Sample records for vibrating wire technique

  1. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.« less

  2. Adaptive composites with embedded NiTiCu wires

    NASA Astrophysics Data System (ADS)

    Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.

    2001-07-01

    Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.

  3. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  4. Transurethral ultrasonic ureterolithotripsy using a solid-wire probe.

    PubMed

    Chaussy, C; Fuchs, G; Kahn, R; Hunter, P; Goodfriend, R

    1987-05-01

    A multicenter study evaluates a new technique for transurethral ultrasonic ureterolithotripsy utilizing a solid-wire probe. The transverse vibrations of the probe cause greater stone disintegration. A small ureteroscope is used and a basket is not required. There was a 96.6 per cent success rate in 118 cases. This technique has significantly improved ultrasonic lithotripsy. It has proved to be useful for upper ureteral stones not amenable to extracorporeal shock-wave lithotripsy and lower ureteral stones including "steinstrasse."

  5. Experimental study on titanium wire drawing with ultrasonic vibration.

    PubMed

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chemical and biological sensing using tuning forks

    DOEpatents

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  7. Modeling Smart Structure of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping

    2012-06-01

    With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.

  8. Factors Controlling Superelastic Damping Capacity of SMAs

    NASA Astrophysics Data System (ADS)

    Heller, L.; Šittner, P.; Pilch, J.; Landa, M.

    2009-08-01

    In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.

  9. The Modeling of Vibration Damping in SMA Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D R; Kloucek, P; Seidman, T I

    Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memorymore » alloy wire.« less

  10. First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-04-01

    We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.

  11. Viscosity of saturated R152a measured with a vibrating wire viscometer

    NASA Astrophysics Data System (ADS)

    van der Gulik, P. S.

    1995-07-01

    Earlier reported values of the viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) have been recalculated with an improved value for the mechanical damping of the vibrating wire viscometer. The measurements were taken along the saturation line both in the saturated liquid and in the saturated vapor every 10 K from 243 up to 393 K by means of a vibrating wire viscometer The damping of the vibration of the wire is a measure for the viscosity provided that the mechanical damping is subtracted. The latter is usually measured in vacuum. It turns out that the damping value measured in this way depends on the vacuum pressure and on the way the wire has been handled before. It appeared that the damping applied previously, measured after 6 days of pumping, is too small, resulting in values of the viscosity coefficient which are too large. The effect on the data for the saturated-liquid viscosity is small, but the new saturated-vapor viscosity data agree much better with the unsaturated-vapor data reported by Takahashi et al.

  12. A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1994-01-01

    A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.

  13. Origin of Vibrational Instabilities in Molecular Wires with Separated Electronic States.

    PubMed

    Foti, Giuseppe; Vázquez, Héctor

    2018-06-07

    Current-induced heating in molecular junctions stems from the interaction between tunneling electrons and localized molecular vibrations. If the electronic excitation of a given vibrational mode exceeds heat dissipation, a situation known as vibrational instability is established, which can seriously compromise the integrity of the junction. Using out of equilibrium first-principles calculations, we demonstrate that vibrational instabilities can take place in the general case of molecular wires with separated unoccupied electronic states. From the ab initio results, we derive a model to characterize unstable vibrational modes and construct a diagram that maps mode stability. These results generalize previous theoretical work and predict vibrational instabilities in a new regime.

  14. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  15. Apparatus for disintegrating kidney stones

    NASA Technical Reports Server (NTRS)

    Angulo, E. D. (Inventor)

    1984-01-01

    The useful life of the wire probe in an ultrasonic kidney stone disintegration instrument is enhanced and prolonged by attaching the wire of the wire probe to the tip of an ultrasonic transducer by means of a clamping arrangement. Additionally, damping material is applied to the wire probe in the form of a damper tube through which the wire probe passes in the region adjacent the transducer tip. The damper tube extends outwardly from the transducer tip a predetermined distance, terminating in a resilient soft rubber joint. Also, the damper tube is supported intermediate its length by a support member. The damper system thus acts to inhibit lateral vibrations of the wire in the region of the transducer tip while providing little or no damping to the linear vibrations imparted to the wire by the transducer.

  16. Reliable Wiring Harness

    NASA Technical Reports Server (NTRS)

    Gaspar, Kenneth C.

    1987-01-01

    New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.

  17. Stiffness Corrections for the Vibration Frequency of a Stretched Wire

    ERIC Educational Resources Information Center

    Hornung, H. G.; Durie, M. J.

    1977-01-01

    Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)

  18. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  19. Application of vision measurements for modal analysis of wires for the purpose of overhead transmission lines monitoring

    NASA Astrophysics Data System (ADS)

    Mendrok, Krzysztof; Dworakowski, Ziemowit; Holak, Krzysztof; Kohut, Piotr

    2017-05-01

    Overhead transmission power lines are still one of the crucial elements of electro-energetic system. There are obvious advantages of using overhead transmission in the distribution of electricity. The amount of energy transported through a power line is determined by the distance between the wire and the ground or other objects placed beneath it (eg. trees). This distance is not fixed and depends on the overhang of the wire. This, in turn, is determined by many factors such as ambient temperature, humidity, precipitation, the value of current flowing through the wire. In order to optimize the wires electrical load, the monitoring of that overhang is required. One way to measure it is the non-contact measurement by vision system. It has the advantage, that using high-speed cameras respectively it also allows for vibration measurement and analysis of dynamic performance. That is very important while the wires are susceptible to the influence of wind, and the resulting vibrations interfere with the correct measurement of the overhang. The paper presents the results of vision measurements of the system vibrations and modal analysis carried out on their basis. The study was conducted on a specially made laboratory stand.

  20. Random vibration (stress screening) of printed wiring assemblies

    NASA Technical Reports Server (NTRS)

    Bastien, Gilbert J.

    1988-01-01

    The results of a random vibration test screening (RVSS) study of the determination of the upper and lower vibration limits on printed wiring assemblies (PWA) are summarized. The study results are intended to serve as a guide for engineers and designers who make decisions on PWA features that need to withstand the stresses of dynamic testing and screening. The maximum allowable PWA deflection, G levels, and PSD levels are compared to the expected or actual levels to determine if deleterious effects will occur.

  1. Shape memory alloy wires turn composites into smart structures: I. Material requirements

    NASA Astrophysics Data System (ADS)

    Schrooten, Jan; Michaud, Veronique J.; Zheng, Yanjun; Balta-Neumann, J. Antonio; Manson, Jan-Anders E.

    2002-07-01

    Composites containing thin Shape Memory Alloy (SMA) wires show great potential as materials able to adapt their shape, thermal behavior or vibrational properties to external stimuli. The functional properties of SMA-composites are directly related to the constraining effect of the matrix on the reversible martensitic transformation of the embedded pre-strained SMA wires. The present work reports results of a concerted European effort towards a fundamental understanding of the manufacturing and design of SMA composites. This first part investigates the transformational behavior of constrained SMA wires and its translation into functional properties of SMA composites. Thermodynamic and thermomechanical experiments were performed on SMA wires. A model was developed to simulate the thermomechanical behavior of the wires. From the screening of potential wires it was concluded that NiTiCu, as well as R-phase NiTi appeared as best candidates. Requirements for the host composite materials were surveyed. A Kevlar-epoxy system was chosen. Finally, the quality of the SMA wire-resin interface was assessed by two different techniques. These indicated that a thin oxide layer seems to provide the best interfacial strength. A temperature window in which SMA composites can be safely used was also defined. The manufacturing and properties of the SMA composites will be discussed in Part II.

  2. Nanowire electron scattering spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Bronikowski, Michael (Inventor); Wong, Eric W. (Inventor); von Allmen, Paul (Inventor); Oyafuso, Fabiano A. (Inventor)

    2009-01-01

    Methods and devices for spectroscopic identification of molecules using nanoscale wires are disclosed. According to one of the methods, nanoscale wires are provided, electrons are injected into the nanoscale wire; and inelastic electron scattering is measured via excitation of low-lying vibrational energy levels of molecules bound to the nanoscale wire.

  3. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein.

    PubMed

    Wolf, Steffen; Freier, Erik; Cui, Qiang; Gerwert, Klaus

    2014-12-14

    Proton conduction along protein-bound "water wires" is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded ("dangling") O-H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.

  4. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  5. The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction.

    PubMed

    Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2018-06-15

    At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Concepts and effects of damping in isolators

    NASA Technical Reports Server (NTRS)

    Kerley, J.

    1984-01-01

    A series of innovative designs and inventions which led to the solution of many aerospace vibration and shock problems through damping techniques is presented. The design of damped airborne structures has presented a need for such creative innovation. The primary concern was to discover what concepts were necessary for good structural damping. Once these concepts are determined and converted into basic principles, the design of hardware follows. The following hardware and techniques were developed in support of aerospace program requirements: shipping containers, alignment cables for precision mechanisms, isolation of small components such as relays and flight instruments, isolation for heavy flight equipment, coupling devices, universal joints, use of wire mesh to replace cable, isolation of 16-dB, 5000 lb horn, and compound damping devices to get better isolation from shock and vibration in a high steady environment.

  7. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring systems shows that wireless techniques have several advantages. They are generally smaller and due to the wireless condition the selection of the sensor location is not restricted like in the standard wired systems. Additionally, they are simple to install and consume much less power. Importantly, they are also more competitive in terms of pricing versus traditional wired solutions. Nevertheless, the adoption of this new technology has not been straightforward due to the harsh conditions where sensors are usually deployed. The later delayed and complicated the installation of some sensors in the Rebaixader site but allowed us to improve the monitoring solution. Finally, some very recent experiences on the wireless sensor network installed in a shallow landslide in the Pre-Pyrenees confirmed that this technique is a perfect solution not only for monitoring, but also for warning systems.

  8. A design procedure for active control of beam vibrations

    NASA Technical Reports Server (NTRS)

    Dickerson, S. L.; Jarocki, G.

    1983-01-01

    The transverse vibrations of beams is discussed and a methodology for the design of an active damping device is given. The Bernoulli-Euler equation is used to derive a transcendental transfer function, which relates a torque applied at one end of the beam to the rotational position and velocity at that point. The active damping device consists of a wire, a linear actuator and a short torque arm attached to one end of the beam. The action of the actuator varies a tension in the wire and creates a torque which opposes the rotation of the beam and thus damps vibration. A design procedure for such an active damper is given. This procedure shows the relationships and trade-offs between the actuator stroke, power required, stress levels in the wire and beam and the geometry of the beam and wire. It is shown that by consideration of the frequency response at the beam natural frequencies, the aforementioned relationships can be greatly simplified. Similarly, a simple way of estimating the effective damping ratios and eigenvalue locations of actively controlled beams is presented.

  9. Functionally Graded Shape Memory Alloy Composites Optimized for Passive Vibration Control

    DTIC Science & Technology

    2006-11-20

    Nitinol , it is anticipated that the wire can only experience an incomplete hysteresis. 2.1. SMA wires in sleeves continuously bonded to the plate...Gilheany, J. 1995. Control of the natural frequencies of nitinol -reinforced composite beams, Journal of Sound and Vibrations, Vol. 185, 171-185. 3 Ro...J., and Baz, A., 1995. Nitinol -reinforced plates: Part III, Dynamic characteristics, Composites Engineering, Vol. 5, 91-106. 4 Epps, J and Chandra

  10. Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid {}4{He}

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.

    2017-06-01

    To investigate the formation of quantum turbulence in superfluid {}4{He}, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ ^{-1.2} and ɛ ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.

  11. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    NASA Technical Reports Server (NTRS)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.

  12. The Study the Vibration Condition of the Blade of the Gas Turbine Engine with an All-metal Wire Rope Damper in the Area Mount of the Blade to the Disk

    NASA Astrophysics Data System (ADS)

    Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2018-01-01

    Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.

  13. Modelling of a Bi-axial Vibration Energy Harvester

    DTIC Science & Technology

    2013-05-01

    magnetic field distribution and thus the output power of the vibration energy harvester , the modelling of the response of the ball- bearing to host......nonlinear and bi-axial vibration energy harvesting device. The device utilises a wire-coil electromagnetic (EM) transducer within a nonlinear oscillator

  14. System transmits mechanical vibration into hazardous environment

    NASA Technical Reports Server (NTRS)

    Armstrong, D. G.; Gaal, A. E.

    1965-01-01

    Vibration transducers are tested in a hazardous environment using a single axis transmission system with an electromagnetic shaker table and vibrating wires which drive identical rocker arms, one in the test cell and the other outside. This system can be modified for a multiaxis configuration.

  15. Picosecond ultrasonics study of the vibrational modes of a nanostructure

    NASA Astrophysics Data System (ADS)

    Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.

    2002-03-01

    We report experiments in which a subpicosecond pump light pulse is used to excite vibrations in a nanostructure consisting of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the measured data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to deduce the vibration patterns of six of the normal modes.

  16. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  17. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  18. Cutting Head for Ultrasonic Lithotripsy

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.; Goodfriend, R.

    1987-01-01

    Kidney stones lodged in urinary tract disintegrated with increased safety and efficiency by cutting head attached to end of vibrated wire probe. Aligns probe with stone and enables probe to vibrate long enough to disintegrate stone. Design of cutting head reduces risk of metal-fatigue-induced breakage of probe tip leaving metal fragments in urinary tract. Teeth of cutting head both seat and fragment kidney stone, while extension of collar into catheter lessens mechanical strain in probe wire, increasing probe life and lessening danger of in situ probe breakage.

  19. Methods for evaluating ground dislocations in mining areas / Metoda oceny przemieszczeń budowli na terenie górniczym

    NASA Astrophysics Data System (ADS)

    Kanciruk, Adam

    2012-12-01

    Underground exploitation of natural resources results in disturbance of the original equilibrium in the strata and leads to the emergence of the so-called subsidence troughs on the ground surface (Florkowska, 2010). Due to ground distortion, buildings located in these areas suffer damages and deformations, including angular tilts. An instrument for measuring constructions' angles of slope is known as an inclinometer. The prototypical vibrating wire inclinometer discussed in the present paper has three wires (each of them cooperating with one electromagnet) on which a weight - attached to an arm - is suspended. Thanks to this, it comes of use in a range of procedures, such as measuring object inclines, or determining the angle between the plane of the incline and the assumed reference direction. As any other vibrating wire transducer, an inclinometer cooperates with a proper electronic device which makes it possible to measure the vibration period for each wire separately. The device is also used for the inclinometer's calibration. Additionally, the paper provides an example of an inclinometer's use in measuring the angular tilt of a historical church tower located in the area affected by underground mining operations connected with exploitation of hard coal.

  20. Shape memory alloy wires turn composites into smart structures: II. Manufacturing and properties

    NASA Astrophysics Data System (ADS)

    Michaud, Veronique J.; Schrooten, Jan; Parlinska, Magdelena; Gotthardt, Rolf; Bidaux, Jacques-Eric

    2002-07-01

    The manufacturing route and resulting properties of adaptive composites are presented in the second part of this European project report. Manufacturing was performed using a specially designed frame to pre-strain the SMA wires, embed them into Kevlar-epoxy prepregs, and maintain them during the curing process in an autoclave. Composite compounds were then tested for strain response, recovery stress response in a clamped-clamped configuration, as well as vibrational response. Through the understanding of the transformational behavior of constrained SMA wires, interesting and unique functional properties of SMA composites could be measured, explained and modeled. Large recovery stresses and as a consequence, a change in vibrational response in a clamped- clamped condition, or a reversible shape change in a free standing condition, could be generated by the SMA composites in a controllable way. These properties were dependent on composite design aspects and exhibited a reproducible and stable behavior, provided that the properties of the matrix, of the wires and the processing route were carefully optimized. In conclusion, the achievements of this effort in areas such as thermomechanics, transformational and vibrational behavior and durability of SMA based composites provide a first step towards a reliable materials design, and potentially an industrial application.

  1. Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.

    2018-02-01

    Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.

  2. Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators: wires out by molded-in holes

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid

    2003-08-01

    This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.

  3. A study of the vibrational modes of a nanostructure with picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Antonelli, G. Andrew; Maris, Humphrey J.; Malhotra, Sandra G.; Harper, James M. E.

    2002-05-01

    We describe experiments in which a sub-picosecond pump light pulse is used to excite vibrations in a nanostructure. The sample consists of a periodic array of copper wires embedded in a glass matrix on a silicon substrate. The motion of the wires after excitation is detected using a time-delayed probe light pulse. From the data, it is possible to determine the frequencies νn and damping rates Γn of a number of the normal modes of the structure. These modes have frequencies lying in the range 1-30 GHz. By comparison of the measured νn and Γn with the frequencies and damping rates calculated from a computer simulation of the vibrations of the nanostructure, we have been able to identify the different normal modes and deduce their vibration patterns.

  4. Electronics reliability fracture mechanics. Volume 2: Fracture mechanics

    NASA Astrophysics Data System (ADS)

    Kallis, J.; Duncan, L.; Buechler, D.; Backes, P.; Sandkulla, D.

    1992-05-01

    This is the second of two volumes. The other volume (WL-TR-92-3015) is 'Causes of Failures of Shop Replaceable Units and Hybrid Microcircuits.' The objective of the Electronics Reliability Fracture Mechanics (ERFM) program was to develop and demonstrate a life prediction technique for electronic assemblies, when subjected to environmental stresses of vibration and thermal cycling, based upon the mechanical properties of the materials and packaging configurations which make up an electronic system. The application of fracture mechanics to microscale phenomena in electronic assemblies was a pioneering research effort. The small scale made the experiments very difficult; for example, the 1-mil-diameter bond wires in microelectronic devices are 1/3 the diameter of a human hair. A number of issues had to be resolved to determine whether a fracture mechanics modelling approach is correct for the selected failures; specifically, the following two issues had to be resolved: What fraction of the lifetime is spent in crack initiation? Are macro fracture mechanics techniques, used in large structures such as bridges, applicable to the tiny structures in electronic equipment? The following structural failure mechanisms were selected for modelling: bondwire fracture from mechanical cycling; bondwire fracture from thermal (power) cycling; plated through hole (PTH) fracture from thermal cycling. The bondwire fracture test specimens were A1-1 percent Si wires, representative of wires used in the parts in the modules selected for detailed investigation in this program (see Vol. 1 of this report); 1-mil-diameter wires were tested in this program. The PTH test specimens were sections of 14-layer printed wiring boards of the type used.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Steffen; Gerwert, Klaus, E-mail: gerwert@bph.rub.de; Department of Biophysics, Chinese Academy of Sciences, Max-Planck-Gesellschaft Partner Institute for Computational Biology, 320 Yue Yang Road, 200031 Shanghai

    Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations.more » A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.« less

  6. Evaluation Of Risk And Possible Mitigation Schemes For Previously Unidentified Hazards

    NASA Technical Reports Server (NTRS)

    Linzey, William; McCutchan, Micah; Traskos, Michael; Gilbrech, Richard; Cherney, Robert; Slenski, George; Thomas, Walter, III

    2006-01-01

    This report presents the results of arc track testing conducted to determine if such a transfer of power to un-energized wires is possible and/or likely during an arcing event, and to evaluate an array of protection schemes that may significantly reduce the possibility of such a transfer. The results of these experiments may be useful for determining the level of protection necessary to guard against spurious voltage and current being applied to safety critical circuits. It was not the purpose of these experiments to determine the probability of the initiation of an arc track event only if an initiation did occur could it cause the undesired event: an inadvertent thruster firing. The primary wire insulation used in the Orbiter is aromatic polyimide, or Kapton , a construction known to arc track under certain conditions [3]. Previous Boeing testing has shown that arc tracks can initiate in aromatic polyimide insulated 28 volts direct current (VDC) power circuits using more realistic techniques such as chafing with an aluminum blade (simulating the corner of an avionics box or lip of a wire tray), or vibration of an aluminum plate against a wire bundle [4]. Therefore, an arc initiation technique was chosen that provided a reliable and consistent technique of starting the arc and not a realistic simulation of a scenario on the vehicle. Once an arc is initiated, the current, power and propagation characteristics of the arc depend on the power source, wire gauge and insulation type, circuit protection and series resistance rather than type of initiation. The initiation method employed for these tests was applying an oil and graphite mixture to the ends of a powered twisted pair wire. The flight configuration of the heater circuits, the fuel/oxider (or ox) wire, and the RCS jet solenoid were modeled in the test configuration so that the behavior of these components during an arcing event could be studied. To determine if coil activation would occur with various protection wire schemes, 145 tests were conducted using various fuel/ox wire alternatives (shielded and unshielded) and/or different combinations of polytetrafuloroethylene (PTFE), Mystik tape and convoluted wraps to prevent unwanted coil activation. Test results were evaluated along with other pertinent data and information to develop a mitigation strategy for an inadvertent RCS firing. The SSP evaluated civilian aircraft wiring failures to search for aging trends in assessing the wire-short hazard. Appendix 2 applies Weibull statistical methods to the same data with a similar purpose.

