Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N
2004-04-01
Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.
A Vibrating Wire System For Quadrupole Fiducialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Zachary
2010-12-13
A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.« less
High-frequency ultrasonic wire bonding systems
Tsujino; Yoshihara; Sano; Ihara
2000-03-01
The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.
A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology
NASA Technical Reports Server (NTRS)
Tinker, Michael L.
1994-01-01
A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.
NASA Astrophysics Data System (ADS)
Mendrok, Krzysztof; Dworakowski, Ziemowit; Holak, Krzysztof; Kohut, Piotr
2017-05-01
Overhead transmission power lines are still one of the crucial elements of electro-energetic system. There are obvious advantages of using overhead transmission in the distribution of electricity. The amount of energy transported through a power line is determined by the distance between the wire and the ground or other objects placed beneath it (eg. trees). This distance is not fixed and depends on the overhang of the wire. This, in turn, is determined by many factors such as ambient temperature, humidity, precipitation, the value of current flowing through the wire. In order to optimize the wires electrical load, the monitoring of that overhang is required. One way to measure it is the non-contact measurement by vision system. It has the advantage, that using high-speed cameras respectively it also allows for vibration measurement and analysis of dynamic performance. That is very important while the wires are susceptible to the influence of wind, and the resulting vibrations interfere with the correct measurement of the overhang. The paper presents the results of vision measurements of the system vibrations and modal analysis carried out on their basis. The study was conducted on a specially made laboratory stand.
System transmits mechanical vibration into hazardous environment
NASA Technical Reports Server (NTRS)
Armstrong, D. G.; Gaal, A. E.
1965-01-01
Vibration transducers are tested in a hazardous environment using a single axis transmission system with an electromagnetic shaker table and vibrating wires which drive identical rocker arms, one in the test cell and the other outside. This system can be modified for a multiaxis configuration.
Apparatus for disintegrating kidney stones
NASA Technical Reports Server (NTRS)
Angulo, E. D. (Inventor)
1984-01-01
The useful life of the wire probe in an ultrasonic kidney stone disintegration instrument is enhanced and prolonged by attaching the wire of the wire probe to the tip of an ultrasonic transducer by means of a clamping arrangement. Additionally, damping material is applied to the wire probe in the form of a damper tube through which the wire probe passes in the region adjacent the transducer tip. The damper tube extends outwardly from the transducer tip a predetermined distance, terminating in a resilient soft rubber joint. Also, the damper tube is supported intermediate its length by a support member. The damper system thus acts to inhibit lateral vibrations of the wire in the region of the transducer tip while providing little or no damping to the linear vibrations imparted to the wire by the transducer.
NASA Astrophysics Data System (ADS)
Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.
2015-10-01
This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.
Autonomous diagnostics and prognostics of signal and data distribution systems
NASA Astrophysics Data System (ADS)
Blemel, Kenneth G.
2001-07-01
Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.
Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress
NASA Technical Reports Server (NTRS)
King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred
2016-01-01
NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.
Experimental study on titanium wire drawing with ultrasonic vibration.
Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao
2018-02-01
Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade
Wang, Xu; Shen, Fuwang; Wang, Shuai; ...
2017-04-06
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less
Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade
NASA Astrophysics Data System (ADS)
Wang, Xu; Shen, Fuwang; Wang, Shuai; Feng, Cunfeng; Li, Changyu; Lu, Peng; Thomas, Jim; Xu, Qinghua; Zhu, Chengguang
2017-07-01
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper, the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.
NASA Astrophysics Data System (ADS)
Melentjev, Vladimir S.; Gvozdev, Alexander S.
2018-01-01
Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.
Wireless sensing and vibration control with increased redundancy and robustness design.
Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan
2014-11-01
Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xu; Shen, Fuwang; Wang, Shuai
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less
Chemical and biological sensing using tuning forks
Tao, Nongjian; Boussaad, Salah
2012-07-10
A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, N.; Fellenz, B.; Prieto, P.
The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam testmore » facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.« less
Factors Controlling Superelastic Damping Capacity of SMAs
NASA Astrophysics Data System (ADS)
Heller, L.; Šittner, P.; Pilch, J.; Landa, M.
2009-08-01
In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.
The Modeling of Vibration Damping in SMA Wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, D R; Kloucek, P; Seidman, T I
Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memorymore » alloy wire.« less
First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka
2007-04-01
We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.
Viscosity of saturated R152a measured with a vibrating wire viscometer
NASA Astrophysics Data System (ADS)
van der Gulik, P. S.
1995-07-01
Earlier reported values of the viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) have been recalculated with an improved value for the mechanical damping of the vibrating wire viscometer. The measurements were taken along the saturation line both in the saturated liquid and in the saturated vapor every 10 K from 243 up to 393 K by means of a vibrating wire viscometer The damping of the vibration of the wire is a measure for the viscosity provided that the mechanical damping is subtracted. The latter is usually measured in vacuum. It turns out that the damping value measured in this way depends on the vacuum pressure and on the way the wire has been handled before. It appeared that the damping applied previously, measured after 6 days of pumping, is too small, resulting in values of the viscosity coefficient which are too large. The effect on the data for the saturated-liquid viscosity is small, but the new saturated-vapor viscosity data agree much better with the unsaturated-vapor data reported by Takahashi et al.
Adaptive composites with embedded NiTiCu wires
NASA Astrophysics Data System (ADS)
Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.
2001-07-01
Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.
Origin of Vibrational Instabilities in Molecular Wires with Separated Electronic States.
Foti, Giuseppe; Vázquez, Héctor
2018-06-07
Current-induced heating in molecular junctions stems from the interaction between tunneling electrons and localized molecular vibrations. If the electronic excitation of a given vibrational mode exceeds heat dissipation, a situation known as vibrational instability is established, which can seriously compromise the integrity of the junction. Using out of equilibrium first-principles calculations, we demonstrate that vibrational instabilities can take place in the general case of molecular wires with separated unoccupied electronic states. From the ab initio results, we derive a model to characterize unstable vibrational modes and construct a diagram that maps mode stability. These results generalize previous theoretical work and predict vibrational instabilities in a new regime.
Computer animation of modal and transient vibrations
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1987-01-01
An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.
A space release/deployment system actuated by shape memory wires
NASA Astrophysics Data System (ADS)
Fragnito, Marino; Vetrella and, Sergio
2002-11-01
In this paper, the design of an innovative hold down/release and deployment device actuated by shape memory wires, to be used for the first time for the S MA RT microsatellite solar wings is shown. The release and deployment mechanisms are actuated by a Shape Memory wire (Nitinol), which allows a complete symmetrical and synchronous release, in a very short time, of the four wings in pairs. The hold down kinematic mechanism is preloaded to avoid vibration nonlinearities and unwanted deployment at launch. The deployment mechanism is a simple pulley system. The stiffness of the deployed panel-hinge system needs to be dimensioned in order to meet the on-orbit requirement for attitude control. One-way roller clutches are used to keep the panel at the desired angle during the mission. An ad hoc software has been developed to simulate both the release and deployment operations, coupling the SMA wire behavior with the system mechanics.
Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco
2015-01-01
Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689
NASA Technical Reports Server (NTRS)
Gaspar, Kenneth C.
1987-01-01
New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.
NASA Technical Reports Server (NTRS)
Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.
2015-01-01
The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination issues were also examined during the isolator selection period for meeting the SAGE III-ISS instrument requirements.
Stiffness Corrections for the Vibration Frequency of a Stretched Wire
ERIC Educational Resources Information Center
Hornung, H. G.; Durie, M. J.
1977-01-01
Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)
Inelastic fingerprints of hydrogen contamination in atomic gold wire systems
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads
2007-03-01
We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductance of gold wires is only slightly reduced from the conductance quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to use the conductance itself to distinguish between various configurations. On the other hand, our calculations of the inelastic signals predict significant differences between pure and hydrogen contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A detailed characterization of gold wires with a hydrogen impurity should therefore be possible from the strain dependence of the inelastic signals in the conductance.
Random vibration (stress screening) of printed wiring assemblies
NASA Technical Reports Server (NTRS)
Bastien, Gilbert J.
1988-01-01
The results of a random vibration test screening (RVSS) study of the determination of the upper and lower vibration limits on printed wiring assemblies (PWA) are summarized. The study results are intended to serve as a guide for engineers and designers who make decisions on PWA features that need to withstand the stresses of dynamic testing and screening. The maximum allowable PWA deflection, G levels, and PSD levels are compared to the expected or actual levels to determine if deleterious effects will occur.
Practical aspects of instrumentation system installation, volume 13
NASA Technical Reports Server (NTRS)
Borek, R. W.; Pool, A. (Editor); Sanderson, K. C. (Editor)
1981-01-01
A review of factors influencing installation of aircraft flight test instrumentation is presented. Requirements, including such factors as environment, reliability, maintainability, and system safety are discussed. The assessment of the mission profile is followed by an overview of electrical and mechanical installation factors with emphasis on shock/vibration isolation systems and standardization of the electric wiring installation, two factors often overlooked by instrumentation engineers. A discussion of installation hardware reviews the performance capabilities of wiring, connectors, fuses and circuit breakers, and a guide to proper selections is provided. The discussion of the installation is primarily concerned with the electrical wire routing, shield terminations and grounding. Also inclued are some examples of installation mistakes that could affect system accuracy. System verification procedures and special considerations such as sneak circuits, pyrotechnics, aircraft antenna patterns, and lightning strikes are discussed.
Practical Applications of Cables and Ropes in the ISS Countermeasures System
NASA Technical Reports Server (NTRS)
Svetlik, Randall G.; Moore, Cherice; Williams, Antony
2017-01-01
National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.
Nanowire electron scattering spectroscopy
NASA Technical Reports Server (NTRS)
Hunt, Brian D. (Inventor); Bronikowski, Michael (Inventor); Wong, Eric W. (Inventor); von Allmen, Paul (Inventor); Oyafuso, Fabiano A. (Inventor)
2009-01-01
Methods and devices for spectroscopic identification of molecules using nanoscale wires are disclosed. According to one of the methods, nanoscale wires are provided, electrons are injected into the nanoscale wire; and inelastic electron scattering is measured via excitation of low-lying vibrational energy levels of molecules bound to the nanoscale wire.
Wolf, Steffen; Freier, Erik; Cui, Qiang; Gerwert, Klaus
2014-12-14
Proton conduction along protein-bound "water wires" is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded ("dangling") O-H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.
Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2018-06-15
At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling Smart Structure of Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping
2012-06-01
With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.
Glass antenna for RF-ion source operation
Leung, Ka Ngo; Lee, Yung-Hee Yvette; Perkins, Luke T.
2000-01-01
An antenna comprises a plurality of small diameter conductive wires disposed in a dielectric tube. The number and dimensions of the conductive wires is selected to improve the RF resistance of the antenna while also facilitating a reduction in thermal gradients that may create thermal stresses on the dielectric tube. The antenna may be mounted in a vacuum system using a low-stress antenna assembly that cushions and protects the dielectric tube from shock and mechanical vibration while also permitting convenient electrical and coolant connections to the antenna.
Development of Arduino based wireless control system
NASA Astrophysics Data System (ADS)
Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana
2015-03-01
Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.
Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis
NASA Technical Reports Server (NTRS)
Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor
2012-01-01
The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.
2007-06-01
Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.
A design procedure for active control of beam vibrations
NASA Technical Reports Server (NTRS)
Dickerson, S. L.; Jarocki, G.
1983-01-01
The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.
Functionally Graded Shape Memory Alloy Composites Optimized for Passive Vibration Control
2006-11-20
Nitinol , it is anticipated that the wire can only experience an incomplete hysteresis. 2.1. SMA wires in sleeves continuously bonded to the plate...Gilheany, J. 1995. Control of the natural frequencies of nitinol -reinforced composite beams, Journal of Sound and Vibrations, Vol. 185, 171-185. 3 Ro...J., and Baz, A., 1995. Nitinol -reinforced plates: Part III, Dynamic characteristics, Composites Engineering, Vol. 5, 91-106. 4 Epps, J and Chandra
Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid {}4{He}
NASA Astrophysics Data System (ADS)
Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.
2017-06-01
To investigate the formation of quantum turbulence in superfluid {}4{He}, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ ^{-1.2} and ɛ ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.
Code of Federal Regulations, 2012 CFR
2012-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...
Modelling of a Bi-axial Vibration Energy Harvester
2013-05-01
magnetic field distribution and thus the output power of the vibration energy harvester , the modelling of the response of the ball- bearing to host......nonlinear and bi-axial vibration energy harvesting device. The device utilises a wire-coil electromagnetic (EM) transducer within a nonlinear oscillator
Picosecond ultrasonics study of the vibrational modes of a nanostructure
NASA Astrophysics Data System (ADS)
Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.
2002-03-01
We report experiments in which a subpicosecond pump light pulse is used to excite vibrations in a nanostructure consisting of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the measured data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to deduce the vibration patterns of six of the normal modes.
Transducer Joint for Kidney-Stone Ultrasonics
NASA Technical Reports Server (NTRS)
Angulo, E. D.
1983-01-01
Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
Space Shuttle Columbia Aging Wiring Failure Analysis
NASA Technical Reports Server (NTRS)
McDaniels, Steven J.
2005-01-01
A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.
Cutting Head for Ultrasonic Lithotripsy
NASA Technical Reports Server (NTRS)
Angulo, E. D.; Goodfriend, R.
1987-01-01
Kidney stones lodged in urinary tract disintegrated with increased safety and efficiency by cutting head attached to end of vibrated wire probe. Aligns probe with stone and enables probe to vibrate long enough to disintegrate stone. Design of cutting head reduces risk of metal-fatigue-induced breakage of probe tip leaving metal fragments in urinary tract. Teeth of cutting head both seat and fragment kidney stone, while extension of collar into catheter lessens mechanical strain in probe wire, increasing probe life and lessening danger of in situ probe breakage.
NASA Astrophysics Data System (ADS)
Kanciruk, Adam
2012-12-01
Underground exploitation of natural resources results in disturbance of the original equilibrium in the strata and leads to the emergence of the so-called subsidence troughs on the ground surface (Florkowska, 2010). Due to ground distortion, buildings located in these areas suffer damages and deformations, including angular tilts. An instrument for measuring constructions' angles of slope is known as an inclinometer. The prototypical vibrating wire inclinometer discussed in the present paper has three wires (each of them cooperating with one electromagnet) on which a weight - attached to an arm - is suspended. Thanks to this, it comes of use in a range of procedures, such as measuring object inclines, or determining the angle between the plane of the incline and the assumed reference direction. As any other vibrating wire transducer, an inclinometer cooperates with a proper electronic device which makes it possible to measure the vibration period for each wire separately. The device is also used for the inclinometer's calibration. Additionally, the paper provides an example of an inclinometer's use in measuring the angular tilt of a historical church tower located in the area affected by underground mining operations connected with exploitation of hard coal.
Shape memory alloy wires turn composites into smart structures: II. Manufacturing and properties
NASA Astrophysics Data System (ADS)
Michaud, Veronique J.; Schrooten, Jan; Parlinska, Magdelena; Gotthardt, Rolf; Bidaux, Jacques-Eric
2002-07-01
The manufacturing route and resulting properties of adaptive composites are presented in the second part of this European project report. Manufacturing was performed using a specially designed frame to pre-strain the SMA wires, embed them into Kevlar-epoxy prepregs, and maintain them during the curing process in an autoclave. Composite compounds were then tested for strain response, recovery stress response in a clamped-clamped configuration, as well as vibrational response. Through the understanding of the transformational behavior of constrained SMA wires, interesting and unique functional properties of SMA composites could be measured, explained and modeled. Large recovery stresses and as a consequence, a change in vibrational response in a clamped- clamped condition, or a reversible shape change in a free standing condition, could be generated by the SMA composites in a controllable way. These properties were dependent on composite design aspects and exhibited a reproducible and stable behavior, provided that the properties of the matrix, of the wires and the processing route were carefully optimized. In conclusion, the achievements of this effort in areas such as thermomechanics, transformational and vibrational behavior and durability of SMA based composites provide a first step towards a reliable materials design, and potentially an industrial application.
Measurement of the geometric parameters of power contact wire based on binocular stereovision
NASA Astrophysics Data System (ADS)
Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei
2010-10-01
In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.
Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.
2018-02-01
Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.
A study of the vibrational modes of a nanostructure with picosecond ultrasonics
NASA Astrophysics Data System (ADS)
Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.
2002-05-01
We describe experiments in which a sub-picosecond pump light pulse is used to excite vibrations in a nanostructure. The sample consists of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to identify the different normal modes and deduce their vibration patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Steffen; Gerwert, Klaus, E-mail: gerwert@bph.rub.de; Department of Biophysics, Chinese Academy of Sciences, Max-Planck-Gesellschaft Partner Institute for Computational Biology, 320 Yue Yang Road, 200031 Shanghai
Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations.more » A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.« less
Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow
NASA Astrophysics Data System (ADS)
Mitra, D.; Dhir, V. K.; Catton, I.
2009-10-01
Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.
Design and initial validation of a wireless control system based on WSN
NASA Astrophysics Data System (ADS)
Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping
2013-04-01
At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.
Towards a wire-mediated coupling of trapped ions
NASA Astrophysics Data System (ADS)
Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut
2008-03-01
Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.
Features extraction algorithm about typical railway perimeter intrusion event
NASA Astrophysics Data System (ADS)
Zhou, Jieyun; Wang, Chaodong; Liu, Lihai
2017-10-01
Research purposes: Optical fiber vibration sensing system has been widely used in the oil, gas, frontier defence, prison and power industries. But, there are few reports about the application in railway defence. That is because the surrounding environment is complicated and there are many challenges to be overcomed in the optical fiber vibration sensing system application. For example, how to eliminate the effects of vibration caused by train, the natural environments such as wind and rain and how to identify and classify the intrusion events. In order to solve these problems, the feature signals of these events should be extracted firstly. Research conclusions: (1) In optical fiber vibration sensing system based on Sagnac interferometer, the peak-to-peak value, peak-to-average ratio, standard deviation, zero-crossing rate, short-term energy and kurtosis may serve as feature signals. (2) The feature signals of resting state, climbing concrete fence, breaking barbed wire, knocking concrete fence and rainstorm have been extracted, which shows significant difference among each other. (3) The research conclusions can be used in the identification and classification of intrusion events.
Shape memory alloy wires turn composites into smart structures: I. Material requirements
NASA Astrophysics Data System (ADS)
Schrooten, Jan; Michaud, Veronique J.; Zheng, Yanjun; Balta-Neumann, J. Antonio; Manson, Jan-Anders E.
2002-07-01
Composites containing thin Shape Memory Alloy (SMA) wires show great potential as materials able to adapt their shape, thermal behavior or vibrational properties to external stimuli. The functional properties of SMA-composites are directly related to the constraining effect of the matrix on the reversible martensitic transformation of the embedded pre-strained SMA wires. The present work reports results of a concerted European effort towards a fundamental understanding of the manufacturing and design of SMA composites. This first part investigates the transformational behavior of constrained SMA wires and its translation into functional properties of SMA composites. Thermodynamic and thermomechanical experiments were performed on SMA wires. A model was developed to simulate the thermomechanical behavior of the wires. From the screening of potential wires it was concluded that NiTiCu, as well as R-phase NiTi appeared as best candidates. Requirements for the host composite materials were surveyed. A Kevlar-epoxy system was chosen. Finally, the quality of the SMA wire-resin interface was assessed by two different techniques. These indicated that a thin oxide layer seems to provide the best interfacial strength. A temperature window in which SMA composites can be safely used was also defined. The manufacturing and properties of the SMA composites will be discussed in Part II.
NASA Astrophysics Data System (ADS)
Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.
2012-07-01
Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.
NASA Technical Reports Server (NTRS)
Fisch, G. Z.; Borden, T. J.
1982-01-01
Monitoring circuit responds to changes in resistance as little as 0.1 ohm. Has been used to detect defective wire-wrap connections during thermal and vibration tests. Defect is indicated to operator by light-emitting diode and by increase in count on a two-digit display.
NASA Astrophysics Data System (ADS)
Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.
2018-01-01
The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.
NASA Astrophysics Data System (ADS)
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
NASA Astrophysics Data System (ADS)
Sun, Hong; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi
2007-01-01
Washcoat deposited on metallic wire mesh monoliths was prepared using γ-alumina powders by electrophoretic deposition under a relatively low electric voltage. The microstructure, phase structure and adhesion of washcoat were investigated by SEM, XRD, ultrasonic vibration and thermal shock. The results showed that the loading and adhesion of washcoat were affected obviously by the properties of suspension, such as the zeta potential and the amount of adding binders. A small quantity of aluminum isopropoxide could promote the cohesive affinity of washcoat in thermal shock. The adhesion of washcoat in ultrasonic vibration could be reinforced by increasing calcined temperature and adding a certain aluminum particles. It was also found that the washcoat immersed metal nitrate has excellent vibration-resistant ability.
