-01-01
During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.
NASA Astrophysics Data System (ADS)
Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca
2018-02-01
The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.
NASA Astrophysics Data System (ADS)
Qiao, Sun; Lifeng, Yang; Bartoli, Claire; Veldman, Ian; Ripper, Gustavo P.; Bruns, Thomas; Rask Licht, Torben; Kolasa, Joanna; Hof, Christian; Silva Pineda, Guillermo; Dickinson, Laurence; Ota, Akihiro; Cheung, Wan Sup; Yankovsky, Alexander; Shan, Cui
2017-01-01
This is the final report for CIPM key comparison CCAUV.V-K3 in the area of 'vibration' (quantity of acceleration). The aim of this comparison was to measure the voltage sensitivity of one accelerometer standard set with primary means at 27 frequencies from 0.1 Hz to 40 Hz. Fourteen Metrology Institutes from five RMOs have participated in the comparison with National Institute of Metrology, P.R. China as pilot lab and Laboratoire National de Métrologie et d'Essais and National Metrology Institute of South Africa as co-pilot labs. One quartz-flexure servo accelerometer of single-ended type and a signal conditioner was circulated among the participants. All but one of the participating laboratories provided their calibration results, which were mostly consistent within their declared expanded uncertainties for magnitude results. Only two participants failed to contribute to the KCRV values calculated for five frequencies. For phase shift, three participants could not contribute to the calculation of the KCRV values in a total of sixteen frequencies. This first low-frequency vibration key comparison revealed the current calibration capabilities of the fourteen participants of five RMOs. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Fluid flow measurements by means of vibration monitoring
NASA Astrophysics Data System (ADS)
Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano
2015-11-01
The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.
Genesis of the Mechanical Heart Valves' Ultrasonic Closing Clicks
NASA Astrophysics Data System (ADS)
Hasegawa, Jun; Kobayashi, Kenji
A new in vitro experimental tool was developed to study the mechanism of the ultrasonic closing clicks' genesis of mechanical heart valves. Since the newly developed tester adopted compressed air flow directly instead of the blood analog fluid to drive the mechanical heart valve, it is not possibe to generate any cavitation. Closing clicks were measured with a small accelerometer at the surface of the valve holder made of silicone rubber. Ultrasonic closing clicks as well as audible closing clicks, similar to those measured clinically, could be observed using this setup. Thus, it was confirmed that the ultrasonic closing clicks can be generated without the existence of cavitation. Simultaneous measurements of the valve motion were made with a high-speed video camera, and the analysis of the video frames and clicks showed that higher frequency signal components of more than 50kHz could be generated only at the instant of the closure, which means the collision of the occluder with the housing. Eighteen miniature accelerometers with an area of one square millimeter were developed and stuck on the housing to monitor the distribution of the housing vibrations in detail, and it was found that the vibrations correspond to the ultrasonic closing clicks propagated from the valve stop: the collision point of the occluder with the housing. This fact indicated that the generation of ultrasonic closing clicks are limited to the small area of the collision. From those results, it was concluded that the major origin of the ultrasonic closing clicks' genesis should be the collision of the occluder with the housing.
The effects of preferred and non-preferred running strike patterns on tissue vibration properties.
Enders, Hendrik; von Tscharner, Vinzenz; Nigg, Benno M
2014-03-01
To characterize soft tissue vibrations during running with a preferred and a non-preferred strike pattern in shoes and barefoot. Cross-sectional study. Participants ran at 3.5 m s(-1) on a treadmill in shoes and barefoot using a rearfoot and a forefoot strike for each footwear condition. The preferred strike patterns for the subjects were a rearfoot strike and a forefoot strike for shod and barefoot running, respectively. Vibrations were recorded with an accelerometer overlying the belly of the medial gastrocnemius. Thirteen non-linearly scaled wavelets were used for the analysis. Damping was calculated as the overall decay of power in the acceleration signal post ground contact. A higher damping coefficient indicates higher damping capacities of the soft tissue. The shod rearfoot strike showed a 93% lower damping coefficient than the shod forefoot strike (p<0.001). A lower damping coefficient indicates less damping of the vibrations. The barefoot forefoot strike showed a trend toward a lower damping coefficient compared to a barefoot rearfoot strike. Running barefoot with a forefoot strike resulted in a significantly lower damping coefficient than a forefoot strike when wearing shoes (p<0.001). The shod rearfoot strike showed lower damping compared to a barefoot rearfoot strike (p<0.001). While rearfoot striking showed lower vibration frequencies in shod and barefoot running, it did not consistently result in lower damping coefficients. This study showed that the use of a preferred movement resulted in lower damping coefficients of running related soft tissue vibrations. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Singh, Harshvardhan; Whitney, Daniel G; Knight, Christopher A; Miller, Freeman; Manal, Kurt; Kolm, Paul; Modlesky, Christopher M
2016-02-01
To determine the degree to which a high-frequency, low-magnitude vibration signal emitted by a floor-based platform transmits to the distal tibia and distal femur of children with spastic cerebral palsy (CP) during standing. Cross-sectional study. University research laboratory. Children with spastic CP who could stand independently (n=18) and typically developing children (n=10) (age range, 4-12y) participated in the study (N=28). Not applicable. The vibration signal at the high-frequency, low-magnitude vibration platform (approximately 33Hz and 0.3g), distal tibia, and distal femur was measured using accelerometers. The degree of plantar flexor spasticity was assessed using the Modified Ashworth Scale. The high-frequency, low-magnitude vibration signal was greater (P<.001) at the distal tibia than at the platform in children with CP (.36±.06g vs .29±.05g) and controls (.40±.09g vs .24±.07g). Although the vibration signal was also higher at the distal femur (.35±.09g, P<.001) than at the platform in controls, it was lower in children with CP (.20±.07g, P<.001). The degree of spasticity was negatively related to the vibration signal transmitted to the distal tibia (Spearman ρ=-.547) and distal femur (Spearman ρ=-.566) in children with CP (both P<.05). A high-frequency, low-magnitude vibration signal from a floor-based platform was amplified at the distal tibia, attenuated at the distal femur, and inversely related to the degree of muscle spasticity in children with spastic CP. Whether this transmission pattern affects the adaptation of the bones of children with CP to high-frequency, low-magnitude vibration requires further investigation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Free-vibration characteristics of a large split-blanket solar array in a 1-g field
NASA Technical Reports Server (NTRS)
Shaker, F. J.
1976-01-01
Two methods for studying the free vibration characteristics of a large split blanket solar array in both a 0-g and a 1-g cantilevered configuration are presented. The 0-g configuration corresponds to an in-orbit configuration of the array; the 1-g configuration is a typical ground test configuration. The first method applies the equations of continuum mechanics to determine the mode shapes and frequencies of the array; the second method uses the Rayleigh-Ritz approach. In the Rayleigh-Ritz method the array displacements are represented by string modes and cantilevered beam modes. The results of this investigation are summarized by a series of graphs illustrating the effects of various array parameters on the mode shapes and frequencies of the system. The results of the two methods are also compared in tabular form.
NASA Astrophysics Data System (ADS)
Chen, Kwok-Ping John
This research investigates two aspects of the time-varying vibration patterns of plucked string tones of classical guitar, Chinese pipa and Chinese ch'in. First, the assumption that horizontal and vertical frequencies and decay rates may be different is used as a basis for classifying the partial amplitude envelopes into four types. It is found that the partial envelopes of the tones produced by the three instruments, using the finger tip excitation method, on a single undamped string, can be described in terms of these four types. The results show that ch'in tones contain Type III, and IV, guitar tones contain Type I, II and III, and pipa tones contain all four types with a higher percentage of Type III and IV. Second, the theories of "missing modes" (Young, 1800), (Benade, 1976) and delayed generation of these modes (Fletcher, 1984), (Hall, 1987) are re-examined experimentally. The edge of a conventional guitar pick is used to excite a single undamped string on a classical guitar at nodal position N which is L/N from the bridge. As a result, it is a consistent feature that any mode whose index n is a multiple of N is attenuated during the attack phase but subsequently rises with a more gradual attack to reach a significant peak amplitude, except for the first multiple of locations L/3 to L/7. This amplitude envelope pattern, Type V, which is only applicable when the pick-edge excitation method is used, is distinct from the other four types mentioned above.
Real-time vibration compensation for large telescopes
NASA Astrophysics Data System (ADS)
Böhm, M.; Pott, J.-U.; Sawodny, O.; Herbst, T.; Kürster, M.
2014-08-01
We compare different strategies for minimizing the effects of telescope vibrations to the differential piston (optical pathway difference) for the Near-InfraRed/Visible Adaptive Camera and INterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) using an accelerometer feedforward compensation approach. We summarize, why this technology is important for LINC-NIRVANA, and also for future telescopes and already existing instruments. The main objective is outlining a solution for the estimation problem in general and its specifics at the LBT. Emphasis is put on realistic evaluation of the used algorithms in the laboratory, such that predictions for the expected performance at the LBT can be made. Model-based estimation and broad-band filtering techniques can be used to solve the estimation task, and the differences are discussed. Simulation results and measurements are shown to motivate our choice of the estimation algorithm for LINC-NIRVANA. The laboratory setup is aimed at imitating the vibration behaviour at the LBT in general, and the M2 as main contributor in particular. For our measurements, we introduce a disturbance time series which has a frequency spectrum comparable to what can be measured at the LBT on a typical night. The controllers' ability to suppress vibrations in the critical frequency range of 8-60 Hz is demonstrated. The experimental results are promising, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 5 (rms), which is significantly better than any currently commissioned system.
Small-scale rotor test rig capabilities for testing vibration alleviation algorithms
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Leyland, Jane Anne
1987-01-01
A test was conducted to assess the capabilities of a small scale rotor test rig for implementing higher harmonic control and stability augmentation algorithms. The test rig uses three high speed actuators to excite the swashplate over a range of frequencies. The actuator position signals were monitored to measure the response amplitudes at several frequencies. The ratio of response amplitude to excitation amplitude was plotted as a function of frequency. In addition to actuator performance, acceleration from six accelerometers placed on the test rig was monitored to determine whether a linear relationship exists between the harmonics of N/Rev control input and the least square error (LSE) identification technique was used to identify local and global transfer matrices for two rotor speeds at two batch sizes each. It was determined that the multicyclic control computer system interfaced very well with the rotor system and kept track of the input accelerometer signals and their phase angles. However, the current high speed actuators were found to be incapable of providing sufficient control authority at the higher excitation frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, N.; Fellenz, B.; Prieto, P.