  7. Oversampling in virtual visual sensors as a means to recover higher modes of vibration

    NASA Astrophysics Data System (ADS)

    Shariati, Ali; Schumacher, Thomas

    2015-03-01

    Vibration-based structural health monitoring (SHM) techniques require modal information from the monitored structure in order to estimate the location and severity of damage. Natural frequencies also provide useful information to calibrate finite element models. There are several types of physical sensors that can measure the response over a range of frequencies. For most of those sensors however, accessibility, limitation of measurement points, wiring, and high system cost represent major challenges. Recent optical sensing approaches offer advantages such as easy access to visible areas, distributed sensing capabilities, and comparatively inexpensive data recording while having no wiring issues. In this research we propose a novel methodology to measure natural frequencies of structures using digital video cameras based on virtual visual sensors (VVS). In our initial study where we worked with commercially available inexpensive digital video cameras we found that for multiple degrees of freedom systems it is difficult to detect all of the natural frequencies simultaneously due to low quantization resolution. In this study we show how oversampling enabled by the use of high-end high-frame-rate video cameras enable recovering all of the three natural frequencies from a three story lab-scale structure.

  8. Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete

    NASA Astrophysics Data System (ADS)

    Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren

    2018-03-01

    Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.

  9. Performance of SMA-reinforced composites in an aerodynamic profile

    NASA Astrophysics Data System (ADS)

    Simpson, John; Boller, Christian

    2002-07-01

    Within the European collaborative applied fundamental research project ADAPT, fundamentals of SMA-reinforced composites were evaluated and the specific manufacturing techniques for these composites developed and realised. The involved partners are listed at the end. To demonstrate applicability of these composites a realistically scaled aerodynamic profile of around 0.5m span by 0.5m root chord was designed, manufactured and assembled. The curved skins were manufactured as SMA composites with two layers of SMA-wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and activated and excited by a shaker at its tip which allowed to test the dynamic performance of the profile under different external loading conditions with various internal actuation conditions through the SMA wires. The paper includes some background of the design and manufacturing of the aerodynamic profile and will discuss some of the results determined recently on the test rig. A view with regard to future wind tunnel testing will be given as well.

  10. Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Lamaka, S.V.; Taryba, M.

    2011-01-01

    This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less

  11. Wire-Wrap Chatter Detector

    NASA Technical Reports Server (NTRS)

    Fisch, G. Z.; Borden, T. J.

    1982-01-01

    Monitoring circuit responds to changes in resistance as little as 0.1 ohm. Has been used to detect defective wire-wrap connections during thermal and vibration tests. Defect is indicated to operator by light-emitting diode and by increase in count on a two-digit display.

  12. Elastic, Frictional, Strength and Dynamic Characteristics of the Bell Shape Shock Absorbers Made of MR Wire Material

    NASA Astrophysics Data System (ADS)

    Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.

    2018-01-01

    The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.

  13. Preparation of well-adhered γ-Al 2O 3 washcoat on metallic wire mesh monoliths by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi

    2007-01-01

    Washcoat deposited on metallic wire mesh monoliths was prepared using γ-alumina powders by electrophoretic deposition under a relatively low electric voltage. The microstructure, phase structure and adhesion of washcoat were investigated by SEM, XRD, ultrasonic vibration and thermal shock. The results showed that the loading and adhesion of washcoat were affected obviously by the properties of suspension, such as the zeta potential and the amount of adding binders. A small quantity of aluminum isopropoxide could promote the cohesive affinity of washcoat in thermal shock. The adhesion of washcoat in ultrasonic vibration could be reinforced by increasing calcined temperature and adding a certain aluminum particles. It was also found that the washcoat immersed metal nitrate has excellent vibration-resistant ability.

  14. Hydrogen in Mono-Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu

    2004-03-01

    Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.

  15. Aerodynamic force measurement on a large-scale model in a short duration test facility

    NASA Astrophysics Data System (ADS)

    Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.

    2005-03-01

    A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350μs is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1ms.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xu; Shen, Fuwang; Wang, Shuai

    The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less

  17. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    NASA Astrophysics Data System (ADS)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  18. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  19. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  20. New insights into ETS-10 and titanate quantum wire: a comprehensive characterization.

    PubMed

    Jeong, Nak Cheon; Lee, Young Ju; Park, Jung-Hyun; Lim, Hyunjin; Shin, Chae-Ho; Cheong, Hyeonsik; Yoon, Kyung Byung

    2009-09-16

    The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.

  1. Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade

    DOE PAGES

    Wang, Xu; Shen, Fuwang; Wang, Shuai; ...

    2017-04-06

    The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less

  2. Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Shen, Fuwang; Wang, Shuai; Feng, Cunfeng; Li, Changyu; Lu, Peng; Thomas, Jim; Xu, Qinghua; Zhu, Chengguang

    2017-07-01

    The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper, the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.

  3. Autonomous diagnostics and prognostics of signal and data distribution systems

    NASA Astrophysics Data System (ADS)

    Blemel, Kenneth G.

    2001-07-01

    Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.

  4. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL was increased. Detailed experimental results will be presented.

  5. The use of plastic optical fibres and shape memory alloys for damage assessment and damping control in composite materials

    NASA Astrophysics Data System (ADS)

    Kuang, K. S. C.; Cantwell, W. J.

    2003-08-01

    This paper reports the use of a plastic fibre sensor for detecting impact damage in carbon fibre epoxy cantilever beams by monitoring their damping response under free vibration loading conditions. The composite beams were impacted at impact energies up to 8 J. The residual strengths and stiffnesses of the damaged laminates were measured in order to relate reductions in their mechanical properties to changes in their damping characteristics. Here, optical fibre sensors were surface bonded to carbon fibre composite beams which were subjected to free vibration tests to monitor their dynamic response. In the second part of this study, Ni-Ti shape memory alloy (SMA) wires were employed to control and modify the damping response of a composite beam. The SMA wires were initially trained to obtain the desired shape when activated. Here, the trained SMA wires were heated locally using a nickel/chromium wire that was wrapped around the trained region of the SMA. By using this method to activate the SMA wire (as opposed to direct electrical heating), it is possible to obtain localized actuation without heating the entire length of the wire. This procedure minimizes any damage to the host material that may result from local heat transfer between the SMA wire and the composite structure. In addition, the reduction in power requirements to achieve SMA activation permits the use of small-size power packs which can in turn lead to a potential weight reduction in weight-critical applications. The findings of this study demonstrate that a trained SMA offers a superior damping capability to that exhibited by an 'as-supplied' flat-annealed wire.

  6. Computer animation of modal and transient vibrations

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1987-01-01

    An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.

  7. Initial investigations into the damping characteristics of wire rope vibration isolators

    NASA Technical Reports Server (NTRS)

    Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.

    1987-01-01

    Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.

  8. X-wing fly-by-wire vehicle management system

    NASA Technical Reports Server (NTRS)

    Fischer, Jr., William C. (Inventor)

    1990-01-01

    A complete, computer based, vehicle management system (VMS) for X-Wing aircraft using digital fly-by-wire technology controlling many subsystems and providing functions beyond the classical aircraft flight control system. The vehicle management system receives input signals from a multiplicity of sensors and provides commands to a large number of actuators controlling many subsystems. The VMS includes--segregating flight critical and mission critical factors and providing a greater level of back-up or redundancy for the former; centralizing the computation of functions utilized by several subsystems (e.g. air data, rotor speed, etc.); integrating the control of the flight control functions, the compressor control, the rotor conversion control, vibration alleviation by higher harmonic control, engine power anticipation and self-test, all in the same flight control computer (FCC) hardware units. The VMS uses equivalent redundancy techniques to attain quadruple equivalency levels; includes alternate modes of operation and recovery means to back-up any functions which fail; and uses back-up control software for software redundancy.

  9. A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.

    2007-06-01

    Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, N.; Fellenz, B.; Prieto, P.

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam testmore » facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.« less

  11. Electronics Reliability Fracture Mechanics, Volume 2. Fracture Mechanics

    DTIC Science & Technology

    1992-05-01

    alloy or strength level. Aluminum alloy 2024 - T351 was selected as being representative of the aluminum wire, and the fatigue ...to bracket the bond wire fatigue tests. 3-41 Also shown for comparison are two curves, which are the crack growth rates for 2024 aluminum alloy (Ref...is very similar to that for 2024 aluminum alloy . 3.2.6 Discussion of Loop Vibration Fatigue Testing Results This experimental and

  12. Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor

    2012-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.

  13. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.

  14. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  15. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    NASA Technical Reports Server (NTRS)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination issues were also examined during the isolator selection period for meeting the SAGE III-ISS instrument requirements.

  16. Observations of earth eigen vibrations possibly excited by low frequency gravity waves

    NASA Technical Reports Server (NTRS)

    Tuman, V. S.

    1971-01-01

    A cryogenic gravity meter made of two parts, a magnetic suspension unit and a detection module, was used to monitor earth eigen vibrations. The magnetic field and field gradient are generated by energizing a set of superconducting coils made of niobium-zirconium alloy wire. The detection module is a double Josephson junction magnetometer. The output is printed on a chart recorder and later digitized using a computer; a Fourier transformation is performed on the accumulated data. The measurements of eigen vibrations are summarized in tabular and graphical representations.

  17. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  18. Preload Loss in a Spacecraft Fastener via Vibration-Induced Unwinding

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Howard, S. Adam; Hess, Daniel P.

    2018-01-01

    Sound engineering practice requires that fasteners and bolted joints maintain preload in service. NASA recently concluded a series of vibration tests of a multicomponent structure intended to simulate an upper stage section of a launch vehicle. The stacked components were joined through six circumferentially placed bolted cup-cone-style pyrotechnic joint mechanisms designed to share spacecraft structural loads and then enable separation during ascent. Over the course of the vibration test campaign, all six bolted cup-cone mechanisms experienced some degree of preload loss with two mechanisms losing half of their original bolt preload. A subsequent forensic anomaly investigation concluded that vibration-induced unwinding of the preload nut-and-bolt assemblies occurred despite the use of safety wire and high levels of thread friction. A series of experiments were done to better understand how large, heavily preloaded fasteners could unwind. Additionally, thread friction torque was measured and the fastener locking capability of safety wire was evaluated. The friction coefficient between the clamped cup-cone components was characterized and finally a highly instrumented mechanism-level vibration test was done to reproduce the unwinding phenomenon to better understand the mechanism's behavior. The conclusion drawn was that vibration and structural forces led to relative motion (sliding) of the clamped components, resulting in self-loosening and unwinding effects on the nut-and-bolt assembly. To counter this phenomenon, more effective fastener locking methodologies were recommended and a follow-on effort was initiated to quantify the relationship between preload, component motion, and resulting unwinding forces. It is hoped that elucidation of these effects can be used to design more effective fastener locking features.

  19. Wireless sensing and vibration control with increased redundancy and robustness design.

    PubMed

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  20. Inelastic fingerprints of hydrogen contamination in atomic gold wire systems

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads

    2007-03-01

    We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductance of gold wires is only slightly reduced from the conductance quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to use the conductance itself to distinguish between various configurations. On the other hand, our calculations of the inelastic signals predict significant differences between pure and hydrogen contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A detailed characterization of gold wires with a hydrogen impurity should therefore be possible from the strain dependence of the inelastic signals in the conductance.

  1. Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition

    NASA Astrophysics Data System (ADS)

    Sergelius, Philip; Lee, Ji Hyun; Fruchart, Olivier; Shaker Salem, Mohamed; Allende, Sebastian; Alejandro Escobar, Roberto; Gooth, Johannes; Zierold, Robert; Toussaint, Jean-Christophe; Schneider, Sebastian; Pohl, Darius; Rellinghaus, Bernd; Martin, Sylvain; Garcia, Javier; Reith, Heiko; Spende, Anne; Toimil-Molares, Maria-Eugenia; Altbir, Dora; Cowburn, Russel; Görlitz, Detlef; Nielsch, Kornelius

    2017-02-01

    Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 μm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.

  2. Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Iaia, Vito; Menachekanian, Emin; Williams, Gary

    2014-03-01

    A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.

  3. Broadband waveguide vibration sensor for turbine bearing health monitoring

    NASA Astrophysics Data System (ADS)

    Larsen, C.; Branch, N.

    Mechanical waveguides have been demonstrated for monitoring turbine engine main shaft bearings. These devices are rugged metallic wires which can be installed inside the engine near the bearing and routed outside to the case where the electronics can be serviced. To date, the waveguide vibration sensor has been demonstrated on two engines with thrust bearings with seeded defects: a T63 and a Rolls Royce 501-KB5+ (industrial version of the T56).

  4. Separate vertical wiring for the fixation of comminuted fractures of the inferior pole of the patella.

    PubMed

    Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo; Yang, Kyu Hyun

    2014-05-01

    Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing.

  5. Glass antenna for RF-ion source operation

    DOEpatents

    Leung, Ka Ngo; Lee, Yung-Hee Yvette; Perkins, Luke T.

    2000-01-01

    An antenna comprises a plurality of small diameter conductive wires disposed in a dielectric tube. The number and dimensions of the conductive wires is selected to improve the RF resistance of the antenna while also facilitating a reduction in thermal gradients that may create thermal stresses on the dielectric tube. The antenna may be mounted in a vacuum system using a low-stress antenna assembly that cushions and protects the dielectric tube from shock and mechanical vibration while also permitting convenient electrical and coolant connections to the antenna.

  6. State of the Art for Design and Construction of Sand Compaction Piles

    DTIC Science & Technology

    1987-11-01

    Walz, Headquarters, US Army Corps of Engineers (HQUSACE), was REMR Technical Monitor. The REMR Overview Committee, consisted of Mr. John R. Nikel ... Wire Vibrator Hopper Casing Pipe Air Line Power Line Sand Skip Bucket Front End Loader Figure 2. Typical equipment used to construct a sand...8217~~~~--­ Rubber Packing Wire Inlet for air to close valve and press sand down ..,...__ Air lnl~ot: Figure 5. Special valve used to seal the casing when

  7. Minimally invasive tension band wiring technique for olecranon fractures.

    PubMed

    Takada, Naoya; Kato, Kenji; Fukuta, Makoto; Wada, Ikuo; Otsuka, Takanobu

    2013-12-01

    Some types of implants, such as plates, screws, wires, and nails, have been used for open reduction and internal fixation of olecranon fractures. A ≥ 10 cm longitudinal incision is used for open reduction and internal fixation of olecranon fractures. According to previous studies, tension band wiring is a popular method that gives good results. However, back out of the wires after the surgery is one of the main postoperative complications. Moreover, if the Kirschner wires are inserted through the anterior ulnar cortex, they may impinge on the radial neck, supinator muscle, or biceps tendon. Herein, we describe the minimally invasive tension band wiring technique using Ring-Pin. This technique can be performed through a 2 cm incision. Small skin incisions are advantageous from an esthetic viewpoint. Ring-Pin was fixed by using a dedicated cable wire that does not back out unless the cable wire breaks or slips out of the dedicated metallic clamp. As the pins are placed in intramedullary canal, this technique does not lead to postoperative complications that may occur after transcortical fixation by conventional tension band wiring. Minimally invasive tension band wiring is one of the useful options for the treatment of olecranon fractures with some advantages.

  8. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.

    PubMed

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor

    2014-03-25

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.

  9. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B

    PubMed Central

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor

    2014-01-01

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872

  10. Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.

    PubMed

    Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John

    2010-01-01

    Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.

  11. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  12. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    NASA Astrophysics Data System (ADS)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  13. Hydrologic data for a study of pre-Illinoian glacial till in Linn County, Iowa, water year 1990

    USGS Publications Warehouse

    Bowman, Phillip R.

    1991-01-01

    Ten unvented, vibrating-wire, pressure transducers with internal thermistors were buried in two boreholes at upgradient and downgradient locations to record hydraulic pressure arid water temperature at selected depths.

  14. Separate Vertical Wiring for the Fixation of Comminuted Fractures of the Inferior Pole of the Patella

    PubMed Central

    Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo

    2014-01-01

    Purpose Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Materials and Methods Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. Results For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Conclusion Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing. PMID:24719149

  15. Techniques to measure tension in wires or straw tubes

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Lin, S.; Wang, C.

    2018-01-01

    We discuss two different ways of measuring the tension in light wires and straws. The first technique uses an operational amplifier to subtract out the oscillating driving voltage mixed in the output voltage, which also has the signal. The isolated signal is amplified and displayed in an oscilloscope. In the second technique, an analog switch routes the oscillating voltage to a wire for a fraction of seconds, and then switches off the voltage. As the voltage is turned off, the induced signal from the wire is routed to an amplifier-rectifier circuit for a fraction of a second to measure the signal size as a function of the driving frequency. The first technique fits well to measure a single wire, while the second one fits well to measure many wires, 16 in our case, at a time.

  16. A Case of Chronic Total Occlusion of the Left Anterior Descending Artery Successfully Treated with Side Branch Technique Using the Soutenir CV

    PubMed Central

    Niizeki, Takeshi; Ikeno, Eiichiro; Kubota, Isao

    2017-01-01

    Patient: Male, 54 Final Diagnosis: Old myocardial infarction Symptoms: Lower extremity swelling • respiratory distress Medication: — Clinical Procedure: Success Specialty: Cardiology Objective: Unusual setting of medical care Background: Success rates for treatment of chronic total occlusion (CTO) have dramatically improved in recent years with the development of new CTO guidewires and development of new techniques such as the retrograde approach. In the antegrade approach, a guidewire is occasionally passed through a side branch despite successful wire crossing of the CTO lesion. In order to pass a wire through the main artery, there are a few side branch techniques such as a reverse wire technique. Case Report: A 54-year-old man with symptoms of heart failure was admitted to our hospital. Coronary angiography showed CTO of the proximal left anterior descending artery. Percutaneous coronary intervention with an antegrade approach was started. We succeeded in passing the wire through a side branch but not the main artery. Unfortunately, a reverse wire technique failed in this case. Next, the wire passed through a side branch was exchanged with the Soutenir CV, and a retrograde approach was started. The wire crossing from retrograde was entwined around the Soutenir CV. After that, the retrograde wire was snared and guided to the antegrade guiding catheter, which resulted in successful wiring into the main artery easily. Conclusions: The side branch technique using the Soutenir CV may be an effective strategy in some cases. PMID:28082733

  17. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  18. Towards a wire-mediated coupling of trapped ions

    NASA Astrophysics Data System (ADS)

    Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut

    2008-03-01

    Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.

  19. [Osteosynthesis by tension band wiring of displaced fractures of the olecranon].

    PubMed

    Doursounian, L; Prevot, O; Touzard, R C

    1994-01-01

    Fifty-two displaced olecranon fractures in adults were treated over a 5-year period. Minimum follow-up was 6 months. Forty-eight fractures were operated and 38 were treated by tension band wiring technique. This technique, applied for all types of fractures, gave good functional results in 33 cases (87%) and fair functional results in 5 cases. Complications include 1 pseudarthrosis, 2 loss of reduction, 2 transient tourniquet palsy and 13 skin problems due to wire protrusion. Tension band wiring is a simple safe and effective technique for displaced olecranon fractures but often requires K-wire removal.

  20. Experimental investigation of localized disturbances in the straight wing boundary layer, generated by finite surface vibrations

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.

    2017-10-01

    Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.

  1. Hot-wire anemometry in hypersonic helium flow

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Weinstein, L. M.

    1974-01-01

    Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.