NASA Astrophysics Data System (ADS)
Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi
2013-04-01
Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring systems shows that wireless techniques have several advantages. They are generally smaller and due to the wireless condition the selection of the sensor location is not restricted like in the standard wired systems. Additionally, they are simple to install and consume much less power. Importantly, they are also more competitive in terms of pricing versus traditional wired solutions. Nevertheless, the adoption of this new technology has not been straightforward due to the harsh conditions where sensors are usually deployed. The later delayed and complicated the installation of some sensors in the Rebaixader site but allowed us to improve the monitoring solution. Finally, some very recent experiences on the wireless sensor network installed in a shallow landslide in the Pre-Pyrenees confirmed that this technique is a perfect solution not only for monitoring, but also for warning systems.
Oversampling in virtual visual sensors as a means to recover higher modes of vibration
NASA Astrophysics Data System (ADS)
Shariati, Ali; Schumacher, Thomas
2015-03-01
Vibration-based structural health monitoring (SHM) techniques require modal information from the monitored structure in order to estimate the location and severity of damage. Natural frequencies also provide useful information to calibrate finite element models. There are several types of physical sensors that can measure the response over a range of frequencies. For most of those sensors however, accessibility, limitation of measurement points, wiring, and high system cost represent major challenges. Recent optical sensing approaches offer advantages such as easy access to visible areas, distributed sensing capabilities, and comparatively inexpensive data recording while having no wiring issues. In this research we propose a novel methodology to measure natural frequencies of structures using digital video cameras based on virtual visual sensors (VVS). In our initial study where we worked with commercially available inexpensive digital video cameras we found that for multiple degrees of freedom systems it is difficult to detect all of the natural frequencies simultaneously due to low quantization resolution. In this study we show how oversampling enabled by the use of high-end high-frame-rate video cameras enable recovering all of the three natural frequencies from a three story lab-scale structure.
Hydrogen in Mono-Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu
2004-03-01
Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.
Experimental study on vertical static stiffnesses of polycal wire rope isolators
NASA Astrophysics Data System (ADS)
Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau
2017-07-01
Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.
Electrical and thermal conductance quantization in nanostructures
NASA Astrophysics Data System (ADS)
Nawrocki, Waldemar
2008-10-01
In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.
Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.
1995-01-01
The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.
Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III
1995-05-16
The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.
New insights into ETS-10 and titanate quantum wire: a comprehensive characterization.
Jeong, Nak Cheon; Lee, Young Ju; Park, Jung-Hyun; Lim, Hyunjin; Shin, Chae-Ho; Cheong, Hyeonsik; Yoon, Kyung Byung
2009-09-16
The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.
Fiber optics for propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1985-01-01
In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.
Fiberoptics for propulsion control system
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1984-01-01
In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.; Cantwell, W. J.
2003-08-01
This paper reports the use of a plastic fibre sensor for detecting impact damage in carbon fibre epoxy cantilever beams by monitoring their damping response under free vibration loading conditions. The composite beams were impacted at impact energies up to 8 J. The residual strengths and stiffnesses of the damaged laminates were measured in order to relate reductions in their mechanical properties to changes in their damping characteristics. Here, optical fibre sensors were surface bonded to carbon fibre composite beams which were subjected to free vibration tests to monitor their dynamic response. In the second part of this study, Ni-Ti shape memory alloy (SMA) wires were employed to control and modify the damping response of a composite beam. The SMA wires were initially trained to obtain the desired shape when activated. Here, the trained SMA wires were heated locally using a nickel/chromium wire that was wrapped around the trained region of the SMA. By using this method to activate the SMA wire (as opposed to direct electrical heating), it is possible to obtain localized actuation without heating the entire length of the wire. This procedure minimizes any damage to the host material that may result from local heat transfer between the SMA wire and the composite structure. In addition, the reduction in power requirements to achieve SMA activation permits the use of small-size power packs which can in turn lead to a potential weight reduction in weight-critical applications. The findings of this study demonstrate that a trained SMA offers a superior damping capability to that exhibited by an 'as-supplied' flat-annealed wire.
Pneumatic Valve Operated by Multiplex Pneumatic Transmission
NASA Astrophysics Data System (ADS)
Nishioka, Yasutaka; Suzumori, Koichi; Kanda, Takefumi; Wakimoto, Shuichi
A pneumatic system has several advantages, which are cheapness, lightweight, and reliability to human and environment. These advantages are adapted to some research areas, such as industrial lines, medical and nursing cares, and rehabilitation tools. However, the pneumatic system needs several devices; compressor, air tube, and control valve. This research aim to downsize pneumatic system. In this paper, a new method of multiplex pneumatic transmission for multi-pneumatic servo system is proposed. The valve for this system consists of two vibrators supported by springs, which was designed with simple and cheap structure. The working principle of the valve is vibrators resonance from multiplex pneumatic transmission and it is possible to work as ON/OFF valves without electric wire. Dynamic simulation was used to confirm the working principle of the resonance driving system. A prototype device confirming the principle was designed and developed based on the simulation. The experiments show that this new control system works very well to control two separated valves through single pneumatic tube.
NASA Technical Reports Server (NTRS)
Ventrice, M. B.; Purdy, K. R.
1974-01-01
The response of a constant-temperature hot-wire anemometer to sinusoidal and distorted sinusoidal acoustic oscillations is examined. The output of the anemometer is dependent upon the Reynolds number of the flow over the wire. The response is a measure of the interaction between the anemometer output and the acoustic pressure in the neighborhood of the wire. It is an open-loop prediction of the characteristics of actual closed-loop operation of a system. If the open-loop response is large enough, unstable closed-loop operation is predicted. The study was motivated by a need to investigate the stability limits of liquid-propellant rockets when perturbed by pressure oscillations. The sinusoidal and distorted sinusoidal acoustic oscillations used for this study are the same as those characteristic of unstable rocket combustion. Qualitatively, the results are similar--the response of the system to pure sinusoidal acoustic vibration of the fluid surrounding the wire is small, even when the magnitude of the acoustic pressure is quite large; but the response can be increased by as much as an order of magnitude with respect to the sinusoidal case by the addition of distortion. The amplitude and phase of the distortion component, relative to the fundamental component, are the dominant factors in the increase in the response.
Vibrations of beams and rods carrying a moving mass
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.; Hu, Z. D.
2016-05-01
We study the vibration of slender one-dimensional elastic structures (beams, cables, wires, rods) under the effect of a moving mass or load. We first consider the classical small- deflection (Euler-Bernoulli) beam case, where we look at tip vibrations of a cantilever as a model for a barreled launch system. Then we develop a theory for large deformations based on Cosserat rod theory. We illustrate the effect of moving loads on large-deformation structures with a few cable and arch problems. Large deformations are found to have a resonance detuning effect on the cable. For the arch we find different failure modes depending on its depth: a shallow arch fails by in-plane collapse, while a deep arch fails by sideways flopping. In both cases the speed of the traversing load is found to have a stabilising effect on the structure, with failure suppressed entirely at sufficiently high speed.
Initial investigations into the damping characteristics of wire rope vibration isolators
NASA Technical Reports Server (NTRS)
Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.
1987-01-01
Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.
X-wing fly-by-wire vehicle management system
NASA Technical Reports Server (NTRS)
Fischer, Jr., William C. (Inventor)
1990-01-01
A complete, computer based, vehicle management system (VMS) for X-Wing aircraft using digital fly-by-wire technology controlling many subsystems and providing functions beyond the classical aircraft flight control system. The vehicle management system receives input signals from a multiplicity of sensors and provides commands to a large number of actuators controlling many subsystems. The VMS includes--segregating flight critical and mission critical factors and providing a greater level of back-up or redundancy for the former; centralizing the computation of functions utilized by several subsystems (e.g. air data, rotor speed, etc.); integrating the control of the flight control functions, the compressor control, the rotor conversion control, vibration alleviation by higher harmonic control, engine power anticipation and self-test, all in the same flight control computer (FCC) hardware units. The VMS uses equivalent redundancy techniques to attain quadruple equivalency levels; includes alternate modes of operation and recovery means to back-up any functions which fail; and uses back-up control software for software redundancy.
NASA Astrophysics Data System (ADS)
Hou, X. Y.; Koh, C. G.; Kuang, K. S. C.; Lee, W. H.
2017-07-01
This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations.
NASA Astrophysics Data System (ADS)
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Electronics Reliability Fracture Mechanics, Volume 2. Fracture Mechanics
1992-05-01
alloy or strength level. Aluminum alloy 2024 - T351 was selected as being representative of the aluminum wire, and the fatigue ...to bracket the bond wire fatigue tests. 3-41 Also shown for comparison are two curves, which are the crack growth rates for 2024 aluminum alloy (Ref...is very similar to that for 2024 aluminum alloy . 3.2.6 Discussion of Loop Vibration Fatigue Testing Results This experimental and
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2013-01-01
Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
Observations of earth eigen vibrations possibly excited by low frequency gravity waves
NASA Technical Reports Server (NTRS)
Tuman, V. S.
1971-01-01
A cryogenic gravity meter made of two parts, a magnetic suspension unit and a detection module, was used to monitor earth eigen vibrations. The magnetic field and field gradient are generated by energizing a set of superconducting coils made of niobium-zirconium alloy wire. The detection module is a double Josephson junction magnetometer. The output is printed on a chart recorder and later digitized using a computer; a Fourier transformation is performed on the accumulated data. The measurements of eigen vibrations are summarized in tabular and graphical representations.
Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects
NASA Astrophysics Data System (ADS)
Peter, Geoffrey John M.
With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect and the solder interconnect. The numerical model simulated using ANSYS program was validated with the numerical/experimental results of other published researchers. In addition the results were cross-checked by IDEAS program. A prototype non-working wire interconnect is proposed to emphasize practical application. The numerical analysis, in this dissertation is based on a U.S. Patent granted to G. Peter(42).
Preload Loss in a Spacecraft Fastener via Vibration-Induced Unwinding
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Howard, S. Adam; Hess, Daniel P.
2018-01-01
Sound engineering practice requires that fasteners and bolted joints maintain preload in service. NASA recently concluded a series of vibration tests of a multicomponent structure intended to simulate an upper stage section of a launch vehicle. The stacked components were joined through six circumferentially placed bolted cup-cone-style pyrotechnic joint mechanisms designed to share spacecraft structural loads and then enable separation during ascent. Over the course of the vibration test campaign, all six bolted cup-cone mechanisms experienced some degree of preload loss with two mechanisms losing half of their original bolt preload. A subsequent forensic anomaly investigation concluded that vibration-induced unwinding of the preload nut-and-bolt assemblies occurred despite the use of safety wire and high levels of thread friction. A series of experiments were done to better understand how large, heavily preloaded fasteners could unwind. Additionally, thread friction torque was measured and the fastener locking capability of safety wire was evaluated. The friction coefficient between the clamped cup-cone components was characterized and finally a highly instrumented mechanism-level vibration test was done to reproduce the unwinding phenomenon to better understand the mechanism's behavior. The conclusion drawn was that vibration and structural forces led to relative motion (sliding) of the clamped components, resulting in self-loosening and unwinding effects on the nut-and-bolt assembly. To counter this phenomenon, more effective fastener locking methodologies were recommended and a follow-on effort was initiated to quantify the relationship between preload, component motion, and resulting unwinding forces. It is hoped that elucidation of these effects can be used to design more effective fastener locking features.
NASA Technical Reports Server (NTRS)
1992-01-01
An ingestible mini-thermometer capable of measuring and relaying internal body temperatures is marketed by Human Technologies, Inc. The CorTemp system, developed by Goddard Space Flight Center and Applied Physics Lab, incorporates space technologies, among them telemetry and microminiaturized circuit, sensor and battery technologies. The capsule is ingested and continually monitors temperature with a vibrating quartz crystal sensor, which telemeters signals to a recorder, where data is displayed and stored. The system is very accurate, and because it does not require wires, allows patients to be monitored in everyday situations. The industrial variant (CSC-100) has wide utility in commercial applications.
Exploitation of insect vibrational signals reveals a new method of pest management.
Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Lanzo, Francesco; Virant-Doberlet, Meta; Mazzoni, Valerio
2012-01-01
Food production is considered to be the main source of human impact on the environment and the concerns about detrimental effects of pesticides on biodiversity and human health are likely to lead to an increasingly restricted use of chemicals in agriculture. Since the first successful field trial, pheromone based mating disruption enabled sustainable insect control, which resulted in reduced levels of pesticide use. Organic farming is one of the fastest growing segments of agriculture and with the continuously growing public concern about use of pesticides, the main remaining challenge in increasing the safety of the global food production is to identify appropriate alternative mating disruption approaches for the numerous insect pests that do not rely on chemical communication. In the present study, we show for the first time that effective mating disruption based on substrate-borne vibrational signals can be achieved in the field. When disruptive vibrational signals were applied to grapevine plants through a supporting wire, mating frequency of the leafhopper pest Scaphoideus titanus dropped to 9 % in semi-field conditions and to 4 % in a mature vineyard. The underlying mechanism of this environmentally friendly pest-control tactic is a masking of the vibrational signals used in mate recognition and location. Because vibrational communication is widespread in insects, mating disruption using substrate vibrations can transform many open field and greenhouse based farming systems.
Demonstration of subsidence monitoring system
NASA Astrophysics Data System (ADS)
Conroy, P. J.; Gyarmaty, J. H.; Pearson, M. L.
1981-06-01
Data on coal mine subsidence were studied as a basis for the development of subsidence control technology. Installation, monitoring, and evaluation of three subsidence monitoring instrument systems were examined: structure performance, performance of supported systems, and performance of caving systems. Objectives of the instrument program were: (1) to select, test, assemble, install, monitor, and maintain all instrumentation required for implementing the three subsidence monitoring systems; and (2) to evaluate performance of each instrument individually and as part of the appropriate monitoring system or systems. The use of an automatic level and a rod extensometer for measuring structure performance, and the automatic level, steel tape extensometer, FPBX, FPBI, USBM borehole deformation gauge, and vibrating wire stressmeters for measuring the performance of caving systems are recommended.
Transurethral ultrasonic ureterolithotripsy using a solid-wire probe.
Chaussy, C; Fuchs, G; Kahn, R; Hunter, P; Goodfriend, R
1987-05-01
A multicenter study evaluates a new technique for transurethral ultrasonic ureterolithotripsy utilizing a solid-wire probe. The transverse vibrations of the probe cause greater stone disintegration. A small ureteroscope is used and a basket is not required. There was a 96.6 per cent success rate in 118 cases. This technique has significantly improved ultrasonic lithotripsy. It has proved to be useful for upper ureteral stones not amenable to extracorporeal shock-wave lithotripsy and lower ureteral stones including "steinstrasse."
Broadband waveguide vibration sensor for turbine bearing health monitoring
NASA Astrophysics Data System (ADS)
Larsen, C.; Branch, N.
Mechanical waveguides have been demonstrated for monitoring turbine engine main shaft bearings. These devices are rugged metallic wires which can be installed inside the engine near the bearing and routed outside to the case where the electronics can be serviced. To date, the waveguide vibration sensor has been demonstrated on two engines with thrust bearings with seeded defects: a T63 and a Rolls Royce 501-KB5+ (industrial version of the T56).
2012-01-01
A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of accuracy and automation. PMID:22947281
State of the Art for Design and Construction of Sand Compaction Piles
1987-11-01
Walz, Headquarters, US Army Corps of Engineers (HQUSACE), was REMR Technical Monitor. The REMR Overview Committee, consisted of Mr. John R. Nikel ... Wire Vibrator Hopper Casing Pipe Air Line Power Line Sand Skip Bucket Front End Loader Figure 2. Typical equipment used to construct a sand...8217~~~~-- Rubber Packing Wire Inlet for air to close valve and press sand down ..,...__ Air lnl~ot: Figure 5. Special valve used to seal the casing when
Structural health monitoring using wireless sensor networks
NASA Astrophysics Data System (ADS)
Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha
2017-11-01
Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.
Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor
2014-03-25
Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B
Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor
2014-01-01
Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872
Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura
2015-12-17
The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.
Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.
Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John
2010-01-01
Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.
1981-09-01
III I’ CANOWN" AA HNE Figure 3.3-4 Rzxsqle. Block Diagrami 24 PI LOT AIRBORNE IGROUND AGC AMPLIFIER AGC AMPLIFIER BASE • FM BASEBAND LINKE SQUARE I OO...in that T 0- •,~ ao •, _4 U- - & - @ Figure 3.3-6 Point to Point Inter- Connect Diagram. 25 the wires are merged, or joined, into no @ Lot ".U~ AFT...result in a " bottoning -out" of the isolators during high amplitude vibration. For a properly selected rubber mount, the wearing should be conservative
Light guide technology: using light to enhance safety
NASA Astrophysics Data System (ADS)
Lerner, William S.
2009-05-01
When used to detect extreme temperatures in harsh environments, warning devices have been placed at a distance from the "danger zone" for several reasons. The inability to mix electricity with flammable, caustic, liquid or volatile substances, the limited heat tolerances exhibited by most light sources, and the susceptibility of light sources to damage from vibration, have made the placement of a warning light directly within these harsh environments impossible. This paper describes a system that utilizes a beam of light to provide just such a warning. This system can be used with hard-wired or wireless sensors, side-light illumination, image projection and image transfer. The entire system may be self-contained and portable.
Hydrologic data for a study of pre-Illinoian glacial till in Linn County, Iowa, water year 1990
Bowman, Phillip R.
1991-01-01
Ten unvented, vibrating-wire, pressure transducers with internal thermistors were buried in two boreholes at upgradient and downgradient locations to record hydraulic pressure arid water temperature at selected depths.
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.
2017-10-01
Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Kaewunruen, Sakdirat; Baniotopoulos, Charalampos; Papaelias, Mayorkinos
2017-10-01
Nowadays, the electric train becomes one of the efficient railway systems that are lighter, cleaner, quieter, cheaper and faster than a conventional train. Overhead line equipment (OHLE), which supplies electric power to the trains, is designed on the principle of overhead wires placed over the railway track. The OHLE is supported by mast structure which located at the lineside along the track. Normally, mast structure is a steel column or truss structure which supports the overhead wire carrying the power. Due to the running train and severe periodic force, such as an earthquake, in surrounding area may cause damage to the OHLE structure especially mast structure which leads to the failure of the electrical system. The mast structure needs to be discussed in order to resist the random forces. Due to the vibration effect, the natural frequencies of the structure are necessary. This is because when the external applied force occurs within a range of frequency of the structure, resonance effect can be expected which lead to the large oscillations and deflections. The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure, including self-weight. The modal analysis is used in order to calculate the mode shapes and natural frequencies of the mast structure during free vibration. A mast structure with varying rotational soil stiffness is used to observe the influence of soil-structure action. It is common to use finite element analysis to perform a modal analysis. This paper presents the fundamental mode shapes, natural frequencies and crossing phenomena of three-dimensional mast structure considering soil-structure interaction. The sensitivity of mode shapes to the variation of soil-structure interaction is discussed. The outcome of this study will improve the understanding of the fundamental dynamic behaviour of the mast structure which supports the OHLE. Moreover, this study will be a recommendation for the structural engineer to associate with the behaviour of mast structure during vibration.
NASA Astrophysics Data System (ADS)
Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.
2008-12-01
The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this research direction in developing wireless systems for the monitoring of civil infrastructures.
Design and performance of a shape memory alloy-reinforced composite aerodynamic profile
NASA Astrophysics Data System (ADS)
Simpson, J. C.; Boller, C.
2008-04-01
Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires.
Ultrasonic friction power during Al wire wedge-wedge bonding
NASA Astrophysics Data System (ADS)
Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.
2009-07-01
Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.
Electronics reliability fracture mechanics. Volume 2: Fracture mechanics
NASA Astrophysics Data System (ADS)
Kallis, J.; Duncan, L.; Buechler, D.; Backes, P.; Sandkulla, D.
1992-05-01
This is the second of two volumes. The other volume (WL-TR-92-3015) is 'Causes of Failures of Shop Replaceable Units and Hybrid Microcircuits.' The objective of the Electronics Reliability Fracture Mechanics (ERFM) program was to develop and demonstrate a life prediction technique for electronic assemblies, when subjected to environmental stresses of vibration and thermal cycling, based upon the mechanical properties of the materials and packaging configurations which make up an electronic system. The application of fracture mechanics to microscale phenomena in electronic assemblies was a pioneering research effort. The small scale made the experiments very difficult; for example, the 1-mil-diameter bond wires in microelectronic devices are 1/3 the diameter of a human hair. A number of issues had to be resolved to determine whether a fracture mechanics modelling approach is correct for the selected failures; specifically, the following two issues had to be resolved: What fraction of the lifetime is spent in crack initiation? Are macro fracture mechanics techniques, used in large structures such as bridges, applicable to the tiny structures in electronic equipment? The following structural failure mechanisms were selected for modelling: bondwire fracture from mechanical cycling; bondwire fracture from thermal (power) cycling; plated through hole (PTH) fracture from thermal cycling. The bondwire fracture test specimens were A1-1 percent Si wires, representative of wires used in the parts in the modules selected for detailed investigation in this program (see Vol. 1 of this report); 1-mil-diameter wires were tested in this program. The PTH test specimens were sections of 14-layer printed wiring boards of the type used.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Connolly, Walter
1986-01-01
A relatively simple opto-electronic setup is described that utilizes a cadmium sulphide (CdS) photoconductive cell to detect resonance of a stretched vibrating string or wire. The display may be either an oscilloscope or a frequency counter. Also describes an inexpensive socket for flanged-base light bulbs. (JN)
Quartz tuning-fork oscillations in He II and drag coefficient
NASA Astrophysics Data System (ADS)
Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.