The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam testmore » facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.« less
Lightweight, Miniature Inertial Measurement System
NASA Technical Reports Server (NTRS)
Tang, Liang; Crassidis, Agamemnon
2012-01-01
A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.
Discrete-time modelling of musical instruments
NASA Astrophysics Data System (ADS)
Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti
2006-01-01
This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.
Vibration transfer mobility measurements using maximum length sequences
NASA Astrophysics Data System (ADS)
Singleton, Herbert L.
2005-09-01
Vibration transfer mobility measurements are required under Federal Transit Administration guidelines when developing detailed predictions of ground-borne vibration for rail transit systems. These measurements typically use a large instrumented hammer to generate impulses in the soil. These impulses are measured by an array of accelerometers to characterize the transfer mobility of the ground in a localized area. While effective, these measurements often make use of heavy, custom-engineered equipment to produce the impulse signal. To obtain satisfactory signal-to-noise ratios, it is necessary to generate multiple impulses to generate an average value, but this process involves considerable physical labor in the field. To address these shortcomings, a transfer mobility measurement system utilizing a tactile transducer and maximum length sequences (MLS) was developed. This system uses lightweight off-the-shelf components to significantly reduce the weight and cost of the system. The use of MLS allows for adequate signal-to-noise ratio from the tactile transducer, while minimizing the length of the measurement. Tests of the MLS system show good agreement with the impulse-based method. The combination of the cost savings and reduced weight of this new system facilitates transfer mobility measurements that are less physically demanding, and more economical when compared with current methods.
NASA Technical Reports Server (NTRS)
Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.
2001-01-01
This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.
Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung
2017-04-23
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods.
NASA Astrophysics Data System (ADS)
Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong
2017-05-01
Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.
Tool Condition Monitoring in Micro-End Milling using wavelets
NASA Astrophysics Data System (ADS)
Dubey, N. K.; Roushan, A.; Rao, U. S.; Sandeep, K.; Patra, K.
2018-04-01
In this work, Tool Condition Monitoring (TCM) strategy is developed for micro-end milling of titanium alloy and mild steel work-pieces. Full immersion slot milling experiments are conducted using a solid tungsten carbide end mill for more than 1900 s to have reasonable amount of tool wear. During the micro-end milling process, cutting force and vibration signals are acquired using Kistler piezo-electric 3-component force dynamometer (9256C2) and accelerometer (NI cDAQ-9188) respectively. The force components and the vibration signals are processed using Discrete Wavelet Transformation (DWT) in both time and frequency window. 5-level wavelet packet decomposition using Db-8 wavelet is carried out and the detailed coefficients D1 to D5 for each of the signals are obtained. The results of the wavelet transformation are correlated with the tool wear. In case of vibration signals, de-noising is done for higher frequency components (D1) and force signals were de-noised for lower frequency components (D5). Increasing value of MAD (Mean Absolute Deviation) of the detail coefficients for successive channels depicted tool wear. The predictions of the tool wear are confirmed from the actual wear observed in the SEM of the worn tool.
Advanced Stirling Convertor Dynamic Test Approach and Results
NASA Technical Reports Server (NTRS)
Meer, David W.; Hill, Dennis; Ursic, Joseph
2009-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Converters (ASC) at NASA John H. Glenn Research Center undergo a vibration test sequence intended to simulate the vibration history of an ASC used in an ASRG for a space mission. This sequence includes testing at Workmanship and Flight Acceptance levels interspersed with periods of extended operation to simulate pre and post fueling. The final step in the test sequence utilizes additional testing at Flight Acceptance levels to simulate launch. To better replicate the acceleration profile seen by an ASC incorporated into an ASRG, the input spectra used in testing the convertors was modified based on dynamic testing of the ASRG Engineering Unit ( ASRG-EU) at Lockheed Martin. This paper presents the vibration test plan for current and future ASC units, including the modified input spectra, and the results of recent tests using these spectra. The test results include data from several accelerometers mounted on the convertors as well as the piston position and output power variables.
Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung
2017-01-01
Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods. PMID:28441743
Storm wave buoy equipped with micromechanical inertial unit: Results of development and testing
NASA Astrophysics Data System (ADS)
Gryazin, D. G.; Staroselcev, L. P.; Belova, O. O.; Gleb, K. A.
2017-07-01
The article describes the results of developing a wave buoy to measure the statistical characteristics of waves and the characteristics of directional spectra of three-dimensional waves. The device is designed for long-term measurements lasting up to a season, which can help solve problems in forecasting waves and preventing emergencies from wave impact on offshore platforms, hydraulic structures, and other marine facilities. The measuring unit involves triads of micromechanical gyroscopes, accelerometers, and a three-component magnetometer. A description of the device, results of laboratory research of its characteristics, and bench and full-scale tests are offered. It is noted that to assess the performance characteristics, comparative tests of the Storm wave buoy were conducted with a standard string wave probe installed on an offshore platform. It is shown that the characteristics and capabilities of the wave buoy make it possible to oust foreign devices from the domestic market.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Rodela, Chris
2006-01-01
Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.
Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.
1995-01-01
This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.
NASA Astrophysics Data System (ADS)
Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.
2016-10-01
The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.
NASA Astrophysics Data System (ADS)
Agostoni, S.; Cheli, F.; Leo, E.; Pezzola, M.
2012-08-01
Motor vehicle ride comfort is mainly affected by reciprocating engine inertia unbalances. These forces are transmitted to the driver through the main frame, the engine mounts, and the auxiliary sub systems—all components with which he physically comes into contact. On-road traction vehicle engines are mainly characterized by transient exercise. Thus, an excitation frequency range from 800 RPM (≈15 Hz for stationary vehicles) up to 15,000 RPM (≈250 Hz as a cut off condition) occurs. Several structural resonances are induced by the unbalancing forces spectrum, thus exposing the driver to amplified vibrations. The aim of this research is to reduce driver vibration exposure, by acting on the modal response of structures with which the driver comes into contact. An experimental methodology, capable of identifying local vibration modes was developed. The application of this methodology on a reference vehicle allows us to detect if/when/how the above mentioned resonances are excited. Numerical models were used to study structural modifications. In this article, a handlebar equipped with an innovative multi reciprocating tuned mass damper was optimized. All structural modifications were designed, developed and installed on a vehicle. Modal investigations were then performed in order to predict modification efficiency. Furthermore, functional solution efficiency was verified during sweep tests performed on a target vehicle, by means of a roller bench capable of replicating on-road loads. Three main investigation zones of the vehicle were detected and monitored using accelerometers: (1) engine mounts, to characterize vibration emissions; (2) bindings connecting the engine to the frame, in order to detect vibration transfer paths, with particular attention being paid to local dynamic amplifications due to compliances and (3) the terminal components with which the driver comes into contact.
Continuous monitoring of high-rise buildings using seismic interferometry
NASA Astrophysics Data System (ADS)
Mordret, A.; Sun, H.; Prieto, G. A.; Toksoz, M. N.; Buyukozturk, O.
2016-12-01
The linear seismic response of a building is commonly extracted from ambient vibration measurements. Seismic deconvolution interferometry performed on ambient vibration measurements can also be used to estimate the dynamic characteristics of a building, such as the velocity of shear-waves travelling inside the building as well as a damping parameter depending on the intrinsic attenuation of the building and the soil-structure coupling. The continuous nature of the ambient vibrations allows us to measure these parameters repeatedly and to observe their temporal variations. We used 2 weeks of ambient vibration recorded by 36 accelerometers installed in the Green Building on the Massachusetts Institute of Technology campus (Cambridge, MA) to continuously monitor the shear-wave speed and the attenuation factor of the building. Due to the low strain of the ambient vibrations, the observed changes are totally reversible. The relative velocity changes between a reference deconvolution function and the current deconvolution functions are measured with two different methods: 1) the Moving Window Cross-Spectral technique and 2) the stretching technique. Both methods show similar results. We show that measuring the stretching coefficient for the deconvolution functions filtered around the fundamental mode frequency is equivalent to measuring the wandering of the fundamental frequency in the raw ambient vibration data. By comparing these results with local weather parameters, we show that the relative air humidity is the factor dominating the relative seismic velocity variations in the Green Building, as well as the wandering of the fundamental mode. The one-day periodic variations are affected by both the temperature and the humidity. The attenuation factor, measured as the exponential decay of the fundamental mode waveforms, shows a more complex behaviour with respect to the weather measurements.
A new drilling method-Earthworm-like vibration drilling.
Wang, Peng; Ni, Hongjian; Wang, Ruihe
2018-01-01
The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.
Classification of event location using matched filters via on-floor accelerometers
NASA Astrophysics Data System (ADS)
Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.
2017-04-01
Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.
Perimeter security alarm system based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Cui; Wang, Lixin
2010-11-01
With the development of the society and economy and the improvement of living standards, people need more and more pressing security. Perimeter security alarm system is widely regarded as the first line of defense. A highly sensitive Fiber Bragg grating (FBG) vibration sensor based on the theory of the string vibration, combined with neural network adaptive dynamic programming algorithm for the perimeter security alarm system make the detection intelligently. Intelligent information processing unit identify the true cause of the vibration of the invasion or the natural environment by analyzing the frequency of vibration signals, energy, amplitude and duration. Compared with traditional perimeter security alarm systems, such as infrared perimeter security system and electric fence system, FBG perimeter security alarm system takes outdoor passive structures, free of electromagnetic interference, transmission distance through optical fiber can be as long as 20 km It is able to detect the location of event within short period of time (high-speed response, less than 3 second).This system can locate the fiber cable's breaking sites and alarm automatically if the cable were be cut. And the system can prevent effectively the false alarm from small animals, birds, strong wind, scattering things, snowfalls and vibration of sensor line itself. It can also be integrated into other security systems. This system can be widely used in variety fields such as military bases, nuclear sites, airports, warehouses, prisons, residence community etc. It will be a new force of perimeter security technology.
Detection of rebar delamination using modal analysis
NASA Astrophysics Data System (ADS)
Blodgett, David W.
2003-08-01
A non-destructive method for early detection of reinforcement steel bars (re-bar) delamination in concrete structures has been developed. This method, termed modal analysis, has been shown effective in both laboratory and field experiments. In modal analysis, an audio speaker is used to generate flexural resonant modes in the re-bar in reinforced concrete structures. Vibrations associated with these modes are coupled to the surrounding concrete and propagate to the surface where they are detected using a laser vibrometer and/or accelerometer. Monitoring both the frequency and amplitude of these vibrations provides information on the bonding state of the embedded re-bar. Laboratory measurements were performed on several specially prepared concrete blocks with re-bar of varying degrees of simulated corrosion. Field measurements were performed on an old bridge about to be torn down in Howard County, Maryland and the results compared with those obtained using destructive analysis of the bridge after demolition. Both laboratory and field test results show this technique to be sensitive to re-bar delamination.