  2. A space release/deployment system actuated by shape memory wires

    NASA Astrophysics Data System (ADS)

    Fragnito, Marino; Vetrella and, Sergio

    2002-11-01

    In this paper, the design of an innovative hold down/release and deployment device actuated by shape memory wires, to be used for the first time for the S MA RT microsatellite solar wings is shown. The release and deployment mechanisms are actuated by a Shape Memory wire (Nitinol), which allows a complete symmetrical and synchronous release, in a very short time, of the four wings in pairs. The hold down kinematic mechanism is preloaded to avoid vibration nonlinearities and unwanted deployment at launch. The deployment mechanism is a simple pulley system. The stiffness of the deployed panel-hinge system needs to be dimensioned in order to meet the on-orbit requirement for attitude control. One-way roller clutches are used to keep the panel at the desired angle during the mission. An ad hoc software has been developed to simulate both the release and deployment operations, coupling the SMA wire behavior with the system mechanics.

  3. Design and performance of a shape memory alloy-reinforced composite aerodynamic profile

    NASA Astrophysics Data System (ADS)

    Simpson, J. C.; Boller, C.

    2008-04-01

    Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires.

  4. The chopstick-noodle twist: an easy technique of percutaneous patellar fixation in minimally displaced patellar fractures.

    PubMed

    Muzaffar, Nasir; Ahmad, Nawaz; Ahmad, Aejaz; Ahmad, Nissar

    2012-01-01

    We report six cases of minimally displaced two-part patellar fractures with skin injury over the patella that were treated with percutaneous K wire fixation and compression applied using stainless steel (SS) wire. This technique makes it possible to perform early operative treatment in cases where unhealthy skin is not amenable to conventional tension band wiring. The technique employs two K wires inserted through the two fracture fragments under local or regional anaesthesia. They are then compressed using simple SS wire knots at the two ends - making it look like noodles at the end of two chopsticks. The fixation is subsequently augmented with a cylindrical plaster-of-Paris cast. The technique is simple, cheap and does not cause soft tissue injury.

  5. Custom-Made Finger Guard to Prevent Wire-Stick Injury to the Operator's Finger while Performing Intermaxillary Fixation.

    PubMed

    Kumaresan, Ramesh; Ponnusami, Karthikeyan; Karthikeyan, Priyadarshini

    2014-12-01

    The treatment of maxillofacial fractures involves different methods from bandages and splinting to methods of open reduction and internal fixation and usually requires control of the dental occlusion with the help of intermaxillary fixation (IMF). Different wiring techniques have been used to aid in IMF including placement of custom-made arch bars, eyelet etc. However, these wiring techniques are with a constant danger of trauma to the surgeon's fingers by their sharp ends. Though there exist a variety of commercially available barrier products and customized techniques to prevent wire-stick injury, cost factor, touch sensitivity, and comfort aspect restrain their acquirement and exploit. This technical note describes the construction of a simple and economical finger guard made of soft thermoplastic material that provides an added protection to fingers from wire-stick type injuries, and its flexible nature permits a comfortable finger flexion movement and acceptable touch sensitivity. This is a simple, economical, reusable puncture, and cut-resistance figure guard by which we can avoid wire-stick type injury to the operator's fingers during wiring technique.

  6. Medial malleolar fractures: a biomechanical study of fixation techniques.

    PubMed

    Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G

    2011-08-08

    Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.

  7. Advanced wiring technique and hardware application: Airplane and space vehicle

    NASA Technical Reports Server (NTRS)

    Ernst, H. L.; Eichman, C. D.

    1972-01-01

    An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

  8. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Connolly, Walter

    1986-01-01

    A relatively simple opto-electronic setup is described that utilizes a cadmium sulphide (CdS) photoconductive cell to detect resonance of a stretched vibrating string or wire. The display may be either an oscilloscope or a frequency counter. Also describes an inexpensive socket for flanged-base light bulbs. (JN)

  9. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    NASA Astrophysics Data System (ADS)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  10. Radiofrequency wire for the recanalization of central vein occlusions that have failed conventional endovascular techniques.

    PubMed

    Guimaraes, Marcelo; Schonholz, Claudio; Hannegan, Christopher; Anderson, Michael Bret; Shi, June; Selby, Bayne

    2012-08-01

    To report the technique and acute technical results associated with the PowerWire Radiofrequency (RF) Guidewire used to recanalize central vein occlusions (CVOs) after the failure of conventional endovascular techniques. A retrospective study was conducted from January 2008 to December 2011, which identified all patients with CVOs who underwent treatment with a novel RF guide wire. Forty-two symptomatic patients (with swollen arm or superior vena cava [SVC] syndrome) underwent RF wire recanalization of 43 CVOs, which were then implanted with stents. The distribution of CVOs in central veins was as follows: six subclavian, 29 brachiocephalic, and eight SVC. All patients had a history of central venous catheter placement. Patients were monitored with regular clinical evaluations and central venography after treatment. All 42 patients had successful recanalization of CVOs facilitated by the RF wire technique. There was one complication, which was not directly related to the RF wire: one case of cardiac tamponade attributed to balloon angioplasty after stent placement. Forty of 42 patients (95.2%) had patent stents and were asymptomatic at 6 and 9 months after treatment. The present results suggest that the RF wire technique is a safe and efficient alternative in the recanalization of symptomatic and chronic CVOs when conventional endovascular techniques have failed. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  11. Quartz tuning-fork oscillations in He II and drag coefficient

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.

    2011-07-01

    The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.

  12. Strength of surgical wire fixation. A laboratory study.

    PubMed

    Guadagni, J R; Drummond, D S

    1986-08-01

    Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.

  13. Multifilament Superconducting Wire Based on NbTi Alloy in a Combined Copper/Copper-Nickel Matrix

    NASA Astrophysics Data System (ADS)

    Vedernikov, G. P.; Shikov, A. K.; Potanina, L. V.; Gubkin, I. N.; Scherbakova, O. V.; Salunin, N. I.; Korpusov, V. U.; Novikov, S. I.; Novikov, M. S.

    2004-06-01

    Model fine filament superconducting 0.65 mm wire based on NbTi alloy, intended for operating in fields having sweep rate from 1 up to 4 T/s, has been developed and manufactured by Bochvar Institute (VNIINM). The wire was fabricated by a single stacking method. Each filament was surrounded by a matrix of commercial MN-5 alloy (Cu-5wt.%Ni). The effects of heat treatment regimes, and twist pitches within the range of 3.5 - 8 mm on Jc of the strand were investigated at fields of 2-8 T. The critical current density is more than 2700 A/mm2 at 5 T, 4.2 K. The magnetization of wire has been measured by a vibrating magnetometer at field amplitude up to ± 3 T. Hysteresis losses and effective diameter were calculated. Total and coupling losses have been determined by Fitz method on strand magnetization at fields, varying in trapezoidal mode. It was shown that the wire of this type is of potential application for the use in the magnets of the GSI-type accelerator to be constructed in Germany.

  14. Melt Stirring by Horizontal Crucible Vibration

    NASA Technical Reports Server (NTRS)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  15. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    NASA Astrophysics Data System (ADS)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  16. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  17. Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam.

    PubMed

    Zhang, Yuxiang; Planès, Thomas; Larose, Eric; Obermann, Anne; Rospars, Claude; Moreau, Gautier

    2016-04-01

    This paper describes the use of an ultrasonic imaging technique (Locadiff) for the Non-Destructive Testing & Evaluation of a concrete structure. By combining coda wave interferometry and a sensitivity kernel for diffuse waves, Locadiff can monitor the elastic and structural properties of a heterogeneous material with a high sensitivity, and can map changes of these properties over time when a perturbation occurs in the bulk of the material. The applicability of the technique to life-size concrete structures is demonstrated through the monitoring of a 15-ton reinforced concrete beam subject to a four-point bending test causing cracking. The experimental results show that Locadiff achieved to (1) detect and locate the cracking zones in the core of the concrete beam at an early stage by mapping the changes in the concrete's micro-structure; (2) monitor the internal stress level in both temporal and spatial domains by mapping the variation in velocity caused by the acousto-elastic effect. The mechanical behavior of the concrete structure is also studied using conventional techniques such as acoustic emission, vibrating wire extensometers, and digital image correlation. The performances of the Locadiff technique in the detection of early stage cracking are assessed and discussed.

  18. Coil tubing fishing operations utilize a first time technique to strip over and recover 9500 feet of stuck slickline wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forgenie, V.H.; Heiberger, E.M.; Kelso, L.K.

    1995-12-31

    Coil tubing was utilized to perform a modified strip over operation and recover 9500 ft. of stuck slickline (0.108 in.) wire. The technique, thought to be an industry first, eliminated the risky option of recovering the wire piecemeal via conventional wireline fishing operations. This paper documents the background that lead to the development of the technique. An operational summary details its implementation and illustrations are included of the special tools and techniques employed.

  19. A Novel 'Cheese Wire' Technique for Stent Positioning Following Difficult Iliac Artery Subintimal Dissection and Aortic Re-Entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkinson, A. F., E-mail: anthony.watkinson@rdeft.nhs.u

    2009-07-15

    Subintimal wire dissection is a well-established method for traversing difficult vascular occlusions. This technique relies on re-entry of the true lumen distal to the occlusion, which may be difficult in diseased vessels with significant calcification. This case report describes a novel 'cheese wire' technique to allow stent positioning without the use of proprietary re-entry devices.

  20. Simulation of the Vibratory Condition of the Compressor Blade with a Pressed wire Material “MR” Damper Which Located Around the Root Attachment

    NASA Astrophysics Data System (ADS)

    Gvozdev, Alexander S.; Melentjev, Vladimir S.

    2018-01-01

    When you create a modern gas turbine engines urgent task is to improve the reliability by preventing fatigue damages of rotor blades. Such damage is largely determined by the level of vibration stresses. In this paper, using the finite element method and transient analysis of propose a method calculating the damping characteristics of the plates of the pressed wire material “MR” around the root attachment of the compressor blades of a gas turbine engine. Where taken into account contact interaction between the blades and the impeller disk.

  1. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu; Elliott, Eric D., E-mail: eric.elliott@osumc.edu; Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  2. Tips of the dual-lumen microcatheter-facilitated reverse wire technique in percutaneous coronary interventions for markedly angulated bifurcated lesions.

    PubMed

    Nomura, Tetsuya; Kikai, Masakazu; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Sugimoto, Takeshi; Keira, Natsuya; Tatsumi, Tetsuya

    2018-04-01

    In practical settings of percutaneous coronary intervention (PCI), we sometimes encounter difficulty in introducing a guidewire (GW) to the markedly angulated side branch (SB), and the reverse wire technique is considered as a last resort to overcome such a situation. We analyzed 12 cases that underwent PCI with dual-lumen microcatheter-facilitated reverse wire technique between January 2013 and July 2016. We retrospectively investigated the lesion's characteristics and the details of the PCI procedures, and discussed tips about the use of this technique. The SB that exhibits both a smaller take-off angle and a larger carina angle is considered to be the most suitable candidate for this technique. The first step of this technique involves the delivery of the reverse wire system to the target bifurcation. However, most cases exhibit significant stenosis proximal to the bifurcation, which often hampers the delivery of the reverse wire system. Because the sharply curved reverse wire system is easier to pass the stenosis as compared to the roundly curved system, we recommend a sharp curve should be adopted for this technique. On the other hand, it is sure that device delivery is much easier on the GW with a round curve as compared to that with a sharp curve. Therefore, it is important to modify the details of this procedure on a case-by-case basis according to the lesion's characteristics.

  3. 46 CFR 28.835 - Fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...

  4. 46 CFR 28.835 - Fuel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...

  5. 46 CFR 28.835 - Fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...

  6. 46 CFR 28.835 - Fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by vibration. If nonmetallic flexible hose is used it must: (1) Not exceed the minimum length needed to allow... with wire braid; (4) Be fitted with suitable, corrosion resistant, compression fittings; and (5) Be...

  7. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  8. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  9. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  10. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  11. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  12. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  13. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  14. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  15. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  16. 46 CFR 119.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...

  17. Intravascular ultrasound guided wiring re-entry technique for complex chronic total occlusions.

    PubMed

    Huang, Wei-Chieh; Teng, Hsin-I; Hsueh, Chien-Hung; Lin, Shing-Jong; Chan, Wan-Leong; Lu, Tse-Min

    2018-05-03

    The successful recanalization rate of chronic total occlusion (CTO) lesions without retrograde collaterals available is always low. Intravascular ultrasound (IVUS) may be useful to guide the subintimal guidewire to re-enter the true lumen. We evaluated the clinical feasibility and efficacy of the IVUS-guided wiring re-entry technique for these complex CTO lesions. Twenty consecutive patients (19 male, mean age: 65.3 ± 12.8 years) with both failed antegrade and retrograde approaches were enrolled. The IVUS catheter was introduced into the subintimal space to identify the entry point into the subintimal space, and guide another stiff wire to re-enter the true lumen with the adjacent side-branch or first wire as markers, or using IVUS-guided parallel wire technique. The entry point into the subintimal space was identified by IVUS in all cases, and the IVUS-guided wiring re-entry technique succeeded in 17 cases (85%). No procedure-related complication was noted except one case of delayed cardiac tamponade due to the wire perforation. During the mean follow-up period of 1.9 ± 1.3 years, there was no adverse cardiac event, except one patient died of the complication of cardiac transplantation. The IVUS-guided wiringre-entry technique might be feasible and safe for the recanalization of complex CTO lesions. © 2018, Wiley Periodicals, Inc.

  18. [Current strategy in PCI for CTO].

    PubMed

    Asakura, Yasushi

    2011-02-01

    Recently, CTO PCI has come into wide use all over the world and it has been standardized. The 1st step is an antegrade approach using single wire. The 2nd strategy would be parallel wire technique. And the next would be a retrograde approach. In this method, retrograde wiring with Corsair is done at first. If it is successful, externalization is established using 300 cm wire, and this system is able to provide strong back-up support. If it fails, reverse CART technique is the next step. IVUS guided wiring is a last resort. The 2nd wire is manipulated with IVUS guidance. Now, initial success rate is more than 90% with these methods.

  19. Wiring harnesses documented by punched-card technique

    NASA Technical Reports Server (NTRS)

    Hicks, W. W.; Kloezeman, W. G.

    1970-01-01

    Cards representing a connector are punched, sorted, and then used to printout wiring documentation for that connector. When wiring changes are made, new cards are punched and the wiring documentation is reprinted to reflect the latest configuration.

  20. Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates

    NASA Astrophysics Data System (ADS)

    Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.

    2012-05-01

    This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.

  1. Practical aspects of instrumentation system installation, volume 13

    NASA Technical Reports Server (NTRS)

    Borek, R. W.; Pool, A. (Editor); Sanderson, K. C. (Editor)

    1981-01-01

    A review of factors influencing installation of aircraft flight test instrumentation is presented. Requirements, including such factors as environment, reliability, maintainability, and system safety are discussed. The assessment of the mission profile is followed by an overview of electrical and mechanical installation factors with emphasis on shock/vibration isolation systems and standardization of the electric wiring installation, two factors often overlooked by instrumentation engineers. A discussion of installation hardware reviews the performance capabilities of wiring, connectors, fuses and circuit breakers, and a guide to proper selections is provided. The discussion of the installation is primarily concerned with the electrical wire routing, shield terminations and grounding. Also inclued are some examples of installation mistakes that could affect system accuracy. System verification procedures and special considerations such as sneak circuits, pyrotechnics, aircraft antenna patterns, and lightning strikes are discussed.

  2. Dry and wet arc track propagation resistance testing

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.

  3. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.

    PubMed

    Arlet, Vincent; Draxinger, Kevin; Beckman, Lorne; Steffen, Thomas

    2006-07-01

    Sublaminar wires have been used for many years for segmental spinal instrumentation in scoliosis surgery. More recently, stainless steel wires have been replaced by titanium cables. However, in rigid scoliotic curves, sublaminar wires or simple cables can either brake or pull out. The square-lashing technique was devised to avoid complications such as cable breakage or lamina cutout. The purpose of the study was therefore to test biomechanically the pull out and failure mode of simple sublaminar constructs versus the square-lashing technique. Individual vertebrae were subjected to pullout testing having one of two different constructs (single loop and square lashing) using either monofilament wire or multifilament cables. Four different methods of fixation were therefore tested: single wire construct, square-lashing wiring construct, single cable construct, and square-lashing cable construct. Ultimate failure load and failure mechanism were recorded. For the single wire the construct failed 12/16 times by wire breakage with an average ultimate failure load of 793 N. For the square-lashing wire the construct failed with pedicle fracture in 14/16, one bilateral lamina fracture, and one wire breakage. Ultimate failure load average was 1,239 N For the single cable the construct failed 12/16 times due to cable breakage (average force 1,162 N). 10/12 of these breakages were where the cable looped over the rod. For the square-lashing cable all of these constructs (16/16) failed by fracture of the pedicle with an average ultimate failure load of 1,388 N. The square-lashing construct had a higher pullout strength than the single loop and almost no cutting out from the lamina. The square-lashing technique with cables may therefore represent a new advance in segmental spinal instrumentation.

  4. Radiographic comparison of apical root resorption after orthodontic treatment between bidimensional and Roth straight-wire techniques

    PubMed Central

    Zawawi, Khalid H; Malki, Ghadah A

    2014-01-01

    Objective: The aim of this study was to compare the amount of root resorption after orthodontic treatment between the bidimensional and the Roth straight-wire techniques. Another objective was to compare the amount of root resorption in the whole sample studied and record the prevalence of root resorption. Materials and Methods: The sample consisted of 40 patients (age ranged between 11 and 18 years) with Angle Class II division 1 malocclusions, treated nonextraction. Twenty patients were treated with bidimensional technique and 20 with a 0.018-inch Roth straight-wire technique. Root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs. Results: The results demonstrated that the bidimensional and Roth straight-wire groups showed significant root resorption after treatment, 1.11 (0.17) and 0.86 (0.05), respectively, P < 0.001. When comparing the amount of root shortening between the bidimensional and Roth straight-wire groups, there was no significant difference between the mean change from pre- to post-treatment between bidimensional group (mean = 1.00 ± 1.34) and Roth straight-wire group (mean = 0.88 ± 0.86), P = 0.63. Considering the whole sample, there was no root resoprtion in 32.5% of the analysed teeth. There was only mild resorption in 56.2%, moderate in 8.8% and severe in only 2.5% of the teeth. Conclusions: Treatment with the bidimensional technique did not produce an increase in the amount of root resorption. The prevalence and amount of root resorption was similar between bidimensional and Roth straight-wire techniques. PMID:25426453

  5. Radiographic comparison of apical root resorption after orthodontic treatment between bidimensional and Roth straight-wire techniques.

    PubMed

    Zawawi, Khalid H; Malki, Ghadah A

    2014-10-01

    The aim of this study was to compare the amount of root resorption after orthodontic treatment between the bidimensional and the Roth straight-wire techniques. Another objective was to compare the amount of root resorption in the whole sample studied and record the prevalence of root resorption. The sample consisted of 40 patients (age ranged between 11 and 18 years) with Angle Class II division 1 malocclusions, treated nonextraction. Twenty patients were treated with bidimensional technique and 20 with a 0.018-inch Roth straight-wire technique. Root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs. The results demonstrated that the bidimensional and Roth straight-wire groups showed significant root resorption after treatment, 1.11 (0.17) and 0.86 (0.05), respectively, P < 0.001. When comparing the amount of root shortening between the bidimensional and Roth straight-wire groups, there was no significant difference between the mean change from pre- to post-treatment between bidimensional group (mean = 1.00 ± 1.34) and Roth straight-wire group (mean = 0.88 ± 0.86), P = 0.63. Considering the whole sample, there was no root resoprtion in 32.5% of the analysed teeth. There was only mild resorption in 56.2%, moderate in 8.8% and severe in only 2.5% of the teeth. Treatment with the bidimensional technique did not produce an increase in the amount of root resorption. The prevalence and amount of root resorption was similar between bidimensional and Roth straight-wire techniques.

  6. A novel data reduction technique for single slanted hot-wire measurements used to study incompressible compressor tip leakage flows

    NASA Astrophysics Data System (ADS)

    Berdanier, Reid A.; Key, Nicole L.