2011-07-01
The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.
2005-01-01
This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.
Multifilament Superconducting Wire Based on NbTi Alloy in a Combined Copper/Copper-Nickel Matrix
NASA Astrophysics Data System (ADS)
Vedernikov, G. P.; Shikov, A. K.; Potanina, L. V.; Gubkin, I. N.; Scherbakova, O. V.; Salunin, N. I.; Korpusov, V. U.; Novikov, S. I.; Novikov, M. S.
2004-06-01
Model fine filament superconducting 0.65 mm wire based on NbTi alloy, intended for operating in fields having sweep rate from 1 up to 4 T/s, has been developed and manufactured by Bochvar Institute (VNIINM). The wire was fabricated by a single stacking method. Each filament was surrounded by a matrix of commercial MN-5 alloy (Cu-5wt.%Ni). The effects of heat treatment regimes, and twist pitches within the range of 3.5 - 8 mm on Jc of the strand were investigated at fields of 2-8 T. The critical current density is more than 2700 A/mm2 at 5 T, 4.2 K. The magnetization of wire has been measured by a vibrating magnetometer at field amplitude up to ± 3 T. Hysteresis losses and effective diameter were calculated. Total and coupling losses have been determined by Fitz method on strand magnetization at fields, varying in trapezoidal mode. It was shown that the wire of this type is of potential application for the use in the magnets of the GSI-type accelerator to be constructed in Germany.
Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.
Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel
2009-09-22
Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.
NASA Astrophysics Data System (ADS)
Gvozdev, Alexander S.; Melentjev, Vladimir S.
2018-01-01
When you create a modern gas turbine engines urgent task is to improve the reliability by preventing fatigue damages of rotor blades. Such damage is largely determined by the level of vibration stresses. In this paper, using the finite element method and transient analysis of propose a method calculating the damping characteristics of the plates of the pressed wire material “MR” around the root attachment of the compressor blades of a gas turbine engine. Where taken into account contact interaction between the blades and the impeller disk.
Wireless monitoring of structural components of wind turbines including tower and foundations
NASA Astrophysics Data System (ADS)
Wondra, B.; Botz, M.; Grosse, C. U.
2016-09-01
Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.
Geometric rectification for nanoscale vibrational energy harvesting
NASA Astrophysics Data System (ADS)
Bustos-Marún, Raúl A.
2018-02-01
In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages. The most important one is that it avoids the use of classical rectification mechanisms as it is based on what we call geometric rectification. We show that this geometric rectification results from applying appropriate but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an analytically solvable example consisting of a wire suspended over permanent charges where we find the condition for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how quantum effects can be used to boost the performance of the proposed device.
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
Development of a non-explosive release actuator using shape memory alloy wire.
Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju
2013-01-01
We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.
Dry and wet arc track propagation resistance testing
NASA Technical Reports Server (NTRS)
Beach, Rex
1995-01-01
The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
NASA Astrophysics Data System (ADS)
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Fabricating Composite-Material Structures Containing SMA Ribbons
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.
2003-01-01
An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.
Code of Federal Regulations, 2013 CFR
2013-01-01
... is placed snugly in holes drilled in the rim of the bath, so that the guide wire is 5/8-inch from the... black. Procedure 4. (a) Place the tester on a solid table free of vibration, in a location free of...
Rugged microelectronic module package supports circuitry on heat sink
NASA Technical Reports Server (NTRS)
Johnson, A. L.
1966-01-01
Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.
Ogi, Hirotsugu; Nagai, Hironao; Naga, Hironao; Fukunishi, Yuji; Hirao, Masahiko; Nishiyama, Masayoshi
2009-10-01
We develop a highly sensitive quartz crystal microbalance (QCM) biosensor with a fundamental resonance frequency of 170 MHz. A naked AT-cut quartz plate of 9.7 microm thick is set in a sensor cell. Its shear vibration is excited by the line wire, and the vibration signals are detected by the other line wire, achieving the noncontacting measurement of the resonance frequency. The mass sensitivity of the 170 MHz QCM biosensor is 15 pg/(cm2 Hz), which is better than that of a conventional 5 MHz QCM by 3 orders of magnitude. Its high sensitivity is confirmed by detecting human immunoglobulin G (hIgG) via Staphylococcus protein A immobilized nonspecifically on both surfaces of the quartz plate. The detection limit is 0.5 pM. Limitation of the high-frequency QCM measurement is then theoretically discussed with a continuum mechanics model for a plate with point masses connected by elastic springs. The result indicates that a QCM measurement will break down at frequencies one-order-of-magnitude higher than the local resonance frequency at specific binding cites.
Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects
NASA Astrophysics Data System (ADS)
Olsen, Martin; Gradin, Per; Lindefelt, Ulf; Olin, Håkan
2010-02-01
Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an impact on the spring “constant” which oscillates slightly with the bending of the wire. In this way we obtain an amplitude-dependent resonance frequency of the oscillations that should be detectable.
Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes
NASA Astrophysics Data System (ADS)
Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun
2017-03-01
This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.
Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.
Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang
2012-07-11
From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.
Shape memory alloy-actuated bistable composites for morphing structures
NASA Astrophysics Data System (ADS)
Chillara, Venkata Siva C.; Dapino, Marcelo J.
2018-03-01
Laminated composites with orthogonally-applied mechanical prestress have been shown to exhibit two stable shapes where each shape is influenced by only one prestrained lamina. The application of mechanical prestress is associated with an irreversible non-zero stress state; when combined with smart materials with controllable stress-states, this results in multifunctionality in morphing composites. This study presents an experimental characterization of the shape transition or snap-through in mechanically-prestressed bistable laminates. Measurements, conducted using tensile testing and 3D motion capture, show that snap-through in these laminates is a multi-stage phenomenon. An active bistable morphing composite is demonstrated using NiTi shape memory wire actuators in push-pull configuration; activation of one wire resets the second wire as the composite morphs. The set of shape memory actuators not only actuate the composite in both directions, but also act as dampers that enable vibration-free shape transition.
Thermally Insulating, Kinematic Tensioned-Fiber Suspension
NASA Technical Reports Server (NTRS)
Voellmer, George M.
2004-01-01
A salt pill and some parts of a thermally insulating, kinematic suspension system that holds the salt pill rigidly in an adiabatic-demagnetization refrigerator (ADR) is presented. "Salt pill" in this context denotes a unit comprising a cylindrical container, a matrix of gold wires in the container, and a cylinder of ferric ammonium alum (a paramagnetic salt) that has been deposited on the wires. The structural members used in this system for both thermal insulation and positioning are aromatic polyamide fibers (Kevlar(R) or equivalent) under tension. This suspension system is designed to satisfy several special requirements to ensure the proper operation of the ADR. These requirements are to (1) maintain the salt pill at a specified position within the cylindrical bore of an electromagnet; (2) prevent vibrations, which would cause dissipation of heat in the salt pill; and (3) minimize the conduction of heat from the electromagnet bore and other neighboring objects to the salt pill; all while (4) protecting the salt pill (which is fragile) against all tensile and bending loads other than those attributable to its own weight. In addition, the system is required to consist of two subsystems -- one for the top end and one for the bottom end of the salt pill -- that can be assembled and tensioned separately from each other and from the salt pill, then later attached to the salt pill.
Butezloff, Mariana Maloste; Zamarioli, Ariane; Leoni, Graziela Bianchi; Sousa-Neto, Manoel Damião; Volpon, Jose Batista
2015-11-01
To investigate the effect of vibration therapy on the bone callus of fractured femurs and the bone quality of intact femurs in ovariectomized rats. Fifty-six rats aged seven weeks were divided into four groups: control with femoral fracture (CON, n=14), ovariectomized with femoral fracture (OVX, n=14), control with femoral fracture plus vibration therapy (CON+VT, n=14), and ovariectomized with femoral fracture plus vibration therapy (OVX+VT, n=14). Three months after ovariectomy or sham surgery, a complete fracture was produced at the femoral mid-diaphysis and stabilized with a 1-mm-diameter intramedullary Kirschner wire. X-rays confirmed the fracture alignment and fixation. Three days later, the VT groups underwent vibration therapy (1 mm, 60 Hz for 20 minutes, three times per week for 14 or 28 days). The bone and callus quality were assessed by densitometry, three-dimensional microstructure, and mechanical test. Ovariectomized rats exhibited a substantial loss of bone mass and severe impairment in bone microarchitecture, both in the non-fractured femur and the bone callus. Whole-body vibration therapy exerted an important role in ameliorating the bone and fracture callus parameters in the osteoporotic bone. Vibration therapy improved bone quality and the quality of the fracture bone callus in ovariectomized rats.
A study on a wheel-based stair-climbing robot with a hopping mechanism
NASA Astrophysics Data System (ADS)
Kikuchi, Koki; Sakaguchi, Keisuke; Sudo, Takayuki; Bushida, Naoki; Chiba, Yasuhiro; Asai, Yuji
2008-08-01
In this study, we propose a simple hopping mechanism using the vibration of a two-degree-of-freedom system for a wheel-based stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in the springs and quickly travels using wheels mounted in its lower body. The trajectories of the bodies during hopping change in accordance with the design parameters, such as the reduced mass of the two bodies, the mass ratio between the upper and lower bodies, the spring constant, the control parameters such as the initial contraction of the spring and the wire tension. This property allows the robot to quickly and economically climb up and down stairs, leap over obstacles, and landing softly without complex control. In this paper, the characteristics of hopping motion for the design and control parameters are clarified by both numerical simulations and experiments. Furthermore, using the robot design based on the results the abilities to hop up and down a step, leap over a cable, and land softly are demonstrated.
NASA Astrophysics Data System (ADS)
Ogiwara, Norio; Hikichi, Yusuke; Yoshinari, Yoji
The back pressure of Turbo-Molecular Pumps (TMPs) is constantly monitored using Pirani gauges at J-PARC (Japan Proton Accelerator Complex) RCS (3-GeV Rapid Cycling Synchrotron) where they are used not only in rough pumping but also evacuations during beam operations. The gauge head needs to be very resistant to vibration and abrupt air inlet etc. in minimizing exposure to radiation during maintenance and hence a 50 μm in diameter W wire was adopted as the filament. This type of Pirani gauge has worked well in monitoring the back pressure of the TMP but it has become difficult to measure the low pressure of less than several Pa with the gauge, which may have been due to changes in the emissivity of the W surface. An attempt was therefore made to develop a gauge head made of Pt wire in allowing pressures as low as 0.1 Pa to be measured. Platinum is one of the best possible materials to use because it is very stable against oxidization. However, ordinary Pt gauge heads are rather weak when it comes to vibrations and abrupt air inlet due to its low tensile strength. In order to improve its toughness the filament was composed of twelve 100 μm in diameter Pt wires that were 65 mm long, resulting in it being capable of enduring a force of 25 N. All the wires were welded in series on metal poles in two separate glass plates, with the poles being electrically insulated. This resulted in the filament, 78 cm long and about 10 Ω at room temperature, being containable in a 5 cm in diameter and 10 cm long cylindrical envelope. The output from the gauge head was then examined as a function of pressure under constant current as the plan was for it to be controlled using the constant current method. Confirmation then took place that the pressures of 0.1 Pa up to 103 Pa were measurable with the gauge using current control in such way that the set value increased with pressure increases in three stages.
Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures
NASA Astrophysics Data System (ADS)
Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto
2011-02-01
We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.
NASA Astrophysics Data System (ADS)
Brownjohn, James Mark William; Bocian, Mateusz; Hester, David; Quattrone, Antonino; Hudson, William; Moore, Daniel; Goh, Sushma; Lim, Meng Sun
2016-12-01
With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service. This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses. The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.
Dust-Tolerant Intelligent Electrical Connection System
NASA Technical Reports Server (NTRS)
Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro
2012-01-01
Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.
Wosar, Marc A; Marcellin-Little, Denis J; Roe, Simon C
2002-01-01
To evaluate the effects of bolt torque, wire size, and component reuse on the ability to maintain wire tension in 3 external skeletal fixation systems. Biomechanical study. Yield strength in tension of 1.0-, 1.2-, 1.5-, and 1.6-mm-diameter wires, and yield strength in torque of Hofmann Small Bone Fixation (SBF) cannulated and slotted bolts and IMEX regular and miniature bolts were determined on a testing machine. The minimum bolt tightening torque needed to prevent wire slippage at clinically recommended wire tensions was determined. Components were tested 10 times, and loads at slippage were recorded. The IMEX system required a mean of 8 Nm of bolt tightening torque to maintain 900 N (1.6-mm wires). The SBF system required a mean of 3 Nm bolt torque to maintain 300 N (1.0-mm wires) and 5 Nm to maintain 600 N (1.2-mm wires). The SBF cannulated bolt required 9 Nm of torque to maintain 900 N (1.5-mm wires). The SBF slotted bolts could only maintain 800 N before yield. The IMEX miniature system required a mean bolt torque of 1.1 Nm to maintain 300 N. The cannulated and slotted bolts from both manufacturers failed to maintain 70% of initial wire tension after 7 and 4 uses, respectively. The IMEX systems and the SBF system using 1.0- and 1.2-mm wires could maintain clinically recommended wire tension safely. Only the IMEX system could maintain clinically recommended wire tension safely using 1.5- or 1.6-mm wires. The SBF system using 1.0- and 1.2-mm wires and the IMEX system using all wire sizes can maintain clinically relevant wire tension. The SBF system using 1.5-mm wires could not. Cannulated and slotted bolts should not be used more than 6 and 3 times, respectively. Nuts should not be reused. Copyright 2002 by The American College of Veterinary Surgeons
Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems
NASA Technical Reports Server (NTRS)
Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)
2000-01-01
We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.
Isolation Mounting for Charge-Coupled Devices
NASA Technical Reports Server (NTRS)
Goss, W. C.; Salomon, P. M.
1985-01-01
CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.
NASA Technical Reports Server (NTRS)
Mc Crae, A. W., Jr.
1967-01-01
Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.
NASA Technical Reports Server (NTRS)
Yost, V. H.
1997-01-01
During a walkdown of the Space Transportation System (STS) orbiter for the 82nd Space Shuttle flight (STS-82), technicians found several safety cables for bolts with missing or loose ferrules. Typically, two or three bolts are secured with a cable which passes through one of the holes in the head of each bolt and a ferrule is crimped on each end of the cable to prevent it from coming out of the holes. The purpose of the cable is to prevent bolts from rotating should they become untightened. Other bolts are secured with either a locking cable or wire which is covered with RTV and foam. The RTV and foam would have to be removed to inspect for missing or loose ferrules. To determine whether this was necessary, vibration and torque test fixtures and tests were made to determine whether or not bolts with missing or loose ferrules would unloosen. These tests showed they would not, and the RTV and foam was not removed.
Vibration influence on control of single motor unit activity.
Malouin, F; Simard, T
1978-03-01
Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.
Electromagnetic energy harvesting from a dual-mass pendulum oscillator
NASA Astrophysics Data System (ADS)
Wang, Hongyan; Tang, Jiong
2016-04-01
This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.
NASA Astrophysics Data System (ADS)
Rudić, Svemir; Xie, Hong-bin; Gerber, R. Benny; Simons, John P.
2012-08-01
'Bridging' protons provide a common structural motif in biological assemblies such as proton wires and proton-bound dimers. Here we present a 'proof-of-principle' computational and vibrational spectroscopic investigation of an 'intra-molecular proton-bound dimer,' O-methyl α-D-galactopyranoside (αMeGal-H+), generated in the gas phase through photo-ionisation of its complex with phenol in a molecular beam. Its vibrational spectrum corresponds well with a classical molecular dynamics simulation conducted 'on-the-fly' and also with the lowest-energy structures predicted by DFT and ab initio calculations. They reveal proton-bound structures that bridge neighbouring pairs of oxygen atoms, preferentially O6 and O4, linked together within the carbohydrate scaffold. Motivated by the possibility of an entry into the microscopic mechanism of its acid (or enzyme)-catalysed hydrolysis, we also report the corresponding predictions for its singly hydrated complex.
A review of wiring system safety in space power systems
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1993-01-01
Wiring system failures have resulted from arc propagation in the wiring harnesses of current aerospace vehicles. These failures occur when the insulation becomes conductive upon the initiation of an arc. In some cases, the conductive path of the carbon arc track displays a high enough resistance such that the current is limited, and therefore may be difficult to detect using conventional circuit protection. Often, such wiring failures are not simply the result of insulation failure, but are due to a combination of wiring system factors. Inadequate circuit protection, unforgiving system designs, and careless maintenance procedures can contribute to a wiring system failure. This paper approaches the problem with respect to the overall wiring system, in order to determine what steps can be taken to improve the reliability, maintainability, and safety of space power systems. Power system technologies, system designs, and maintenance procedures which have led to past wiring system failures will be discussed. New technologies, design processes, and management techniques which may lead to improved wiring system safety will be introduced.
New virtual sonar and wireless sensor system concepts
NASA Astrophysics Data System (ADS)
Houston, B. H.; Bucaro, J. A.; Romano, A. J.
2004-05-01
Recently, exciting new sensor array concepts have been proposed which, if realized, could revolutionize how we approach surface mounted acoustic sensor systems for underwater vehicles. Two such schemes are so-called ``virtual sonar'' which is formulated around Helmholtz integral processing and ``wireless'' systems which transfer sensor information through radiated RF signals. The ``virtual sonar'' concept provides an interesting framework through which to combat the dilatory effects of the structure on surface mounted sensor systems including structure-borne vibration and variations in structure-backing impedance. The ``wireless'' concept would eliminate the necessity of a complex wiring or fiber-optic external network while minimizing vehicle penetrations. Such systems, however, would require a number of advances in sensor and RF waveguide technologies. In this presentation, we will discuss those sensor and sensor-related developments which are desired or required in order to make practical such new sensor system concepts, and we will present several underwater applications from the perspective of exploiting these new sonar concepts. [Work supported by ONR.
Interaction between jet flow and motion of two consecutive membranes in a pipe
NASA Astrophysics Data System (ADS)
Boudin, Olivier; Gutmark, Ephraim
1999-11-01
Pressure oscillations induced by combustion in a rocket motor generate coherent turbulence, which excites the structure of the rocket. In particular, it leads to the vibration of inhibitors, which endangers the mechanical integrity of the rocket. To model the phenomenon, the following facility has been set up: a blower followed by a settling chamber from where the flow exits into a cylindrical pipe; at the middle a membrane is inserted with a centered hole; another membrane is installed at the end of the pipe. The main purposes are to find how the shape of the membrane hole affects the nature of the outlet flow and how two consecutive membranes interact. In addition to experimental measurements, numerical simulations of the membrane influence on the flow have been performed. Unsteady and steady CFD models have been used to analyze the influence of the hole shape. A hot wire system and a laser gave experimental data that allow us to explain phenomena observed with flow visualizations. An amplification of the amplitude of the vibrations from the first to the second membrane was observed principally through visualizations. It also appears that the vibration mode of the membranes is different from one to another for the same excitation frequency. The study of oscillation amplitude performed with the laser has showed that the membrane, which vibrates less, is the one with a circular hole. It has also detected a difference in amplitude between the long and the small edges of the rectangular hole membrane. Moreover unsteady simulations run with Fluent have described the influence of hole shape on vortex time evolution.
Design of advanced ultrasonic transducers for welding devices.
Parrini, L
2001-11-01
A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.
Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang
2015-12-01
This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.
Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete
NASA Astrophysics Data System (ADS)
Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren
2018-03-01
Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.
Performance of SMA-reinforced composites in an aerodynamic profile
NASA Astrophysics Data System (ADS)
Simpson, John; Boller, Christian
2002-07-01
Within the European collaborative applied fundamental research project ADAPT, fundamentals of SMA-reinforced composites were evaluated and the specific manufacturing techniques for these composites developed and realised. The involved partners are listed at the end. To demonstrate applicability of these composites a realistically scaled aerodynamic profile of around 0.5m span by 0.5m root chord was designed, manufactured and assembled. The curved skins were manufactured as SMA composites with two layers of SMA-wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and activated and excited by a shaker at its tip which allowed to test the dynamic performance of the profile under different external loading conditions with various internal actuation conditions through the SMA wires. The paper includes some background of the design and manufacturing of the aerodynamic profile and will discuss some of the results determined recently on the test rig. A view with regard to future wind tunnel testing will be given as well.
Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation
NASA Technical Reports Server (NTRS)
Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.
2000-01-01
At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL was increased. Detailed experimental results will be presented.
Electron Transport In Nanowires - An Engineer'S View
NASA Astrophysics Data System (ADS)
Nawrocki, W.
In the paper technological problems connected to electron transport in mesoscopic- and nanostructures are considered. The electrical conductance of nanowires formed by metallic contacts in an experimental setup proposed by Costa-Kramer et al. The investigation has been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G o = 2e /h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowirese are also discussed in the paper.
Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck
2011-01-01
Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
Recent Sikorsky R and D progress
NASA Technical Reports Server (NTRS)
1988-01-01
The recent activities and progress in four specific areas of Sikorsky's research and development program are summarized. Since the beginning of the S-76 design in 1974, Sikorsky has been aggressively developing the technology for using composite materials in helicopter design. Four specific topics are covered: advanced cockpit/controller efforts, fly-by-wire controls on RSRA/X-Wing, vibration control via higher harmonic control, and main rotor aerodynamic improvements.
Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System
NASA Astrophysics Data System (ADS)
Macías, R.; García, M. A.; Ramos, J.; Bragós, R.; Fernández, M.
2013-04-01
Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.
Inelastic transport theory from first principles: Methodology and application to nanoscale devices
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka
2007-05-01
We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.
Photovoltaic system with improved AC connections and method of making same
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony
2018-02-13
An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.
Composite embedded fiber optic data links in Standard Electronic Modules
NASA Astrophysics Data System (ADS)
Ehlers, S. L.; Jones, K. J.; Morgan, R. E.; Hixson, Jay
1990-12-01
The goal of this project is to fabricate a chassis/circuit card demonstration entirely 'wired' with embedded and interconnected optical fibers. Graphite/epoxy Standard Electronic Module E (SEM-E) configured panels have been successfully fabricated. Fiber-embedded SEM-E configured panels have been subjected to simultaneous signal transmission and vibration testing. Packaging constraints will require tapping composite-embedded optical fibers at right angles to the direction of optical transmission.
Multicenter comparative trial of the V-scope system for therapeutic ERCP.
Joyce, A M; Ahmad, N A; Beilstein, M C; Kochman, M L; Long, W B; Baron, T; Sherman, S; Fogel, E; Lehman, G A; McHenry, L; Watkins, J; Ginsberg, G G
2006-07-01
A new duodenoscope (the V-scope), with a modified elevator used in combination with a dedicated short guide wire, constitutes the V-system. This system is intended to allow fixation of the guide wire at the elevator lever, thereby enhancing the speed and reliability of accessory exchange over a guide wire during ERCP. The aim of this study was to evaluate the extent to which the V-system provides improved efficiency in comparison with conventional duodenoscope and guide wire combinations. This was an industry-sponsored multicenter randomized trial. Patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) procedures in which treatment was anticipated were randomly assigned to the V-system or to a conventional duodenoscope and accessories used routinely in each center. The parameters recorded included the total case time, fluoroscopy time, catheter/guide wire exchange time, guide wire repositioning, loss of guide wire access, and success or failure of guide wire fixation when using the V-system. Fifty patients were included, 22 in the conventional group and 28 in the V-system group. A total of 135 exchanges were carried out. The patients had up to six exchanges. The median exchange time was 19.4 s with the V-system and 31.7 s with the conventional systems ( P < 0.001). Guide wire repositioning was required less often in the V-system group ( P = 0.0005). The V-system effectively locked the guide wire in 63 of 71 exchanges (89 %). Loss of guide wire access occurred in two patients in the conventional group and four in the V-system group, attributable to failure to lock the guide wire early during the experience (no significant differences). The V-system can effectively secure the guide wire during accessory exchange in ERCP and reduces the time required to exchange accessories. This may enhance overall efficiency during ERCP.
30 CFR 75.705-11 - Use of grounded messenger wires; ungrounded systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of grounded messenger wires; ungrounded....705-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires used to suspend the cables of such systems...
30 CFR 75.705-11 - Use of grounded messenger wires; ungrounded systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of grounded messenger wires; ungrounded....705-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires used to suspend the cables of such systems...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, H.S.; Lamaka, S.V.; Taryba, M.
2011-01-01
This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less
49 CFR 393.28 - Wiring systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...
49 CFR 393.28 - Wiring systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...
49 CFR 393.28 - Wiring systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...
49 CFR 393.28 - Wiring systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...
Vibration Monitoring of Power Distribution Poles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark Scott; Gail Heath; John Svoboda
2006-04-01
Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterizationmore » of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.« less
Habib, Muddasar; Miles, Nicholas J; Hall, Philip
2013-03-01
The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products. Copyright © 2012 Elsevier Ltd. All rights reserved.
30 CFR 77.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pilot check wires. 77.902-2 Section 77.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Approved ground check systems not employing pilot check wires. Ground check systems not employing pilot check wires shall be approved by the Secretary only after it has been determined that the system...
30 CFR 77.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pilot check wires. 77.902-2 Section 77.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Approved ground check systems not employing pilot check wires. Ground check systems not employing pilot check wires shall be approved by the Secretary only after it has been determined that the system...
30 CFR 77.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pilot check wires. 77.902-2 Section 77.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Approved ground check systems not employing pilot check wires. Ground check systems not employing pilot check wires shall be approved by the Secretary only after it has been determined that the system...
30 CFR 77.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pilot check wires. 77.902-2 Section 77.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Approved ground check systems not employing pilot check wires. Ground check systems not employing pilot check wires shall be approved by the Secretary only after it has been determined that the system...
30 CFR 77.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pilot check wires. 77.902-2 Section 77.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Approved ground check systems not employing pilot check wires. Ground check systems not employing pilot check wires shall be approved by the Secretary only after it has been determined that the system...
NASA Astrophysics Data System (ADS)
Leung, Chung Ming; Wang, Feifei; Wang, Ya
2016-06-01
A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.
Investigation of residual stresses in shape memory alloy (SMA) composites
NASA Astrophysics Data System (ADS)
Berman, Justin Bradley
Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...
30 CFR 77.704-11 - Use of grounded messenger wires; ungrounded systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of grounded messenger wires; ungrounded... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires...
30 CFR 77.704-11 - Use of grounded messenger wires; ungrounded systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of grounded messenger wires; ungrounded... AREAS OF UNDERGROUND COAL MINES Grounding § 77.704-11 Use of grounded messenger wires; ungrounded systems. Solely for purposes of grounding ungrounded high-voltage power systems, grounded messenger wires...
NASA wiring for space applications program test results
NASA Astrophysics Data System (ADS)
Stavnes, Mark; Hammoud, Ahmad
1995-11-01
The electrical power wiring tests results from the NASA Wiring for Space Applications program are presented. The goal of the program was to develop a base for the building of a lightweight, arc track-resistant electrical wiring system for aerospace applications. This new wiring system would be applied to such structures as pressurized modules, trans-atmospheric vehicles, LEO/GEO environments, and lunar and Martian environments. Technological developments from this program include the fabrication of new insulating materials, the production of new wiring constructions, an improved system design, and an advanced circuit protection design.
NASA Technical Reports Server (NTRS)
1972-01-01
A cost study comparing flat conductor cable (FCC) with small-gage wire (SGW) and conventional round conductor cable (RCC) is presented. This study was based on a vehicle wiring system consisting of 110,000 ft of conventional RCC equally divided between AWG sizes 20,22, and 24 using MIL-W-81044-type wire and MIL-C-26500 circular connectors. Basic cost data were developed on a similar-sized commercial jet airplane wiring system on a previous company R&D program in which advanced wiring techniques were carried through equivalent installations on an airplane mockup; and on data developed on typical average bundles during this program. Various cost elements included were engineering labor, operations (manufacturing) labor, material costs, and cost impact on payload. Engineering labor includes design, wiring system integration, wiring diagrams and cable assembly drawings, wire installations, and other related supporting functions such as the electronic data processing for the wiring. Operations labor includes mockup, tooling and production planning, fabrication, assembly, installation, and quality control cost impact on payload is the conversion of wiring system weight variations through use of different wiring concepts to program payload benefits in terms of dollars.
30 CFR 77.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wires; approval by the Secretary. 77.803-2 Section 77.803-2 Mineral Resources MINE SAFETY AND HEALTH... check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires shall be approved by the Secretary only if it is determined that the system...
30 CFR 77.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wires; approval by the Secretary. 77.803-2 Section 77.803-2 Mineral Resources MINE SAFETY AND HEALTH... check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires shall be approved by the Secretary only if it is determined that the system...
30 CFR 77.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wires; approval by the Secretary. 77.803-2 Section 77.803-2 Mineral Resources MINE SAFETY AND HEALTH... check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires shall be approved by the Secretary only if it is determined that the system...
30 CFR 77.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wires; approval by the Secretary. 77.803-2 Section 77.803-2 Mineral Resources MINE SAFETY AND HEALTH... check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires shall be approved by the Secretary only if it is determined that the system...
30 CFR 77.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wires; approval by the Secretary. 77.803-2 Section 77.803-2 Mineral Resources MINE SAFETY AND HEALTH... check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires shall be approved by the Secretary only if it is determined that the system...
An Obstacle Alerting System for Agricultural Application
NASA Technical Reports Server (NTRS)
DeMaio, Joe
2003-01-01
Wire strikes are a significant cause of helicopter accidents. The aircraft most at risk are aerial applicators. The present study examines the effectiveness of a wire alert delivered by way of the lightbar, a GPS-based guidance system for aerial application. The alert lead-time needed to avoid an invisible wire is compared with that to avoid a visible wire. A flight simulator was configured to simulate an agricultural application helicopter. Two pilots flew simulated spray runs in fields with visible wires, invisible wires, and no wires. The wire alert was effective in reducing wire strikes. A lead-time of 3.5 sec was required for the alert to be effective. The lead- time required was the same whether the pilot could see the wire or not.
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Signal wires on pole line and aerial cable. 236.71..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on...
A Design Procedure for Minimizing Propeller-Induced Vibration in Hull Structural Elements.
1979-09-01
Propeller," 12th International Towing Tank Conference, Rome, 1969. 46. Van Manen , J. D., "The Effect of Cavitation on the Interaction Be- tween Propeller...The wake, when determined in absence of the propeller, is called the nominal wake field. Van Oossanen [8) points out that it is becoming...wire anemometer and the laser-Doppler anomometer. These are discussed briefly in a paper by van Gent and van Oossanen [11. 4. Estimate Longitudinal
Ellis, William L.; Kibler, J.D.
1983-01-01
Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.
30 CFR 75.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved ground check systems not employing pilot check wires. 75.902-2 Section 75.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... employing pilot check wires. Ground check systems not employing pilot check wires will be approved only if...
30 CFR 75.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved ground check systems not employing pilot check wires. 75.902-2 Section 75.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... employing pilot check wires. Ground check systems not employing pilot check wires will be approved only if...
Pre-wired systems prove their worth.
2012-03-01
The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.
SpaceWire Data Handling Demonstration System
NASA Astrophysics Data System (ADS)
Mills, S.; Parkes, S. M.; O'Gribin, N.
2007-08-01
The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.
Adjustable Bracket For Entry Of Welding Wire
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Gutow, David A.
1993-01-01
Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.
30 CFR 75.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pilot check wires. 75.902-2 Section 75.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... employing pilot check wires. Ground check systems not employing pilot check wires will be approved only if... ground continuity is broken. ...
30 CFR 75.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pilot check wires. 75.902-2 Section 75.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... employing pilot check wires. Ground check systems not employing pilot check wires will be approved only if... ground continuity is broken. ...
30 CFR 75.902-2 - Approved ground check systems not employing pilot check wires.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pilot check wires. 75.902-2 Section 75.902-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... employing pilot check wires. Ground check systems not employing pilot check wires will be approved only if... ground continuity is broken. ...
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2014-01-01
During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.
30 CFR 75.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wires; approval by the Secretary. 75.803-2 Section 75.803-2 Mineral Resources MINE SAFETY AND HEALTH... Underground High-Voltage Distribution § 75.803-2 Ground check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires will be approved only if it...
30 CFR 75.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wires; approval by the Secretary. 75.803-2 Section 75.803-2 Mineral Resources MINE SAFETY AND HEALTH... Underground High-Voltage Distribution § 75.803-2 Ground check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires will be approved only if it...
30 CFR 75.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wires; approval by the Secretary. 75.803-2 Section 75.803-2 Mineral Resources MINE SAFETY AND HEALTH... Underground High-Voltage Distribution § 75.803-2 Ground check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires will be approved only if it...
30 CFR 75.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wires; approval by the Secretary. 75.803-2 Section 75.803-2 Mineral Resources MINE SAFETY AND HEALTH... Underground High-Voltage Distribution § 75.803-2 Ground check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires will be approved only if it...
30 CFR 75.803-2 - Ground check systems not employing pilot check wires; approval by the Secretary.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wires; approval by the Secretary. 75.803-2 Section 75.803-2 Mineral Resources MINE SAFETY AND HEALTH... Underground High-Voltage Distribution § 75.803-2 Ground check systems not employing pilot check wires; approval by the Secretary. Ground check systems not employing pilot check wires will be approved only if it...
Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo
2014-05-01
To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (P<.05). This phenomenon offers clinicians the possibility to manipulate the wire's load during alignment.
NASA Astrophysics Data System (ADS)
Koopman, D. A.; Paul, C. R.
1984-08-01
Electrical devices (computers, radar systems, communication radios, etc.) are interconnected by wires on most present systems. Electromagnetic fields produced by the excitation of these wires will cause unintentional coupling of signals onto nearby wires. This undesired electromagnetic coupling is termed crosstalk. It is important to be able to determine whether these crosstalk signals will cause the devices at the ends of the wires to malfunction. Wires are often grouped together in cable bundles or harnesses. The close proximity of wires in these bundles enhances the possibility that the crosstalk levels will be sufficiently large to cause malfunctions. The ability to predict crosstalk levels and the means to control crosstalk when it causes a problem are important to optimum system design. It interference of this type is allowed to surface during final system tests, a costly and time consuming retrofit of the wiring or the addition of filters and other interference control measures may be required.
Shin, Dong Ho; Kim, Dong Wook; Lim, Hyung Gyu; Jung, Eui Sung; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin Ho
2014-01-01
Round window placement of a 3-coil transducer offers a new approach for coupling an implantable hearing aid to the inner ear. The transducer exhibits high performance at low-frequencies. One remarkable feature of the 3-coil transducer is that it minimizes leakage flux. Thus, the transducer, which consists of two permanent magnets and three coils, can enhance vibrational displacement. In human temporal bones, stapes vibration was observed by laser Doppler vibrometer in response to round window stimulation using the 3-coil transducer. Coupling between the 3-coil transducer and the round window was connected by a wire-rod. The stimulation created stapes velocity when the round window stimulated. Performance evaluation was conducted by measuring stapes velocity. To verify the performance of the 3-coil transducer, stapes velocity for round window and tympanic membrane stimulation were compared, respectively. Stapes velocity by round window stimulation using the 3-coil transducer was approximately 14 dB higher than that achieved by tympanic membrane stimulation. The study shows that 3-coil transducer is suitable for implantable hearing aids.
Concepts and effects of damping in isolators
NASA Technical Reports Server (NTRS)
Kerley, J.
1984-01-01
A series of innovative designs and inventions which led to the solution of many aerospace vibration and shock problems through damping techniques is presented. The design of damped airborne structures has presented a need for such creative innovation. The primary concern was to discover what concepts were necessary for good structural damping. Once these concepts are determined and converted into basic principles, the design of hardware follows. The following hardware and techniques were developed in support of aerospace program requirements: shipping containers, alignment cables for precision mechanisms, isolation of small components such as relays and flight instruments, isolation for heavy flight equipment, coupling devices, universal joints, use of wire mesh to replace cable, isolation of 16-dB, 5000 lb horn, and compound damping devices to get better isolation from shock and vibration in a high steady environment.
Microgravity Disturbance Predictions in the Combustion Integrated Rack
NASA Astrophysics Data System (ADS)
Just, M.; Grodsinsky, Carlos M.
2002-01-01
This paper will focus on the approach used to characterize microgravity disturbances in the Combustion Integrated Rack (CIR), currently scheduled for launch to the International Space Station (ISS) in 2005. Microgravity experiments contained within the CIR are extremely sensitive to vibratory and transient disturbances originating on-board and off-board the rack. Therefore, several techniques are implemented to isolate the critical science locations from external vibration. A combined testing and analysis approach is utilized to predict the resulting microgravity levels at the critical science location. The major topics to be addressed are: 1) CIR Vibration Isolation Approaches, 2) Disturbance Sources and Characterization, 3) Microgravity Predictive Modeling, 4) Science Microgravity Requirements, 6) Microgravity Control, and 7) On-Orbit Disturbance Measurement. The CIR is using the Passive Rack Isolation System (PaRIS) to isolate the rack from offboard rack disturbances. By utilizing this system, CIR is connected to the U.S. Lab module structure by either 13 or 14 umbilical lines and 8 spring / damper isolators. Some on-board CIR disturbers are locally isolated by grommets or wire ropes. CIR's environmental and science on board support equipment such as air circulation fans, pumps, water flow, air flow, solenoid valves, and computer hard drives cause disturbances within the rack. These disturbers along with the rack structure must be characterized to predict whether the on-orbit vibration levels during experimentation exceed the specified science microgravity vibration level requirements. Both vibratory and transient disturbance conditions are addressed. Disturbance levels/analytical inputs are obtained for each individual disturber in a "free floating" condition in the Glenn Research Center (GRC) Microgravity Emissions Lab (MEL). Flight spare hardware is tested on an Orbital Replacement Unit (ORU) basis. Based on test and analysis, maximum disturbance level allocations are developed for each ORU. The worst-case disturbances are input into an on-orbit analytical dynamic model of the rack. These models include both NASTRAN and MATLAB Simulink models , which include eigenvector and frequency inputs of the rack rigid body modes, the rack umbilical modes, and the racks' structural modes. The disturbance areas and science locations need to be modeled accurately to give valid predictions. The analytically determined microgravity vibration levels are compared to the CIR science requirements contained in the FCF Science Requirements Envelope Document (SRED). The predicted levels will be compared with the on-orbit measurements provided by the Space Acceleration Measurement System (SAMS) sensor, which is to be mounted on the CIR optics bench.
Evaluation Of Risk And Possible Mitigation Schemes For Previously Unidentified Hazards
NASA Technical Reports Server (NTRS)
Linzey, William; McCutchan, Micah; Traskos, Michael; Gilbrech, Richard; Cherney, Robert; Slenski, George; Thomas, Walter, III
2006-01-01
This report presents the results of arc track testing conducted to determine if such a transfer of power to un-energized wires is possible and/or likely during an arcing event, and to evaluate an array of protection schemes that may significantly reduce the possibility of such a transfer. The results of these experiments may be useful for determining the level of protection necessary to guard against spurious voltage and current being applied to safety critical circuits. It was not the purpose of these experiments to determine the probability of the initiation of an arc track event only if an initiation did occur could it cause the undesired event: an inadvertent thruster firing. The primary wire insulation used in the Orbiter is aromatic polyimide, or Kapton , a construction known to arc track under certain conditions [3]. Previous Boeing testing has shown that arc tracks can initiate in aromatic polyimide insulated 28 volts direct current (VDC) power circuits using more realistic techniques such as chafing with an aluminum blade (simulating the corner of an avionics box or lip of a wire tray), or vibration of an aluminum plate against a wire bundle [4]. Therefore, an arc initiation technique was chosen that provided a reliable and consistent technique of starting the arc and not a realistic simulation of a scenario on the vehicle. Once an arc is initiated, the current, power and propagation characteristics of the arc depend on the power source, wire gauge and insulation type, circuit protection and series resistance rather than type of initiation. The initiation method employed for these tests was applying an oil and graphite mixture to the ends of a powered twisted pair wire. The flight configuration of the heater circuits, the fuel/oxider (or ox) wire, and the RCS jet solenoid were modeled in the test configuration so that the behavior of these components during an arcing event could be studied. To determine if coil activation would occur with various protection wire schemes, 145 tests were conducted using various fuel/ox wire alternatives (shielded and unshielded) and/or different combinations of polytetrafuloroethylene (PTFE), Mystik tape and convoluted wraps to prevent unwanted coil activation. Test results were evaluated along with other pertinent data and information to develop a mitigation strategy for an inadvertent RCS firing. The SSP evaluated civilian aircraft wiring failures to search for aging trends in assessing the wire-short hazard. Appendix 2 applies Weibull statistical methods to the same data with a similar purpose.
Interchip link system using an optical wiring method.
Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung
2008-08-15
A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.
Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Tyler
2015-08-27
Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less
Pulse Tube Interference in Cryogenic Sensors - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Tyler
2015-08-24
Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1978-01-01
Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.
The Effect of Pressure Pulsations and Vibrations on Fully Developed Pipe Flow
1981-08-01
38 4.2 Fluid Response to a Fluttering Valve ..................................... 46 5.0 C O N C L U S I O N... valves , it is known from analysis (Refs. 1 through 4) and has been demonstrated experimentally (Refs. 5 through 8) that flow pulsations may (1...fully developed flow in a tube. 19 A E D C- TF1 -80-31 on the basis of hot-wire studies that the exchange process was altered but presented no
A One Chip Hardened Solution for High Speed SpaceWire System Implementations. Session: Components
NASA Technical Reports Server (NTRS)
Marshall, Joseph R.; Berger, Richard W.; Rakow, Glenn P.