Design of an accurate wireless data logger for vibration analysis with Android interface.
Blanco, J R; Menéndez, J; Ferrero, F J; Campo, J C; Valledor, M
2016-12-01
In this work a new accurate wireless data logger using the Android interface was developed to monitor vibrations at low-cost. The new data logger is completely autonomous and extremely reduced in size. This instrument enables data collection wirelessly and the ability to display it on any tablet or smartphone with operating system Android. The prototype allows the monitoring of any industrial system with minimal investment in material and installation costs. The data logger is capable of making 12.8 kSPS enough to sample up to 5 kHz signals. The basic specification of the data logger includes a high resolution 1-axis piezoelectric accelerometer with a working range of ±30 G. In addition to the acceleration measurements, temperature can also be recorded. The data logger was tested during a 6-month period in industrial environments. The details of the specific hardware and software design are described. The proposed technology can be easily transferred to many other areas of industrial monitoring.
Prey-sensing and orientational behaviors of sand scorpions
NASA Astrophysics Data System (ADS)
Brownell, Philip
2000-03-01
Sand scorpions use exquisitely sensitive vibrational and chemosensory systems to locate prey and identify prospective mates active on the sand surface. Prey location is determined by input to a static array of 8 vibration-sensitive receptors, each responding as phase-locked accelerometers to compressional and surface waves conducted through sand. Angular orientation of the target is determined from passing surface (Rayleigh) waves, target distance possibly from the time delay between arrival of compressional and surface waves. For localization and identification of prospective mates, male scorpions use sexually dimorphic chemosensory appendages, the pectines, which are swept over a static stimulus field (chemical trail deposited on sand). These organs support a 2D array of closely-spaced (freq = 100/mm) sensilla containing more than 10^6 neurons, all projecting with great topographic precision to the central nervous system. Movement of this sensory array over a static stimulus field creates timing within the sensory signal. The potential importance of timing as a means of increasing sensitivity and selectivity of sensory response in two distinctly different modes is discussed.
Vision-based system identification technique for building structures using a motion capture system
NASA Astrophysics Data System (ADS)
Oh, Byung Kwan; Hwang, Jin Woo; Kim, Yousok; Cho, Tongjun; Park, Hyo Seon
2015-11-01
This paper presents a new vision-based system identification (SI) technique for building structures by using a motion capture system (MCS). The MCS with outstanding capabilities for dynamic response measurements can provide gage-free measurements of vibrations through the convenient installation of multiple markers. In this technique, from the dynamic displacement responses measured by MCS, the dynamic characteristics (natural frequency, mode shape, and damping ratio) of building structures are extracted after the processes of converting the displacement from MCS to acceleration and conducting SI by frequency domain decomposition. A free vibration experiment on a three-story shear frame was conducted to validate the proposed technique. The SI results from the conventional accelerometer-based method were compared with those from the proposed technique and showed good agreement, which confirms the validity and applicability of the proposed vision-based SI technique for building structures. Furthermore, SI directly employing MCS measured displacements to FDD was performed and showed identical results to those of conventional SI method.
[Whole-body vibration risk among operators in railway engines shunting ].
Abbate, A; Saffioti, G; Malara, G; Licordari, P; Carrello, S; De Pasquale, D; Giorgianni, C
2007-01-01
Purpose of the present note is to assess the risk from Whole-body vibration (WBV) in operators employed in the shunting of engines within the railway stations. The study has been conducted in the cockpits of the shunting engines used within the railway station of Villa S. Giovanni (RC). The measures have been taken through accelerometer IHVM 100 Larson-Davis, placed on the seat of each locomotives for a recording time of around 15 minutes. A standard measure has been effected besides, positioning the sensor on the floor of the same locomotives. The measurements indicate that the risk to these workers is negligible because in any case the value is exceeded action daily 0.5 m/s2, having recorded values range from 0.1 to 0.2 m / s2. In conclusion it holds him necessary, to the preventive goals, in respect to how much anticipated from the D.L.gs 187/05 the necessary technical, organizational and formative measures to the containment of the risk.
Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum
NASA Technical Reports Server (NTRS)
Deutsch, Georg; Grillenbeck, Anton
2008-01-01
Some scientific missions require to an extreme extent the absence of any on-board microvibration. Recent projects dedicated to measuring the Earth's gravity field and modeling the geoid with extremely high accuracy are examples. Their missions demand for extremely low micro-vibration environment on orbit for: (1) Not disturbing the measurement of earth gravity effects with the installed gradiometer or (2) Even not damaging the very high sensitive instruments. Based on evidence from ongoing missions multi-layer insulation (MLI) type thermal control blankets have been identified as a structural element of spacecrafts which might deform under temperature variations being caused by varying solar irradiation in orbit. Any such deformation exerts tiny forces which may cause small reactions resulting in micro-vibrations, in particular by exciting the spacecraft eigenmodes. The principle of the test set-up for the micro-vibration test was as follows. A real side wall panel of the spacecraft (size about 0.25 m2) was low-frequency suspended in a thermal vacuum chamber. On the one side of this panel, the MLI samples were fixed by using the standard methods. In front of the MLI, an IR-rig was installed which provided actively controlled IR-radiation power of about 6 kW/m2 in order to heat the MLI surface. The cooling was passive using the shroud temperature at a chamber pressure <1E-5mbar. The resulting micro-vibrations due to MLI motion in the heating and the cooling phase were measured via seismic accelerometers which were rigidly mounted to the panel. Video recording was used to correlate micro-vibration events to any visual MLI motion. Different MLI sample types were subjected to various thermal cycles in a temperature range between -60 C to +80 C. In this paper, the experience on these micro-vibration measurements will be presented and the conclusions for future applications will be discussed
Çelebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron
2012-01-01
A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.
Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto
2010-01-01
Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.
OM300 Direction Drilling Module
MacGugan, Doug
2013-08-22
OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process
Long-term monitoring of a cable stayed bridge using a SCADA system
NASA Astrophysics Data System (ADS)
Torbol, Marco; Kim, Sehwan; Shinozuka, Masanobu
2012-04-01
DuraMote is a MEMS-based remote sensing system, which is developed for the NIST TIP project, Next Generation SCADA for Prevention and Mitigation of Water System Infrastructure Disaster. It is designed for supervisory control and data acquisition (SCADA) of pipe ruptures in water distribution systems. In this project, a method is developed to detect the pipe ruptures by analyzing the acceleration data gathered by DuraMote which consists of two primary components; the first, "Gopher" contains the accelerometers and are attached to the water pipe surface noninvasively, and the second, "Roocas" is placed above ground supplying the power to, and retrieving the data from the multiple Gophers, and then transmit the data through Wi-Fi to a base station. The relays support the Wi-Fi network to facilitate the transmission. A large scale bridge provides an ideal test-bet to validate the performance of such a complex monitoring system as DuraMote for its accuracy, reliability, robustness, and user friendliness. This is because a large bridge is most of the time subjected to susceptible level of ambient vibration due to passing loads, wind, etc. DuraMote can record the acceleration time history arising from the vibration making it possible to estimate the frequency values of various bridge vibration modes. These estimated frequency values are then compared with the values computed from analytical model of the bridge for the verification of the accuracy of DuraMote. It is noted that such a verification method cannot be used practically by deploying DuraMote on a water distribution network since the dynamic behavior of a pipe network, either above or underground, is too complex to model analytically for this purpose, and in addition, the network generally lacks conveniently recordable ambient vibration. In this experiment, the performance of DuraMote system was tested being installed on the Hwamyung Bridge, a 500 m long RC cable stayed bridge in Korea for long term monitoring. In total, the system consisted of 24 accelerometers, 13 Gophers, 10 Roocas, 5 relays, and 1 base station. As it happened, the bridge was subjected to heavy rain, winds, and a typhoon during the experiment allowing the DuraMote to demonstrate extra ordinary robustness and durability. Indeed, in spite of the rough weather, acceleration data was continuously recorded from which natural frequencies, mode shapes, and other structural parameters were calculated. This opportunity would not have happened if the experiment was planned for a shorter duration.
Force Limited Vibration Testing
NASA Technical Reports Server (NTRS)
Scharton, Terry; Chang, Kurng Y.
2005-01-01
This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test data. A simple two degree of freedom system is shown and the governing equations for basic force limiting results for this system are reviewed. The design and results of the shuttle vibration forces (SVF) experiments are reviewed. The Advanced Composition Explorer (ACE) also was used to validate force limiting. Test instrumentation and supporting equipment are reviewed including piezo-electric force transducers, signal processing and conditioning systems, test fixtures, and vibration controller systems. Several examples of force limited vibration testing are presented with some results.
NASA Astrophysics Data System (ADS)
Wilson, Harold A.
2014-05-01
Preface; Introduction; Part I. Mechanics and Properties of Matter: 1. Space and time; 2. Motion; 3. The laws of motion and matter; 4. Force and motion; 5. Work and study; 6. Mechanics of rigid bodies; 7. Gravitation; 8. Elasticity; 9. The properties of liquids; Part II. Heat: 1. Temperature; 2. The expansion of solid bones with rise of temperature; 3. The expansion of liquids with rise of temperature; 4. The properties of gases; 5. Quantity of heat. Specific heat; 6. Change of state. Solid-liquid; 7. Change of state. Liquid-vapour; 8. Convection and conduction; 9. Heat a form of energy; 10. The conversion of heat into work; 11. The kinetic theory of gases; Part III. Sound: 1. Production and velocity of sound; 2. Wave motion; 3. Wave trains; 4. Musical notes; 5. Reflection, refraction, interference of sound and composition of perpendicular vibrations; 6. Resonance; 7. Vibration of strings; 8. Vibration of air in open and closed spaces; Part IV. Light: 1. Sources of light. Photometry; 2. Reflection and refraction at plane surfaces; 3. Spherical mirrors; 4. Lenses; 5. Dispersion; 6. Colour; 7. Optical instruments; 8. The velocity of light; 9. Interference and diffraction; 10. Polarization and double refraction; 11. Energy of light. Invisible radiations; Index.