    2016-03-01

    The single slanted hot-wire technique has been used extensively as a method for measuring three velocity components in turbomachinery applications. The cross-flow orientation of probes with respect to the mean flow in rotating machinery results in detrimental prong interference effects when using multi-wire probes. As a result, the single slanted hot-wire technique is often preferred. Typical data reduction techniques solve a set of nonlinear equations determined by curve fits to calibration data. A new method is proposed which utilizes a look-up table method applied to a simulated triple-wire sensor with application to turbomachinery environments having subsonic, incompressible flows. Specific discussion regarding corrections for temperature and density changes present in a multistage compressor application is included, and additional consideration is given to the experimental error which accompanies each data reduction process. Hot-wire data collected from a three-stage research compressor with two rotor tip clearances are used to compare the look-up table technique with the traditional nonlinear equation method. The look-up table approach yields velocity errors of less than 5 % for test conditions deviating by more than 20 °C from calibration conditions (on par with the nonlinear solver method), while requiring less than 10 % of the computational processing time.

  7. Causes of failure with Szabo technique - an analysis of nine cases.

    PubMed

    Jain, Rajendra Kumar; Padmanabhan, T N C; Chitnis, Nishad

    2013-01-01

    The objective of this case series is to identify and define causes of failure of Szabo technique in rapid-exchange monorail system for ostial lesions. From March 2009 to March 2011, 42 patients with an ostial lesion were treated percutaneously at our institution using Szabo technique in a monorail stent system. All patients received unfractionated heparin during intervention. Loading dose of clopidogrel, followed by clopidogrel and aspirin was administered. In 57% of patients, drug-eluting stents were used and in 42.8% patients bare metal stents. The stent was advanced over both wires, the target wire and the anchor wire. The anchor wire, which was passed through the proximal trailing strut of the stent helps to achieve precise stenting. The procedure was considered to be successful if stent was placed precisely covering the lesion and without stent loss or anchor wire prolapsing. Of the total 42 patients, the procedure was successful in 33, while failed in 9. Majority of failures were due to wire entanglement, which was fixed successfully in 3 cases by removing and reinserting the anchor wire. Out of other three failures, in one stent dislodgment occurred, stent could not cross the lesion in one and in another anchor wire got looped and prolapsed into target vessel. This case series shows that the Szabo technique, in spite of some difficulties like wire entanglement, stent dislodgement and resistance during stent advancement, is a simple and feasible method for treating variety of ostial lesions precisely compared to conventional angioplasty. Copyright © 2013 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  8. Causes of failure with Szabo technique – An analysis of nine cases

    PubMed Central

    Jain, Rajendra Kumar; Padmanabhan, T.N.C.; Chitnis, Nishad

    2013-01-01

    Objective The objective of this case series is to identify and define causes of failure of Szabo technique in rapid-exchange monorail system for ostial lesions. Methods and results From March 2009 to March 2011, 42 patients with an ostial lesion were treated percutaneously at our institution using Szabo technique in a monorail stent system. All patients received unfractionated heparin during intervention. Loading dose of clopidogrel, followed by clopidogrel and aspirin was administered. In 57% of patients, drug-eluting stents were used and in 42.8% patients bare metal stents. The stent was advanced over both wires, the target wire and the anchor wire. The anchor wire, which was passed through the proximal trailing strut of the stent helps to achieve precise stenting. The procedure was considered to be successful if stent was placed precisely covering the lesion and without stent loss or anchor wire prolapsing. Of the total 42 patients, the procedure was successful in 33, while failed in 9. Majority of failures were due to wire entanglement, which was fixed successfully in 3 cases by removing and reinserting the anchor wire. Out of other three failures, in one stent dislodgment occurred, stent could not cross the lesion in one and in another anchor wire got looped and prolapsed into target vessel. Conclusion This case series shows that the Szabo technique, in spite of some difficulties like wire entanglement, stent dislodgement and resistance during stent advancement, is a simple and feasible method for treating variety of ostial lesions precisely compared to conventional angioplasty. PMID:23809379

  9. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    PubMed

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  10. A “Train-Track” Technique in Anatomic Reconstruction of SVC Bifurcation Complicated by Cardiac Tamponade: An Introspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karuppasamy, Karunakaravel, E-mail: karuppk@ccf.org; Al-Natour, Mohammed, E-mail: mnatour85@msn.com; Gurajala, Ram Kishore, E-mail: gurajar@ccf.org

    This report describes a stenting technique used to anatomically reconstruct superior vena cava (SVC) bifurcation in a patient with benign SVC syndrome. After recanalizing the SVC bifurcation, we exchanged two 0.035-in. wires for two 0.018-in. wires, deployed the SVC stent over these two wires (“train-track” technique), and stented each innominate vein over one wire. However, our decisions to recanalize both innominate veins, use the “buddy-wire” technique for SVC dilation, and dilate the SVC to 16 mm before stent deployment likely contributed to SVC tear, which was managed by resuscitation, SVC stent placement, and pericardial drainage. Here, we describe the steps ofmore » the train-track technique, which can be adopted to reconstruct other bifurcations; we also discuss the controversial aspects of this case.« less

  11. V/sub 3/Ga wire fabricated by the modified jelly roll technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, D.U.; Francavilla, T.L.; Pande, C.S.

    V/sub 3/Ga wire has been fabricated by the modified jelly roll technique for the first time. Critical current densities in magnetic fields to 22 T, critical magnetic fields, and superconducting transition temperatures are reported for this wire as a function of reaction temperature for forming the interfacial V/sub 3/Ga layer. Superconducting properties of the reacted wire are optimized for reaction temperatures between 550--580 /sup 0/C. With a reaction temperature of 580 /sup 0/C, the overall (noncopper) current density of the wire is over 10/sup 4/ amp/cm/sup 2/ at 19 T.

  12. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  13. 16 CFR § 1500.43 - Method of test for flashpoint of volatile flammable materials by Tagliabue open-cup apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... is placed snugly in holes drilled in the rim of the bath, so that the guide wire is 5/8-inch from the... black. Procedure 4. (a) Place the tester on a solid table free of vibration, in a location free of...

  14. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  15. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    PubMed

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  16. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding

    PubMed Central

    Higginson, R. L.; Tyrer, J. R.

    2016-01-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure. PMID:28119550

  17. 170-MHz electrodeless quartz crystal microbalance biosensor: capability and limitation of higher frequency measurement.

    PubMed

    Ogi, Hirotsugu; Nagai, Hironao; Naga, Hironao; Fukunishi, Yuji; Hirao, Masahiko; Nishiyama, Masayoshi

    2009-10-01

    We develop a highly sensitive quartz crystal microbalance (QCM) biosensor with a fundamental resonance frequency of 170 MHz. A naked AT-cut quartz plate of 9.7 microm thick is set in a sensor cell. Its shear vibration is excited by the line wire, and the vibration signals are detected by the other line wire, achieving the noncontacting measurement of the resonance frequency. The mass sensitivity of the 170 MHz QCM biosensor is 15 pg/(cm2 Hz), which is better than that of a conventional 5 MHz QCM by 3 orders of magnitude. Its high sensitivity is confirmed by detecting human immunoglobulin G (hIgG) via Staphylococcus protein A immobilized nonspecifically on both surfaces of the quartz plate. The detection limit is 0.5 pM. Limitation of the high-frequency QCM measurement is then theoretically discussed with a continuum mechanics model for a plate with point masses connected by elastic springs. The result indicates that a QCM measurement will break down at frequencies one-order-of-magnitude higher than the local resonance frequency at specific binding cites.

  18. Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire.

    PubMed

    Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C

    2012-05-21

    We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.

  19. Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects

    NASA Astrophysics Data System (ADS)

    Olsen, Martin; Gradin, Per; Lindefelt, Ulf; Olin, Håkan

    2010-02-01

    Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an impact on the spring “constant” which oscillates slightly with the bending of the wire. In this way we obtain an amplitude-dependent resonance frequency of the oscillations that should be detectable.

  20. Comparison of two tension-band fixation materials and techniques in transverse patella fractures: a biomechanical study.

    PubMed

    Rabalais, R David; Burger, Evalina; Lu, Yun; Mansour, Alfred; Baratta, Richard V

    2008-02-01

    This study compared the biomechanical properties of 2 tension-band techniques with stainless steel wire and ultra high molecular weight polyethylene (UHMWPE) cable in a patella fracture model. Transverse patella fractures were simulated in 8 cadaver knees and fixated with figure-of-8 and parallel wire configurations in combination with Kirschner wires. Identical configurations were tested with UHMWPE cable. Specimens were mounted to a testing apparatus and the quadriceps was used to extend the knees from 90 degrees to 0 degrees; 4 knees were tested under monotonic loading, and 4 knees were tested under cyclic loading. Under monotonic loading, average fracture gap was 0.50 and 0.57 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.16 and 0.04 mm, respectively, in the parallel wire construct. Under cyclic loading, average fracture gap was 1.45 and 1.66 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.45 and 0.60 mm, respectively, in the parallel wire construct. A statistically significant effect of technique was found, with the parallel wire construct performing better than the figure-of-8 construct in both loading models. There was no effect of material or interaction. In this biomechanical model, parallel wires performed better than the figure-of-8 configuration in both loading regimens, and UHMWPE cable performed similarly to 18-gauge steel wire.

  1. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  2. Accurate guide wire of lag screw placement in the intertrochanteric fractures: a technical note.

    PubMed

    Li, Jiang; Wang, Liao; Li, Xiaodong; Feng, Kai; Tang, Jian; Wang, Xiaoqing

    2017-09-01

    Cephalomedullary fixations are commonly used in the treatment of intertrochanteric fractures. In clinical practice, one of the difficulties is when we exit the guide wire in a wrong position of femoral neck and insert near the hole again, the guide wire often flow into the previous track. This study develops a surgical technique to direct the guide wire to slip away the previous track and slip into a right position. When guide wire is exited to the cortex of femoral, we let the wire in and out at the cortical layer for several times to enlarge the entry hole. After that, electric drill is inverted, rubbed and entered slowly at a right angle. When guide wire encountered new resistance, the electric drill is turned back instantly. This technique can help trauma and orthopedic surgeons to obtain precision placement of the lag screw after the first try is failed.

  3. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  4. Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.

    PubMed

    Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang

    2012-07-11

    From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.

  5. Experimental study on vertical static stiffnesses of polycal wire rope isolators

    NASA Astrophysics Data System (ADS)

    Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau

    2017-07-01

    Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.

  6. Shape memory alloy-actuated bistable composites for morphing structures

    NASA Astrophysics Data System (ADS)

    Chillara, Venkata Siva C.; Dapino, Marcelo J.

    2018-03-01

    Laminated composites with orthogonally-applied mechanical prestress have been shown to exhibit two stable shapes where each shape is influenced by only one prestrained lamina. The application of mechanical prestress is associated with an irreversible non-zero stress state; when combined with smart materials with controllable stress-states, this results in multifunctionality in morphing composites. This study presents an experimental characterization of the shape transition or snap-through in mechanically-prestressed bistable laminates. Measurements, conducted using tensile testing and 3D motion capture, show that snap-through in these laminates is a multi-stage phenomenon. An active bistable morphing composite is demonstrated using NiTi shape memory wire actuators in push-pull configuration; activation of one wire resets the second wire as the composite morphs. The set of shape memory actuators not only actuate the composite in both directions, but also act as dampers that enable vibration-free shape transition.

  7. Whole-body vibration improves fracture healing and bone quality in rats with ovariectomy-induced osteoporosis.

    PubMed

    Butezloff, Mariana Maloste; Zamarioli, Ariane; Leoni, Graziela Bianchi; Sousa-Neto, Manoel Damião; Volpon, Jose Batista

    2015-11-01

    To investigate the effect of vibration therapy on the bone callus of fractured femurs and the bone quality of intact femurs in ovariectomized rats. Fifty-six rats aged seven weeks were divided into four groups: control with femoral fracture (CON, n=14), ovariectomized with femoral fracture (OVX, n=14), control with femoral fracture plus vibration therapy (CON+VT, n=14), and ovariectomized with femoral fracture plus vibration therapy (OVX+VT, n=14). Three months after ovariectomy or sham surgery, a complete fracture was produced at the femoral mid-diaphysis and stabilized with a 1-mm-diameter intramedullary Kirschner wire. X-rays confirmed the fracture alignment and fixation. Three days later, the VT groups underwent vibration therapy (1 mm, 60 Hz for 20 minutes, three times per week for 14 or 28 days). The bone and callus quality were assessed by densitometry, three-dimensional microstructure, and mechanical test. Ovariectomized rats exhibited a substantial loss of bone mass and severe impairment in bone microarchitecture, both in the non-fractured femur and the bone callus. Whole-body vibration therapy exerted an important role in ameliorating the bone and fracture callus parameters in the osteoporotic bone. Vibration therapy improved bone quality and the quality of the fracture bone callus in ovariectomized rats.

  8. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  9. [Kirschner wire osteosynthesis for fractures in childhood: bury wires or not? : Results of a survey on care reality in Germany].

    PubMed

    Schneidmueller, D; Kertai, M; Bühren, V; von Rüden, C

    2018-02-20

    Kirschner wire osteosynthesis is considered to be the standard technique for surgical fixation of displaced supracondylar humeral and distal radial fractures in children. The Kirschner wires can be left exposed or buried under the skin. Advantages of the epicutaneous technique are, e. g. the efficiency (cost, effort) and the possibility for wire removal without the necessity of a second anesthesia. On the other hand, there is a concern about higher infection rates as well as traumatization of the children due to externally visible wires. A web-based survey of members of the DGU, DGOU, DGOOC, and the pediatric traumatology section of the DGU (SKT) was performed to evaluate current treatment concepts in Germany. The pros and cons for each technique were recorded and the need for a clinical study was examined. In addition, a cost analysis was performed for both methods. The results from the literature are summarized and discussed. A total of 710 questionnaires were evaluated. The majority of the respondents were trauma surgeons working in a hospital (80%). The buried technique was superior in both fracture groups (supracondylar humeral fractures 73% and distal radius fractures 69%), whereas a relevant difference could be found depending on the profession. The main reason for the subcutaneous technique was anxiety or observed higher infections using the epicutaneous technique. In Germany, the majority of wires are buried under the skin due to a fear of higher infection rates. In addition, other influencing factors such as pain and traditional approaches play a significant role. With respect to the results in the literature as well as a possible improvement of efficiency and avoidance of a second anesthesia, a multicentric clinical study seems necessary in the future to compare both techniques.

  10. Evaluation of protective gloves and working techniques for reducing hand-arm vibration exposure in the workplace.

    PubMed

    Milosevic, Matija; McConville, Kristiina M Valter

    2012-01-01

    Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.

  11. Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.

    2008-12-01

    The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this research direction in developing wireless systems for the monitoring of civil infrastructures.

  12. Demonstrating the Effect of Particle Impact Dampers on the Random Vibration Response and Fatigue Life of Printed Wiring Assemblies

    NASA Technical Reports Server (NTRS)

    Knight, Brent; Montgomery, Randall; Geist, David; Hunt, Ron; LaVerde, Bruce; Towner, Robert

    2013-01-01

    In a recent experimental study, small Particle Impact Dampers (PID) were bonded directly to the surface of printed circuit board (PCB) or printed wiring assemblies (PWA), reducing the random vibration response and increasing the fatigue life. This study provides data verifying practicality of this approach. The measured peak strain and acceleration response of the fundamental out of plane bending mode was significantly attenuated by adding a PID device. Attenuation of this mode is most relevant to the fatigue life of a PWA because the local relative displacements between the board and the supported components, which ultimately cause fatigue failures of the electrical leads of the board-mounted components are dominated by this mode. Applying PID damping at the board-level of assembly provides mitigation with a very small mass impact, especially as compared to isolation at an avionics box or shelf level of assembly. When compared with other mitigation techniques at the PWA level (board thickness, stiffeners, constrained layer damping), a compact PID device has the additional advantage of not needing to be an integral part of the design. A PID can simply be bonded to heritage or commercial off the shelf (COTS) hardware to facilitate its use in environments beyond which it was originally qualified. Finite element analysis and test results show that the beneficial effect is not localized and that the attenuation is not due to the simple addition of mass. No significant, detrimental reduction in frequency was observed. Side-by-side life testing of damped and un-damped boards at two different thicknesses (0.070" and 0.090") has shown that the addition of a PID was much more significant to the fatigue life than increasing the thickness. High speed video, accelerometer, and strain measurements have been collected to correlate with analytical results.

  13. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    NASA Astrophysics Data System (ADS)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k structures on 90 nm silicon technology, bonding wires with different percentage of doping element (palladium), and different levels of bonding process parameters. An empirical model to understand the high temperature effects for bonds formed using the low diameter wire was also developed.

  14. Strength of cerclage fixation systems: a biomechanical study.

    PubMed

    Incavo, S J; Difazio, F; Wilder, D

    1990-11-01

    This study examined the load to failure ratio and stiffness of eight different cerclage techniques commonly used in the clinical management of fractures. For a single-loop cerclage, titanium cable was the strongest, while stainless steel wire secured with a commercial tightener was the weakest (P < 0.05). When a single-loop configuration is necessary (i.e. trochanteric attachment) a cable system is superior to cerclage wiring. A double-wrap of either cable or wire was considerably stronger than any single-wrap cerclage technique and stronger than two cerclage wires (P < 0.05). Copyright © 1990. Published by Elsevier Ltd.

  15. Modified tension band wiring of medial malleolar ankle fractures.

    PubMed

    Georgiadis, G M; White, D B

    1995-02-01

    Twenty-two displaced medial malleolar ankle fractures that were treated surgically using the modified tension band method of Cleak and Dawson were retrospectively reviewed at an average follow-up of 25 months. The technique involves the use of a screw to anchor a figure-of-eight wire. There were no malreductions and all fractures healed. Problems with the technique included technical errors with hardware placement, medial ankle pain, and asymptomatic wire migration. Despite this, modified tension band wiring remains an acceptable method for fixation of selected displaced medial malleolar fractures. It is especially suited for small fracture fragments and osteoporotic bone.

  16. The Wire-Grasping Method as a New Technique for Forceps Biopsy of Biliary Strictures: A Prospective Randomized Controlled Study of Effectiveness

    PubMed Central

    Yamashita, Yasunobu; Ueda, Kazuki; Kawaji, Yuki; Tamura, Takashi; Itonaga, Masahiro; Yoshida, Takeichi; Maeda, Hiroki; Magari, Hirohito; Maekita, Takao; Iguchi, Mikitaka; Tamai, Hideyuki; Ichinose, Masao; Kato, Jun

    2016-01-01

    Background/Aims Transpapillary forceps biopsy is an effective diagnostic technique in patients with biliary stricture. This prospective study aimed to determine the usefulness of the wire-grasping method as a new technique for forceps biopsy. Methods Consecutive patients with biliary stricture or irregularities of the bile duct wall were randomly allocated to either the direct or wire-grasping method group. In the wire-grasping method, forceps in the duodenum grasps a guide-wire placed into the bile duct beforehand, and then, the forceps are pushed through the papilla without endoscopic sphincterotomy. In the direct method, forceps are directly pushed into the bile duct alongside a guide-wire. The primary endpoint was the success rate of obtaining specimens suitable for adequate pathological examination. Results In total, 32 patients were enrolled, and 28 (14 in each group) were eligible for analysis. The success rate was significantly higher using the wire-grasping method than the direct method (100% vs 50%, p=0.016). Sensitivity and accuracy for the diagnosis of cancer were comparable in patients with the successful procurement of biopsy specimens between the two methods (91% vs 83% and 93% vs 86%, respectively). Conclusions The wire-grasping method is useful for diagnosing patients with biliary stricture or irregularities of the bile duct wall. PMID:27021502

  17. Stabilization of Olecranon Fractures by Tension Band Wiring or Plate Osteosynthesis: A Retrospective Study of 41 Cases.