2007-01-01
An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASIC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a router with 4 SpaceWire ports and two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, and a memory controller for additional external memory use. The SpaceWire cores are also reused in other ASICs under development. The SpaceWire ASIC is planned for use on the Geostationary Operational Environmental Satellites (GOES)-R, the Lunar Reconnaissance Orbiter (LRO) and other missions. Engineering and flight parts have been delivered to programs and users. This paper reviews the SpaceWire protocol and those elements of it that have been built into the current and next SpaceWire reusable cores and features within the core that go beyond the current standard and can be enabled or disabled by the user. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be reviewed and highlighted. Optional configurations within user systems and test boards will be shown. The physical implementation of the design will be described and test results from the hardware will be discussed. Application of this ASIC and other ASICs containing the SpaceWire cores and embedded microcontroller to Plug and Play and reconfigurable implementations will be described. Finally, the BAE Systems roadmap for SpaceWire developments will be updated, including some products already in design as well as longer term plans.
A comparative study of wireless and wired sensors networks for deficit irrigation management
NASA Astrophysics Data System (ADS)
Torres Sánchez, Roque; Domingo Miguel, Rafael; Valles, Fulgencio Soto; Perez-Pastor, Alejandro; Lopez Riquelme, Juan Antonio; Blanco Montoya, Victor
2016-04-01
In recent years, the including of sensors in the context of agricultural water management, has received an increasing interest for the establishment of irrigation strategies, such as regulated deficit irrigation (RDI). These strategies allow a significant improvement of crop water productivity (marketable yield / water applied), especially in woody orchards. The application of these deficit irrigation strategies, requires the monitoring of variables related to the orchard, with the purpose of achieving an efficiently irrigation management, since it is necessary to know the soil and plant water status to achieve the level of water deficit desired in each phenological stage. These parameters involve the measurements of soil and plant parameters, by using appropriate instrumentation devices. Traditional centralized instrumentation systems include soil matric potential, water content and LVDT sensors which information is stored by dataloggers with a wired connection to the sensors. Nowadays, these wired systems are being replaced by wireless ones due, mainly, to cost savings in wiring and labor. These technologies (WSNs) allow monitoring a wide variety of parameters in orchards with high density of sensors using discrete and autonomous nodes in the trees or soil places where it is necessary, without using wires. In this paper we present a trial in a cherry crop orchard, with different irrigation strategies where both a wireless and a wired system have been deployed with the aim of obtaining the best criteria on how to select the most suitable technology in future agronomic monitoring systems. The first stage of this study includes the deploying of nodes, wires, dataloggers and the installation of the sensors (same for both, wired and wireless systems). This stage was done during the first 15 weeks of the trial. Specifically, 40 MPS6 soil matric potential, 20 Enviroscan water content and 40 (LVDT and band) dendometers were installed in order to cover the experimental irrigation trials: Control, Severe deficit, Moderate Deficit, Low Deficit and Traditional irrigation, with 4 repetitions (2 wired and 2 wireless) each one. The main goals were: (i) the ability of WSN for monitoring areas with high density of information, (ii) advantages and disadvantages compared to traditional wired instrumentation, (iii) energy sizing for autonomous operation of WSNs, (iv), strategies for deploying nodes to ensure the robustness of WSN. The main conclusions were: i) The WSNs need less time to be installed than the wired systems, ii) the WSNs is easier to install than the wired one because of the absence of wired links, iii) the advantage of WSNs is increased with high density of measure points, iv) the maintenance is higher in WSNs than the wired centralized systems, v) the acquisition costs is similar in both systems, vi) the installation costs is higher in Wired systems than WSNs, vii) the quality of data is similar in both systems although the data in WSNs are sooner available than wired, viii) the data robustness are higher in wired systems than WSN because of solar panel and battery lacks of WSN nodes. This work has been funded by the Ministerio de Economia y Competitividad AGL2013-49047-C2-1R.
System and method of active vibration control for an electro-mechanically cooled device
Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.
2000-01-01
A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.
A New Flying Wire System for the Tevatron
NASA Astrophysics Data System (ADS)
Blokland, Willem; Dey, Joseph; Vogel, Greg
1997-05-01
A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...
49 CFR 236.71 - Signal wires on pole line and aerial cable.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...
Beam Position and Phase Monitor - Wire Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.
2012-04-10
The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less
49 CFR 236.73 - Open-wire transmission line; clearance to other circuits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.73 Open-wire transmission...
49 CFR 236.73 - Open-wire transmission line; clearance to other circuits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.73 Open-wire transmission...
49 CFR 236.74 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2013 CFR
2013-10-01
... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...
49 CFR 236.74 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2014 CFR
2014-10-01
... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...
49 CFR 236.74 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2012 CFR
2012-10-01
... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...
49 CFR 236.73 - Open-wire transmission line; clearance to other circuits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.73 Open-wire transmission...
BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap
NASA Technical Reports Server (NTRS)
Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard
2006-01-01
An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.
Design and Application of a Field Sensing System for Ground Anchors in Slopes
Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon
2013-01-01
In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820
Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates
NASA Astrophysics Data System (ADS)
Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.
2012-05-01
This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.
Shen, Tengming
2016-11-15
A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
Shen, Tengming
2018-01-02
A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
High-Temperature, High-Load-Capacity Radial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben
2005-01-01
A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).
Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2011-08-01
We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.
Sixty-four-Channel Inline Cable Tester
NASA Technical Reports Server (NTRS)
2008-01-01
Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.
Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return
NASA Technical Reports Server (NTRS)
Paulsen, Gale; Indyk, Stephen; Zacny, Kris
2014-01-01
A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.
Evaluation of cable tension sensors of FAST reflector from the perspective of EMI
NASA Astrophysics Data System (ADS)
Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao
2016-06-01
The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cable and wire facilities expenses-Account 6410... Operating Expenses and Taxes Cable and Wire Facilities Expenses § 36.341 Cable and wire facilities expenses... network cable, aerial wire, and conduit systems. (b) The general method of separating cable and wire...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Cable and wire facilities expenses-Account 6410... Operating Expenses and Taxes Cable and Wire Facilities Expenses § 36.341 Cable and wire facilities expenses... network cable, aerial wire, and conduit systems. (b) The general method of separating cable and wire...
Magnetorheological fluid based automotive steer-by-wire systems
NASA Astrophysics Data System (ADS)
Ahmadkhanlou, Farzad; Washington, Gregory N.; Bechtel, Stephen E.; Wang, Yingru
2006-03-01
The idea of this paper is to design a Magnetorheological (MR) fluid based damper for steer-by-wire systems to provide sensory feedback to the driver. The advantages of using MR fluids in haptic devices stem from the increase in transparency gained from the lightweight semiactive system and controller implementation. The performance of MR fluid based steer-by wire system depends on MR fluid model and specifications, MR damper geometry, and the control algorithm. All of these factors are addressed in this study. The experimental results show the improvements in steer-by-wire by adding force feedback to the system.
14 CFR 121.1111 - Electrical wiring interconnection systems (EWIS) maintenance program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Electrical wiring interconnection systems... Airworthiness and Safety Improvements § 121.1111 Electrical wiring interconnection systems (EWIS) maintenance program. (a) Except as provided in paragraph (f) of this section, this section applies to transport...
46 CFR 110.25-1 - Plans and information required for new construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-line wiring diagram of the power system, supported, by cable lists, panelboard summaries, and other... computed operating loads for each condition of operation. (c) Elementary and isometric or deck wiring plans...) Manual alarm system; and (11) Supervised patrol system. (d) Deck wiring or schematic plans of power...
A Simulation Study on Take-Off and Landing Dynamics of the Aircraft of a Fly-By-Wire Control System
1993-01-07
L:V,"DIN G DYN;AMICS OF THE AIRCRAFT OF A FLY-BY-WIRE CONTROL SYSTEM by Y achang Feng, Gang Chert, Peiqiong Li 93-00985 Distribution unlimit ed. FASTC...FLY-BY-WIRE CONTROL SYSTEM By: Yachang Feng, Gang Chen, Peiqiong- Li English pages: 17 Source: Hangkon, Xuebao, Vol. 12, No. 6, June, 1991; pp. 252-258...Landing Dynamics of the Aircraft of a Fly-By-Wire Control System Beijing University of Aeronautics and Astronautics Yachang FENG, Gang CHEN and Peiqiong Li
Real time control and numerical simulation of pipeline subjected to landslide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuscuna, S.; Giusti, G.; Gramola, C.
1984-06-01
This paper describes SNAM research activity in the study of behaviour and real-time control of pipelines in landslide areas. The subject can be delt considering three different aspects: 1. Geotechnical characterization of unstable soils. The mechanical parameters of soil and the landslide types are defined; 2. Structural analysis of pipe-soil system. By means of a finite element program it's possible to study the pipe-soil interaction; in this numerical code the soil parameters attend by the non-linear elastic behaviour of pipe restraints. The results of this analysis are the location of the expected most stressed sections of pipe and the globalmore » behaviour of pipe inside the soil. 3. Instrumental control. The adoption of a suitable appliance of vibrating wire strain gauges allows the strain control of pipe in time. The aim is to make possible timely interventions in order to guarantee the installation safety.« less
Characterization of a rotary hybrid multimodal energy harvester
NASA Astrophysics Data System (ADS)
Larkin, Miles R.; Tadesse, Yonas
2014-04-01
In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.
Exploring Carbon Nanotubes for Nanoscale Devices
NASA Technical Reports Server (NTRS)
Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)
1998-01-01
Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.
International space station wire program
NASA Technical Reports Server (NTRS)
May, Todd
1995-01-01
Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.
NASA Astrophysics Data System (ADS)
Ibáñez, Flor; Baltazar, Arturo; Mijarez, Rito; Aranda, Jorge
2015-03-01
Multiwire cables are widely used in important civil structures. Since they are exposed to several dynamic and static loads, their structural health can be compromised. The cables can also be submitted to mechanical contact, tension and energy propagation in addition to changes in size and material within their wires. Due to the critical role played by multiwire cables, it is necessary to develop a non-destructive health monitoring method to maintain their structure and proper performance. Ultrasonic inspection using guided waves is a promising non-destructive damage monitoring technique for rods, single wires and multiwire cables. The propagated guided waves are composed by an infinite number of vibrational modes making their analysis difficult. In this work, an entropy-based method to identify small changes in non-stationary signals is proposed. A system to capture and post-process acoustic signals is implemented. The Discrete Wavelet Transform (DWT) is computed in order to obtain the reconstructed wavelet coefficients of the signals and to analyze the energy at different scales. The feasibility of using the concept of entropy evolution of non-stationary signals to detect damage in multiwire cables is evaluated. The results show that there is a high correlation between the entropy value and damage level of the cable. The proposed method has low sensitivity to noise and reduces the computational complexity found in a typical time-frequency analysis.
NASA wiring for space applications program
NASA Technical Reports Server (NTRS)
Schulze, Norman
1995-01-01
An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.
Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System
2015-10-01
fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is
NASA Astrophysics Data System (ADS)
Yang, Xue; Wang, Hongbo; Sun, Li; Yu, Hongnian
2015-03-01
To develop a robot system for minimally invasive surgery is significant, however the existing minimally invasive surgery robots are not applicable in practical operations, due to their limited functioning and weaker perception. A novel wire feeder is proposed for minimally invasive vascular interventional surgery. It is used for assisting surgeons in delivering a guide wire, balloon and stenting into a specific lesion location. By contrasting those existing wire feeders, the motion methods for delivering and rotating the guide wire in blood vessel are described, and their mechanical realization is presented. A new resistant force detecting method is given in details. The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire. The driving torque for rotating the guide wire is developed at different positions. Using the CT reconstruction image and extracted vessel paths, the path equation of the blood vessel is obtained. Combining the shapes of the guide wire outside the blood vessel, the whole bending equation of the guide wire is obtained. That is a risk criterion in the delivering process. This process can make operations safer and man-machine interaction more reliable. A novel surgery robot for feeding guide wire is designed, and a risk criterion for the system is given.
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of...
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of...
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of...
Filter line wiring designs in aircraft
NASA Astrophysics Data System (ADS)
Rowe, Richard M.
1990-10-01
The paper presents a harness design using a filter-line wire technology and appropriate termination methods to help meet high-energy radiated electromagnetic field (HERF) requirements for protection against the adverse effects of EMI on electrical and avionic systems. Filter-line interconnect harnessing systems discussed consist of high-performance wires and cables; when properly wired they suppress conducted and radiated EMI above 100 MHz. Filter-line termination devices include backshell adapters, braid splicers, and shield terminators providing 360-degree low-impedance terminations and enhancing maintainability of the system.
49 CFR 236.74 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...
49 CFR 236.74 - Protection of insulated wire; splice in underground wire.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...
49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...
Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan
2018-02-28
The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.
Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo
2018-01-01
The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617
NASA Astrophysics Data System (ADS)
Lu, Boyin; Zhao, Meirong
1994-09-01
A new-type active vibration isolation system is developed for ultra-precision measuring system. It is composed of three sets of 3D Laser interferometer transducer and six groups of piezoelectric displacement executor to constrain six degrees of space movement and to realize real-time compensation of vibration. The active vibration isolation system can effectively eliminate low-frequency vibrations. Combined with passive vibration isolation system, it gives better vibration isolation effect.
75 FR 7557 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... shorts in many systems, including the spar fuel shut off valve, oxygen mask deployment, and burned wires... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask... and wire bundles, causing shorts in many systems, including the spar fuel shut off valve, oxygen mask...
75 FR 68245 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... shutoff system wiring. This proposed AD was prompted by a possible latent failure in the fire handle... engine fuel fire shutoff handle is activated. Separating the fire handle shutoff system wiring will... handle shutoff system wiring. FAA's Determination We are proposing this AD because we evaluated all the...
Operational environments for electrical power wiring on NASA space systems
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.
1994-01-01
Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.
The construction technique of the high granularity and high transparency drift chamber of MEG II
NASA Astrophysics Data System (ADS)
Chiarello, G.; Chiri, C.; Corvaglia, A.; Grancagnolo, F.; Miccoli, A.; Panareo, M.; Pinto, C.; Spedicato, M.; Tassielli, G. F.
2017-07-01
The MEG experiment searches for the charged lepton flavor violating decay, μ +→ e+γ. MEG has already determined the world best upper limit on the branching ratio BR<4.2× 10-13 at 90% CL. An upgrade of the whole detector has been approved to obtain a substantial increase in sensitivity. Currently MEG is in upgrade phases, this phase involves all the detectors. The new positron tracker is a single volume, full stereo, small cells drift chamber (DCH) co-axial to the beam line. It is composed of 10 concentric layers and each single drift cell is approximately square 7 mm side, with a 20 μ m gold plated W sense wire surrounded by 40 μ m and 50 μ m silver plated Al field wires in a ratio of 5:1, about 12,000 wires. Due to the high wire density (12 wires/cm2), the use of the classical feed-through technique as wire anchoring system could hardly be implemented and therefore it was necessary to develop new wiring strategies. The number of wires and the stringent requirements on the precision of their position and on the uniformity of the wire mechanical tension impose the use of an automatic system to operate the wiring procedures. This wiring robot, designed and built at the INFN Lecce and University of Salento laboratories, consists of: ṡ a semiautomatic wiring machine with a high precision on wire mechanical tensioning (better than 0.5 g) and on wire positioning (20 μ m) for simultaneous wiring of multiwire layers; ṡ a contact-less infrared laser soldering tool; ṡ an automatic handling system for storing and transporting the multi-wire layers. The drift chamber is currently under construction at INFN and should be completed by the end of summer 2017 to be then delivered to PSI for commissioning.
A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michnoff R.; Biscardi, C.; Cerniglia, P.
2012-04-15
A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scannermore » assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.« less
NASA Astrophysics Data System (ADS)
Gao, Pu; Xiang, Changle; Liu, Hui; Zhou, Han
2018-07-01
Based on a multiple degrees of freedom dynamic model of a vehicle powertrain system, natural vibration analyses and sensitivity analyses of the eigenvalues are performed to determine the key inertia for each natural vibration of a powertrain system. Then, the results are used to optimize the installation position of each adaptive tuned vibration absorber. According to the relationship between the variable frequency torque excitation and the natural vibration of a powertrain system, the entire vibration frequency band is divided into segments, and the auxiliary vibration absorber and dominant vibration absorber are determined for each sensitive frequency band. The optimum parameters of the auxiliary vibration absorber are calculated based on the optimal frequency ratio and the optimal damping ratio of the passive vibration absorber. The instantaneous change state of the natural vibrations of a powertrain system with adaptive tuned vibration absorbers is studied, and the optimized start and stop tuning frequencies of the adaptive tuned vibration absorber are obtained. These frequencies can be translated into the optimum parameters of the dominant vibration absorber. Finally, the optimal tuning scheme for the adaptive tuned vibration absorber group, which can be used to reduce the variable frequency vibrations of a powertrain system, is proposed, and corresponding numerical simulations are performed. The simulation time history signals are transformed into three-dimensional information related to time, frequency and vibration energy via the Hilbert-Huang transform (HHT). A comprehensive time-frequency analysis is then conducted to verify that the optimal tuning scheme for the adaptive tuned vibration absorber group can significantly reduce the variable frequency vibrations of a powertrain system.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott
2012-01-01
An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.
Loving, Vilert A; Edwards, David B; Roche, Kevin T; Steele, Joseph R; Sapareto, Stephen A; Byrum, Stephanie C; Schomer, Donald F
2014-06-01
In breast-conserving surgery for nonpalpable breast cancers, surgical reexcision rates are lower with radioactive seed localization (RSL) than wire localization. We evaluated the cost-benefit of switching from wire localization to RSL in two competing payment systems: a fee-for-service (FFS) system and a bundled payment system, which is typical for accountable care organizations. A Monte Carlo simulation was developed to compare the cost-benefit of RSL and wire localization. Equipment utilization, procedural workflows, and regulatory overhead differentiate the cost between RSL and wire localization. To define a distribution of possible cost scenarios, the simulation randomly varied cost drivers within fixed ranges determined by hospital data, published literature, and expert input. Each scenario was replicated 1000 times using the pseudorandom number generator within Microsoft Excel, and results were analyzed for convergence. In a bundled payment system, RSL reduced total health care cost per patient relative to wire localization by an average of $115, translating into increased facility margin. In an FFS system, RSL reduced total health care cost per patient relative to wire localization by an average of $595 but resulted in decreased facility margin because of fewer surgeries. In a bundled payment system, RSL results in a modest reduction of cost per patient over wire localization and slightly increased margin. A fee-for-service system suffers moderate loss of revenue per patient with RSL, largely due to lower reexcision rates. The fee-for-service system creates a significant financial disincentive for providers to use RSL, although it improves clinical outcomes and reduces total health care costs.
Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C
2016-02-01
Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Characterization System of Multi-pixel Array TES Microcalorimeter
NASA Astrophysics Data System (ADS)
Yoshimoto, Shota; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamanaka, Yoshihiro; Sakai, Kazuhiro; Nagayoshi, Kenichiro; Yamamoto, Ryo; Hayashi, Tasuku; Muramatsu, Haruka
We have constructed characterization system for 64-pixel array transition-edge sensor (TES) microcalorimeter using a 3He-4He dilution refrigerator (DR) with the cooling power of 60 µW at a temperature of 100 mK. A stick equipped with 384 of Manganin wires was inserted into the refrigerator to perform characteristic measurements of 64-pixel array TES microcalorimeter and superconducting quantum interference device (SQUID) array amplifiers. The stick and Manganin wires were thermally anchored at temperatures of 4 and 1 K with sufficient thermal contact. The cold end of the Manganin wires were thermally anchored and connected to CuNi clad NbTi wires at 0.7 K anchor. Then CuNi clad NbTi wires were wired to connectors placed on the holder mounted on the cold stage attached to the base plate of the mixing chamber. The heat flow to the cold stage through the installed wires was estimated to be 0.15 µW. In the operation test the characterization system maintained temperature below 100 mK.
49 CFR 236.57 - Shunt and fouling wires.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...
49 CFR 236.73 - Open-wire transmission line; clearance to other circuits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Open-wire transmission line; clearance to other..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.73 Open-wire transmission line; clearance to other circuits. Open-wire transmission line operating at voltage of 750 volts or...
49 CFR 236.73 - Open-wire transmission line; clearance to other circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Open-wire transmission line; clearance to other..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.73 Open-wire transmission line; clearance to other circuits. Open-wire transmission line operating at voltage of 750 volts or...
49 CFR 236.57 - Shunt and fouling wires.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...
Code of Federal Regulations, 2010 CFR
2010-10-01
... only to “unprotected” premises wiring used with simple installations of wiring for up to four line residential and business telephone service. More complex installations of wiring for multiple line services... requirements, for installation and maintenance of wiring on the subscriber's side of the demarcation point...
NASA Astrophysics Data System (ADS)
Mullen, Christopher
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with multiple case studies including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
Experimental verification and optimization of a linear electromagnetic energy harvesting device
NASA Astrophysics Data System (ADS)
Mullen, Christopher; Lee, Soobum
2017-04-01
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation
NASA Technical Reports Server (NTRS)
Banerjee, Bibhuti; Allaire, Paul E.
1996-01-01
A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.
Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.
NASA Technical Reports Server (NTRS)
1992-01-01
Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.
NASA Technical Reports Server (NTRS)
Moreno, Michelle
2004-01-01
The Turbine Branch concentrates on the following areas: Computational Fluid Dynamics (CFD), and implementing experimental procedures to obtain physical modeling data. Hot-wire Anemometry is a valuable tool for obtaining physical modeling data. Hot-wire Anemometry is likely to remain the principal research tool for most turbulent air/gas flow studies. The Hot-wire anemometer consists of a fine wire heated by electric current. When placed in a fluid stream, the hot-wire loses heat to the fluid by forced convection. In forced convection, energy transfer is due to molecular motion imposed by an extraneous force moving fluid parcels. When the hot-wire is in "equilibrium", the rate of heat input to the wire is equal to the rate of heat loss at the wire ends. The equality between heat input and heat loss is the basis for King s equation, which relates the electrical parameters of the hot-wire to the flow parameters of the fluid. Hot-wire anemometry is based on convective heat transfer from a heated wire element placed in a fluid flow. Any change in the fluid flow condition that affects the heat transfer from the heated element will be detected virtually instantaneously by a constant-temperature Hot-wire anemometry system. The system implemented for this research is the IFA 300. The system is a fully-integrated, thermal anemometer-based system that measures mean and fluctuating velocity components in air, water, and other fluids. It also measures turbulence and makes localized temperature measurements. A constant-temperature anemometer is a bridge and amplifier circuit that controls a tiny wire at constant temperature. As a fluid flow passes over the heated sensor, the amplifier senses the bridge off-balance and adjusts the voltage to the top of the bridge, keeping the bridge in balance. The voltage on top of the bridge can then be related to the velocity of the flow. The bridge voltage is sensitive to temperature as well as velocity and so the built-in thermocouple circuit can be attached to a thermocouple that can measure the fluid temperature. Additional information is included in the original extended abstract.
Development of automatic through-insulation welding for microelectric interconnections
NASA Technical Reports Server (NTRS)
Arnett, J. C.
1972-01-01
The capability to automatically route, remove insulation from, and weld small-diameter solid conductor wire is presented. This would facilitate the economical small-quantity production of complex miniature electronic assemblies. An engineering model of equipment having this capability was developed and evaluated. Whereas early work in the use of welded magnet wire interconnections was concentrated on opposed electrode systems, and generally used heat to melt the wire insulation, the present method is based on a concentric electrode system and a wire feed system which splits the insulation by application of pressure prior to welding. The work deals with the design, fabrication, and evaluation testing of an improved version of this concentric electrode system. Two different approaches to feeding the wire to the concentric electrodes were investigated. It was concluded that the process is feasible for the interconnection of complex miniature electronic assemblies.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun
2018-03-01
The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.
NASA Astrophysics Data System (ADS)
Atitoaie, Alexandru; Stancu, Alexandru; Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia
2016-04-01
Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.
NASA Astrophysics Data System (ADS)
Thuyet-Nguyen, Minh; Hai-Nguyen, Hong; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun
2017-03-01
Nanomaterials have attracted great attention from chemists, physicists and materials scientists because of their application benefits and special properties. Thermoplastics have been used in many applications such as molding of non-electrical components, conducting, magnetic field and 3D printing. Nanocomposites are known as a material which blends the best properties of components, a high performance material exhibits unusual property combinations and unique design possibilities. In this research, we focused to investigate and report primary results in the synthesis of magnetic nanocomposites based on acrylonitrile butadiene styrene (ABS), which are useful and important thermoplastics. Nickel nanopowder was prepared by electrical explosion of wire in a liquid were used as magnetic component. The composites were prepared by following steps, first the obtained Ni nanopowders were incorporated into the ABS matrix via a solution blending method (drop-casting), and then the solvent was evaporated. The characterizations of obtaining composites were analyzed by field emission scanning electron microscopy, X-Ray Diffraction analysis and vibrating sample magnetometer.
75 FR 60667 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
.... This proposed AD would require a general visual inspection for damage of wiring (including chafing... result in a short circuit and the loss of systems associated with the wiring (including fire suppression..., which could result in the loss of systems associated with the wiring (including fire suppression...
Monitoring and evaluation of wire mesh forming life
NASA Astrophysics Data System (ADS)
Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec
2018-03-01
Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.
NASA Astrophysics Data System (ADS)
Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop
2015-07-01
Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid
2003-08-01
This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.
47 CFR 32.2321 - Customer premises wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2321... 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...
47 CFR 32.2321 - Customer premises wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2321... 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...
Printed wiring board system programmer's manual
NASA Technical Reports Server (NTRS)
Brinkerhoff, C. D.
1973-01-01
The printed wiring board system provides automated techniques for the design of printed circuit boards and hybrid circuit boards. The system consists of four programs: (1) the preprocessor program combines user supplied data and pre-defined library data to produce the detailed circuit description data; (2) the placement program assigns circuit components to specific areas of the board in a manner that optimizes the total interconnection length of the circuit; (3) the organizer program assigns pin interconnections to specific board levels and determines the optimal order in which the router program should attempt to layout the paths connecting the pins; and (4) the router program determines the wire paths which are to be used to connect each input pin pair on the circuit board. This document is intended to serve as a programmer's reference manual for the printed wiring board system. A detailed description of the internal logic and flow of the printed wiring board programs is included.
46 CFR 129.340 - Cable and wiring.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cable and wiring. 129.340 Section 129.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than...
Design and fabrication of a three-finger prosthetic hand using SMA muscle wires
NASA Astrophysics Data System (ADS)
Simone, Filomena; York, Alexander; Seelecke, Stefan
2015-03-01
Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.
Volumetric graphics in liquid using holographic femtosecond laser pulse excitations
NASA Astrophysics Data System (ADS)
Kumagai, Kota; Hayasaki, Yoshio
2017-06-01
Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.
Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 1. Flammability.
DOT National Transportation Integrated Search
1983-05-01
The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...
Combustibility of Electrical Wire and Cable for Rail Rapid Transit Systems. Volume 2. Toxicity.
DOT National Transportation Integrated Search
1983-05-01
The objective of this study was to examine the flammability of wires and cables used in rapid rail transit systems. The overall goal of the study was to quantify the fire properties of wires and cables in a manner so that the relative fire hazards co...
78 FR 22802 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... indication system and wiring on each engine; and repetitive operational checks of that installation to detect... wiring. Installation of a second locking gearbox 754 work-hours x $85 per hour = $0 $64,090 system. $64... proposed AD would require replacing certain relays and relay sockets, and doing wiring changes. For certain...
Interceptive Beam Diagnostics - Signal Creation and Materials Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plum, Michael; Spallation Neutron Source, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN
2004-11-10
The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago
2000-01-01
An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.
46 CFR 183.340 - Cable and wiring requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...
46 CFR 183.340 - Cable and wiring requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...
46 CFR 183.340 - Cable and wiring requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...
46 CFR 183.340 - Cable and wiring requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire must be in conduit. (b) All cable and wire must: (1) Have stranded copper conductors with sufficient... constant representing the resistance of copper). I=Load current, in amperes. L=length of conductor from...
Digital Systems Validation Handbook. Volume 2
1989-02-01
power. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit to grounding block or case. 4. A wire from circuit to structure. 5. Shield...RETURN. (11) 1. Structure, for power, fault, and "discrete" circuits. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit load back to...TV (14) Television TWTD (13) Thin Wire Time Domain TX (5) Transmit U.K. (13,141 United Kingdom U.S. (14) United States UART (15) Universal Asynchronous
NASA Technical Reports Server (NTRS)
Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo
2007-01-01
Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.
LANSCE-R WIRE-SCANNER ANALOG FRONT-END ELECTRONICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruchalla, Michael E.
2011-01-01
A new AFE is being developed for the new LANSCE-R wire-scanner systems. The new AFE is implemented in a National Instruments Compact RIO (cRIO) module installed a BiRa 4U BiRIO cRIO chassis specifically designed to accommodate the cRIO crate and all the wire-scanner interface, control and motor-drive electronics. A single AFE module provides interface to both X and Y wire sensors using true DC coupled transimpedance amplifiers providing collection of the wire charge signals, real-time wire integrity verification using the normal dataacquisition system, and wire bias of 0V to +/-50V. The AFE system is designed to accommodate comparatively long macropulsesmore » (>1ms) with high PRF (>120Hz) without the need to provide timing signals. The basic AFE bandwidth is flat from true DC to 50kHz with a true first-order pole at 50kHz. Numeric integration in the cRIO FPGA provides real-time pulse-to-pulse numeric integration of the AFE signal to compute the total charge collected in each macropulse. This method of charge collection eliminates the need to provide synchronization signals to the wire-scanner AFE while providing the capability to accurately record the charge from long macropulses at high PRF.« less
Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won
2015-08-01
Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.
Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics
NASA Astrophysics Data System (ADS)
Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu
2017-11-01
Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.
Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration
NASA Astrophysics Data System (ADS)
Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira
2008-09-01
This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.
NASA Astrophysics Data System (ADS)
Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-10-01
A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.
Prototype Morphing Fan Nozzle Demonstrated
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Song, Gang-Bing
2004-01-01
Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
Second NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
1994-01-01
This document contains the proceedings of the Second NASA Workshop on Wiring for Space Applications held at NASA LeRC in Cleveland, OH, 6-7 Oct. 1993. The workshop was sponsored by NASA Headquarters Code QW Office of Safety and Mission Quality, Technical Standards Division and hosted by NASA LeRC, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry, and academia presented and discussed topics on arc tracking phenomena, wiring system design, insulation constructions, and system protection. Presentation materials provided by the various speakers are included in this document.
NEMA wire and cable standards development programs
NASA Astrophysics Data System (ADS)
Baird, Robert W.
1994-01-01
The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization. PMID:28054635
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece.
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-05
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
NASA Astrophysics Data System (ADS)
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
PCACE- PERSONAL COMPUTER AIDED CABLING ENGINEERING
NASA Technical Reports Server (NTRS)
Billitti, J. W.
1994-01-01
A computerized interactive harness engineering program has been developed to provide an inexpensive, interactive system which is designed for learning and using an engineering approach to interconnection systems. PCACE is basically a database system that stores information as files of individual connectors and handles wiring information in circuit groups stored as records. This directly emulates the typical manual engineering methods of data handling, thus making the user interface to the program very natural. Data files can be created, viewed, manipulated, or printed in real time. The printed ouput is in a form ready for use by fabrication and engineering personnel. PCACE also contains a wide variety of error-checking routines including connector contact checks during hardcopy generation. The user may edit existing harness data files or create new files. In creating a new file, the user is given the opportunity to insert all the connector and harness boiler plate data which would be part of a normal connector wiring diagram. This data includes the following: 1) connector reference designator, 2) connector part number, 3) backshell part number, 4) cable reference designator, 5) cable part number, 6) drawing revision, 7) relevant notes, 8) standard wire gauge, and 9) maximum circuit count. Any item except the maximum circuit count may be left blank, and any item may be changed at a later time. Once a file is created and organized, the user is directed to the main menu and has access to the file boiler plate, the circuit wiring records, and the wiring records index list. The organization of a file is such that record zero contains the connector/cable boiler plate, and all other records contain circuit wiring data. Each wiring record will handle a circuit with as many as nine wires in the interface. The record stores the circuit name and wire count and the following data for each wire: 1) wire identifier, 2) contact, 3) splice, 4) wire gauge if different from standard, 5) wire/group type, 6) wire destination, and 7) note number. The PCACE record structure allows for a wide variety of wiring forms using splices and shields, yet retains sufficient structure to maintain ease of use. PCACE is written in TURBO Pascal 3.0 and has been implemented on IBM PC, XT, and AT systems under DOS 3.1 with a memory of 512K of 8 bit bytes, two floppy disk drives, an RGB monitor, and a printer with ASCII control characters. PCACE was originally developed in 1983, and the IBM version was released in 1986.
Wireless vibration monitoring for damage detection of highway bridges
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Gangone, Michael V.; Janoyan, Kerop D.; Jha, Ratneshwar
2008-03-01
The development of low-cost wireless sensor networks has resulted in resurgence in the development of ambient vibration monitoring methods to assess the in-service condition of highway bridges. However, a reliable approach towards assessing the health of an in-service bridge and identifying and localizing damage without a priori knowledge of the vibration response history has yet to be formulated. A two-part study is in progress to evaluate and develop existing and proposed damage detection schemes. The first phase utilizes a laboratory bridge model to investigate the vibration response characteristics induced through introduction of changes to structural members, connections, and support conditions. A second phase of the study will validate the damage detection methods developed from the laboratory testing with progressive damage testing of an in-service highway bridge scheduled for replacement. The laboratory bridge features a four meter span, one meter wide, steel frame with a steel and cement board deck composed of sheet layers to regulate mass loading and simulate deck wear. Bolted connections and elastomeric bearings provide a means for prescribing variable local stiffness and damping effects to the laboratory model. A wireless sensor network consisting of fifty-six accelerometers accommodated by twenty-eight local nodes facilitates simultaneous, real-time and high-rate acquisition of the vibrations throughout the bridge structure. Measurement redundancy is provided by an array of wired linear displacement sensors as well as a scanning laser vibrometer. This paper presents the laboratory model and damage scenarios, a brief description of the developed wireless sensor network platform, an overview of available test and measurement instrumentation within the laboratory, and baseline measurements of dynamic response of the laboratory bridge model.
NASA Astrophysics Data System (ADS)
Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme
2017-04-01
A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as ice accumulation, with direct monitoring via a serial connection or logged to removable storage media in the absence of the radiosonde. References [1] Hill, G.E. and Woffinden, D.S. (1980) Journal of Applied Meteorology, 19, 11, 1285-1292 [2] Harrison, R.G., et al. (2012) Rev. Sci. Instrum., 83, 3
Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.
Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi
2018-05-08
Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.
Study on nondestructive detection system based on x-ray for wire ropes conveyer belt
NASA Astrophysics Data System (ADS)
Miao, Changyun; Shi, Boya; Wan, Peng; Li, Jie
2008-03-01
A nondestructive detection system based on X-ray for wire ropes conveyer belt is designed by X-ray detection technology. In this paper X-ray detection principle is analyzed, a design scheme of the system is presented; image processing of conveyer belt is researched and image processing algorithms are given; X-ray acquisition receiving board is designed with the use of FPGA and DSP; the software of the system is programmed by C#.NET on WINXP/WIN2000 platform. The experiment indicates the system can implement remote real-time detection of wire ropes conveyer belt images, find faults and give an alarm in time. The system is direct perceived, strong real-time and high accurate. It can be used for fault detection of wire ropes conveyer belts in mines, ports, terminals and other fields.
76 FR 10215 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... above. This AD requires a general visual inspection for damage of wiring (including chafing, pinched... the pilot and copilot circuit breaker panels caused by a short circuit between chafed wiring and the... misrouted wires, which could result in a short circuit and the loss of systems associated with the wiring...
The SuperCDMS SNOLAB Detector Tower
NASA Astrophysics Data System (ADS)
Aramaki, Tsuguo
2016-08-01
The SuperCDMS collaboration is moving forward with the design and construction of SuperCDMS SNOLAB, where the initial deployment will include ˜ 30 kg of Ge and ˜ 5 kg of Si detectors. Here, we will discuss the associated cryogenic cold hardware required for the detector readout. The phonon signals will be read out with superconducting quantum interference device arrays and the ionization signals will use high electron mobility transistor amplifiers operating at 4 K. A number of design challenges exist regarding the required wiring complex impedance, noise pickup, vibration, and thermal isolation. Our progress to date will be presented.
Architecture for distributed actuation and sensing using smart piezoelectric elements
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Pourboghrat, Farzad; Maruboyina, Hari K.; Abrate, Serge; Dhali, Shirshak K.
1998-07-01
We discuss vibration control of a cantilevered plate with multiple sensors and actuators. An architecture is chosen to minimize the number of control and sensing wires required. A custom VLSI chip, integrated with the sensor/actuator elements, controls the local behavior of the plate. All the actuators are addressed in parallel; local decode logic selects which actuator is stimulated. Downloaded binary data controls the applied voltage and modulation frequency for each actuator, and High Voltage MOSFETs are used to activate them. The sensors, which are independent adjacent piezoelectric ceramic elements, can be accessed in a random or sequential manner. An A/D card and GPIB interconnected test equipment allow a PC to read the sensors' outputs and dictate the actuation procedure. A visual programming environment is used to integrate the sensors, controller and actuators. Based on the constitutive relations for the piezoelectric material, simple models for the sensors and actuators are derived. A two level hierarchical robust controller is derived for motion control and for damping of vibrations.
Multimode bolometer development for the PIXIE instrument
NASA Astrophysics Data System (ADS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-07-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
NASA Astrophysics Data System (ADS)
Stoner-Ma, Deborah; Jaye, Andrew A.; Ronayne, Kate L.; Nappa, Jérôme; Tonge, Peter J.; Meech, Stephen R.
2008-06-01
Two blue absorbing and emitting mutants (S65G/T203V/E222Q and S65T at pH 5.5) of the green fluorescent protein (GFP) have been investigated through ultrafast time resolved infra-red (TRIR) and fluorescence spectroscopy. In these mutants, in which the excited state proton transfer reaction observed in wild-type GFP has been blocked, the photophysics are dominated by the neutral A state. It was found that the A∗ excited state lifetime is short, indicating that it is relatively less stabilised in the protein matrix than the anionic form. However, the lifetime of the A state can be increased through modifications to the protein structure. The TRIR spectra show that a large shifts in protein vibrational modes on excitation of the A state occurs in both these GFP mutants. This is ascribed to a change in H-bonding interactions between the protein matrix and the excited state.
Multimode Bolometer Development for the PIXIE Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations
2016-09-01
extinguishing system (AFES), which uses fire wires to detect the presence of fires. The detection of fire automatically triggers the activation of the fire...corresponding wires and connection points also means that it can be more difficult for engineers to integrate distributed architecture systems onto...command signals to the missile via wires trailing behind the missile or via RF signals. See Figure 29 for an illustration of CLOS guidance. Since CLOS
Energetics and electronic properties of Pt wires of different topologies on monolayer MoSe{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Ahluwalia, P. K.; Kumar, Ashok
2016-05-23
The energetics and electronic properties of different topology of Pt wires including linear, zigzag and ladder structures on MoSe{sub 2} monolayer have been investigated in the framework of density functional theory (DFT). The predicted order of stability of Pt wire on MoSe{sub 2} monolayer is found to be: linear > ladder > zigzag. Pt wires induce states near the Fermi level of MoSe{sub 2} that results into metallic characteristics of Pt-wire/MoSe{sub 2} assembled system. Valence band charge density signifies most of the contribution from Pt atoms near the Fermi energy of assembled wire/MoSe{sub 2} system. These findings are expected tomore » be important for the fabrication of devices based on MoSe{sub 2} layers for flexible nanoelectronics.« less
Microcomputer monitor system and device for non-touch measurement of turbine blade vibration
NASA Astrophysics Data System (ADS)
Zheng, Shu-Chen; Liu, Bo; Qu, Zhi-Huan; Din, Ke-Ke
To study the aeroelastic phenomena in turbomachinery, a microcomputer monitor system and device for nonintrusive measurement of turbine blade vibration is developed. The system can continuously measure blade amplitude of vibration, phase angle, and torsional angle, when the machinery blades encounter vibration. In the case of turbine operation, it can display and print the vibrating parameters measured by the system, automatically give out the warning when blade amplitude of vibration is bigger than safety value, or blades break. The vibrating parameters in a span of time before the break occurs is recorded. A forecast is produced as blades enter the flutter boundary.
Identification of Bearing Failure Using Signal Vibrations
NASA Astrophysics Data System (ADS)
Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah
2018-04-01
Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.
Advanced wiring technique and hardware application: Airplane and space vehicle
NASA Technical Reports Server (NTRS)
Ernst, H. L.; Eichman, C. D.
1972-01-01
An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.
Measurement of remote micro vibration based on laser feedback interference
NASA Astrophysics Data System (ADS)
Wu, Peng; Qin, Shuijie; Xu, Ning
2018-03-01
The method of remote micro-vibration measurement is studied and presented based on the laser feedback effect in this paper, and the key factors of remote vibration measurement are analyzed. The vibration measurement system is designed and built based on the laser feedback and the research of the remote micro vibration measurement is carried out. The system has ultrahigh measuring sensitivity and the working distance is 25 meters, which can measure the vibration of non-cooperative target. The system has the capability to realize the non-contact measurement of remote micro-vibration at different driving signals and can fulfill the complex vibration measurement and reproduction of multiple frequencies. It can identify the voice signal and the voice signal reproduced is clear to hear. The system can meet various requirements of vibration measurement and has great significance in practical application.
A biomechanical comparison of three sternotomy closure techniques.
Cohen, David J; Griffin, Lanny V
2002-02-01
A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Iaia, Vito; Menachekanian, Emin; Williams, Gary
2014-03-01
A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.
NASA Technical Reports Server (NTRS)
Baughman, J. R.; Thys, P. C.