Vibration-based angular speed estimation for multi-stage wind turbine gearboxes
NASA Astrophysics Data System (ADS)
Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan
2017-05-01
Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.
Setterbo, Jacob J; Garcia, Tanya C; Campbell, Ian P; Reese, Jennifer L; Morgan, Jessica M; Kim, Sun Y; Hubbard, Mont; Stover, Susan M
2009-10-01
To compare hoof acceleration and ground reaction force (GRF) data among dirt, synthetic, and turf surfaces in Thoroughbred racehorses. 3 healthy Thoroughbred racehorses. Forelimb hoof accelerations and GRFs were measured with an accelerometer and a dynamometric horseshoe during trot and canter on dirt, synthetic, and turf track surfaces at a racecourse. Maxima, minima, temporal components, and a measure of vibration were extracted from the data. Acceleration and GRF variables were compared statistically among surfaces. The synthetic surface often had the lowest peak accelerations, mean vibration, and peak GRFs. Peak acceleration during hoof landing was significantly smaller for the synthetic surface (mean + or - SE, 28.5g + or - 2.9g) than for the turf surface (42.9g + or - 3.8g). Hoof vibrations during hoof landing for the synthetic surface were < 70% of those for the dirt and turf surfaces. Peak GRF for the synthetic surface (11.5 + or - 0.4 N/kg) was 83% and 71% of those for the dirt (13.8 + or - 0.3 N/kg) and turf surfaces (16.1 + or - 0.7 N/kg), respectively. The relatively low hoof accelerations, vibrations, and peak GRFs associated with the synthetic surface evaluated in the present study indicated that synthetic surfaces have potential for injury reduction in Thoroughbred racehorses. However, because of the unique material properties and different nature of individual dirt, synthetic, and turf racetrack surfaces, extending the results of this study to encompass all track surfaces should be done with caution.
Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral
2016-07-01
Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.
Foreign Object Damage Identification in Turbine Engines
NASA Technical Reports Server (NTRS)
Strack, William; Zhang, Desheng; Turso, James; Pavlik, William; Lopez, Isaac
2005-01-01
This report summarizes the collective work of a five-person team from different organizations examining the problem of detecting foreign object damage (FOD) events in turbofan engines from gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage to each component (diagnosis). Several detection and diagnostic approaches were investigated and a software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These approaches include (1) fan efficiency deviation computed from upstream and downstream temperature/ pressure measurements, (2) gas path weighted least squares estimation of component health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) use of structural vibration signal processing to detect both large and small FOD events. The last three of these approaches require a significant amount of computation in conjunction with a physics-based analytic model of the underlying phenomenon the NPSS thermodynamic cycle code for approaches 1 to 3 and the DyRoBeS reduced-order rotor dynamics code for approach 4. A potential application of the FODID software tool, in addition to its detection/diagnosis role, is using its sensitivity results to help identify the best types of sensors and their optimum locations within the gas path, and similarly for bearing accelerometers.
Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral
2016-01-01
Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement. PMID:27376303
NASA Astrophysics Data System (ADS)
Riantana, R.; Darsono, D.; Triyono, A.; Azimut, H. B.
2016-11-01
Calibration of the android censor was done by placing the device in a mounting at side of accelerograph TDL 303 QS that will be a means of comparison. Leveling of both devices was set same, so that the state of the device can be assumed same anyway. Then applied vibrations in order to have the maximum amplitude value of both censor, so it can be found equality of the coefficient of proportionality both of them. The results on both devices obtain the Peak Ground Acceleration (PGA) as follows, on the x axis (EW) android censor is obtained PGA -2.4478145 gal than at TDL 303 QS obtained PGA -2.5504 gal, the y-axis (NS) on the censor android obtained PGA 3.0066964 gal than at TDL 303 QS obtained PGA 3.2073 gal, the z-axis (UD) on the android censor obtained PGA -14.0702377 gal than at TDL 303 QS obtained PGA -13.2927 gal, A correction value for android accelerometer censor is ± 0.1 gal for the x-axis (EW), ± 0.2 gal for the y-axis (NS), and ± 0.7 gal for the z-axis (UD).
Lannocca, Maurizio; Varini, Elena; Cappello, Angelo; Cristofolini, Luca; Bialoblocka, Ewa
2007-10-01
Cementless implants are mechanically stabilized during surgery by a press-fitting procedure. Good initial stability is crucial to avoid stem loosening and bone cracking, therefore, the surgeon must achieve optimal press-fitting. A possible approach to solve this problem and assist the surgeon in achieving the optimal compromise, involves the use of vibration analysis. The present study aimed to design and test a prototype device able to evaluate the primary mechanical stability of a cementless prosthesis, based on vibration analysis. In particular, the goal was to discriminate between stable and quasi-stable implants; thus the stem-bone system was assumed to be linear in both cases. For that reason, it was decided to study the frequency responses of the system, instead of the harmonic distortion. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The most sensitive parameter to stability was the shift in resonance frequency of the stem-bone system, which was highly correlated with residual micromotion on all four specimens.
Macdermid, Paul W; Fink, Philip W; Miller, Matthew C; Stannard, Stephen
2017-07-01
Non-propulsive work demand has been linked to reduced energetic economy of cross-country mountain biking. The purpose of this study was to determine mechanical, physiological and performance differences and observe economy while riding a downhill section of a cross-country course prior to and following the metabolic "load" of a climb at race pace under two conditions (hardtail and full suspension) expected to alter vibration damping mechanics. Participants completed 1 lap of the track incorporating the same downhill section twice, under two conditions (hardtail and full suspension). Performance was determined by time to complete overall lap and specific terrain sections. Power, cadence, heart rate and oxygen consumption were sampled and logged every second while triaxial accelerometers recorded accelerations (128 Hz) to quantify vibration. No differences between performance times (P = 0.65) or power outputs (P = 0.61) were observed while physiological demand of loaded downhill riding was significantly greater (P < 0.0001) than unloaded. Full suspension decreased total vibrations experienced (P < 0.01) but had no effect on performance (P = 0.97) or physiological (P > 0.05) measures. This study showed minimal advantage of a full suspension bike in our trial, with further investigations over a full race distance warranted.
Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P
2018-01-01
The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused amplification of handle vibration at the fingers. The fingers' vibration transmission performance of gloves were further evaluated using a proposed finger frequency-weighting W f apart from the standardized W h -weighting. It is shown that the W h weighting generally overestimates the VR glove effectiveness in limiting the fingers vibration in the high (H: 200-1250 Hz) frequency range. Both the weightings, however, revealed comparable performance of gloves in the mid (M: 25-200 Hz) frequency range. The VR gloves, with the exception of the leather glove, showed considerable reductions in the grip strength (27-41%), while the grip strength reduction was not correlated with the glove material thickness. It is suggested that effectiveness of VR gloves should be assessed considering the vibration transmission to both the palm and fingers of the hand together with the hand grip strength reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wireless vibration monitoring for damage detection of highway bridges
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Gangone, Michael V.; Janoyan, Kerop D.; Jha, Ratneshwar
2008-03-01
The development of low-cost wireless sensor networks has resulted in resurgence in the development of ambient vibration monitoring methods to assess the in-service condition of highway bridges. However, a reliable approach towards assessing the health of an in-service bridge and identifying and localizing damage without a priori knowledge of the vibration response history has yet to be formulated. A two-part study is in progress to evaluate and develop existing and proposed damage detection schemes. The first phase utilizes a laboratory bridge model to investigate the vibration response characteristics induced through introduction of changes to structural members, connections, and support conditions. A second phase of the study will validate the damage detection methods developed from the laboratory testing with progressive damage testing of an in-service highway bridge scheduled for replacement. The laboratory bridge features a four meter span, one meter wide, steel frame with a steel and cement board deck composed of sheet layers to regulate mass loading and simulate deck wear. Bolted connections and elastomeric bearings provide a means for prescribing variable local stiffness and damping effects to the laboratory model. A wireless sensor network consisting of fifty-six accelerometers accommodated by twenty-eight local nodes facilitates simultaneous, real-time and high-rate acquisition of the vibrations throughout the bridge structure. Measurement redundancy is provided by an array of wired linear displacement sensors as well as a scanning laser vibrometer. This paper presents the laboratory model and damage scenarios, a brief description of the developed wireless sensor network platform, an overview of available test and measurement instrumentation within the laboratory, and baseline measurements of dynamic response of the laboratory bridge model.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
NASA Astrophysics Data System (ADS)
Boutillon, Xavier; Ege, Kerem
2013-09-01
In string musical instruments, the sound is radiated by the soundboard, subject to the strings excitation. This vibration of this rather complex structure is described here with models which need only a small number of parameters. Predictions of the models are compared with the results of experiments that have been presented in Ege et al. [Vibroacoustics of the piano soundboard: (non)linearity and modal properties in the low- and mid-frequency ranges, Journal of Sound and Vibration 332 (5) (2013) 1288-1305]. The apparent modal density of the soundboard of an upright piano in playing condition, as seen from various points of the structure, exhibits two well-separated regimes, below and above a frequency flim that is determined by the wood characteristics and by the distance between ribs. Above flim, most modes appear to be localised, presumably due to the irregularity of the spacing and height of the ribs. The low-frequency regime is predicted by a model which consists of coupled sub-structures: the two ribbed areas split by the main bridge and, in most cases, one or two so-called cut-off corners. In order to assess the dynamical properties of each of the subplates (considered here as homogeneous plates), we propose a derivation of the (low-frequency) modal density of an orthotropic homogeneous plate which accounts for the boundary conditions on an arbitrary geometry. Above flim, the soundboard, as seen from a given excitation point, is modelled as a set of three structural wave-guides, namely the three inter-rib spacings surrounding the excitation point. Based on these low- and high-frequency models, computations of the point-mobility and of the apparent modal densities seen at several excitation points match published measurements. The dispersion curve of the wave-guide model displays an acoustical radiation scheme which differs significantly from that of a thin homogeneous plate. It appears that piano dimensioning is such that the subsonic regime of acoustical radiation extends over a much wider frequency range than it would be for a homogeneous plate with the same low-frequency vibration. One problem in piano manufacturing is examined in relationship with the possible radiation schemes induced by the models.