    PubMed

    Fournet, Alexandre; Boursier, Jean-François; Corbeau, Solène; Decambron, Adeline; Viateau, Véronique; Fayolle, Pascal; Bedu, Anne-Sophie; Leperlier, Dimitri; Manassero, Mathieu

    2018-01-01

     This article aimed to describe olecranon fracture in dogs and cats and their stabilization with tension band wiring or plate osteosynthesis, and to evaluate complications associated with each technique.  Medical records of cats and dogs that had been surgically treated for olecranon fractures with either tension band wiring or plate osteosynthesis were retrospectively reviewed. The surgical technique, complications and long-term outcomes were assessed.  Forty-one olecranon fractures were included. Fractures were articular, comminuted and open in 90, 31 and 27% of cases, respectively. Tension band wiring and plate osteosynthesis were performed in 22 and 19 fractures, respectively. Complications occurred more commonly after tension band wiring (74%) compared with plate osteosynthesis (27%) ( p  = 0.002) and these were probably related to it being used in comminuted fractures ( p  = 0.01) or to errors in technique. Minor complications included Kirschner wires migration ( n  = 5), pain ( n  = 3), osteomyelitis ( n  = 3), skin breakdown ( n  = 3) and seroma ( n  = 1). Implant failure requiring further fixation ( n  = 4) was observed only in the tension band wiring group. Other major complications included skin wound debridement and closure ( n  = 1) and chronic lameness requiring implant removal ( n  = 7). Long-term functional outcomes were excellent regardless of the technique used.  Plate osteosynthesis should be performed for olecranon fracture repair if technically feasible. Schattauer GmbH Stuttgart.

  18. Closed retrograde retrieval of the distal broken segment of femoral cannulated intramedullary nail using a ball-tipped guide wire.

    PubMed

    Metikala, Sreenivasulu; Mohammed, Riazuddin

    2011-07-01

    Extracting broken segments of intramedullay nails from long bones can be an operative challenge, particularly from the distal end. We report a case series where a simple and reproducible technique of extracting broken femoral cannulated nails using a ball-tipped guide wire is described. This closed technique involves no additional equipment or instruments. Eight patients who underwent the described method were included in the study. The technique involves using a standard plain guide wire passed through the cannulated distal broken nail segment after extraction of the proximal nail fragment. The plain guide wire is then advanced distally into the knee joint carefully under fluoroscopy imaging. Over this wire, a 5-millimeter (mm) cannulated large drill bit is used to create a track up to the distal broken nail segment. Through the small knee wound, a ball-tipped guide wire is passed, smooth end first, till the ball engages the end of the nail. The guide wire is then extracted along with the broken nail through the proximal wound. The method was successfully used in all eight patients for removal of broken cannulated intramedullary nail from the femoral canal without any complications. All patients underwent exchange nailing with successful bone union in six months. None of the patients had any problems at the knee joint at the final follow-up. We report a technique for successful extraction of the distal fragment of broken femoral intramedullary nails without additional surgical approaches.

  19. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  20. The Development of a Pirani Vacuum Gauge with a Platinum Wire in the J-PARC 3-GeV Rapid Cycling Synchrotron

    NASA Astrophysics Data System (ADS)

    Ogiwara, Norio; Hikichi, Yusuke; Yoshinari, Yoji

    The back pressure of Turbo-Molecular Pumps (TMPs) is constantly monitored using Pirani gauges at J-PARC (Japan Proton Accelerator Complex) RCS (3-GeV Rapid Cycling Synchrotron) where they are used not only in rough pumping but also evacuations during beam operations. The gauge head needs to be very resistant to vibration and abrupt air inlet etc. in minimizing exposure to radiation during maintenance and hence a 50 μm in diameter W wire was adopted as the filament. This type of Pirani gauge has worked well in monitoring the back pressure of the TMP but it has become difficult to measure the low pressure of less than several Pa with the gauge, which may have been due to changes in the emissivity of the W surface. An attempt was therefore made to develop a gauge head made of Pt wire in allowing pressures as low as 0.1 Pa to be measured. Platinum is one of the best possible materials to use because it is very stable against oxidization. However, ordinary Pt gauge heads are rather weak when it comes to vibrations and abrupt air inlet due to its low tensile strength. In order to improve its toughness the filament was composed of twelve 100 μm in diameter Pt wires that were 65 mm long, resulting in it being capable of enduring a force of 25 N. All the wires were welded in series on metal poles in two separate glass plates, with the poles being electrically insulated. This resulted in the filament, 78 cm long and about 10 Ω at room temperature, being containable in a 5 cm in diameter and 10 cm long cylindrical envelope. The output from the gauge head was then examined as a function of pressure under constant current as the plan was for it to be controlled using the constant current method. Confirmation then took place that the pressures of 0.1 Pa up to 103 Pa were measurable with the gauge using current control in such way that the set value increased with pressure increases in three stages.

  1. Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck

    2011-01-01

    Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper

  2. Electrical and thermal conductance quantization in nanostructures

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2008-10-01

    In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.

  3. Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto

    2011-02-01

    We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.

  4. Uprighting Bilateral Impacted Mandibular Permanent Second Molars with the Brass Wire Technique: A Case Report.

    PubMed

    Perdigão, João Paulo Veloso; Lustosa, Romulo Maciel; Tolentino, Elen de Souza; Iwaki Filho, Liogi; Iwaki, Lilian Cristina Vessoni

    2016-01-01

    Revalence of impaction of mandibular permanent second molars is between 0.06 and 2.3 percent. In order to reduce treatment time and complications associated with tooth impaction, intervention should take place once the problem is detected. The usual treatment options consists of surgical exposure, luxation of the impacted tooth, extraction of adjacent third molar, orthodontic treatment, and uprighting with brass wires or mini-screws. The present paper reports a case of bilateral impaction of mandibular permanent second molars ' (MM2s) treated with extraction of the mandibular third molars (MM3s) and surgical-orthodontic uprighting with the brass wire technique. The MM3s were removed, and the impacted MM2s were surgically exposed. Brass wire was placed apicaly to the mesial of the MM2 from the lingual tissue out toward the buccal. The lingual end of the wire was bent over the area of contact and twisted with the buccal end Monthly wire tightening gradually moved the MM2s distally and towards the occlusal plane. Uprighting was achieved in 4-5 months, with discrete pain caused by activation of the wire. This technique proved to be a simple, low-cost, and quick treatment option for uprighting impacted mandibular permanent second molars.

  5. Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Perey, Daniel F.; Cramer, Elliott

    2006-01-01

    We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.

  6. Repair of olecranon fractures using fiberWire without metallic implants: report of two cases.

    PubMed

    Nimura, Akimoto; Nakagawa, Teruhiko; Wakabayashi, Yoshiaki; Sekiya, Ichiro; Okawa, Atsushi; Muneta, Takeshi

    2010-10-12

    Olecranon fractures are a common injury in fractures. The tension band technique for olecranon fractures yields good clinical outcomes; however, it is associated with significant complications. In many patients, implants irritate overlying soft tissues and cause pain. This is mostly due to protrusion of the proximal ends of the K-wires or by the twisted knots of the metal wire tension band. Below we described 2 cases of olecranon fractures treated with a unique technique using FiberWire without any metallic implants. Technically, the fragment was reduced, and two K-wires were inserted from the dorsal cortex of the distal segment to the tip of the olecranon. K-wire was exchanged for a suture retriever, and 2 strands of FiberWire were retrieved twice. Each of the two FiberWires was manually tensioned and knotted on the posterior surface of the olecranon. Bony unions could be achieved, and patients had no complaint of pain and skin irritation. There was only a small loss of flexion and extension in comparison with that of the contralateral side, and the patient did not feel inconvenienced in his daily life. Using the method described, difficulty due to K-wire or other metallic implants was avoided.

  7. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  8. Semi-rigid single hook localization the best method for localizing ground glass opacities during video-assisted thoracoscopic surgery: re-aerated swine lung experimental and primary clinical results

    PubMed Central

    Zhao, Guang; Sun, Long; Geng, Guojun; Liu, Hongming; Li, Ning; Liu, Suhuan; Hao, Bing

    2017-01-01

    Background The aim of this study was to compare the effects of currently available preoperative localization methods, including semi-rigid single hook-wire, double-thorn hook-wire, and microcoil, in localizing the pulmonary nodules, thus to select the best technology to assist video-assisted thoracoscopic surgery (VATS) for small ground glass opacities (GGO). Methods Preoperative CT-guided localizing techniques including semi-rigid single hook-wire, double-thorn hook-wire and microcoil were used in re-aerated fresh swine lung for location experiments. The advantages and drawbacks of the three positioning technologies were compared, and then the most optimal technique was used in patients with GGO. Technical success and post-operative complications were used as primary endpoints. Results All three localizing techniques were successfully performed in the re-aerated fresh swine lung. The median tractive force of semi-rigid single hook wire, double-thorn hook wire and microcoil were 6.5, 4.85 and 0.2 N, which measured by a spring dynamometer. The wound sizes in the superficial pleura, caused by unplugging the needles, were 2 mm in double-thorn hook wire, 1 mm in semi-rigid single hook and 1 mm in microcoil, respectively. In patients with GGOs, the semi-rigid hook wires localizations were successfully performed, without any complication that need to be intervened. Dislodgement was reported in one patient before VATS. No major complications related to the preoperative hook wire localization and VATS were observed. Conclusions We found from our localization experiments in the swine lung that, among the commonly used three localization methods, semi-rigid hook wire showed the best operability and practicability than double-thorn hook wire and microcoil. Preoperative localization of small pulmonary nodules with single semi-rigid hook wire system shows a high success rate, acceptable utility and especially low dislodgement in VATS. PMID:29312722

  9. Recent developments in multi-wire fixed abrasive slicing technique (FAST). [for low cost silicon wafer production from ingots

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.; Smith, M. B.; Lynch, L. D.

    1982-01-01

    Slicing is an important processing step for all technologies based on the use of ingots. A comparison of the economics of three slicing techniques shows that the fixed abrasive slicing technique (FAST) is superior to the internal diameter (ID) and the multiblade slurry (MBS) techniques. Factors affecting contact length are discussed, taking into account kerf width, rocking angle, ingot size, and surface speed. Aspects of blade development are also considered. A high concentration of diamonds on wire has been obtained in wire packs usd for FAST slicing. The material removal rate was found to be directly proportional to the pressure at the diamond tips.

  10. Connecting to Thermocouples with Fewer Lead Wires

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  11. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  12. Comparison of conditional sampling and averaging techniques in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Subramanian, C. S.; Rajagopalan, S.; Antonia, R. A.; Chambers, A. J.

    1982-10-01

    A rake of cold wires was used in a slightly heated boundary layer to identify coherent temperature fronts. An X-wire/cold-wire arrangement was used simultaneously with the rake to provide measurements of the longitudinal and normal velocity fluctuations and temperature fluctuations. Conditional averages of these parameters and their products were obtained by application of conditional techniques (VITA, HOLE, BT, RA1, and RA3) based on the detection of temperature fronts using information obtained at only one point in space. It is found that none of the one-point detection techniques is in good quantitative agreement with the rake detection technique, the largest correspondence being 51%. Despite the relatively poor correspondence between the conditional techniques, these techniques, with the exception of HOLE, produce conditional averages that are in reasonable qualitative agreement with those deduced using the rake.

  13. Improved Technique for Finding Vibration Parameters

    NASA Technical Reports Server (NTRS)

    Andrew, L. V.; Park, C. C.

    1986-01-01

    Filtering and sample manipulation reduce noise effects. Analysis technique improves extraction of vibrational frequencies and damping rates from measurements of vibrations of complicated structure. Structural vibrations measured by accelerometers. Outputs digitized at frequency high enough to cover all modes of interest. Use of method on set of vibrational measurements from Space Shuttle, raised level of coherence from previous values below 50 percent to values between 90 and 99 percent

  14. Safe intramedullary fixation of displaced midshaft clavicle fractures with 2.5mm Kirschner wires - technique description and a two-part versus multifragmentary fracture fixation outcome comparison.

    PubMed

    Bakota, Bore; Chan, Gareth; Staresinic, Mario; Rajput, Vishal; Phadnis, Joideep; Korac, Zelimir

    2017-11-01

    The aim of this study was to present a modified Murray and Schwarz 2.5-mm Kirschner wire (K-wire) intramedullary (IM) technique for fixation of displaced midshaft clavicle fractures (DMCF), and to compare the differences in treatment outcome of two-part (Robinson 2B.1) and multifragmentary (Robinson 2B.2) DMCF. A retrospective analysis of 91 patients who underwent IM fixation with a 2.5-mm K-wire for DMCF and had a 1-year post-operative follow-up between 2000 and 2012 was performed. The patients were allocated into two groups: Robinson 2B.1 (n = 64) and Robinson 2B.2 (n = 27). Assessed outcomes were non-union, reoperation rate, wire migration and infection. There was no statistically significant difference in the rate of non-union (2B.1,2B.2; 3.13%, 7.41%; p = 0.365), reoperation (2B.1, 2B.2; 3.13%, 7.41%; p = 0.365), K-wire migration (2B.1, 2B.2; 0.00%, 0.00%; p = 1.00) and clavicle shortening at 12-months (2B.1, 2B.2; 3.13%, 7.41%; p = 0.365). Intramedullary clavicle fixation with a 2.5-mm K-wire is a safe surgical technique. 2B.1 injuries treated with 2.5-mm IM K-wire fixation have relatively improved outcome compared with displaced 2B.2 fractures for both non-union and reoperation rates. There were no occurrences of implant migration with either 2B.1 or 2B.2 injuries, and a non-significant difference in implant irritation was documented with IM K-fixation. The non-union rate with K-wire IM fixation of 2B.1 injuries concords with the published results of other IM devices and thus this technique should be added to the surgeon's armamentarium when considering surgical treatment of such injuries. © 2017 Elsevier Ltd. All rights reserved.

  15. Isolation Mounting for Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Salomon, P. M.

    1985-01-01

    CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.

  16. Double copper sheath multiconductor instrumentation cable is durable and easily installed in high thermal or nuclear radiation area

    NASA Technical Reports Server (NTRS)

    Mc Crae, A. W., Jr.

    1967-01-01

    Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.

  17. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  18. Ballistic induced pumping of hypersonic heat current in DNA nano wire

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Panahinia, Robabe

    2016-12-01

    Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.

  19. Kirschner wire bending.

    PubMed

    Firoozabadi, Reza; Kramer, Patricia A; Benirschke, Stephen K

    2013-11-01

    Although Kirschner wires are useful implants in many situations, migration of the wire and irritation of the surrounding soft tissues are common complications. Seven steps are described herein, which result in a Kirschner wire that is bent 180° angle, providing a smooth anchor into bone. Use of this technique produces implants that provide stable fixation with few soft tissue complications.

  20. Reliability Criteria for Thick Bonding Wire.

    PubMed

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  1. Reliability Criteria for Thick Bonding Wire

    PubMed Central

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  2. Vibration influence on control of single motor unit activity.

    PubMed

    Malouin, F; Simard, T

    1978-03-01

    Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.

  3. Detection of structural damage in multiwire cables by monitoring the entropy evolution of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Ibáñez, Flor; Baltazar, Arturo; Mijarez, Rito; Aranda, Jorge

    2015-03-01

    Multiwire cables are widely used in important civil structures. Since they are exposed to several dynamic and static loads, their structural health can be compromised. The cables can also be submitted to mechanical contact, tension and energy propagation in addition to changes in size and material within their wires. Due to the critical role played by multiwire cables, it is necessary to develop a non-destructive health monitoring method to maintain their structure and proper performance. Ultrasonic inspection using guided waves is a promising non-destructive damage monitoring technique for rods, single wires and multiwire cables. The propagated guided waves are composed by an infinite number of vibrational modes making their analysis difficult. In this work, an entropy-based method to identify small changes in non-stationary signals is proposed. A system to capture and post-process acoustic signals is implemented. The Discrete Wavelet Transform (DWT) is computed in order to obtain the reconstructed wavelet coefficients of the signals and to analyze the energy at different scales. The feasibility of using the concept of entropy evolution of non-stationary signals to detect damage in multiwire cables is evaluated. The results show that there is a high correlation between the entropy value and damage level of the cable. The proposed method has low sensitivity to noise and reduces the computational complexity found in a typical time-frequency analysis.

  4. Vibrations of beams and rods carrying a moving mass

    NASA Astrophysics Data System (ADS)

    Zhao, X. W.; van der Heijden, G. H. M.; Hu, Z. D.

    2016-05-01

    We study the vibration of slender one-dimensional elastic structures (beams, cables, wires, rods) under the effect of a moving mass or load. We first consider the classical small- deflection (Euler-Bernoulli) beam case, where we look at tip vibrations of a cantilever as a model for a barreled launch system. Then we develop a theory for large deformations based on Cosserat rod theory. We illustrate the effect of moving loads on large-deformation structures with a few cable and arch problems. Large deformations are found to have a resonance detuning effect on the cable. For the arch we find different failure modes depending on its depth: a shallow arch fails by in-plane collapse, while a deep arch fails by sideways flopping. In both cases the speed of the traversing load is found to have a stabilising effect on the structure, with failure suppressed entirely at sufficiently high speed.

  5. Protonated sugars: vibrational spectroscopy and conformational structure of protonated O-methyl α-D-galactopyranoside

    NASA Astrophysics Data System (ADS)

    Rudić, Svemir; Xie, Hong-bin; Gerber, R. Benny; Simons, John P.

    2012-08-01

    'Bridging' protons provide a common structural motif in biological assemblies such as proton wires and proton-bound dimers. Here we present a 'proof-of-principle' computational and vibrational spectroscopic investigation of an 'intra-molecular proton-bound dimer,' O-methyl α-D-galactopyranoside (αMeGal-H+), generated in the gas phase through photo-ionisation of its complex with phenol in a molecular beam. Its vibrational spectrum corresponds well with a classical molecular dynamics simulation conducted 'on-the-fly' and also with the lowest-energy structures predicted by DFT and ab initio calculations. They reveal proton-bound structures that bridge neighbouring pairs of oxygen atoms, preferentially O6 and O4, linked together within the carbohydrate scaffold. Motivated by the possibility of an entry into the microscopic mechanism of its acid (or enzyme)-catalysed hydrolysis, we also report the corresponding predictions for its singly hydrated complex.

  6. [Individual indirect bonding technique (IIBT) using set-up model].

    PubMed

    Kyung, H M

    1989-01-01

    There has been much progress in Edgewise Appliance since E.H. Angle. One of the most important procedures in edgewise appliance is correct bracket position. Not only conventional edgewise appliance but also straight wire appliance & lingual appliance cannot be used more effectively unless the bracket position is accurate. Improper bracket positioning may reveal much problems during treatment, especially in finishing state. It may require either rebonding after the removal of the malpositioned bracket or the greater number of arch wire and the more complex wire bending, causing much difficulty in performing effective treatments. This made me invent Individual Indirect Bonding Technique with the use of multi-purpose set-up model in order to determine a correct and objective bracket position according to individual patients. This technique is more accurate than former indirect bonding techniques in bracket positioning, because it decides the bracket position on a set-up model which has produced to have the occlusal relationship the clinician desired. This technique is especially effective in straight wire appliance and lingual appliance in which the correct bracket positioning is indispensible.

  7. On the electromagnetic scattering from infinite rectangular conducting grids

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1985-01-01

    The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.

  8. New technique of skin embedded wire double-sided laser beam welding

    NASA Astrophysics Data System (ADS)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  9. Nickel-Titanium Wire as Suture Material: A New Technique for the Fixation of Skin.

    PubMed

    Li, Haidong; Song, Tao

    2018-01-29

    To introduce nickel-titanium wire as suture material for closure of incisions in cleft lip procedures. Closure of skin incisions using nickel-titanium wire as suture material, with postoperative follow-up wound evaluation. There was excellent patient satisfaction and good cosmetic outcome. Nickel-titanium wire is an excellent alternative for suture closure of cleft lip surgical incisions.

  10. Method for making a hot wire anemometer and product thereof

    NASA Technical Reports Server (NTRS)

    Milkulla, V. (Inventor)

    1977-01-01

    A hot wire anemometer probe is described that includes a ceramic body supporting two conductive rods parallel to each other. The body has a narrow edge surface from which the rods protrude. A probe wire is welded to the rods and extends along the edge surface. A ceramic adhesive is used to secure the probe wire to the surface so that the probe wire is rigid. A method for fabricating the probe is also described in which the body is molded and precisely shaped by machining techniques before the probe wires are installed.

  11. Add-On Shielding for Unshielded Wire

    NASA Technical Reports Server (NTRS)

    Koenig, J. C.; Billitti, J. W.; Tallon, J. M.