1973-01-01
A droplet monitoring system is disclosed for analysis of mixed-phase fluid flow in development of gas turbines. The system uses a probe comprising two electrical wires spaced a known distance apart and connected at one end to means for establishing a dc potential between the wires. A drop in the fluid stream momentarily contacting both wires simultaneously causes and electrical signal which is amplified, detected and counted.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Drucker, Inc., DynaMotive Energy Systems Corp., and Gate to Wire Solutions, Inc., Order of Suspension of Trading September 18, 2012. It appears to the... that there is a lack of current and accurate information concerning the securities of Gate to Wire...
ERIC Educational Resources Information Center
Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.
2013-01-01
This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…
The 80 kV electrostatic wire septum for AmPS
NASA Astrophysics Data System (ADS)
Vanderlinden, A.; Bijleveld, J. H. M.; Rookhuizen, H. Boer; Bruinsma, P. J. T.; Heine, E.; Lassing, P.; Prins, E.
The characteristics of the wire septum for the Amsterdam Pulse Stretcher (AmPS) are summarized. In the extraction process of the AmPS the extracted beam is intercepted from the circulating beam by the 1 m long electrostatic wire septum. For a bending angle of 4.4 mrad, the maximum anode voltage is 80 kV. The system developed consists of a wire spacing of 0.65 mm between tungsten wires of 50 micrometers diameter. Stainless steel spring wires, bent in a half cylindrical carrier, stretch the septum wires two by two. Prototype tests were successful up to an anode voltage of 120 kV.
The vibration compensation system for ARGOS
NASA Astrophysics Data System (ADS)
Peter, D.; Gaessler, W.; Borelli, J.; Kulas, M.
2011-09-01
For every adaptive optics system telescope vibrations can strongly reduce the performance. This is true for the receiver part of the system i.e. the telescope and wave front sensor part as well as for the transmitter part in the case of a laser guide star system. Especially observations in deep fields observed with a laser guide star system without any tip-tilt star will be greatly spoiled by telescope vibrations. The ARGOS GLAO system actually being built for the LBT aims to implement this kind of mode where wave front correction will rely purely on signals from the laser beacons. To remove the vibrations from the uplink path a vibration compensation system will be installed. This system uses accelerometers to measure the vibrations and corrects their effect with a small fast tip-tilt mirror. The controller of the system is built based on the assumption that the vibrations take place at a few distinct frequencies. Here I present a lab set-up of this system and show first results of the performance.
Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.
ERIC Educational Resources Information Center
Arneson, R.; And Others
One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…
Transport electron through a quantum wire by side-attached asymmetric quantum-dot rings
NASA Astrophysics Data System (ADS)
Rostami, A.; Zabihi, S.; Rasooli S., H.; Seyyedi, S. K.
2011-12-01
The electronic conductance at zero temperature through a quantum wire with side-attached asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Anderson tunneling Hamiltonian method. We show that the asymmetric configuration of QD- scatter system strongly impresses the amplitude and spectrum of quantum wire nanostructure transmission characteristics. It is shown that whenever the balanced number of quantum dots in two rings is substituted by unbalanced scheme, the number of forbidden mini-bands in quantum wire conductance increases and QW-nanostructure electronic conductance contains rich spectral properties due to appearance of the new anti-resonance and resonance points in spectrum. Considering the suitable gap between nano-rings can strengthen the amplitude of new resonant peaks in the QW conductance spectrum. The proposed asymmetric quantum ring scatter system idea in this paper opens a new insight on designing quantum wire nano structure for given electronic conductance.
Design of power cable grounding wire anti-theft monitoring system
NASA Astrophysics Data System (ADS)
An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang
2018-01-01
In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.
NASA Astrophysics Data System (ADS)
Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu
2017-06-01
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.
NASA Astrophysics Data System (ADS)
Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard
2017-06-01
At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.
NASA Astrophysics Data System (ADS)
Xi, Jiaxin; Liu, Ning
2017-09-01
Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.
Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces.
Corfdir, Pierre; Li, Hong; Marquardt, Oliver; Gao, Guanhui; Molas, Maciej R; Zettler, Johannes K; van Treeck, David; Flissikowski, Timur; Potemski, Marek; Draxl, Claudia; Trampert, Achim; Fernández-Garrido, Sergio; Grahn, Holger T; Brandt, Oliver
2018-01-10
In semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces. These quantum wires efficiently capture excitons whose radiative decay gives rise to an optical doublet at 3.36 eV at 4.2 K. The binding energy of excitons confined in crystal-phase quantum wires is measured to be more than twice larger than that of the bulk. As a result of their unprecedented interface quality, these crystal-phase quantum wires constitute a model system for the study of one-dimensional excitons.
A Software Suite for Testing SpaceWire Devices and Networks
NASA Astrophysics Data System (ADS)
Mills, Stuart; Parkes, Steve
2015-09-01
SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.
14 CFR 27.907 - Engine vibration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System ...
14 CFR 27.907 - Engine vibration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System ...
14 CFR 27.907 - Engine vibration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System ...
14 CFR 27.907 - Engine vibration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System ...
14 CFR 27.907 - Engine vibration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System ...
Vibration isolation of a ship's seat
NASA Astrophysics Data System (ADS)
Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi
2005-05-01
Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2012-01-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2011-12-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
Thermal Vibrational Convection in a Two-phase Stratified Liquid
NASA Technical Reports Server (NTRS)
Chang, Qingming; Alexander, J. Iwan D.
2007-01-01
The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1999-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Zhu, Zhen-Cai; Li, Xiang; Shen, Gang; Zhu, Wei-Dong
2018-01-01
This paper concerns wire rope tension control of a double-rope winding hoisting system (DRWHS), which consists of a hoisting system employed to realize a transportation function and an electro-hydraulic servo system utilized to adjust wire rope tensions. A dynamic model of the DRWHS is developed in which parameter uncertainties and external disturbances are considered. A comparison between simulation results using the dynamic model and experimental results using a double-rope winding hoisting experimental system is given in order to demonstrate accuracy of the dynamic model. In order to improve the wire rope tension coordination control performance of the DRWHS, a robust nonlinear adaptive backstepping controller (RNABC) combined with a nonlinear disturbance observer (NDO) is proposed. Main features of the proposed combined controller are: (1) using the RNABC to adjust wire rope tensions with consideration of parameter uncertainties, whose parameters are designed online by adaptive laws derived from Lyapunov stability theory to guarantee the control performance and stability of the closed-loop system; and (2) introducing the NDO to deal with uncertain external disturbances. In order to demonstrate feasibility and effectiveness of the proposed controller, experimental studies have been conducted on the DRWHS controlled by an xPC rapid prototyping system. Experimental results verify that the proposed controller exhibits excellent performance on wire rope tension coordination control compared with a conventional proportional-integral (PI) controller and adaptive backstepping controller. Copyright © 2017 ISA. All rights reserved.
Orthogonal system of fractural and integrated diagnostic features in vibration analysis
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Boychenko, S. N.
2017-08-01
The paper presents the results obtained in the studies of the orthogonality of the vibration diagnostic features system comprising the integrated features, particularly - root mean square values of vibration acceleration, vibration velocity, vibration displacement and fractal feature (Hurst exponent). To diagnose the condition of the equipment by the vibration signal, the orthogonality of the vibration diagnostic features is important. The fact of orthogonality shows that the system of features is not superfluous and allows the maximum coverage of the state space of the object being diagnosed. This, in turn, increases reliability of the machinery condition monitoring results. The studies were carried out on the models of vibration signals using the programming language R.
KIM-1 interface adapter to 3-wire teletype systems
NASA Technical Reports Server (NTRS)
Burhans, R. W.
1976-01-01
The KIM-1 circuit designed for use with a full duplex isolated 4 terminal system is described. Operation of the circuit with a 3 wire system in conjunction with a single +5v supply interface is discussed.
Preliminary Design of an Autonomous Amphibious System
2016-09-01
changing vehicle dynamics will require innovative new autonomy algorithms. The developed software architecture, drive-by- wire kit, and supporting...COMMUNICATIONS ARCHITECTURE .................................................12 3.3 DRIVE-BY- WIRE DESIGN...SOFTWARE MATURATION PLANS ......................................................17 4.2 DRIVE-BY- WIRE PLANNED REFINEMENT
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... source outside the FQIS to the densitometer wiring from causing failure of the FQIS densitometer... wiring of the other systems as a result of implementing the actions required by this AD. Boeing requests... are implemented, then no further actions are required to separate the FQIS wire from the wiring of...
Strength of cerclage fixation systems: a biomechanical study.
Incavo, S J; Difazio, F; Wilder, D
1990-11-01
This study examined the load to failure ratio and stiffness of eight different cerclage techniques commonly used in the clinical management of fractures. For a single-loop cerclage, titanium cable was the strongest, while stainless steel wire secured with a commercial tightener was the weakest (P < 0.05). When a single-loop configuration is necessary (i.e. trochanteric attachment) a cable system is superior to cerclage wiring. A double-wrap of either cable or wire was considerably stronger than any single-wrap cerclage technique and stronger than two cerclage wires (P < 0.05). Copyright © 1990. Published by Elsevier Ltd.
A Comparison of Zero Mean Strain Rotating Beam Fatigue Test Methods for Nitinol Wire
NASA Astrophysics Data System (ADS)
Norwich, Dennis W.
2014-07-01
Zero mean strain rotating beam fatigue testing has become the standard for comparing the fatigue properties of Nitinol wire. Most commercially available equipment consists of either a two-chuck or a chuck and bushing system, where the wire length and center-to-center axis distance determine the maximum strain on the wire. For the two-chuck system, the samples are constrained at either end of the wire, and both chucks are driven at the same speed. For the chuck and bushing system, the sample is constrained at one end in a chuck and rides freely in a bushing at the other end. These equivalent systems will both be herein referred to as Chuck-to-Chuck systems. An alternate system uses a machined test block with a specific radius to guide the wire at a known strain during testing. In either system, the test parts can be immersed in a temperature-controlled fluid bath to eliminate any heating effect created in the specimen due to dissipative processes during cyclic loading (cyclic stress induced the formation of martensite) Wagner et al. ( Mater. Sci. Eng. A, 378, p 105-109, 1). This study will compare the results of the same starting material tested with each system to determine if the test system differences affect the final results. The advantages and disadvantages of each system will be highlighted and compared. The factors compared will include ease of setup, operator skill level required, consistency of strain measurement, equipment test limits, and data recovery and analysis. Also, the effect of test speed on the test results for each system will be investigated.
DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity.
Usui, Kenji; Okada, Arisa; Sakashita, Shungo; Shimooka, Masayuki; Tsuruoka, Takaaki; Nakano, Shu-Ichi; Miyoshi, Daisuke; Mashima, Tsukasa; Katahira, Masato; Hamada, Yoshio
2017-11-16
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca 2+ , and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
Dual-Actuator Active Vibration-Control System
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel
1994-01-01
Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.
Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi
2004-04-01
Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.
Hydraulic elements in reduction of vibrations in mechanical systems
NASA Astrophysics Data System (ADS)
Białas, K.; Buchacz, A.
2017-08-01
This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].
Computer-assisted design of flux-cored wires
NASA Astrophysics Data System (ADS)
Dubtsov, Yu N.; Zorin, I. V.; Sokolov, G. N.; Antonov, A. A.; Artem'ev, A. A.; Lysak, V. I.
2017-02-01
The algorithm and description of the AlMe-WireLaB software for the computer-assisted design of flux-cored wires are introduced. The software functionality is illustrated with the selection of the components for the flux-cored wire, ensuring the acquisition of the deposited metal of the Fe-Cr-C-Mo-Ni-Ti-B system. It is demonstrated that the developed software enables the technologically reliable flux-cored wire to be designed for surfacing, resulting in a metal of an ordered composition.
Ando, Hideo; Noguchi, Ryo
2003-06-01
This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.
NASA Astrophysics Data System (ADS)
Dalgleish, Hugh; Kirczenow, George
2004-03-01
Metal/Molecule/Metal junction systems forming molecular wires are currently the focus of intense study. Recently, spin-dependent electron transport in molecular wires with magnetic Ni electrodes has been studied theoretically, and spin-valve effects have been predicted.* Here we explore theoretically another magnetic molecular wire system, namely, ferromagnetic Fe nano-contacts bridged with 1,4-benzene-dithiolate (BDT). We estimate the essential structural and electronic parameters for this system based on ab initio density functional calculations (DFT) for some simple model systems involving thiol groups and Fe clusters as well as semi-empirical considerations and the known electronic structure of bulk Fe. We then use Lippmann-Schwinger and Green's function techniques together with the Landauer formalism to study spin-dependent transport. *E. G. Emberly and G. Kirczenow, Chem. Phys. 281, 311 (2002); R. Pati, L. Senapati, P.M. Ajayan and S.K. Nayak, Phys. Rev. B68, 100407 (2003).
NASA Astrophysics Data System (ADS)
Avci, Onur; Abdeljaber, Osama; Kiranyaz, Serkan; Hussein, Mohammed; Inman, Daniel J.
2018-06-01
Being an alternative to conventional wired sensors, wireless sensor networks (WSNs) are extensively used in Structural Health Monitoring (SHM) applications. Most of the Structural Damage Detection (SDD) approaches available in the SHM literature are centralized as they require transferring data from all sensors within the network to a single processing unit to evaluate the structural condition. These methods are found predominantly feasible for wired SHM systems; however, transmission and synchronization of huge data sets in WSNs has been found to be arduous. As such, the application of centralized methods with WSNs has been a challenge for engineers. In this paper, the authors are presenting a novel application of 1D Convolutional Neural Networks (1D CNNs) on WSNs for SDD purposes. The SDD is successfully performed completely wireless and real-time under ambient conditions. As a result of this, a decentralized damage detection method suitable for wireless SHM systems is proposed. The proposed method is based on 1D CNNs and it involves training an individual 1D CNN for each wireless sensor in the network in a format where each CNN is assigned to process the locally-available data only, eliminating the need for data transmission and synchronization. The proposed damage detection method operates directly on the raw ambient vibration condition signals without any filtering or preprocessing. Moreover, the proposed approach requires minimal computational time and power since 1D CNNs merge both feature extraction and classification tasks into a single learning block. This ability is prevailingly cost-effective and evidently practical in WSNs considering the hardware systems have been occasionally reported to suffer from limited power supply in these networks. To display the capability and verify the success of the proposed method, large-scale experiments conducted on a laboratory structure equipped with a state-of-the-art WSN are reported.
Flywheel system using wire-wound rotor
Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.
2016-06-07
A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.
Characterization and application of Shape Memory Alloy wires for micro and meso positioning systems
NASA Astrophysics Data System (ADS)
Khan, Afzal
The properties of Shape Memory Alloy (SMA) wires are determined by experimentation, and previously used experimental equipment contributes to measurement errors in data. In this study, various characterization experiments are designed and carried out using a precision characterization instrument for shape memory alloy wires to determine the properties and parameters of the alloy. These experiments demonstrate the behavior of SMA wires under different thermal and loading conditions as they occur in actuation applications. As SMA wires go through phase transformation, a significant amount of contraction force is produced. This actuation force has been used in bias spring actuators and differential actuators. In this dissertation, the force generated during the twinning of martensite is used to actuate positioning systems with small displacements at the micrometer level. A micropositioning system is designed and tested that has a positioning accuracy of about +/-0.15 mum. A relation between the current input and the displacement output is determined for the specific preload. The transformation force generated during the phase change from martensite to austenite is used as an actuation force for a second positioning system that uses linear bearing with a displacement range of about a millimeter. This positioning system actuated with a single nitinol wire and guided by symmetric parallel diaphragm flexures, was designed and tested. The actuation is repeatable to about +/-15 mum with variation of about +/-5 mum in postion at steady temperature.
A programmable broadband low frequency active vibration isolation system for atom interferometry.
Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng
2014-09-01
Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.
Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition
NASA Astrophysics Data System (ADS)
Sergelius, Philip; Lee, Ji Hyun; Fruchart, Olivier; Shaker Salem, Mohamed; Allende, Sebastian; Alejandro Escobar, Roberto; Gooth, Johannes; Zierold, Robert; Toussaint, Jean-Christophe; Schneider, Sebastian; Pohl, Darius; Rellinghaus, Bernd; Martin, Sylvain; Garcia, Javier; Reith, Heiko; Spende, Anne; Toimil-Molares, Maria-Eugenia; Altbir, Dora; Cowburn, Russel; Görlitz, Detlef; Nielsch, Kornelius
2017-02-01
Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 μm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.
Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS
NASA Astrophysics Data System (ADS)
Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang
In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.
Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting
NASA Astrophysics Data System (ADS)
Hadas, Z.; Smilek, J.; Rubes, O.
2017-05-01
The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.
Third NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad (Compiler); Stavnes, Mark (Compiler)
1995-01-01
This workshop addressed key technology issues in the field of electrical power wiring for space applications, and transferred information and technology related to space wiring for use in government and commercial applications. Speakers from space agencies, U.S. Federal labs, industry, and academia presented program overviews and discussed topics on arc tracking phenomena, advancements in insulation materials and constructions, and new wiring system topologies.
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
Safe Emergency Evacuation From Tall Structures
NASA Technical Reports Server (NTRS)
Stephan, E. S.
1984-01-01
Emergency egress system allows people to be evacuated quickly from tall structures. New emergency system applicable to rescues from fires in tall hotels and other buildings. System consists of basket on slide wire. Basket descends by gravity on sloped slide wire staked to ground.
77 FR 33129 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... modify the fuel quantity indication system (FQIS) wiring or fuel tank systems to prevent development of..., 2012 (77 FR 12506). That NPRM proposed to require modifying the fuel quantity indication system wiring or fuel tank systems to prevent development of an ignition source inside the center fuel tank. That...
Seismic isolation device having charging function by a transducer
NASA Astrophysics Data System (ADS)
Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki
2016-04-01
In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.
14 CFR 25.1713 - Fire protection: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... used during emergency procedures must be fire resistant. (c) Insulation on electrical wire and electrical cable, and materials used to provide additional protection for the wire and cable, installed in...
Wire winding increases lifetime of oxide coated cathodes
NASA Technical Reports Server (NTRS)
Kerslake, W.; Vargo, D.
1965-01-01
Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.
Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations
NASA Astrophysics Data System (ADS)
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.
2018-04-01
Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.
Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
NASA requirements and applications environments for electrical power wiring
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1992-01-01
Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.
Apollo display and keyboard unit (DSKY) used on F-8 DFBW
NASA Technical Reports Server (NTRS)
1996-01-01
The display and keyboard (DSKY) unit used on the F-8 Digital Fly-By-Wire (DFBW) aircraft during Phase I of the fly-by-wire program. Warning lights are in the upper left section, displays in the upper right, and the keyboard is in the lower section. The Apollo flight-control system used in Phase I of the DFBW program had been used previously on the Lunar Module and was incredibly reliable. The DSKY was one element of the system. Also part of the fly-by-wire control system was the inertial platform. Both the computer and the inertial platform required a cooling system that used liquid nitrogen to keep the system within temperature limits. Should the primary flight control system fail, a backup system using three analog computers would automatically take over. The F-8 DFBW had no manual backup. The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide. Digital-fly-by-wire is more efficient because it is lighter and takes up less space than the hydraulic systems it replaced. This either reduces the fuel required to fly or increases the number of passengers or pounds of cargo the aircraft can carry. Digital fly-by-wire is currently used in a variety of aircraft ranging from F/A-18 fighters to the Boeing 777. The DFBW research program is considered one of the most significant and most successful NASA aeronautical programs since the inception of the agency. F-8 aircraft were built originally for the U.S. Navy by LTV Aerospace of Dallas, Texas. The aircraft had a wingspan of 35 feet, 2 inches; was 54 feet, 6 inches long; and was powered by a Pratt & Whitney J57 turbojet engine.
Magnetization reversal modes in fourfold Co nano-wire systems
NASA Astrophysics Data System (ADS)
Blachowicz, T.; Ehrmann, A.
2015-09-01
Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.
Image Capture and Display Based on Embedded Linux
NASA Astrophysics Data System (ADS)
Weigong, Zhang; Suran, Di; Yongxiang, Zhang; Liming, Li
For the requirement of building a highly reliable communication system, SpaceWire was selected in the integrated electronic system. There was a need to test the performance of SpaceWire. As part of the testing work, the goal of this paper is to transmit image data from CMOS camera through SpaceWire and display real-time images on the graphical user interface with Qt in the embedded development platform of Linux & ARM. A point-to-point mode of transmission was chosen; the running result showed the two communication ends basically reach a consensus picture in succession. It suggests that the SpaceWire can transmit the data reliably.
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...
49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cables. 236.108 Section 236.108 Transportation Other Regulations Relating to Transportation (Continued... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables...
Designing and Testing Energy Harvesters Suitable for Renewable Power Sources
NASA Astrophysics Data System (ADS)
Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.
2016-01-01
Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.
Fine-Filament MgB2 Superconductor Wire
NASA Technical Reports Server (NTRS)
Cantu, Sherrie
2015-01-01
Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.