Barstow, A; Bailey, J; Campbell, J; Harris, C; Weller, R; Pfau, T
2018-04-17
Both pleasure and competition horses regularly exercise on surfaces such as tarmac, gravel and turf during 'hacking'. Despite this, there is limited evidence relating to the effect of these surfaces upon foot-surface interaction. To investigate forelimb foot placement, hoof vibration and movement symmetry in pleasure horses on three commonly encountered hacking surfaces. Quantitative gait study in a convenience sample. Six horses regularly partaking in hacking exercise were ridden in walk and trot on all surfaces. Horses were equipped with one hoof-mounted, accelerometer and four body-mounted inertial measurement units (IMUs) to measure foot impact and movement symmetry. High-speed (400 FPS) video footage of foot-placement was acquired (dorsal, palmar, lateral views). Foot-impact and movement symmetry were analysed with a mixed effects model and Bowker symmetry tests for foot-placement analysis. Vibration power and frequency parameters increase as perceived surface firmness increases from grass, to gravel, to tarmac (P≤0.001). Vibration power parameters were consistently greater at trot compared with walk (P≤0.001), but the same was not true for vibration frequency (P≥0.2). Greatest movement asymmetry was recorded during grass surface trotting. No significant difference in foot-placement was detected between the three surfaces. This was a field study using three commonly encountered hacking surfaces. Surface properties change easily with water content and temperature fluctuations so care must be taken when considering other similar surfaces, especially at different times of the year. Six leisure horses were used so the results may not be representative of horses of all types. Vibration parameters generally increase as perceived surface firmness increases. Increasing speed alters vibration power but not frequency. Further investigations are required to determine the role that this may play in the development of musculoskeletal disease in horses. © 2018 EVJ Ltd.
FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts
Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto
2010-01-01
Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304
Centrifugal unbalance detection system
Cordaro, Joseph V.; Reeves, George; Mets, Michael
2002-01-01
A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.
Laser Doppler vibrometry measurement of the mechanical myogram
NASA Astrophysics Data System (ADS)
Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.
2013-12-01
Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle (the first dorsal interosseous) was studied under conditions of elastic loading applied to the tip of the abducted index finger. The LDV signal was shown to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.
NASA Astrophysics Data System (ADS)
Liang, Mengbing
"Sensor Decade" has been labeled on the first decade of the 21st century. Similar to the revolution of micro-computer in 1980s, sensor R&D developed rapidly during the past 20 years. Hard workings were mainly made to minimize the size of devices with optimal the performance. Efforts to develop the small size devices are mainly concentrated around Micro-electro-mechanical-system (MEMS) technology. MEMS accelerometers are widely published and used in consumer electronics, such as smart phones, gaming consoles, anti-shake camera and vibration detectors. This study represents liquid-state low frequency micro-accelerometer based on molecular electronic transducer (MET), in which inertial mass is not the only but also the conversion of mechanical movement to electric current signal is the main utilization of the ionic liquid. With silicon-based planar micro-fabrication, the device uses a sub-micron liter electrolyte droplet sealed in oil as the sensing body and a MET electrode arrangement which is the anode-cathode-cathode-anode (ACCA) in parallel as the read-out sensing part. In order to sensing the movement of ionic liquid, an imposed electric potential was applied between the anode and the cathode. The electrode reaction, I3-- + 2e-- ↔ 3I --, occurs around the cathode which is reverse at the anodes. Obviously, the current magnitude varies with the concentration of ionic liquid, which will be effected by the movement of liquid droplet as the inertial mass. With such structure, the promising performance of the MET device design is to achieve 10.8 V/G (G=9.81 m/s2) sensitivity at 20 Hz with the bandwidth from 1 Hz to 50 Hz, and a low noise floor of 100 microg/sqrt(Hz) at 20 Hz.
Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A; Giovangrandi, Laurent
2012-10-01
Seismocardiography (SCG) is a non-invasive measurement of the vibrations of the chest caused by the heartbeat. SCG signals can be measured using a miniature accelerometer attached to the chest, and are thus well-suited for unobtrusive and long-term patient monitoring. Additionally, SCG contains information relating to both cardiovascular and respiratory systems. In this work, algorithms were developed for extracting three respiration-dependent features of the SCG signal: intensity modulation, timing interval changes within each heartbeat, and timing interval changes between successive heartbeats. Simultaneously with a reference respiration belt, SCG signals were measured from 20 healthy subjects and a respiration rate was estimated using each of the three SCG features and the reference signal. The agreement between each of the three accelerometer-derived respiration rate measurements was computed with respect to the respiration rate derived from the reference respiration belt. The respiration rate obtained from the intensity modulation in the SCG signal was found to be in closest agreement with the respiration rate obtained from the reference respiration belt: the bias was found to be 0.06 breaths per minute with a 95% confidence interval of -0.99 to 1.11 breaths per minute. The limits of agreement between the respiration rates estimated using SCG (intensity modulation) and the reference were within the clinically relevant ranges given in existing literature, demonstrating that SCG could be used for both cardiovascular and respiratory monitoring. Furthermore, phases of each of the three SCG parameters were investigated at four instances of a respiration cycle-start inspiration, peak inspiration, start expiration, and peak expiration-and during breath hold (apnea). The phases of the three SCG parameters observed during the respiration cycle were congruent with existing literature and physiologically expected trends.
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman
2018-05-01
Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition, having proper lighting while working with high-speed cameras can be an issue, therefore image enhancement and contrast manipulation has also been performed to enhance the raw images. Ultimately, the extracted resonant frequencies and operational deflection shapes are used to detect the presence of damage, demonstrating the feasibility of implementing non-contact video measurements to perform realistic structural damage detection.
Mechanical behaviour of condenser microphone in mechanomyography.
Watakabe, M; Mita, K; Akataki, K; Itoh, Y
2001-03-01
Condenser microphones (MIC) have been widely used in mechanomyography, together with accelerometers and piezoelectric contact sensors. The aim of the present investigation was to clarify the mechanical variable (acceleration, velocity or displacement) indicated by the signal from a MIC transducer using a mechanical sinusoidal vibration system. In addition, the mechanomyogram (MMG) was recorded simultaneously with a MIC transducer and accelerometer (ACC) during voluntary contractions to confirm the mechanical variable reflected by the actual MMG and to examine the influence of motion artifact on the MMG. To measure the displacement-frequency response, mechanical sinusoidal vibrations of 3 to 300 Hz were applied to the MIC transducer with different sizes of air chambers (5, 10, 15 and 20 mm in diameter and 15, 20 or 25 mm long). The MIC transducer showed a linear relationship between the output amplitude and the vibration displacement, however, its frequency response declined with decreasing diameter and decreasing length of the air chamber. In fact, the cut-off frequency (-3dB) of the MIC transducer with the 5-mm-diameter chamber was 10, 8 and 4 Hz for the length 15, 20 and 25 mm, respectively. The air chamber with at least a diameter of 10 mm and a length of 15 mm is recommended for the MIC transducer. The sensitivity of this MIC transducer arrangement was 92 mV microm(-1) when excited at 100 Hz. During voluntary contraction, the amplitude spectral density function of the MMG from the MIC transducer resembled that of the double integral of the ACC transducer signal. The angle of the MIC transducer was delayed by 180 degrees in relation to the ACC transducer signal. The sensitivity of the MIC transducer was reduced to one-third because of the peculiar volume change of air chamber when the MMG was detected on the surface of the skin. In addition, the MIC transducer was contaminated by a smaller motion artifact than that from the ACC transducer. The maximal peak amplitude of the MIC and ACC transducer signal with the motion artifact was 7.7 and 12.3 times as much as the RMS amplitude of each signal without the motion artifact, respectively. These findings suggest that the MIC transducer acts as a displacement meter in the MMG. The MIC transducer seems to be a possible candidate for recording the MMG during dynamic muscle contractions as well as during sustained contractions.
Developing an active artificial hair cell using nonlinear feedback control
NASA Astrophysics Data System (ADS)
Joyce, Bryan S.; Tarazaga, Pablo A.
2015-09-01
The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.
NASA Technical Reports Server (NTRS)
Fialho, Ian J.; Thampi, Sreekumar
2000-01-01
A primary mission of the International Space Station (ISS) is to provide a premier microgravity laboratory environment for conducting acceleration sensitive scientific research. In order to accomplish this goal, vibroacoustic disturbances caused by station activities that occur during the microgravity mode of operation, must be controlled. In addition to source isolation and other passive isolation methods, the ISS uses active isolation at the receiver, through the use of an Active Rack Isolation System (ARIS), as part of its overall vibration isolation strategy. A schematic diagram of a typical ARIS payload rack is shown. The ARIS isolation control system senses rack acceleration via three triaxial accelerometer heads and uses eight pushrod actuators to perform active vibration attenuation. Position sensors housed in the actuator assembly are used to sense the relative position between the rack and the station. Electrical power, data and other essential resources are routed through a set of umbilicals that interface with a passthrough panel at the bottom of the rack. A representative umbilical set is shown.
2014-04-22
CAPE CANAVERAL, Fla. - Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module is positioned on a special portable test chamber and prepared for a multi-point random vibration test. Accelerometers and strain gages have been attached to Orion in various locations. During a series of tests, each lasting only 30 seconds, Orion will be subjected to gradually increasing levels of vibrations that represent levels the vehicle would experience during launch, orbit and descent. The data is reviewed in order to assess the health of the crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Schiller, Noah H.; Simon, Frank
2013-01-01
This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor pair that was collocated over a broad frequency range. This allowed robust control to be implemented using simple, low power analog electronics. Initial testing on a thick acrylic window demonstrated the capability of the controller, but actuator performance was less satisfactory when mounted on a composite sandwich trim panel. This may have been due to the orthotropic nature of the trim panel, or due to its much higher stiffness relative to the acrylic window. Insights gained from a finite element study of the actuator-sensor-structural system are discussed.
Measured Rattle Threshold of Residential House Windows
NASA Technical Reports Server (NTRS)
Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob
2008-01-01
Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.
Citizen Sensors for SHM: Towards a Crowdsourcing Platform
Ozer, Ekin; Feng, Maria Q.; Feng, Dongming
2015-01-01
This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490
Photoacoustic resonance spectroscopy for biological tissue characterization
NASA Astrophysics Data System (ADS)
Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter
2014-06-01
By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.
Benacchio, Simon; Mamou-Mani, Adrien; Chomette, Baptiste; Finel, Victor
2016-03-01
The vibrational behavior of musical instruments is usually studied using physical modeling and simulations. Recently, active control has proven its efficiency to experimentally modify the dynamical behavior of musical instruments. This approach could also be used as an experimental tool to systematically study fine physical phenomena. This paper proposes to use modal active control as an alternative to sound simulation to study the complex case of the coupling between classical guitar strings and soundboard. A comparison between modal active control and sound simulation investigates the advantages, the drawbacks, and the limits of these two approaches.
Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Iaia, Vito; Menachekanian, Emin; Williams, Gary
2014-03-01
A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.
NASA Astrophysics Data System (ADS)
Rahmawati, P.; Prajitno, P.
2018-04-01
Vibration monitoring is a measurement instrument used to identify, predict, and prevent failures in machine instruments[6]. This is very needed in the industrial applications, cause any problem with the equipment or plant translates into economical loss and they are mostly monitored component off-line[2]. In this research, a system has been developed to detect the malfunction of the components of Shimizu PS-128BT water pump machine, such as capacitor, bearing and impeller by online measurements. The malfunction components are detected by taking vibration data using a Micro-Electro-Mechanical System(MEMS)-based accelerometer that are acquired by using Raspberry Pi microcomputer and then the data are converted into the form of Relative Power Ratio(RPR). In this form the signal acquired from different components conditions have different patterns. The collected RPR used as the base of classification process for recognizing the damage components of the water pump that are conducted by Artificial Neural Network(ANN). Finally, the damage test result will be sent via text message using GSM module that are connected to Raspberry Pi microcomputer. The results, with several measurement readings, with each reading in 10 minutes duration for each different component conditions, all cases yield 100% of accuracies while in the case of defective capacitor yields 90% of accuracy.
Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal
NASA Astrophysics Data System (ADS)
Li, Peigang; Xie, Shulin; Zhao, Xuefeng
2017-04-01
Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.
Wireless health monitoring of cracks in structures with MEMS-IDT sensors
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.
2002-07-01
The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Wireless microsensors for health monitoring of aircraft structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-01-01
The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Interpretation of body-mounted accelerometry in flying animals and estimation of biomechanical power
Spivey, R. J.; Bishop, C. M.
2013-01-01
An idealized energy fluctuation model of a bird's body undergoing horizontal flapping flight is developed, focusing on the biomechanical power discernible to a body-mounted accelerometer. Expressions for flight body power constructed from root mean square dynamic body accelerations and wingstroke frequency are derived from first principles and presented in dimensionally appropriate units. As wingstroke frequency increases, the model generally predicts a gradual transition in power from a linear to an asymptotically cubic relationship. However, the onset of this transition and the degree to which this occurs depends upon whether and how forward vibrations are exploited for temporary energy storage and retrieval. While this may vary considerably between species and individual birds, it is found that a quadrature phase arrangement is generally advantageous during level flight. Gravity-aligned vertical acceleration always enters into the calculation of body power, but, whenever forward acceleration becomes relevant, its contribution is subtractive. Several novel kinematic measures descriptive of flapping flight are postulated, offering fresh insights into the processes involved in airborne locomotion. The limitations of the model are briefly discussed, and departures from its predictions during ascending and descending flight evaluated. These findings highlight how body-mounted accelerometers can offer a valuable, insightful and non-invasive technique for investigating the flight of free-ranging birds and bats. PMID:23883951
Spivey, R J; Bishop, C M
2013-10-06
An idealized energy fluctuation model of a bird's body undergoing horizontal flapping flight is developed, focusing on the biomechanical power discernible to a body-mounted accelerometer. Expressions for flight body power constructed from root mean square dynamic body accelerations and wingstroke frequency are derived from first principles and presented in dimensionally appropriate units. As wingstroke frequency increases, the model generally predicts a gradual transition in power from a linear to an asymptotically cubic relationship. However, the onset of this transition and the degree to which this occurs depends upon whether and how forward vibrations are exploited for temporary energy storage and retrieval. While this may vary considerably between species and individual birds, it is found that a quadrature phase arrangement is generally advantageous during level flight. Gravity-aligned vertical acceleration always enters into the calculation of body power, but, whenever forward acceleration becomes relevant, its contribution is subtractive. Several novel kinematic measures descriptive of flapping flight are postulated, offering fresh insights into the processes involved in airborne locomotion. The limitations of the model are briefly discussed, and departures from its predictions during ascending and descending flight evaluated. These findings highlight how body-mounted accelerometers can offer a valuable, insightful and non-invasive technique for investigating the flight of free-ranging birds and bats.
Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.
2017-01-01
In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188
Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V
2017-05-01
In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.
Nonlinear modelling in time domain numerical analysis of stringed instrument dynamics
NASA Astrophysics Data System (ADS)
Bielski, Paweł; Kujawa, Marcin
2017-03-01
Musical instruments are very various in terms of sound quality with their timbre shaped by materials and geometry. Materials' impact is commonly treated as dominant one by musicians, while it is unclear whether it is true or not. The research proposed in the study focuses on determining influence of both these factors on sound quality based on their impact on harmonic composition. Numerical approach has been chosen to allowed independent manipulation of geometrical and material parameters as opposed to experimental study subjected to natural randomness of instrument construction. Distinctive element of this research is precise modelling of whole instrument and treating it as one big vibrating system instead of performing modal analysis on an isolated part. Finite elements model of a stringed instrument has been built and a series of nonlinear time-domain dynamic analyses were executed to obtain displacement signals and perform subsequent spectral analysis. Precision of computations seems sufficient to determine the influence of instrument's macroscopic mechanical parameters on timbre. Further research should focus on implementation of acoustic medium in attempt to include dissipation and synchronization mechanisms. Outside the musical field this kind of research could be potentially useful in noise reduction problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
A Low-Cost Data Acquisition System for Automobile Dynamics Applications
González, Alejandro; Vinolas, Jordi
2018-01-01
This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources. PMID:29382039
A Low-Cost Data Acquisition System for Automobile Dynamics Applications.
González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi
2018-01-27
This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.
Engineering evaluation of SSME dynamic data from engine tests and SSV flights
NASA Technical Reports Server (NTRS)
1986-01-01
An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.
Vibration arthrometry in the patients with failed total knee replacement.
Jiang, C C; Lee, J H; Yuan, T T
2000-02-01
This is a preliminary research on the vibration arthrometry of artificial knee joint in vivo. Analyzing the vibration signals measured from the accelerometer on patella, there are two speed protocols in knee kinematics: 1) 2 degrees/s, the signal is called "physiological patellofemoral crepitus (PPC)", and 2) 67 degrees/s, the signal is called "vibration signal in rapid knee motion". The study has collected 14 patients who had revision total knee arthroplasty due to prosthetic wear or malalignment represent the failed total knee replacement (FTKR), and 12 patients who had just undergone the primary total knee arthroplasty in the past two to six months and have currently no knee pain represent the normal total knee replacement (NTKR). FTKR is clinically divided into three categories: metal wear, polyethylene wear of the patellar component, and no wear but with prosthesis malalignment. In PPC, the value of root mean square (rms) is used as a parameter; in vibration signals in rapid knee motion, autoregressive modeling is used for adaptive segmentation and extracting the dominant pole of each signal segment to calculate the spectral power ratios in f < 100 Hz and f > 500 Hz. It was found that in the case of metal wear, the rms value of PPC signal is far greater than a knee joint with polyethylene wear and without wear, i.e., PPC signal appears only in metal wear. As for vibration signals in rapid knee motion, prominent time-domain vibration signals could be found in the FTKR patients with either polyethylene or metal wear of the patellar component. We also found that for normal knee joint, the spectral power ratio of dominant poles has nearly 80% distribution in f < 100 Hz, is between 50% and 70% for knee with polyethylene wear and below 30% for metal wear, whereas in f > 500 Hz, spectral power ratio of dominant poles has over 30% distribution in metal wear but only nonsignificant distribution in polyethylene wear, no wear, and normal knee. The results show that vibration signals in rapid knee motion can be used for effectively detecting polyethylene wear of the patellar component in the early stage, while PPC signals can only be used to detect prosthetic metal wear in the late stage.
NASA Astrophysics Data System (ADS)
Rivera, Susana
Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters on the Macrocosmic level, and that allows the formation of fundamental particles on the Microcosmic level. The strings are described by a function named Symbiosis (σ), which depends on four energetic contributions: (1) Radiation Energy (2) Plasma Energy (3) Conducted Flux Energy and (4) Mass Energy. There is an intimate relation between them, and depending on the value they have at a certain moment and at a certain time, the string dynamics and its geometry are settled. That means that symbiosis describes the strings state in any point of the geometer - energy field. σ = F [Er(σ), Ep(σ), Ef(σ), Em(σ)] (1) This work is an attempt to achieve the unification of the forces of nature, based on the existence of a four dimension Universe.
Atomic and polyatomic molecules at metal surfaces studied by synchrotron far-IR RAIRS
NASA Astrophysics Data System (ADS)
Raval, Rasmita; Roberts, Adam J.; Williams, Jamie; Nunney, Timothy S.; Surman, Mark
1997-10-01
Far-IR Reflection Absorption Infrared Spectroscopy (RAIRS) has been used to probe submonolayers of adsorbates created under clean controlled conditions on small area single crystal surfaces, using the newly commissioned Daresbury 13.3 Far-IR synchrotron beamline. Adsorbed formate species on Cu(110) were studied as an example of an adsorbate for which a large structural data-base already exists in the literature from other surface science techniques. Our high resolution Far-IR data has allowed two distinct vCu-O vibrations to be monitored for 0.25 monolayer of formate adsorbed on Cu(110) at 300 K. We rule out a lower symmetry formate complex giving rise to these vibrations and, instead, attribute the two bands to at least two chemically distinct species at the surface, a possibility that has hitherto not been included in the analyses of this system using other techniques. In addition, we also report the first RAIRS spectrum of the vCu-O stretching vibration for adsorbed atomic O on the Cu(110) surface at 300 K. The dissociative adsorption of oxygen, at room temperature, on this surface is known to induce a massive reconstruction of the surface in which `added' rows of Cu-O-Cu strings form on the surface in the [001] direction to give rise to the (1 X 2) missing row structure. The vCu-O vibration frequency is found to be invariant as a function of coverage, suggesting that the chemical nature of the Cu-O-Cu entity remains essentially unaltered during the growth of the reconstructed phase.
A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation
NASA Astrophysics Data System (ADS)
Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.
2017-03-01
Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.
Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests
Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan
2016-01-01
This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184
Evaluation of a six-DOF electrodynamic shaker system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Danny Lynn; Smallwood, David Ora
2009-03-01
The paper describes the preliminary evaluation of a 6 degree of freedom electrodynamic shaker system. The 8 by 8 inch (20.3 cm) table is driven by 12 electrodynamic shakers producing motion in all 6 rigid body modes. A small electrodynamic shaker system suitable for small component testing is described. The principal purpose of the system is to demonstrate the technology. The shaker is driven by 12 electrodynamic shakers each with a force capability of about 50 lbs (220 N). The system was developed through an informal cooperative agreement between Sandia National Laboratories, Team Corp. and Spectral Dynamics Corporation. Sandia providedmore » the laboratory space and some development funds. Team provided the mechanical system, and Spectral Dynamics provided the control system. Spectral Dynamics was chosen to provide the control system partly because of their experience in MIMO control and partly because Sandia already had part of the system in house. The shaker system was conceived and manufactured by TEAM Corp. Figure 1 shows the overall system. The vibration table, electrodynamic shakers, hydraulic pumps, and amplifiers are all housed in a single cabinet. Figure 2 is a drawing showing how the electrodynamic shakers are coupled to the table. The shakers are coupled to the table through a hydraulic spherical pad bearing providing 5 degrees of freedom and one stiff degree of freedom. The pad bearing must be preloaded with a static force as they are unable to provide any tension forces. The horizontal bearings are preloaded with steel springs. The drawing shows a spring providing the vertical preload. This was changed in the final design. The vertical preload is provided by multiple strands of an O-ring material as shown in Figure 4. Four shakers provide excitation in each of the three orthogonal axes. The specifications of the shaker are outlined in Table 1. Four shakers provide inputs in each of the three orthogonal directions. By choosing the phase relationships between the shakers all six rigid body modes (three translation, and three rotations) can be excited. The system is over determined. There are more shakers than degrees of freedom. This provided an interesting control problem. The problem was approached using the input-output transformation matrices provided in the Spectral control system. Twelve accelerometers were selected for the control accelerometers (a tri-axial accelerometer at each corner of the table (see Figure 5). Figure 6 shows the nomenclature used to identify the shakers and control accelerometers. A fifth tri-axial accelerometer was placed at the center of the table, but it was not used for control. Thus we had 12 control accelerometers and 12 shakers to control a 6-dof shaker. The 12 control channels were reduced to a 6-dof control using a simple input transformation matrix. The control was defined by a 6x6 spectral density matrix. The six outputs in the control variable coordinates were transformed to twelve physical drive signals using another simple output transformation matrix. It was assumed that the accelerometers and shakers were well matched such that the transformation matrices were independent of frequency and could be deduced from rigid body considerations. The input/output transformations are shown in Equations 1 and 2.« less
Meteorological Sensor Array (MSA)-Phase I. Volume 2 (Data Management Tool: Proof of Concept)
2014-10-01
directory of next hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ...hourly file to read *** utcString = CStr (CInt(utcString) + 1) utcString = String(2 - Len(utcString), Ŕ") & utcString
Lienhard, Karin; Vienneau, Jordyn; Nigg, Sandro; Friesenbichler, Bernd; Nigg, Benno M
2017-02-08
The purpose of this study was to compare lower limb muscle activity during whole-body vibration (WBV) exercise between a young and an older study population. Thirty young (25.9±4.3yrs) and thirty older (64.2±5.3yrs) individuals stood on a side-alternating WBV platform while surface electromyography (sEMG) was measured for the tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus lateralis (VL), vastus medialis (VM), and biceps femoris (BF). The WBV protocol included nine vibration settings consisting of three frequencies (6, 11, 16Hz) x three amplitudes (0.9, 2.5, 4.0mm), and three control trials without vibration (narrow, medium, wide stance). The vertical platform acceleration (peak values of maximal displacement from equilibrium) was quantified during each vibration exercise using an accelerometer. The outcomes of this study showed that WBV significantly increased muscle activity in both groups for most vibration conditions in the TA (averaged absolute increase: young: +3.9%, older: +18.4%), GM (young: +4.1%, older: +9.5%), VL (young: +6.3%, older: +12.6%) and VM (young: +5.4%, older: +8.0%), and for the high frequency-amplitude combinations in the SOL (young: +7.5%, older: +12.6%) and BF (young: +1.9%, older: +7.5%). The increases in sEMG activity were significantly higher in the older than the young adults for all muscles, i.e., TA (absolute difference: 13.8%, P<0.001), GM (4.6%, P=0.034), VL (7.6%, P=0.001), VM (6.7%, P=0.042), BF (6.4%, P<0.001), except for the SOL (0.3%, P=0.248). Finally, the vertical platform acceleration was a significant predictor of the averaged lower limb muscle activity in the young (r=0.917, P<0.001) and older adults (r=0.931, P<0.001). In conclusion, the older population showed greater increases in lower limb muscle activity during WBV exercise than their young counterparts, meaning that they might benefit more from WBV exercises. Additionally, training intensity can be increased by increasing the vertical acceleration load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R
2007-04-01
It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.
NASA Astrophysics Data System (ADS)
Borgioli, G.; Bulletti, A.; Calzolai, M.; Capineri, L.; Falorni, P.; Masotti, L.; Valentini, S.; Windsor, C.
2007-10-01
Acoustic methods have been recently investigated for the detection of shallow landmines. Some plastic landmines have a flexible case which can made to vibrate by an airborne excitation like a loudspeaker. The soil-mine system shows a resonant behavior which is used as a signature to discriminate from other rigid objects. The mechanical resonance can be detected at the soil surface by a remote sensing systems like a laser interferometer. An equivalent physical model of the mine-soil system has been investigated having the known physical characteristics of mine simulants. The authors designed and built a test-object with known mechanical characteristics (mass, elasticity, damping factor). The model has been characterized in laboratory and the results compared with the classic mass-spring loss oscillator described by Voigt. The vibrations at the soil surface have been measured in various positions with a micro machined accelerometer. The results of the simulations for the acceleration of the soil-mine system agree well with the experiment. The calibrated mine model is useful to investigate the variation of the resonance frequency for various buried depths and to compare the results for different soils in different environmental conditions.
Vibration characteristics of bone conducted sound in vitro.
Stenfelt, S; Håkansson, B; Tjellström, A
2000-01-01
A dry skull added with damping material was used to investigate the vibratory pattern of bone conducted sound. Three orthogonal vibration responses of the cochleae were measured, by means of miniature accelerometers, in the frequency range 0.1-10 kHz. The exciter was attached to the temporal, parietal, and frontal bones, one at the time. In the transmission response to the ipsilateral cochlea, a profound low frequency antiresonance (attenuation) was found, verified psycho-acoustically, and shown to yield a distinct lateralization effect. It was also shown that, for the ipsilateral side, the direction of excitation coincides with that of maximum response. At the contralateral cochlea, no such dominating response direction was found for frequencies above the first skull resonance. An overall higher response level was achieved, for the total energy transmission in general and specifically for the direction of excitation, at the ipsilateral cochlea when the transducer was attached to the excitation point closest to the cochlea. The transranial attenuation was found to be frequency dependent, with values from -5 to 10 dB for the energy transmission and -30 to 40 dB for measurements in a single direction, with a tendency toward higher attenuation at the higher frequencies.
Application of optimized multiscale mathematical morphology for bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Gong, Tingkai; Yuan, Yanbin; Yuan, Xiaohui; Wu, Xiaotao
2017-04-01
In order to suppress noise effectively and extract the impulsive features in the vibration signals of faulty rolling element bearings, an optimized multiscale morphology (OMM) based on conventional multiscale morphology (CMM) and iterative morphology (IM) is presented in this paper. Firstly, the operator used in the IM method must be non-idempotent; therefore, an optimized difference (ODIF) operator has been designed. Furthermore, in the iterative process the current operation is performed on the basis of the previous one. This means that if a larger scale is employed, more fault features are inhibited. Thereby, a unit scale is proposed as the structuring element (SE) scale in IM. According to the above definitions, the IM method is implemented on the results over different scales obtained by CMM. The validity of the proposed method is first evaluated by a simulated signal. Subsequently, aimed at an outer race fault two vibration signals sampled by different accelerometers are analyzed by OMM and CMM, respectively. The same is done for an inner race fault. The results show that the optimized method is effective in diagnosing the two bearing faults. Compared with the CMM method, the OMM method can extract much more fault features under strong noise background.
The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)
2001-01-01
For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.
Image-based dynamic deformation monitoring of civil engineering structures from long ranges
NASA Astrophysics Data System (ADS)
Ehrhart, Matthias; Lienhart, Werner
2015-02-01
In this paper, we report on the vibration and displacement monitoring of civil engineering structures using a state of the art image assisted total station (IATS) and passive target markings. By utilizing the telescope camera of the total station, it is possible to capture video streams in real time with 10fps and an angular resolution of approximately 2″/px. Due to the high angular resolution resulting from the 30x optical magnification of the telescope, large distances to the object to be monitored are possible. The laser distance measurement unit integrated in the total station allows to precisely set the camera's focus position and to relate the angular quantities gained from image processing to units of length. To accurately measure the vibrations and displacements of civil engineering structures, we use circular target markings rigidly attached to the object. The computation of the targets' centers is performed by a least squares adjustment of an ellipse according to the Gauß-Helmert model from which the parameters of the ellipse and their standard deviations are derived. In laboratory experiments, we show that movements can be detected with an accuracy of better than 0.2mm for single frames and distances up to 30m. For static applications, where many video frames can be averaged, accuracies of better than 0.05mm are possible. In a field test on a life-size footbridge, we compare the vibrations measured by the IATS to reference values derived from accelerometer measurements.
Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z
2015-09-01
The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.
Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.