    1983-01-01

    Fabrication sequence used to produce compact shields slipped into place from free ends of wires already soldered into connectors at other ends. Single shields are formed into harnesses by connecting grounding jumpers. Technique is especially useful for small diameter wire attached to microminiature connectors.

  12. Minimally Invasive Calcaneal Displacement Osteotomy Site Using a Reference Kirschner Wire: A Technique Tip.

    PubMed

    Lee, Moses; Guyton, Gregory P; Zahoor, Talal; Schon, Lew C

    2016-01-01

    As a standard open approach, the lateral oblique incision has been widely used for calcaneal displacement osteotomy. However, just as with other orthopedic procedures that use an open approach, complications, including wound healing problems and neurovascular injury in the heel, have been reported. To help avoid these limitations, a percutaneous technique using a Shannon burr for calcaneal displacement osteotomy was introduced. However, relying on a free-hand technique without direct visualization at the osteotomy site has been a major obstacle for this technique. To address this problem, we developed a technical tip using a reference Kirschner wire. A reference Kirschner wire technique provides a reliable and accurate guide for minimally invasive calcaneal displacement osteotomy. Also, the technique should be easy to learn for surgeons new to the procedure. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Surface characteristics and damage distributions of diamond wire sawn wafers for silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Devayajanam, Srinivas; Basnyat, Prakash

    2016-01-01

    This paper describes surface characteristics, in terms of its morphology, roughness and near-surface damage of Si wafers cut by diamond wire sawing (DWS) of Si ingots under different cutting conditions. Diamond wire sawn Si wafers exhibit nearly-periodic surface features of different spatial wavelengths, which correspond to kinematics of various movements during wafering, such as ingot feed, wire reciprocation, and wire snap. The surface damage occurs in the form of frozen-in dislocations, phase changes, and microcracks. The in-depth damage was determined by conventional methods such as TEM, SEM and angle-polishing/defect-etching. However, because these methods only provide local information, we have alsomore » applied a new technique that determines average damage depth over a large area. This technique uses sequential measurement of the minority carrier lifetime after etching thin layers from the surfaces. The lateral spatial damage variations, which seem to be mainly related to wire reciprocation process, were observed by photoluminescence and minority carrier lifetime mapping. Our results show a strong correlation of damage depth on the diamond grit size and wire usage.« less

  14. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  15. A one-stage, high-load capacity separation actuator using anti-friction rollers and redundant shape memory alloy wires.

    PubMed

    Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang

    2015-12-01

    This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.

  16. Entrapment of Guide Wire in an Inferior Vena Cava Filter: A Technique for Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Aal, Ahmed Kamel, E-mail: akamel@uabmc.edu; Saddekni, Souheil; Hamed, Maysoon Farouk

    Entrapment of a central venous catheter (CVC) guide wire in an inferior vena cava (IVC) filter is a rare, but reported complication during CVC placement. With the increasing use of vena cava filters (VCFs), this number will most likely continue to grow. The consequences of this complication can be serious, as continued traction upon the guide wire may result in filter dislodgement and migration, filter fracture, or injury to the IVC. We describe a case in which a J-tipped guide wire introduced through a left subclavian access without fluoroscopic guidance during CVC placement was entrapped at the apex of anmore » IVC filter. We describe a technique that we used successfully in removing the entrapped wire through the left subclavian access site. We also present simple useful recommendations to prevent this complication.« less

  17. Electron Transport In Nanowires - An Engineer'S View

    NASA Astrophysics Data System (ADS)

    Nawrocki, W.

    In the paper technological problems connected to electron transport in mesoscopic- and nanostructures are considered. The electrical conductance of nanowires formed by metallic contacts in an experimental setup proposed by Costa-Kramer et al. The investigation has been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G o = 2e /h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowirese are also discussed in the paper.

  18. Assembly techniques for ultra-low mass drift chambers

    NASA Astrophysics Data System (ADS)

    Assiro, R.; Cascella, M.; Grancagnolo, F.; L'Erario, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Tassielli, G.

    2014-03-01

    We presents a novel technique for the fast assembly of next generation ultra low mass drift chambers offering space point resolution of the order of 100 μm and high tolerance to pile-up. The chamber design has been developed keeping in mind the requirements for the search of rare processes: high resolutions (order of 100-200 KeV/c) for particles momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution (e.g., muon and kaon decay experiment such as MEG at PSI and Mu2e and ORKA at Fermilab). We describe a novel wiring strategy enabling the semiautomatic wiring of a complete layer with a high degree of control over wire tension and position. We also present feed-through-less wire anchoring system. These techniques have been already implemented at INFN-Lecce in the construction of a prototype drift chamber to be soon tested with cosmic rays and particle beams.

  19. The Fine Wire Technique for Flexor Tenolysis.

    PubMed

    Rosenblum, Matthew K; Baltodano, Pablo A; Weinberg, Maxene H; Whipple, Lauren A; Gemmiti, Amanda L; Whipple, Richard E

    2017-11-01

    Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire's thinness allows for a swift tenolysis. The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive.

  20. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  1. Features extraction algorithm about typical railway perimeter intrusion event

    NASA Astrophysics Data System (ADS)

    Zhou, Jieyun; Wang, Chaodong; Liu, Lihai

    2017-10-01

    Research purposes: Optical fiber vibration sensing system has been widely used in the oil, gas, frontier defence, prison and power industries. But, there are few reports about the application in railway defence. That is because the surrounding environment is complicated and there are many challenges to be overcomed in the optical fiber vibration sensing system application. For example, how to eliminate the effects of vibration caused by train, the natural environments such as wind and rain and how to identify and classify the intrusion events. In order to solve these problems, the feature signals of these events should be extracted firstly. Research conclusions: (1) In optical fiber vibration sensing system based on Sagnac interferometer, the peak-to-peak value, peak-to-average ratio, standard deviation, zero-crossing rate, short-term energy and kurtosis may serve as feature signals. (2) The feature signals of resting state, climbing concrete fence, breaking barbed wire, knocking concrete fence and rainstorm have been extracted, which shows significant difference among each other. (3) The research conclusions can be used in the identification and classification of intrusion events.

  2. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    NASA Astrophysics Data System (ADS)

    Hou, X. Y.; Koh, C. G.; Kuang, K. S. C.; Lee, W. H.

    2017-07-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations.

  3. Advancement of wave generation and signal transmission in wire waveguides for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Kropf, M.; Pedrick, M.; Wang, X.; Tittmann, B. R.

    2005-05-01

    As per the recent advances in remote in situ monitoring of industrial equipment using long wire waveguides (~10m), novel applications of existing wave generation techniques and new acoustic modeling software have been used to advance waveguide technology. The amount of attainable information from an acoustic signal in such a system is limited by transmission through the waveguide along with frequency content of the generated waves. Magnetostrictive, and Electromagnetic generation techniques were investigated in order to maximize acoustic transmission along the waveguide and broaden the range of usable frequencies. Commercial EMAT, Magnetostrictive and piezoelectric disc transducers (through the innovative use of an acoustic horn) were utilized to generate waves in the wire waveguide. Insertion loss, frequency bandwidth and frequency range were examined for each technique. Electromagnetic techniques are shown to allow for higher frequency wave generation. This increases accessibility of dispersion curves providing further versatility in the selection of guided wave modes, thus increasing the sensitivity to physical characteristics of the specimen. Both electromagnetic and magnetostrictive transducers require the use of a ferromagnetic waveguide, typically coupled to a steel wire when considering long transmission lines (>2m). The interface between these wires introduces an acoustic transmission loss. Coupling designs were examined with acoustic finite element software (Coupled-Acoustic Piezoelectric Analysis). Simulations along with experimental results aided in the design of a novel joint which minimizes transmission loss. These advances result in the increased capability of remote sensing using wire waveguides.

  4. Hot-wire Laser Welding of Deep and Wide Gaps

    NASA Astrophysics Data System (ADS)

    Näsström, J.; Frostevarg, J.; Silver, T.

    Heavy section Gas Metal Arc Welding (GMAW) usually requires special edge preparation and several passes. One alternative for increased performance is Laser Arc Hybrid Welding (LAHW). For very thick sheets however, imperfections like root drops or solidification cracks can occur. In this study, other techniques are also studied, including multi-pass filling of deep gaps with wire deposition. A laser is then used to melt the filler and base material. The hot- and cold wire laser welding processes are highly sensitive to wire-laser positioning, where controlled melting of the wire is essential. Apart from a comprehensive literature survey, preliminary experiments were also performed in order to find a novel method variant that can successfully fill deep and wide gaps. The method applied uses a defocused laser that generates the melt pool. A resistance heated wire is fed into the melt pool front in a leading position. This is similar to additive manufacturing techniques such as laser direct metal deposition with wire. A layer height of several millimeters can be achieved and rather low laser power can be chosen. The preliminary experiments were observed using high speed imaging and briefly evaluated by visual examination of the resulting beads. Using a defocused laser beam turned out to have two major advantages; 1. It adds heat to the melt pool in a manner that properly fuses the bottom and walls of the base material. 2. It counteracts difficulties due to an irregularly oscillating filler wire. These early results show that this can be a promising technique for joining thick steels with wide gaps.

  5. Recent Sikorsky R and D progress

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The recent activities and progress in four specific areas of Sikorsky's research and development program are summarized. Since the beginning of the S-76 design in 1974, Sikorsky has been aggressively developing the technology for using composite materials in helicopter design. Four specific topics are covered: advanced cockpit/controller efforts, fly-by-wire controls on RSRA/X-Wing, vibration control via higher harmonic control, and main rotor aerodynamic improvements.

  6. The Wire-Grasping Method as a New Technique for Forceps Biopsy of Biliary Strictures: A Prospective Randomized Controlled Study of Effectiveness.

    PubMed

    Yamashita, Yasunobu; Ueda, Kazuki; Kawaji, Yuki; Tamura, Takashi; Itonaga, Masahiro; Yoshida, Takeichi; Maeda, Hiroki; Magari, Hirohito; Maekita, Takao; Iguchi, Mikitaka; Tamai, Hideyuki; Ichinose, Masao; Kato, Jun

    2016-07-15

    Transpapillary forceps biopsy is an effective diagnostic technique in patients with biliary stricture. This prospective study aimed to determine the usefulness of the wire-grasping method as a new technique for forceps biopsy. Consecutive patients with biliary stricture or irregularities of the bile duct wall were randomly allocated to either the direct or wire-grasping method group. In the wiregrasping method, forceps in the duodenum grasps a guidewire placed into the bile duct beforehand, and then, the forceps are pushed through the papilla without endoscopic sphincterotomy. In the direct method, forceps are directly pushed into the bile duct alongside a guide-wire. The primary endpoint was the success rate of obtaining specimens suitable for adequate pathological examination. In total, 32 patients were enrolled, and 28 (14 in each group) were eligible for analysis. The success rate was significantly higher using the wire-grasping method than the direct method (100% vs 50%, p=0.016). Sensitivity and accuracy for the diagnosis of cancer were comparable in patients with the successful procurement of biopsy specimens between the two methods (91% vs 83% and 93% vs 86%, respectively). The wire-grasping method is useful for diagnosing patients with biliary stricture or irregularities of the bile duct wall.

  7. Remote tire pressure sensing technique

    NASA Technical Reports Server (NTRS)

    Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)

    1993-01-01

    A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.

  8. How should I treat a patient to remove a fractured jailed side branch wire?

    PubMed

    Owens, Colum G; Spence, Mark S

    2011-08-01

    A 53-year-old female was sent for diagnostic angiography after successful reperfusion therapy for an anterior ST-elevation myocardial infarct. The culprit lesion was a LAD/D1 bifurcation stenosis. Coronary angiography, intravascular ultrasound. Left anterior descending artery/first diagonal artery bifurcation stenosis, fractured jailed side branch wire. Provisional stenting strategy for bifurcation stenosis. Consideration of surgical and percutaneous options to retrieve fractured, jailed, side branch wire. Wire and balloon catheter wrap technique for retrieval of fractured wire.

  9. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  10. UHMWPE Sublaminar Wires in Posterior Spinal Instrumentation: Stability and Biocompatibility Assessment in an Ovine Pilot Study.

    PubMed

    Bogie, Rob; Voss, Laura; Arts, Jacobus J; Lataster, Arno; Willems, Paul C; Brans, Boudewijn; van Rhijn, Lodewijk W; Welting, Tim J M

    2016-12-01

    An animal study. To explore ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires in spinal surgery and to assess stability and biocompatibility of the UHMWPE instrumentation in an ovine model. Sublaminar wiring is a well-established technique in segmental scoliosis surgery. However, during introduction and/or removal of the metal sublaminar wires, neurological problems can occur. Abrasion after cutting metal wires for removal can lead to damage to the dural sac. Sublaminar wires have to withhold large forces and breakage of the wires can occur. Different types of sublaminar wires have been developed to address these problems. UHMWPE sublaminar wires can potentially substitute currently used metal sublaminar metal wires. In vivo testing and biocompatibility analysis of UHMWPE wires are recommended before clinical use in spinal surgery. In 6 immature sheep, pedicle screws were instrumented at lumbar level L4 and attached with titanium rods to 4 thoracolumbar vertebrae using 3- and 5-mm-wide UHMWPE sublaminar wiring constructions in 5 animals. Titanium sublaminar wires were applied in 1 animal to function as a control subject. After a follow-up period of 16 weeks, the animals were sacrificed and the spines were isolated. Radiographs and computed tomography (CT) scans were made to assess stability of the instrumentation. The vertebrae were dissected for macroscopic and histologic evaluation. None of the wires had loosened and the instrumentation remained stable. CT scans and radiographs showed no signs of failure of the instrumentation and no neurological complications occurred. Although several bony bridges were seen on CT, growth was observed at the operated levels. Biocompatibility was assessed by macroscopical and histologic analysis, showing no signs of dural or epidural inflammation. This pilot animal study shows that UHMWPE sublaminar wiring is a safe technique. The UHMWPE wires are biocompatible and provide sufficient stability in spinal instrumentation. Heterotopic ossification because of periost reactions in the ovine spine led to some restrictions in this study.

  11. The construction technique of the high granularity and high transparency drift chamber of MEG II

    NASA Astrophysics Data System (ADS)

    Chiarello, G.; Chiri, C.; Corvaglia, A.; Grancagnolo, F.; Miccoli, A.; Panareo, M.; Pinto, C.; Spedicato, M.; Tassielli, G. F.

    2017-07-01

    The MEG experiment searches for the charged lepton flavor violating decay, μ +→ e+γ. MEG has already determined the world best upper limit on the branching ratio BR<4.2× 10-13 at 90% CL. An upgrade of the whole detector has been approved to obtain a substantial increase in sensitivity. Currently MEG is in upgrade phases, this phase involves all the detectors. The new positron tracker is a single volume, full stereo, small cells drift chamber (DCH) co-axial to the beam line. It is composed of 10 concentric layers and each single drift cell is approximately square 7 mm side, with a 20 μ m gold plated W sense wire surrounded by 40 μ m and 50 μ m silver plated Al field wires in a ratio of 5:1, about 12,000 wires. Due to the high wire density (12 wires/cm2), the use of the classical feed-through technique as wire anchoring system could hardly be implemented and therefore it was necessary to develop new wiring strategies. The number of wires and the stringent requirements on the precision of their position and on the uniformity of the wire mechanical tension impose the use of an automatic system to operate the wiring procedures. This wiring robot, designed and built at the INFN Lecce and University of Salento laboratories, consists of: ṡ a semiautomatic wiring machine with a high precision on wire mechanical tensioning (better than 0.5 g) and on wire positioning (20 μ m) for simultaneous wiring of multiwire layers; ṡ a contact-less infrared laser soldering tool; ṡ an automatic handling system for storing and transporting the multi-wire layers. The drift chamber is currently under construction at INFN and should be completed by the end of summer 2017 to be then delivered to PSI for commissioning.

  12. Transverse vorticity measurements using an array of four hot-wire probes

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  13. Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2002-01-01

    Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.

  14. Importance of Adjunct Delivery Techniques to Optimize Deployment Success of Distal Protection Filters During Vein Graft Intervention.

    PubMed

    Kaliyadan, Antony G; Chawla, Harnish; Fischman, David L; Ruggiero, Nicholas; Gannon, Michael; Walinsky, Paul; Savage, Michael P

    2017-02-01

    This study assessed the impact of adjunct delivery techniques on the deployment success of distal protection filters in saphenous vein grafts (SVGs). Despite their proven clinical benefit, distal protection devices are underutilized in SVG interventions. Deployment of distal protection filters can be technically challenging in the presence of complex anatomy. Techniques that facilitate the delivery success of these devices could potentially improve clinical outcomes and promote greater use of distal protection. Outcomes of 105 consecutive SVG interventions with attempted use of a FilterWire distal protection device (Boston Scientific) were reviewed. In patients in whom filter delivery initially failed, the success of attempted redeployment using adjunct delivery techniques was assessed. Two strategies were utilized sequentially: (1) a 0.014" moderate-stiffness hydrophilic guidewire was placed first to function as a parallel buddy wire to support subsequent FilterWire crossing; and (2) if the buddy-wire approach failed, predilation with a 2.0 mm balloon at low pressure was performed followed by reattempted filter delivery. The study population consisted of 80 men and 25 women aged 73 ± 10 years. Mean SVG age was 14 ± 6 years. Complex disease (American College of Cardiology/American Heart Association class B2 or C) was present in 92%. Initial delivery of the FilterWire was successful in 82/105 patients (78.1%). Of the 23 patients with initial failed delivery, 8 (35%) had successful deployment with a buddy wire alone, 7 (30%) had successful deployment with balloon predilation plus buddy wire, 4 (17%) had failed reattempt at deployment despite adjunct maneuvers, and in 4 (17%) no additional attempts at deployment were made at the operator's discretion. Deployment failure was reduced from 21.9% initially to 7.6% after use of adjunct delivery techniques (P<.01). No adverse events were observed with these measures. Deployment of distal protection devices can be technically difficult with complex SVG disease. Adjunct delivery techniques are important to optimize deployment success of distal protection filters during SVG intervention.

  15. Reducing Magnetic Fields Around Power Cables

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.; Gitelman, Florida; Pongracz-Bartha, Edward; Spalding, John

    1993-01-01

    Four power conductors arranged symmetrically about fifth grounded conductor. Four current-carrying wires arranged symmetrically around central grounded wire that nominally carries no current. In comparison with other cable configurations, this one results in smaller magnetic fields around cable. Technique for use when size of wires in cable makes twisting impractical.

  16. Perioperative ultrasound-guided wire marking of calcific deposits in calcifying tendinitis of the rotator cuff.

    PubMed

    Sigg, Andreas; Draws, Detlev; Stamm, Axel; Pfeiffer, Michael

    2011-03-01

    The identification of a calcific deposit in the rotator cuff can often cause difficulties. A new technique is described to identify the calcific deposit perioperatively with a ultrasound-guided wire. The technique allows a safe direct marking of calcific deposits making the procedure faster especially in difficult cases.

  17. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  18. Successful rotational atherectomy over RG3 guidewire after failure of various techniques to deliver RotaWire.

    PubMed

    Kaneko, Umihiko; Kashima, Yoshifumi; Kanno, Daitaro; Sugie, Takuro; Kobayashi, Ken; Fujita, Tsutomu

    2017-10-01

    Although performing rotational atherectomy (RA) requires guidewire exchange for the dedicated guidewire, RotaWire guidewire (Boston Scientific) exhibits much lower performance than conventional guidewire. Consequently, there are times when RotaWire cannot be advanced past the lesion independently or using a microcatheter exchange technique, rendering RA impossible. We present a case of a heavily calcified, device-uncrossable, and non-expansible chronic total occlusion lesion successfully revascularized with RA over RG3 guidewire (Asahi Intecc), which has a length of 330 cm, hydrophilic coating, and a 0.010-inch-long shaft. RG3 provided excellent cross-ability and RA could also be performed over RG3 without guidewire exchange for the RotaWire.