Dissipation-driven phase transitions in superconducting wires
NASA Astrophysics Data System (ADS)
Lobos, Alejandro; Iucci, Aníbal; Müller, Markus; Giamarchi, Thierry
2010-03-01
Narrow superconducting wires with diameter dξ0 (where ξ0 is the bulk superconducting coherence length) are quasi-1D systems in which fluctuations of the order parameter strongly affect low-temperature properties. Indeed, fluctuations cause the magnitude of the order parameter to temporarily vanish at some point along the wire, allowing its phase to slip by 2π, and to produce finite resistivity for all temperatures below Tc. In this work, we show that a weak coupling to a diffusive metallic film reinforces superconductivity in the wire through a quench of phase fluctuations. We analyze the effective phase-only action of the system by a perturbative renormalization-group and a self-consistent variational approach to obtain the critical points and phases at T=0. We predict a quantum phase transition towards a superconducting phase with long-range order as a function of the wire stiffness and coupling to the metal. Finally we discuss implications for the DC resistivity of the wire.
High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple
NASA Astrophysics Data System (ADS)
Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei
2017-07-01
With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.
Non-classical method of modelling of vibrating mechatronic systems
NASA Astrophysics Data System (ADS)
Białas, K.; Buchacz, A.
2016-08-01
This work presents non-classical method of modelling of mechatronic systems by using polar graphs. The use of such a method enables the analysis and synthesis of mechatronic systems irrespective of the type and number of the elements of such a system. The method id connected with algebra of structural numbers. The purpose of this paper is also introduces synthesis of mechatronic system which is the reverse task of dynamics. The result of synthesis is obtaining system meeting the defined requirements. This approach is understood as design of mechatronic systems. The synthesis may also be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. The majority of vibration occurring in devices and machines is harmful and has a disadvantageous effect on their condition. Harmful impact of vibration is caused by the occurrence of increased stresses and the loss of energy, which results in faster wear machinery. Vibration, particularly low-frequency vibration, also has a negative influence on the human organism. For this reason many scientists in various research centres conduct research aimed at the reduction or total elimination of vibration.
Vibration Testing of Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey
2003-01-01
The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gung, C.Y.
1993-01-01
Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the newmore » AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb{sub 3}Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb{sub 3}Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb{sub 3}Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications.« less
Deformable 3D-2D registration for guiding K-wire placement in pelvic trauma surgery
NASA Astrophysics Data System (ADS)
Goerres, J.; Jacobson, M.; Uneri, A.; de Silva, T.; Ketcha, M.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.
2017-03-01
Pelvic Kirschner wire (K-wire) insertion is a challenging surgical task requiring interpretation of complex 3D anatomical shape from 2D projections (fluoroscopy) and delivery of device trajectories within fairly narrow bone corridors in proximity to adjacent nerves and vessels. Over long trajectories ( 10-25 cm), K-wires tend to curve (deform), making conventional rigid navigation inaccurate at the tip location. A system is presented that provides accurate 3D localization and guidance of rigid or deformable surgical devices ("components" - e.g., K-wires) based on 3D-2D registration. The patient is registered to a preoperative CT image by virtually projecting digitally reconstructed radiographs (DRRs) and matching to two or more intraoperative x-ray projections. The K-wire is localized using an analogous procedure matching DRRs of a deformably parametrized model for the device component (deformable known-component registration, or dKC-Reg). A cadaver study was performed in which a K-wire trajectory was delivered in the pelvis. The system demonstrated target registration error (TRE) of 2.1 ± 0.3 mm in location of the K-wire tip (median ± interquartile range, IQR) and 0.8 ± 1.4º in orientation at the tip (median ± IQR), providing functionality analogous to surgical tracking / navigation using imaging systems already in the surgical arsenal without reliance on a surgical tracker. The method offers quantitative 3D guidance using images (e.g., inlet / outlet views) already acquired in the standard of care, potentially extending the advantages of navigation to broader utilization in trauma surgery to improve surgical precision and safety.
A Portable, Shock-Proof, Surface-Heated Droplet PCR System for Escherichia coli Detection
Angus, Scott V.; Cho, Soohee; Harshman, Dustin K.; Song, Jae-Young; Yoon, Jeong-Yeol
2015-01-01
A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 103 genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides realtime droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008
Song, Jinhui; Zhou, Jun; Wang, Zhong Lin
2006-08-01
This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.
A reliability analysis tool for SpaceWire network
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
Nomura, Tetsuya; Kikai, Masakazu; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Sugimoto, Takeshi; Keira, Natsuya; Tatsumi, Tetsuya
2018-04-01
In practical settings of percutaneous coronary intervention (PCI), we sometimes encounter difficulty in introducing a guidewire (GW) to the markedly angulated side branch (SB), and the reverse wire technique is considered as a last resort to overcome such a situation. We analyzed 12 cases that underwent PCI with dual-lumen microcatheter-facilitated reverse wire technique between January 2013 and July 2016. We retrospectively investigated the lesion's characteristics and the details of the PCI procedures, and discussed tips about the use of this technique. The SB that exhibits both a smaller take-off angle and a larger carina angle is considered to be the most suitable candidate for this technique. The first step of this technique involves the delivery of the reverse wire system to the target bifurcation. However, most cases exhibit significant stenosis proximal to the bifurcation, which often hampers the delivery of the reverse wire system. Because the sharply curved reverse wire system is easier to pass the stenosis as compared to the roundly curved system, we recommend a sharp curve should be adopted for this technique. On the other hand, it is sure that device delivery is much easier on the GW with a round curve as compared to that with a sharp curve. Therefore, it is important to modify the details of this procedure on a case-by-case basis according to the lesion's characteristics.
Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.
1990-01-01
A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Vibration control of rotor shaft
NASA Technical Reports Server (NTRS)
Nonami, K.
1985-01-01
Suppression of flexural forced vibration or the self-excited vibration of a rotating shaft system not by passive elements but by active elements is described. The distinctive feature of this method is not to dissipate the vibration energy but to provide the force cancelling the vibration displacement and the vibration velocity through the bearing housing in rotation. Therefore the bearings of this kind are appropriately named Active Control Bearings. A simple rotor system having one disk at the center of the span on flexible supports is investigated in this paper. The actuators of the electrodynamic transducer are inserted in the sections of the bearing housing. First, applying the optimal regulator of optimal control theory, the flexural vibration control of the rotating shaft and the vibration control of support systems are performed by the optimal state feedback system using these actuators. Next, the quasi-modal control based on a modal analysis is applied to this rotor system. This quasi-modal control system is constructed by means of optimal velocity feedback loops. The differences between optimal control and quasi-modal control are discussed and their merits and demerits are made clear. Finally, the experiments are described concerning only the optimal regulator method.
Self-organization of mesoscopic silver wires by electrochemical deposition.
Zhong, Sheng; Koch, Thomas; Walheim, Stefan; Rösner, Harald; Nold, Eberhard; Kobler, Aaron; Scherer, Torsten; Wang, Di; Kübel, Christian; Wang, Mu; Hahn, Horst; Schimmel, Thomas
2014-01-01
Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.
[Current strategy in PCI for CTO].
Asakura, Yasushi
2011-02-01
Recently, CTO PCI has come into wide use all over the world and it has been standardized. The 1st step is an antegrade approach using single wire. The 2nd strategy would be parallel wire technique. And the next would be a retrograde approach. In this method, retrograde wiring with Corsair is done at first. If it is successful, externalization is established using 300 cm wire, and this system is able to provide strong back-up support. If it fails, reverse CART technique is the next step. IVUS guided wiring is a last resort. The 2nd wire is manipulated with IVUS guidance. Now, initial success rate is more than 90% with these methods.
A Review of Gas-Cooled Reactor Concepts for SDI Applications
1989-08-01
710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests
A Vibration Isolation System for Use in a Large Thermal Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Hershfeld, Donald; VanCampen, Julie
2002-01-01
A thermal vacuum payload platform that is isolated from background vibration is required to support the development of future instruments for Hubble Space Telescope (HST) and the Next Generation Space Telescope (NGST) at the Goddard Space Flight Center (GSFC). Because of the size and weight of the thermal/vacuum facility in which the instruments are tested, it is not practical to isolate the entire facility externally. Therefore, a vibration isolation system has been designed and fabricated to be installed inside the chamber. The isolation system provides a payload interface of 3.05 m (10 feet) in diameter and is capable of supporting a maximum payload weight of 4536 kg (10,000 Lbs). A counterweight system has been included to insure stability of payloads having high centers of gravity. The vibration isolation system poses a potential problem in that leakage into the chamber could compromise the ability to maintain vacuum. Strict specifications were imposed on the isolation system design to minimize leakage. Vibration measurements, obtained inside the chamber, prior to installing the vibration isolation system, indicated levels in all axes of approximately 1 milli-g at about 20 Hz. The vibration isolation system was designed to provide a minimum attenuation of 40 dB to these levels. This paper describes the design and testing of this unique vibration isolation system. Problems with leakage and corrective methods are presented. Isolation performance results are also presented.
Vibration isolation system for the Stratospheric Observatory For Infrared Astronomy (SOFIA)
NASA Technical Reports Server (NTRS)
Kaiser, T.; Kunz, N.
1988-01-01
The Vibration Isolation System for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is studied. Included are discussions of the various concepts, design goals, concerns, and the proposed configuration for the Vibration Isolation System.
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
77 FR 9518 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
...) Installation of New Relay and Wiring Bundle Within 72 months after the effective date of this AD: Change the... and temperature control system (CACTCS). This AD requires doing certain wiring changes, installing a new relay and necessary wiring in the CACTCS, and performing an operational test of the cooling pack...
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)
2000-01-01
A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.
Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok
2013-01-01
In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317
Interface for the rapid analysis of liquid samples by accelerator mass spectrometry
Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham
2014-02-04
An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.
Robust adaptive vibration control of a flexible structure.
Khoshnood, A M; Moradi, H M
2014-07-01
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
System precisely controls oscillation of vibrating mass
NASA Technical Reports Server (NTRS)
Hancock, D. J.
1967-01-01
System precisely controls the sinusoidal amplitude of a vibrating mechanical mass. Using two sets of coils, the system regulates the drive signal amplitude at the precise level to maintain the mechanical mass when it reaches the desired vibration amplitude.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems.
Glover, Jack L; Hudson, Lawrence T
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
Glover, Jack L.; Hudson, Lawrence T.
2016-01-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard. PMID:27499586
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
NASA Astrophysics Data System (ADS)
Glover, Jack L.; Hudson, Lawrence T.
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.
NASA Technical Reports Server (NTRS)
Williams, Martha; Roberson, Luke; Caraccio, Anne
2010-01-01
This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.
Chen, Yu-Gene T.
2013-04-16
A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.
Survey of Active Vibration Isolation Systems for Microgravity Applications
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration-sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. A tutorial discussion of the microgravity vibration isolation problem, including a description of the acceleration environment of the International Space Station and attenuation requirements, as well as a comparison or the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation is provided. The flight test results of the three demonstrated systems: suppression of transient accelerations by levitation, the microgravity vibration isolation mount, and the active rack isolation system are surveyed.
A Potential Pitfall in the Use of the Monorail System for Carotid Stenting
Pereira, E.; Birnbaum, L.
2006-01-01
Summary The use of EPDs seems to be necessary for safe CAS. Though the monorail system may offer advantages for a single operator, we caution its use with certain aortic arch anatomies. In such anatomies, using an OTW system or at least a 300 cm filter wire or devices that support wire extension will remedy some complications, such as the loss of the guiding sheath. As in our case, the added advantage of a 300 cm filter wire enabled us to avoid a poor outcome or an emergency vascular surgery. PMID:20569594
A potential pitfall in the use of the monorail system for carotid stenting. A technical case report.
Pereira, E; Birnbaum, L
2006-12-15
The use of EPDs seems to be necessary for safe CAS. Though the monorail system may offer advantages for a single operator, we caution its use with certain aortic arch anatomies. In such anatomies, using an OTW system or at least a 300 cm filter wire or devices that support wire extension will remedy some complications, such as the loss of the guiding sheath. As in our case, the added advantage of a 300 cm filter wire enabled us to avoid a poor outcome or an emergency vascular surgery.
NASA Technical Reports Server (NTRS)
Kanemitsu, Yoichi; Watanabe, Katsuhide; Yano, Kenichi; Mizuno, Takayuki
1994-01-01
This paper introduces a study on an Electromagnetically Levitated Vibration Isolation System (ELVIS) for isolation control of large-scale vibration. This system features no mechanical contact between the isolation table and the installation floor, using a total of four electromagnetic actuators which generate magnetic levitation force in the vertical and horizontal directions. The configuration of the magnet for the vertical direction is designed to prevent any generation of restoring vibratory force in the horizontal direction. The isolation system is set so that vibration control effects due to small earthquakes can be regulated to below 5(gal) versus horizontal vibration levels of the installation floor of up t 25(gal), and those in the horizontal relative displacement of up to 30 (mm) between the floor and levitated isolation table. In particular, studies on the relative displacement between the installation floor and the levitated isolation table have been made for vibration control in the horizontal direction. In case of small-scale earthquakes (Taft wave scaled: max. 25 gal), the present system has been confirmed to achieve a vibration isolation to a level below 5 gal. The vibration transmission ratio of below 1/10 has been achieved versus continuous micro-vibration (approx. one gal) in the horizontal direction on the installation floor.
NASA Astrophysics Data System (ADS)
Yu, Y. H.; Liu, D.; Yang, X. F.; Si, J.
2017-08-01
To analyse the flow characteristics of leakage as well as the mechanism of selfexcited vibration in valves, the method of characteristics was used to assess the effect of flexible valve leakage on the self-excited vibration in water-supply pump system. Piezometric head in upstream of the valve as a function of time was obtained. Two comparative schemes were proposed to simulate the process of self-excited vibration by changing the length, the material of the pipeline and the leakage of valves in the above pump system. It is shown that the length and material of the pipe significantly affect the amplitude and cycle of self-excited vibration as well as the increasing rate of the vibration amplitude. In addition, the leakage of the valve has little influence on the amplitude and cycle of self-excited vibration, but has a significant effect on the increasing rate of vibration amplitude. A pipe explosion accident may occur without the inhibiting of self-excited vibration.
2005-02-03
Aging Aircraft 2005 The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft Decision Algorithms for Electrical Wiring Interconnect Systems (EWIS...SUBTITLE Aging Aircraft 2005, The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center, 8W. Taylor St., M/S 190 Hampton, VA 23681 and NAVAIR
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, technicians overlook wires and monitoring equipment that will be used to validate the circuit on the test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Wood, M. E.
1980-01-01
Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.
Rotor vibration caused by external excitation and rub
NASA Technical Reports Server (NTRS)
Matsushita, O.; Takagi, M.; Kikuchi, K.; Kaga, M.
1982-01-01
For turbomachinery with low natural frequencies, considerations have been recently required for rotor vibrations caused by external forces except unbalance one, such as foundation motion, seismic wave, rub and so forth. Such a forced vibration is investigated analytically and experimentally in the present paper. Vibrations in a rotor-bearing system under a harmonic excitation are analyzed by the modal technique in the case of a linear system including gyroscopic effect. For a nonlinear system a new and powerful quasi-modal technique is developed and applied to the vibration caused by rub.
Inertia-Wheel Vibration-Damping System
NASA Technical Reports Server (NTRS)
Fedor, Joseph V.
1990-01-01
Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.
Human-simulated intelligent control of train braking response of bridge with MRB
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie
2016-04-01
The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.
Integrated active sensor system for real time vibration monitoring.
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-11-05
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.
Integrated active sensor system for real time vibration monitoring
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-01-01
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293
The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.
McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G
2016-04-01
Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank orders. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.
The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions
McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.
2016-01-01
Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank orders. PMID:26628522
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage
NASA Technical Reports Server (NTRS)
Mccoy, J. E.
1984-01-01
An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.
Negishi, Michiro; Abildgaard, Mark; Laufer, Ilan; Nixon, Terry; Constable, Robert Todd
2008-01-01
Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording provides a means for acquiring high temporal resolution electrophysiological data and high spatial resolution metabolic data of the brain in the same experimental runs. Carbon wire electrodes (not metallic EEG electrodes with carbon wire leads) are suitable for simultaneous EEG-fMRI recording, because they cause less RF (radio-frequency) heating and susceptibility artifacts than metallic electrodes. These characteristics are especially desirable for recording the EEG in high field MRI scanners. Carbon wire electrodes are also comfortable to wear during long recording sessions. However, carbon electrodes have high electrode-electrolyte potentials compared to widely used Ag/AgCl (silver/silver-chloride) electrodes, which may cause slow voltage drifts. This paper introduces a prototype EEG recording system with carbon wire electrodes and a circuit that suppresses the slow voltage drift. The system was tested for the voltage drift, RF heating, susceptibility artifact, and impedance, and was also evaluated in a simultaneous ERP (event-related potential)-fMRI experiment. PMID:18588913
46 CFR 111.105-17 - Wiring methods for hazardous locations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Wiring methods for hazardous locations. 111.105-17... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-17 Wiring methods for... made with dust-tight cable entrance seals approved for the installation. [CGD 94-108, 61 FR 28284, June...
Ramcharitar, Steve; van der Giessen, Willem J; van der Ent, Martin; Serruys, Patrick W; van Geuns, Robert Jan
2011-06-01
Aims Randomly compare the magnetic navigation system (MNS) to standard guidewire techniques in managing bifurcating lesions. Methods and results Thirty-one consecutive patients with bifurcating lesions were randomized to cross the bifurcating vessels prior to treatment and thereafter the struts of deployed stents with either magnetic or standard guidewires. Crossing success, crossing/fluoroscopy times, and contrast media usage were directly compared. Similar times were noted in both the magnetic wire crossings (median, IQR; 68 s, 45-138 s vs. 59 s, 32-133 s) and fluoroscopic times (median, IQR; 62 s, 44-135 s vs. 55 s, 27-133 s) when compared with standard conventional wires passage through the deployed struts. The MNS successful crossings were 30/31 (96.8%) compared with 28/31 (90.0%) observed with the standard wires. Two previously failed standard wire cases were successfully crossed with magnetic guidewires. Conclusion In contemporary stented bifurcations, the MNS achieved equivalent crossing/fluoroscopy times through deployed stents struts and may be useful in salvaging failed standard wire cases.
Integrated Electrical Wire Insulation Repair System
NASA Technical Reports Server (NTRS)
Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven
2013-01-01
An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available
NASA Technical Reports Server (NTRS)
Ventrice, M. B.; Fang, J. C.; Purdy, K. R.
1975-01-01
A system using a hot-wire transducer as an analog of a liquid droplet of propellant was employed to investigate the ingredients of the acoustic instability of liquid-propellant rocket engines. It was assumed that the combustion process was vaporization-limited and that the combustion chamber was acoustically similar to a closed-closed right-circular cylinder. Before studying the hot-wire closed-loop system (the analog system), a microphone closed-loop system, which used the response of a microphone as the source of a linear feedback exciting signal, was investigated to establish the characteristics of self-sustenance of acoustic fields. Self-sustained acoustic fields were found to occur only at resonant frequencies of the chamber. In the hot-wire closed-loop system, the response of hot-wire anemometer was used as the source of the feedback exciting signal. The self-sustained acoustic fields which developed in the system were always found to be harmonically distorted and to have as their fundamental frquency a resonant frequency for which there also existed a second resonant frequency which was approximately twice the fundamental frequency.
Integrated cable vibration control system using wireless sensors
NASA Astrophysics Data System (ADS)
Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han
2017-04-01
As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.
Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency
NASA Technical Reports Server (NTRS)
Platt, Michael; Jagodnik, John
2011-01-01
A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.
Development of automatic pre-tracking system for fillet weld based on laser trigonometry
NASA Astrophysics Data System (ADS)
Shen, Xiaoqin; Yu, Fusheng
2005-01-01
In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.
The mechatronic design of a fast wire scanner in IHEP U-70 accelerator
NASA Astrophysics Data System (ADS)
Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.
2016-10-01
This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.
Shape memory alloy heat engines and energy harvesting systems
Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W
2014-09-30
A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.
Welding wire pressure sensor assembly
NASA Technical Reports Server (NTRS)
Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)
1994-01-01
The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.
Vibration energy absorption in the whole-body system of a tractor operator.
Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek
2014-01-01
Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).
Mechanization of and experience with a triplex fly-by-wire backup control system
NASA Technical Reports Server (NTRS)
Lock, W. P.; Petersen, W. R.; Whitman, G. B.
1976-01-01
A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
[Contrast of Z-Pinch X-Ray Yield Measure Technique].
Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi
2015-03-01
Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.
NASA Astrophysics Data System (ADS)
Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.
2000-04-01
Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.
Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft
NASA Technical Reports Server (NTRS)
Seacord, C. L.; Vaughn, D. K.
1976-01-01
The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
A Survey of Active Vibration Isolation Systems for Microgravity Applications
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. This paper provides a tutorial discussion of the microgravity vibration isolation problem including a description of the acceleration environment of the International Space Station and attenuation requirements as well as a comparison of the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation. This paper also surveys the flight test results of the three demonstrated systems: Suppression of Transient Accelerations By Levitation (STABLE); the Microgravity Vibration Isolation Mount (MIM); and the Active Rack Isolation System (ARIS).