2015-01-01
The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824
Sound Power Estimation for Beam and Plate Structures Using Polyvinylidene Fluoride Films as Sensors
Mao, Qibo; Zhong, Haibing
2017-01-01
The theory for calculation and/or measurement of sound power based on the classical velocity-based radiation mode (V-mode) approach is well established for planar structures. However, the current V-mode theory is limited in scope in that it can only be applied to conventional motion sensors (i.e., accelerometers). In this study, in order to estimate the sound power of vibrating beam and plate structure by using polyvinylidene fluoride (PVDF) films as sensors, a PVDF-based radiation mode (C-mode) approach concept is introduced to determine the sound power radiation from the output signals of PVDF films of the vibrating structure. The proposed method is a hybrid of vibration measurement and numerical calculation of C-modes. The proposed C-mode approach has the following advantages: (1) compared to conventional motion sensors, the PVDF films are lightweight, flexible, and low-cost; (2) there is no need for special measuring environments, since the proposed method does not require the measurement of sound fields; (3) In low frequency range (typically with dimensionless frequency kl < 4), the radiation efficiencies of the C-modes fall off very rapidly with increasing mode order, furthermore, the shapes of the C-modes remain almost unchanged, which means that the computation load can be significantly reduced due to the fact only the first few dominant C-modes are involved in the low frequency range. Numerical simulations and experimental investigations were carried out to verify the accuracy and efficiency of the proposed method. PMID:28509870
High frequent total station measurements for the monitoring of bridge vibrations
NASA Astrophysics Data System (ADS)
Lienhart, Werner; Ehrhart, Matthias; Grick, Magdalena
2017-03-01
Robotic total stations (RTS) are frequently used for the measurement of temperature induced bridge deformations or during load testing of bridges. In experimental setups, total stations have also been used for the measurement of dynamic bridge deformations. However, with standard configurations the measurement rate is not constant and on average an update rate of 7-10Hz can be achieved. This is not sufficient for the vibration monitoring of bridges considering their natural frequencies which are also in the same range. In this paper, we present different approaches to overcome these problems. In the first two approaches we demonstrate how the measurement rate to prisms can be increased to 20Hz to determine vertical deformations of bridges. Critical aspects like the measurement resolution of the automated target tracking and the correct sequence of steering commands are discussed. In another approach we demonstrate how vertical bridge vibrations can be measured using an image assisted total station (IATS) and corresponding processing techniques. The advantage of image-based methods is that structural features of a bridge like bolts can be used as targets. Therefore, no expensive prisms have to be mounted and access to the bridge is not required. All approaches are verified by laboratory investigations and their suitability is proven in a field experiment on a 74m long footbridge. In this field experiment the natural frequencies derived from the total station measurements are compared to the results of accelerometer measurements.
Test of the Equivalence Principle in an Einstein Elevator
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.
2005-01-01
This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.
Hyperresonance Unifying Theory and the resulting Law
NASA Astrophysics Data System (ADS)
Omerbashich, Mensur
2012-07-01
Hyperresonance Unifying Theory (HUT) is herein conceived based on theoretical and experimental geophysics, as that absolute extension of both Multiverse and String Theories, in which all universes (the Hyperverse) - of non-prescribed energies and scales - mutually orbit as well as oscillate in tune. The motivation for this is to explain oddities of "attraction at a distance" and physical unit(s) attached to the Newtonian gravitational constant G. In order to make sure HUT holds absolutely, we operate over non-temporal, unitless and quantities with derived units only. A HUT's harmonic geophysical localization (here for the Earth-Moon system; the Georesonator) is indeed achieved for mechanist and quantum scales, in form of the Moon's Equation of Levitation (of Anti-gravity). HUT holds true for our Solar system the same as its localized equation holds down to the precision of terrestrial G-experiments, regardless of the scale: to 10^-11 and 10^-39 for mechanist and quantum scales, respectively. Due to its absolute accuracy (within NIST experimental limits), the derived equation is regarded a law. HUT can indeed be demonstrated for our entire Solar system in various albeit empirical ways. In summary, HUT shows: (i) how classical gravity can be expressed in terms of scale and the speed of light; (ii) the tuning-forks principle is universal; (iii) the body's fundamental oscillation note is not a random number as previously believed; (iv) earthquakes of about M6 and stronger arise mainly due to Earth's alignments longer than three days to two celestial objects in our Solar system, whereas M7+ earthquakes occur mostly during two simultaneous such alignments; etc. HUT indicates: (v) quantum physics is objectocentric, i.e. trivial in absolute terms so it cannot be generalized beyond classical mass-bodies; (vi) geophysics is largely due to the magnification of mass resonance; etc. HUT can be extended to multiverse (10^17) and string scales (10^-67) too, providing a constraint to String Theory. HUT is the unifying theory as it demotes classical forces to states of stringdom. The String Theory's paradigm on vibrational rather than particlegenic reality has thus been confirmed.
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
NASA Technical Reports Server (NTRS)
Parsons, David; Smith, Andrew; Knight, Brent; Hunt, Ron; LaVerde, Bruce; Craigmyle, Ben
2012-01-01
Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from trials to determine how effective use of these dampers might be for equipment mounted to a curved orthogrid vehicle panel. Trends for damping are examined for variations in damper fill level, component mass, and excitation energy. A significant response reduction at the component level would suggest that comparatively small, thoughtfully placed, particle dampers might be advantageously used in vehicle design. The results of this test will be compared with baseline acoustic response tests and other follow-on testing involving a range of isolation and damping methods. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.
Space Launch System Vibration Analysis Support
NASA Technical Reports Server (NTRS)
Johnson, Katie
2016-01-01
The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short analytical projects using MATLAB were also assigned to aid in research efforts. These included integration of acceleration data for comparison to measured displacement data. Laplace and Fourier transforms were also investigated to determine viability as a method of modal decoupling. In addition to these projects, I was also able contribute work that would benefit future interns and the division as a whole. I gave a short presentation and answered questions to aid in the recruitment of subsequent interns and co-ops for the division. I also assisted in revisions and additions to Intern/Co-Op Handbook to provide incoming employees with background information on the organization they are about to work for. I further developed tutorial on Pulse software, which was used for data acquisition for both experiments and will be helpful to interns and engineers that may be unfamiliar to the software. I gained a diverse range of experience throughout my internship. I was introduced to advanced dynamics and analytical techniques. This was through new experience with both hands on experimentation and analytical post processing methods. I was exposed to the benefits of interdepartmental collaboration and developed stronger skills in time management by coordinating two different tests at once. This internship provided an excellent opportunity to see how engineering theories applied to real life scenarios, and an introduction to how NASA/JSC solves technical problems.
Cyclostationarity approach for monitoring chatter and tool wear in high speed milling
NASA Astrophysics Data System (ADS)
Lamraoui, M.; Thomas, M.; El Badaoui, M.
2014-02-01
Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.
NASA Astrophysics Data System (ADS)
Ege, Kerem; Boutillon, Xavier; Rébillat, Marc
2013-03-01
The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at ≈-40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique [K. Ege, X. Boutillon, B. David, High-resolution modal analysis, Journal of Sound and Vibration 325 (4-5) (2009) 852-869]. Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the mid-frequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard is also presented. The low-order modal shapes and the comparison between the corresponding experimental and numerical modal frequencies suggest that the boundary conditions can be considered as blocked, except at very low frequencies. The frequency-dependency of the estimated modal densities and the observation of modal shapes reveal two well-separated regimes. Below ≈1 kHz, the soundboard vibrates more or less like a homogeneous plate. Above that limit, the structural waves are confined by ribs, as already noticed by several authors, and localised in restricted areas (one or a few inter-rib spaces), presumably due to a slightly irregular spacing of the ribs across the soundboard.
Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation
NASA Astrophysics Data System (ADS)
Macdonald, J. H. G.
2016-02-01
Cables are often prone to potentially damaging large amplitude vibrations. The dynamic excitation may be from external loading or motion of the cable ends, the latter including direct excitation, normally from components of end motion transverse to the cable, and parametric excitation induced by axial components of end motion causing dynamic tension variations. Geometric nonlinearity can be important, causing stiffening behaviour and nonlinear modal coupling. Previous analyses of the vibrations, often neglecting sag, have generally dealt with direct and parametric excitation separately or have reverted to numerical solutions of the responses. Here a nonlinear cable model is adopted, applicable to taut cables such as on cable-stayed bridges, that allows for cable inclination, small sag (such that the vibration modes are similar to those of a taut string), multiple modes in both planes and end motion and/or external forcing close to any natural frequency. Based on the method of scaling and averaging it is found that, for sinusoidal inputs and positive damping, non-zero steady state responses can only occur in the modes in each plane with natural frequencies close to the excitation frequency and those with natural frequencies close to half this frequency. Analytical solutions, in the form of non-dimensional polynomial equations, are derived for the steady state vibration amplitudes in up to three modes simultaneously: the directly excited mode, the corresponding nonlinearly coupled mode in the orthogonal plane and a parametrically excited mode with half the natural frequency. The stability of the solutions is also identified. The outputs of the equations are consistent with previous results, where available. Example results from the analytical solutions are presented for a typical inclined bridge cable subject to vertical excitation of the lower end, and they are validated by numerical integration of the equations of motion and against some previous experimental results. It is shown that the modal interactions and sag (although very small) affect the responses significantly.
NASA Astrophysics Data System (ADS)
Krkošková, Katarína; Papán, Daniel; Papánová, Zuzana
2017-10-01
The technical seismicity negatively affects the environment, buildings and structures. Technical seismicity means seismic shakes caused by force impulse, random process and unnatural origin. The vibration influence on buildings is evaluated in the Eurocode 8 in Slovak Republic, however, the Slovak Technical Standard STN 73 0036 includes solution of the technical seismicity. This standard also classes bridges into the group of structures that are significant in light of the technical seismicity - the group “U”. Using the case studies analysis by FEM simulation and comparison is necessary because of brief norm evaluation of this issue. In this article, determinate dynamic parameters by experimental measuring and numerical method on two real bridges are compared. First bridge, (D201 - 00) is Scaffold Bridge on the road I/11 leading to the city of Čadca and is situated in the city of Žilina. It is eleven - span concrete road bridge. The railway is the obstacle, which this bridge spans. Second bridge (M5973 Brodno) is situated in the part of Žilina City on the road of I/11. It is concrete three - span road bridge built as box girder. The computing part includes 3D computational models of the bridges. First bridge (D201 - 00) was modelled in the software of IDA Nexis as the slab - wall model. The model outputs are natural frequencies and natural vibration modes. Second bridge (M5973 Brodno) was modelled in the software of VisualFEA. The technical seismicity corresponds with the force impulse, which was put into this model. The model outputs are vibration displacements, velocities and accelerations. The aim of the experiments was measuring of the vibration acceleration time record of bridges, and there was need to systematic placement of accelerometers. The vibration acceleration time record is important during the under - bridge train crossing, about the first bridge (D201 - 00) and the vibration acceleration time domain is important during deducing the force impulse under the bridge, about second bridge (M5973 Brodno). The analysis was done in the software of Sigview. About the first bridge (D201 - 00), the analysis output were values of power spectral density adherent to the frequencies values. These frequencies were compared with the natural frequencies values from the computational model whereby the technical seismicity influence on bridge natural frequencies was found out. About the second bridge (M5973 Brodno), the Sigview display of recorded vibration velocity time history was compared with the final vibration velocity time history from the computational model, whereby the results were incidental.
Miniaturized accelerometer made with ZnO nanowires
NASA Astrophysics Data System (ADS)
Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan
2017-04-01
Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.
Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora
2017-01-01
Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760