  19. Exploitation of insect vibrational signals reveals a new method of pest management.

    PubMed

    Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Lanzo, Francesco; Virant-Doberlet, Meta; Mazzoni, Valerio

    2012-01-01

    Food production is considered to be the main source of human impact on the environment and the concerns about detrimental effects of pesticides on biodiversity and human health are likely to lead to an increasingly restricted use of chemicals in agriculture. Since the first successful field trial, pheromone based mating disruption enabled sustainable insect control, which resulted in reduced levels of pesticide use. Organic farming is one of the fastest growing segments of agriculture and with the continuously growing public concern about use of pesticides, the main remaining challenge in increasing the safety of the global food production is to identify appropriate alternative mating disruption approaches for the numerous insect pests that do not rely on chemical communication. In the present study, we show for the first time that effective mating disruption based on substrate-borne vibrational signals can be achieved in the field. When disruptive vibrational signals were applied to grapevine plants through a supporting wire, mating frequency of the leafhopper pest Scaphoideus titanus dropped to 9 % in semi-field conditions and to 4 % in a mature vineyard. The underlying mechanism of this environmentally friendly pest-control tactic is a masking of the vibrational signals used in mate recognition and location. Because vibrational communication is widespread in insects, mating disruption using substrate vibrations can transform many open field and greenhouse based farming systems.

  20. Progressive migration of broken Kirschner wire into the proximal tibia following tension-band wiring technique of a patellar fracture--case report.

    PubMed

    Konda, Sanjit R; Dayan, Alan; Egol, Kenneth A

    2012-01-01

    Wire breakage and migration is a known complication of using a wire tension band construct to treat displaced patella fractures. We report a case of a broken K-wire that migrated from the patella completely into the proximal tibia without complication 9 years after the index surgery. This report highlights the fact that wire migration can occur long after fracture healing and be relatively asymptomatic. But because the complications of wire migration can be deadly, it requires diligence on the part of the physician to educate the patient that new knee pain after operative fixation requires formal evaluation by the treating surgeon.

  1. A novel fenestration technique for abdominal aortic dissection membranes using a combination of a needle re-entry catheter and the "cheese-wire" technique.

    PubMed

    Kos, Sebastian; Gürke, Lorenz; Jacob, Augustinus L

    2011-12-01

    This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and "cheese-wire" technique for fenestration of abdominal aortic dissection membranes. Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. The membrane was then fenestrated using the cheese-wire maneuver. We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.

  2. Shock and vibration technology with applications to electrical systems

    NASA Technical Reports Server (NTRS)

    Eshleman, R. L.

    1972-01-01

    A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

  3. Scaling Techniques for Combustion Device Random Vibration Predictions

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.

    2016-01-01

    This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.

  4. Factors affecting the outcomes of modified tension band wiring techniques in transverse patellar fractures.

    PubMed

    Hsu, Kai-Lan; Chang, Wei-Lun; Yang, Chyun-Yu; Yeh, Ming-Long; Chang, Chih-Wei

    2017-12-01

    Modified tension band wiring has been widely used to treat transverse patellar fractures. However, few studies have evaluated the clinical outcomes using different methods of Kirschner wire bending, location of the tension band, and depths of Kirschner wires. Thus, we tried to clarify these factors according to our clinical outcomes. This retrospective cohort study recruited consecutive patients underwent surgical fixation for patellar fractures using modified tension band technique between January 2010 and December 2015. Different factors in this procedure, including the bending manner of the Kirschner wires, their depth, and location of the tension band with respect to the superior and inferior border of the patella were recorded and analysed. The primary outcome was early loss of fixation. The secondary outcomes were minor loss of reduction, implant breakage, deep infection, and the need for implant removal. This study included 170 patients with patellar fractures. Regarding the bending method, similar results were obtained with bilaterally or proximally bent Kirschner wires. Regarding length, the tension band was placed closely (within 25% of the patella length) in 124 patients and distantly in 46 patients. The rates of loss of reduction and implant breakage were significantly higher in the distantly placed tension bands. Regarding depth, 37 patellar fractures were fixed with the Kirschner wires at the superficial one third of the patellae while the K- wires at the middle layer of patella were used in the remaining 133 patellar fractures. A significantly higher rate of minor loss of reduction was obtained using the superficial Kirschner wires. The modified tension band technique for transverse patella fractures provides favourable clinical outcomes, with low failure (5%) and infection (2%) rates. Implant irritation is the major complication, and almost half of cases require implant removal. The location of the tension band with respect to the superior and inferior border of the patella plays an important role in clinical outcomes. Placing the wire close to the patella may prevent major loss of reduction and implant breakage. Superficially placed Kirschner wires also affect clinical outcomes by increasing the rate of minor loss of reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Design and initial validation of a wireless control system based on WSN

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping

    2013-04-01

    At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.

  6. Composite embedded fiber optic data links in Standard Electronic Modules

    NASA Astrophysics Data System (ADS)

    Ehlers, S. L.; Jones, K. J.; Morgan, R. E.; Hixson, Jay

    1990-12-01

    The goal of this project is to fabricate a chassis/circuit card demonstration entirely 'wired' with embedded and interconnected optical fibers. Graphite/epoxy Standard Electronic Module E (SEM-E) configured panels have been successfully fabricated. Fiber-embedded SEM-E configured panels have been subjected to simultaneous signal transmission and vibration testing. Packaging constraints will require tapping composite-embedded optical fibers at right angles to the direction of optical transmission.

  7. Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System

    NASA Astrophysics Data System (ADS)

    Macías, R.; García, M. A.; Ramos, J.; Bragós, R.; Fernández, M.

    2013-04-01

    Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.

  8. Rotor vibration caused by external excitation and rub

    NASA Technical Reports Server (NTRS)

    Matsushita, O.; Takagi, M.; Kikuchi, K.; Kaga, M.

    1982-01-01

    For turbomachinery with low natural frequencies, considerations have been recently required for rotor vibrations caused by external forces except unbalance one, such as foundation motion, seismic wave, rub and so forth. Such a forced vibration is investigated analytically and experimentally in the present paper. Vibrations in a rotor-bearing system under a harmonic excitation are analyzed by the modal technique in the case of a linear system including gyroscopic effect. For a nonlinear system a new and powerful quasi-modal technique is developed and applied to the vibration caused by rub.

  9. Watching the coherence of multiple vibrational states in organic dye molecules by using supercontinuum probing photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Song, Yunfei; Wang, Yang; He, Xing; Liu, Yuqiang; Liu, Weilong; Yang, Yanqiang

    2011-12-01

    A modified photon echo (PE) technique, the supercontinuum probing photon echo (SCPPE), is introduced and performed to investigate the vibrational coherence in organic dye IR780 perchlorate doped polyvinyl alcohol (PVA) film. The coherences of multiple vibrational states which belong to four vibrational modes create complex oscillations in SCPPE signal. The frequencies of vibrational modes are confirmed from the results of Raman calculation which accord fairly well with the results of Raman scattering experiment. Compared with conventional one-color PE, the SCPPE technique can realize broadband detection and make the experiment about vibrational coherence more efficient.

  10. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  11. Reliable Acquisition of RAM Dumps from Intel-Based Apple Mac Computers over FireWire

    NASA Astrophysics Data System (ADS)

    Gladyshev, Pavel; Almansoori, Afrah

    RAM content acquisition is an important step in live forensic analysis of computer systems. FireWire offers an attractive way to acquire RAM content of Apple Mac computers equipped with a FireWire connection. However, the existing techniques for doing so require substantial knowledge of the target computer configuration and cannot be used reliably on a previously unknown computer in a crime scene. This paper proposes a novel method for acquiring RAM content of Apple Mac computers over FireWire, which automatically discovers necessary information about the target computer and can be used in the crime scene setting. As an application of the developed method, the techniques for recovery of AOL Instant Messenger (AIM) conversation fragments from RAM dumps are also discussed in this paper.

  12. Dust-Tolerant Intelligent Electrical Connection System

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  13. Failure analysis of the fractured wires in sternal perichronal loops.

    PubMed

    Chao, Jesús; Voces, Roberto; Peña, Carmen

    2011-10-01

    We report failure analysis of sternal wires in two cases in which a perichronal fixation technique was used to close the sternotomy. Various characteristics of the retrieved wires were compared to those of unused wires of the same grade and same manufacturer and with surgical wire specifications. In both cases, wire fracture was un-branched and transgranular and proceeded by a high cycle fatigue process, apparently in the absence of corrosion. However, stress anlysis indicates that the effective stress produced during strong coughing is lower than the yield strength. Our findings suggest that in order to reduce the risk for sternal dehiscence, the diameter of the wire used should be increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. An investigation of the open-loop amplification of a Reynolds number dependent process by wave distortion

    NASA Technical Reports Server (NTRS)

    Ventrice, M. B.; Purdy, K. R.

    1974-01-01

    The response of a constant-temperature hot-wire anemometer to sinusoidal and distorted sinusoidal acoustic oscillations is examined. The output of the anemometer is dependent upon the Reynolds number of the flow over the wire. The response is a measure of the interaction between the anemometer output and the acoustic pressure in the neighborhood of the wire. It is an open-loop prediction of the characteristics of actual closed-loop operation of a system. If the open-loop response is large enough, unstable closed-loop operation is predicted. The study was motivated by a need to investigate the stability limits of liquid-propellant rockets when perturbed by pressure oscillations. The sinusoidal and distorted sinusoidal acoustic oscillations used for this study are the same as those characteristic of unstable rocket combustion. Qualitatively, the results are similar--the response of the system to pure sinusoidal acoustic vibration of the fluid surrounding the wire is small, even when the magnitude of the acoustic pressure is quite large; but the response can be increased by as much as an order of magnitude with respect to the sinusoidal case by the addition of distortion. The amplitude and phase of the distortion component, relative to the fundamental component, are the dominant factors in the increase in the response.

  15. Load monitoring using a calibrated piezo diaphragm based impedance strain sensor and wireless sensor network in real time

    NASA Astrophysics Data System (ADS)

    Gopal Madhav Annamdas, Venu; Kiong Soh, Chee

    2017-04-01

    The last decade has seen the use of various wired-wireless and contact-contactless sensors in several structural health monitoring (SHM) techniques. Most SHM sensors that are predominantly used for strain measurements may be ineffective for damage detection and vice versa, indicating the uniapplicability of these sensors. However, piezoelectric (PE)-based macro fiber composite (MFC) and lead zirconium titanate (PZT) sensors have been on the rise in SHM, vibration and damping control, etc, due to their superior actuation and sensing abilities. These PE sensors have created much interest for their multi-applicability in various technologies such as electromechanical impedance (EMI)-based SHM. This research employs piezo diaphragms, a cheaper alternative to several expensive types of PZT/MFC sensors for the EMI technique. These piezo diaphragms were validated last year for their applicability in damage detection using the frequency domain. Here we further validate their applicability in strain monitoring using the real time domain. Hence, these piezo diaphragms can now be classified as PE sensors and used with PZT and MFC sensors in the EMI technique for monitoring damage and loading. However, no single technique or single type of sensor will be sufficient for large SHM, thus requiring the necessary deployment of more than one technique with different types of sensors such as a piezoresistive strain gauge based wireless sensor network for strain measurements to complement the EMI technique. Furthermore, we present a novel procedure of converting a regular PE sensor in the ‘frequency domain’ to ‘real time domain’ for strain applications.

  16. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  17. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    PubMed

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.

  18. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Treesearch

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  19. A two-thermocouple probe technique for estimating thermocouple time constants in flows with combustion: In situ parameter identification of a first-order lag system

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Shimoji, T.; Ohta, Y.

    1998-09-01

    A two-thermocouple probe, composed of two fine-wire thermocouples of unequal diameters, is a novel technique for estimating thermocouple time constants without any dynamic calibration of the thermocouple response. This technique is most suitable for measuring fluctuating temperatures in turbulent combustion. In the present study, the reliability and applicability of this technique are appraised in a turbulent wake of a heated cylinder (without combustion). A fine-wire resistance thermometer (cold wire) of fast response is simultaneously used to provide a reference temperature. A quantitative and detailed comparison between the cold-wire measurement and the compensated thermocouple ones shows that a previous estimation scheme gives thermocouple time constants smaller than appropriate values, unless the noise in the thermocouple signals is negligible and/or the spatial resolution of the two-thermocouple probe is sufficiently high. The scheme has been improved so as to maximize the correlation coefficient between the two compensated-thermocouple outputs. The improved scheme offers better compensation of the thermocouple response. The present approach is generally applicable to in situ parameter identification of a first-order lag system.

  20. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler

    NASA Technical Reports Server (NTRS)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg

    2011-01-01

    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  1. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  2. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  3. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as part of a persistent-current circuit having an inductance of 1 mH. A current was induced in a loop, and no attenuation of the current after a time interval 1,000 s was discernible in a measurement having a fractional accuracy of 10(exp -4): This observation supports the conclusion that the weld had an electrical resistance <10(exp -10) omega.

  4. Metallurgical investigation of wire breakage of tyre bead grade.

    PubMed

    Palit, Piyas; Das, Souvik; Mathur, Jitendra

    2015-10-01

    Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6-0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase).

  5. Learning high-quality soldering

    NASA Technical Reports Server (NTRS)

    Read, W. S.

    1981-01-01

    Soldering techniques for high-reliability electronic equipment are taught in 5 day course at NASA's Jet Propulsion Laboratory. Topic covered include new circuit assembly, printed-wiring board reworking, circuit changes, wire routing, and component installation.

  6. Self-Catalyzed CdTe Wires.

    PubMed

    Baines, Tom; Papageorgiou, Giorgos; Hutter, Oliver S; Bowen, Leon; Durose, Ken; Major, Jonathan D

    2018-04-25

    CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  7. Reliability improvement of 1 mil aluminum wire bonds for semiconductors, technical performance summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The reliability of semiconductor devices as influenced by the reliability of wire bonds used in the assembly of the devices is investigated. The specific type of failure dealt with involves fracture of wire bonds as a result of repeated flexure of the wire at the heel of the bond when the devices are operated in an on-off mode. The mechanism of failure is one of induced fracture of the wire. To improve the reliability of a chosen transistor, one-mil diameter wires of aluminum with various alloy additions were studied using an accelerated fatigue testing machine. In addition, the electroprobe was used to study the metallurgy of the wires as to microstructure and kinetics of the growth of insoluble phases. Thermocompression and ultrasonic bonding techniques were also investigated.

  8. Synchronized Re-Entrant Flux Reversal of Multiple FeSiB Amorphous Wires Having the Larger Output

    NASA Astrophysics Data System (ADS)

    Takajo, Minoru; Yamasaki, Jiro

    Technique to synchronize the re-entrant flux reversal of the multiple magnetostrictive Fe77.5Si7.5B15 amorphous wires was developed using a flux keeper of amorphous ribbons contacted to the wire ends. It is comprehended that the characteristics of the re-entrant flux takes place respectively at almost the same time in the three Fe-Si-B amorphous wires with a diameter of 65, 95μm. This phenomenon can be explained by considering the strong magnetic coupling of wires and amorphous ribbon by stray field from the each wire ends. As a result, the magnitude of the induced voltage in the sense coil is increased in proportion to the multiplication of the number of the wires.

  9. Mechanical properties of nickel-titanium archwire used in the final treatment phase of Tip-Edge Plus technique: an in vitro study.

    PubMed

    Shen, Xiao; Sun, Xin-hua; Tian, Hua; Zhang, Chun-bo; Yan, Kuo; Guo, Yong-liang

    2013-01-01

    As the only active component in final treatment phase of Tip-Edge Plus technique, the activation of nickel-titanium orthodontic archwires is one of the factors that affect the torque expression. It is necessary to evaluate the mechanical properties of the nickel-titanium wire used in the final treatment phase in simulated oral environments to forecast the treatment outcomes. The mechanical properties of 171 thermal nickel-titanium wires of 0.35 mm (0.014-in) in diameters with different deflection of 40 mm in length were investigated with three-point bending test. The samples were divided into 2 groups: as-received and bended groups. In the bended group, samples were divided into 7 subgroups according to the amounts of deflection and named by the canine angulations (-25°, -19°, -13°, -7°, -1°, +5°, +11°). The deflection of wires was made by inserting the wires into the deep tunnel of Tip-Edge Plus brackets positioned in plaster casts with different canine angulations to mimic the use of nickel-titanium wires in the final treatment phase. Immersed the bended group in artificial saliva (pH 6.8) and preserved at 37.0°C. Eight durations of incubation were tested: 1 to 8 weeks. Three analogous samples of each group and subgroups were tested per week. Stiffness (YS:E) and the load-deflection characteristics of unloading plateau section were obtained. Significant changes in specific mechanical properties were observed in long-term immersed and large deflected wires compared with as-received groups. Both immersion time and deflection affected the mechanical properties of wires in the simulated oral environment, and the two factors had synergistic effect. In groups -25°, -19° and -13°, stiffness (YS:E) increased then decreased and average plateau force and ratio of variance decreased then increased correspondingly at specific time. In the final treatment phase of Tip-Edge Plus technique, the mechanical properties of nickel-titanium wire are associated with the using time and amounts of deflection and it may affect treatment outcomes. As the main reason for wire deflection, canine crown angulation plays an important role in the wire performance. It may be wise to focus on the canine crown angulations and using time in clinic with Tip-Edge Plus technique and make proper adjustment to help to make sure the treatment outcomes.

  10. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  11. A novel side branch protection technique in coronary stent implantation: Jailed Corsair technique.

    PubMed

    Numasawa, Yohei; Sakakura, Kenichi; Yamamoto, Kei; Yamamoto, Shingo; Taniguchi, Yousuke; Fujita, Hideo; Momomura, Shin-Ichi

    2017-06-01

    Side branch occlusion, which was one of the common complications in percutaneous coronary interventions, was closely associated with cardiac death and myocardial infarction. Clinical guidelines also support the importance of preservation of physiologic blood flow in SB during PCI to bifurcation lesions. In order to avoid side branch occlusion during stent implantation, we often performed the jailed wire technique, in which a conventional guide wire was inserted to the side branch before stent implantation to the main vessel. However, the jailed wire technique could not always prevent side branch occlusion. In this case report, we described a case of 72-year-old male suffering from angina pectoris. Coronary angiography revealed the diffuse calcified stenosis in the proximal and middle of left anterior descending coronary artery, and the large diagonal branch originated from the middle of the stenosis. To prevent side branch occlusion, we performed a novel side branch protection technique by using the Corsair microcatheter (Asahi Intecc, Nagoya, Japan). In this case report, we illustrated this "Jailed Corsair technique", and discussed the advantage compared to other side branch protection techniques such as the jailed balloon technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Damage assessment in reinforced concrete using nonlinear vibration techniques

    NASA Astrophysics Data System (ADS)

    Van Den Abeele, K.; De Visscher, J.

    2000-07-01

    Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.

  13. Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique

    NASA Astrophysics Data System (ADS)

    Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2017-09-01

    Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.

  14. Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique.

    PubMed

    Wu, Zongfang; Płucienik, Agata; Feiten, Felix E; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2017-09-29

    Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V_{2}O_{3}(0001) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.

  15. Blast Coating of Superelastic NiTi Wire with PTFE to Enhance Wear Properties

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Twomey, Barry; Hodgson, Darel; Stanton, Kenneth T.

    2015-03-01

    This work investigates the deposition of polytetrafluoroethylene (PTFE) onto a superelastic NiTi wire using an ambient temperature-coating technique known as CoBlast. The process utilises a stream of abrasive (Al2O3) and a coating medium (PTFE) sprayed simultaneously at the surface of the substrate. Superelastic NiTi wire is used in guidewire applications, and PTFE coatings are commonly applied to reduce damage to vessel walls during insertion and removal, and to aid in accurate positioning by minimising the force required to advance, retract or rotate the wire. The CoBlast coated wires were compared to wire treated with PTFE only. The coated samples were examined using variety of techniques: X-ray diffraction (XRD), microscopy, surface roughness, wear testing and flexural tests. The CoBlast coated samples had an adherent coating with a significant resistance to wear compared to the samples coated with PTFE only. The XRD revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of PTFE onto the surface of superelastic NiTi.

  16. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  17. Simultaneous measurement of temperature and strain using four connecting wires

    NASA Technical Reports Server (NTRS)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  18. External wire-frame fixation of digital skin grafts: a non-invasive alternative to the K-wire insertion method.

    PubMed

    Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko

    2014-08-01

    The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in <5% of the total area. There were no other complications such as pressure ulcer or hypoxia of fingers. External wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  19. In Situ Electrochemical Deposition of Microscopic Wires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes.

  20. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  1. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    PubMed

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  2. Posterior spinal osteosynthesis for cervical fracture/dislocation using a flexible multistrand cable system: technical note.

    PubMed

    Huhn, S L; Wolf, A L; Ecklund, J

    1991-12-01

    Cervical instability secondary to fracture/dislocation or traumatic subluxation involving the posterior elements may be treated by a variety of fusion techniques. The rigidity of the stainless steel wires used in posterior cervical fusions often leads to difficulty with insertion, adequate tension, and conformation of the graft construct. This report describes a technique of posterior cervical fusion employing a wire system using flexible stainless steel cables. The wire consists of a flexible, 49-strand, stainless steel cable connected on one end to a short, malleable, blunt leader with the opposite end connected to a small islet. The cable may be used in occipitocervical, atlantoaxial, facet-to-spinous process, and interspinous fusion techniques. The cable loop is secured by using a tension/crimper device that sets the desired tension in the cable. In addition to superior biomechanical strength, the flexibility of the cable allows greater ease of insertion and tension adjustment. In terms of direct operative instrumentation in posterior cervical arthrodesis, involving both the upper and lower cervical spine, the cable system appears to be a safe and efficient alternative to monofilament wires.

  3. Measuring Surface Tension of a Flowing Soap Film

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  4. Two-step tunneling technique of deep brain stimulation extension wires-a description.

    PubMed

    Fontaine, Denys; Vandersteen, Clair; Saleh, Christian; von Langsdorff, Daniel; Poissonnet, Gilles

    2013-12-01

    While a significant body of literature exists on the intracranial part of deep brain stimulation surgery, the equally important second part of the intervention related to the subcutaneous tunneling of deep brain stimulation extension wires is rarely described. The tunneling strategy can consist of a single passage of the extension wires from the frontal incision site to the subclavicular area, or of a two-step approach that adds a retro-auricular counter-incision. Each technique harbors the risk of intraoperative and postoperative complications. At our center, we perform a two-step tunneling procedure that we developed based on a cadaveric study. In 125 consecutive patients operated since 2002, we did not encounter any complication related to our tunneling method. Insufficient data exist to fully evaluate the advantages and disadvantages of each tunneling technique. It is of critical importance that authors detail their tunneling modus operandi and report the presence or absence of complications. This gathered data pool may help to formulate a definitive conclusions on the safest method for subcutaneous tunneling of extension wires in deep brain stimulation.

  5. A biomechanical comparison of three sternotomy closure techniques.

    PubMed

    Cohen, David J; Griffin, Lanny V

    2002-02-01

    A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.

  6. Diminishing detonator effectiveness through electromagnetic effects

    DOEpatents

    Schill, Jr, Robert A.

    2016-09-20

    An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.

  7. A review of wiring system safety in space power systems

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.; Hammoud, Ahmad N.

    1993-01-01

    Wiring system failures have resulted from arc propagation in the wiring harnesses of current aerospace vehicles. These failures occur when the insulation becomes conductive upon the initiation of an arc. In some cases, the conductive path of the carbon arc track displays a high enough resistance such that the current is limited, and therefore may be difficult to detect using conventional circuit protection. Often, such wiring failures are not simply the result of insulation failure, but are due to a combination of wiring system factors. Inadequate circuit protection, unforgiving system designs, and careless maintenance procedures can contribute to a wiring system failure. This paper approaches the problem with respect to the overall wiring system, in order to determine what steps can be taken to improve the reliability, maintainability, and safety of space power systems. Power system technologies, system designs, and maintenance procedures which have led to past wiring system failures will be discussed. New technologies, design processes, and management techniques which may lead to improved wiring system safety will be introduced.

  8. A fast response, low heat generating activation method for LHe level sensors

    NASA Astrophysics Data System (ADS)

    Choudhury, Anup; Sahu, Santosh; Kanjilal, Dinakar

    2018-06-01

    A superconducting liquid helium (LHe) level sensor of length 300 mm has been fabricated based on the principle of differential heat transfer characteristic in helium gas compared to that in liquid. The sensor wire used has a diameter of 38 μm, and the wire was obtained from a pack of multifilament wires. A full thermo-electrical characterisation of the sensor was carried out in a dedicated setup. Its dynamic thermal response was also studied to understand its timing characteristics at different liquid levels and excitation currents. Based on the sensor characterisation, a new level measurement technique is evaluated which can reduce the heat load going to LHe during sensor activation without compromising on its sensitivity or accuracy. The timing response with this technique will make the level detection faster compared to the conventional techniques.

  9. A Design Procedure for Minimizing Propeller-Induced Vibration in Hull Structural Elements.

    DTIC Science & Technology

    1979-09-01

    Propeller," 12th International Towing Tank Conference, Rome, 1969. 46. Van Manen , J. D., "The Effect of Cavitation on the Interaction Be- tween Propeller...The wake, when determined in absence of the propeller, is called the nominal wake field. Van Oossanen [8) points out that it is becoming...wire anemometer and the laser-Doppler anomometer. These are discussed briefly in a paper by van Gent and van Oossanen [11. 4. Estimate Longitudinal

  10. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    NASA Technical Reports Server (NTRS)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  11. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  12. Optimizing pediatric interdental fixation by use of a paramedian palatal fixation site.

    PubMed

    McNichols, Colton H; Hatef, Daniel A; Cole, Patrick D; Hollier, Larry H

    2012-03-01

    Condylar fractures are the most common injury seen in pediatric mandibular trauma. These injuries often cannot be adequately stabilized by conservative techniques such as splinting. The pediatric condyle fracture often requires a period of intermaxillary fixation. Because of the characteristics of the developing dentition, circumdental wiring is often not possible. Surgeons commonly achieve interdental stabilization by the connection of a circum-mandibular wire and a second wire placed through a drill hole in the piriform aperture. This method can be problematic in the young patient whose palatal suture is still patent. In this brief technical note, the use of a paramedian drill hole through the palate posterior to the maxillary incisors is described. It is believed that this method is superior to other techniques because it avoids injury to the deciduous tooth buds and allows for the maxillary wire to be seated in more structurally sound tissues.

  13. Antenna coupled photonic wire lasers

    DOE PAGES

    Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...

    2015-06-22

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less

  14. Feasibility Study for Casting of High Temperature Refractory Superalloy Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1998-01-01

    Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.

  15. Oxidation of High-temperature Alloy Wires in Dry Oxygen and Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Lorincz, Jonathan A.; DeMange, Jeffrey J.

    2004-01-01

    Small diameter wires (150 to 250 microns) of the high temperature alloys Haynes 188, Haynes 230, Haynes 230, Haynes 214, Kanthal Al and PM2000 were oxidized at 1204 C in dry oxygen or 50% H2O /50% O2 for 70 Hours. The oxidation kinetics were monitored using a thermogravimetric technique. Oxide phase composition and morphology of the oxidized wires were determined by X-ray diffraction,field emission scanning electron microscopy, and energy dispersive spectroscopy. The alumina-forming alloys, Kanthal Al and PM2000, out-performed the chromia-forming alloys under this conditions. PM2000 was recommended as the most promising candidate for advanced hybrid seal applications for space reentry control surface seals or hypersonic propulsion system seals. This study also demonstrated that thermogravimetric analysis of small diameter wires is a powerful technique for the study of oxide volatility, oxide adherence, and breakaway oxidation.

  16. Emergency cricothyrotomy-a comparative study of different techniques in human cadavers.

    PubMed

    Schober, Patrick; Hegemann, Martina C; Schwarte, Lothar A; Loer, Stephan A; Noetges, Peter

    2009-02-01

    Emergency cricothyrotomy is the final lifesaving option in "cannot intubate-cannot ventilate" situations. Fast, efficient and safe management is indispensable to reestablish oxygenation, thus the quickest, most reliable and safest technique should be used. Several cricothyrotomy techniques exist, which can be grouped into two categories: anatomical-surgical and puncture. We studied success rate, tracheal tube insertion time and complications of different techniques, including a novel cricothyrotomy scissors technique in human cadavers. Sixty-three inexperienced health care providers were randomly assigned to apply either an anatomical-surgical technique (standard surgical technique, n=18; novel cricothyrotomy scissors technique, n=14) or a puncture technique (catheter-over-needle technique, n=17; wire-guided technique, n=14). Airway access was almost always successful with the anatomical-surgical techniques (success rate in standard surgical group 94%, scissors group 100%). In contrast, the success rate was smaller (p<0.05) with the puncture techniques (catheter-over-needle group 82%, wire-guided technique 71%). Tracheal tube insertion time was faster overall (p<0.05) with anatomical-surgical techniques (standard surgical 78s [54-135], novel cricothyrotomy scissors technique 60s [42-82]; median [IQR]) than with puncture techniques (catheter-over-needle technique 74s [48-145], wire-guided technique 135s [116-307]). We observed fewer complications with anatomical-surgical techniques than with puncture techniques (p<0.001). In inexperienced health care personnel, anatomical-surgical techniques showed a higher success rate, a faster tracheal tube insertion time and a lower complication rate compared with puncture techniques, suggesting that they may be the techniques of choice in emergencies.

  17. LENR BEC Clusters on and below Wires through Cavitation and Related Techniques

    NASA Astrophysics Data System (ADS)

    Stringham, Roger; Stringham, Julie

    2011-03-01

    During the last two years I have been working on BEC cluster densities deposited just under the surface of wires, using cavitation, and other techniques. If I get the concentration high enough before the clusters dissipate, in addition to cold fusion related excess heat (and other effects, including helium-4 formation) I anticipate that it may be possible to initiate transient forms of superconductivity at room temperature.

  18. Effect of Bypass Capacitor in Common-mode Noise Reduction Technique for Automobile PCB

    NASA Astrophysics Data System (ADS)

    Uno, Takanori; Ichikawa, Kouji; Mabuchi, Yuichi; Nakamura, Atushi

    In this letter, we studied the use of common mode noise reduction technique for in-vehicle electronic equipment, each comprising large-scale integrated circuit (LSI), printed circuit board (PCB), wiring harnesses, and ground plane. We have improved the model circuit of the common mode noise that flows to the wire harness to add the effect of by-pass capacitors located near an LSI.

  19. Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.

  20. The Application of Ultrasonic Inspection to Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2010-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.

  1. Sphincterotomy by triple lumen needle knife using guide wire in patients with Billroth II gastrectomy

    PubMed Central

    Park, Su Bum; Kim, Hyung Wook; Kang, Dae Hwan; Choi, Cheol Woong; Yoon, Ki Tae; Cho, Mong; Song, Byeong Jun

    2013-01-01

    AIM: To investigate the usefulness of a guide wire and triple lumen needle knife for removing stones in Billroth II (B-II) gastrectomy patients. METHODS: Endoscopic sphincterotomy in patients with B-II gastrectomy is challenging. We used a new guide wire technique involving sphincterotomy by triple lumen needle knife through a forward-viewing endoscopy. This technique was performed in nine patients between August 2010 and June 2012. Sphincterotomy as described above was performed. Adequate sphincterotomy, successful stone removal, and complications were investigated prospectively. RESULTS: Sphincterotomy by triple lumen needle knife using guide wire was successful in all nine patients. Sphincterotomy started towards the 4-5 o’clock direction and continued to the upper margin of the papillary roof. Complete stone removal in one session was achieved in all patients. There were no procedure related complications, such as bleeding, pancreatitis, or perforation. CONCLUSION: In patients with B-II gastrectomy, guide wire using sphincterotomy by triple lumen needle knife through a forward-viewing endoscopy seems to be an effective and safe procedure for the removal of common bile duct stones. PMID:24409069

  2. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  3. Energy Efficient High-Pressure Turbine Leakage Technology Report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1980-01-01

    The leakage test program was one of such supporting technology programs structured to provide guidance to the Energy Efficient Engine High Pressure Turbine Component Design Effort. Leakage reduction techniques were identified and evaluated. Test models were used to simulate component leak paths and to evaluate leakage reduction techniques. These models simulated the blade/disk attachment, the vane inner platform attachment, and the vane outer platform attachment combined with the blade outer airseal. Disk blade attachment testing indicated that leakage in this area could be reduced to very low levels by paying careful attention to the tolerances along the contact surface between the blade vibration damper and the blade platform contact surface. The aim of feather seal testing was to achieve a goal for an effective leakage gap of one mil (.001 inch) per inch of feather seal length. Results indicated that effective gaps even below the goal level were achievable by (1) maintaining close tolerances between feather seals and their slots to minimize end gaps and limit seal rotation, (2) avoiding feather seal overlap, and (3) minimizing feather seal intersections. W seals were shown to be effective leakage control devices. Wire rope, in its present state of development, was shown not to be an effective sealing concept for application to the component design.

  4. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  5. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  6. Form measurement of a 0.1 mm diameter wire with a chromatic confocal sensor, with associated uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Sanz, Claude; Giusca, Claudiu; Morantz, Paul; Marin, Antonio; Chérif, Ahmed; Schneider, Jürgen; Mainaud-Durand, Hélène; Shore, Paul; Steffens, Norbert

    2018-07-01

    The accurate characterisation of a copper–beryllium wire with a diameter of 0.1 mm is one of the steps to increase the precision of future accelerators’ pre-alignment. Novelties in measuring the wire properties were found in order to overcome the difficulties brought by its small size. This paper focuses on an implementation of a chromatic-confocal sensor leading to a sub-micrometric uncertainty on the form measurements. Hence, this text reveals a high-accuracy metrology technique applicable to objects with small diameters: it details the methodology, describes a validation by comparison with a reference and specifies the uncertainty budget of this technique.

  7. Straight-wire appliances: standard versus individual prescription.

    PubMed

    Farronato, Giampietro; Periti, Giulia; Giannini, Lucia; Farronato, Davide; Maspero, Cinzia

    2009-01-01

    In this article the individual patient (IP) appliance is described. It consists of 250 options of bracket and band variations as the straight wire appliances. Increasing the bracket capabilities means using an increasing number of brackets, each with a specific design created for a treatment situation. The objective of IP appliance is to eliminate wire bending from orthodontic treatment and improve the treatment results. To manage this technique, a computer software is needed. Internet offers significant possibilities in managing each patient by patient basis. The clinician is required to make the diagnosis and treatment plan before ordering the appliance. Two clinical cases are described with the aim to present the advantages of this technique.

  8. Arthroscopic Talar Dome Access Using a Standard Versus Wire-Based Traction Method for Ankle Joint Distraction.

    PubMed

    Barg, Alexej; Saltzman, Charles L; Beals, Timothy C; Bachus, Kent N; Blankenhorn, Brad D; Nickisch, Florian

    2016-07-01

    To evaluate the accessibility of the talar dome through anterior and posterior portals for ankle arthroscopy with the standard noninvasive distraction versus wire-based longitudinal distraction using a tensioned wire placed transversely through the calcaneal tuberosity. Seven matched pairs of thigh-to-foot specimens underwent ankle arthroscopy with 1 of 2 methods of distraction: a standard noninvasive strapping technique or a calcaneal tuberosity wire-based technique. The order of the arthroscopic approach and use of a distraction method was randomly determined. The areas accessed from both 2-portal anterior and 2-portal posterior approaches were determined by using a molded translucent grid. The mean talar surface accessible by anterior ankle arthroscopy was comparable with noninvasive versus calcaneal wire distraction with 57.8% ± 17.2% (range, 32.9% to 75.7%) versus 61.5% ± 15.2% (range, 38.5% to 79.1%) of the talar dome, respectively (P = .590). The use of calcaneal wire distraction significantly improved posterior talar dome accessibility compared with noninvasive distraction, with 56.4% ± 20.0% (range, 14.4% to 78.0%) versus 39.8% ± 14.9% (range, 20.0% to 57.6%) of the talar dome, respectively (P = .031). Under the conditions studied, our cadaveric model showed equivalent talar dome access with 2-portal anterior arthroscopy of calcaneal wire-based distraction versus noninvasive strap distraction, but improved access for 2-portal posterior arthroscopy with calcaneal wire-based distraction versus noninvasive strap distraction. The posterior 40% of the talar dome is difficult to access via anterior ankle arthroscopy. Posterior calcaneal tuberosity wire-based longitudinal distraction improved arthroscopic access to the centro-posterior talar dome with a posterior arthroscopic approach. Published by Elsevier Inc.

  9. Validation of a technique for accurate fine-wire electrode placement into posterior gluteus medius using real-time ultrasound guidance.

    PubMed

    Hodges, P W; Kippers, V; Richardson, C A

    1997-01-01

    Fine-wire electromyography is primarily utilised for the recording of activity of the deep musculature, however, due to the location of these muscles, accurate electrode placement is difficult. Real-time ultrasound imaging (RTUI) of muscle tissue has been used for the guidance of the needle insertion for the placement of electrodes into the muscles of the abdominal wall. The validity of RTUI guidance of needle insertion into the deep muscles has not been determined. A cadaveric study was conducted to evaluate the accuracy with which RTUI can be used to guide fine-wire electrode placement using the posterior fibres of gluteus medius (PGM) as an example. Pilot studies revealed that the ultrasound resolution of cadaveric tissue is markedly reduced making it impossible to directly evaluate the technique, therefore, three studies were conducted. An initial study involved the demarcation of the anatomical boundaries of PGM using RTUI to define a technique based on an anatomical landmark that was consisent with the in vivo RTUI guided needle placement technique. This anatomical landmark was then used as the guide for the cadaveric needle insertion. Once the needle was positioned 0.05 ml of dye was introduced and the specimen dissected. The dye was accurately placed in PGM in 100% of the specimens. Finally, fine-wire electrodes were inserted into the PGM of five volunteers and manoeuvres performed indicating the accuracy of placement. This study supports the use of ultrasound imaging for the accurate guidance of needle insertion for fine-wire and needle EMG electrodes.

  10. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  11. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    NASA Astrophysics Data System (ADS)

    Kilgour, Michael; Segal, Dvira

    2015-07-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  12. [Three-dimensional finite element analysis of maxillary anterior teeth retraction force system in light wire technique].

    PubMed

    Zhang, Xiangfeng; Wang, Chao; Xia, Xi; Deng, Feng; Zhang, Yi

    2015-06-01

    This study aims to construct a three-dimensional finite element model of a maxillary anterior teeth retraction force system in light wire technique and to investigate the difference of hydrostatic pressure and initial displacement of upper anterior teeth under different torque values of tip back bend. A geometric three-dimensional model of the maxillary bone, including all the upper teeth, was achieved via CT scan. To construct the force model system, lingual brackets and wire were constructed by using the Solidworks. Brackets software, and wire were assembled to the teeth. ANASYS was used to calculate the hydrostatic pressure and the initial displacement of maxillary anterior teeth under different tip-back bend moments of 15, 30, 45, 60, and 75 Nmm when the class II elastic force was 0.556 N. Hydrostatic pressure was concentrated in the root apices and cervical margin of upper anterior teeth. Distal tipping and relative intrusive displacement were observed. The hydrostatic pressure and initial displacement of upper canine were greater than in the central and lateral incisors. This hydrostatic pressure and initial intrusive displacement increased with an increase in tip-back bend moment. Lingual retraction force system of maxillary anterior teeth in light wire technique can be applied safely and controllably. The type and quantity of teeth movement can be controlled by the alteration of tip-back bend moment.

  13. [Application of rafting K-wire technique for tibial plateau fractures].

    PubMed

    Zhang, Xing-zhou; Yu, Wei-zhong; Li, Yun-feng; Liu, Yan-hui

    2015-12-01

    To summarize application of rafting K-wires technique for tibial plateau fractures. From January 2013 to January 2015,45 patients with tibial plateau fractures were treated by locking plate with rafting K-wires, including 33 males and 12 females with an average of 44.2 years old ranging from 22 to 56 years old. According to Schatzker classification, 6 cases were type II, 8 were type Ill, 4 were type IV, 4 were type V, and 5 were type VI. Allogeneic bone graft were performed for bone defects. All patients were fixed with two to five K-wires. Part of weight loading were encouraged at 3 months after operation,and full weight-loading were done at 5 months after operation. Postoperative complications were observed,and Rasmussen clinical and radiological assessment were used to evaluate clinical results. All Patients were followed up from 10 to 23 months with average of 14 months. According to Rasmussen clinical and radiological assessment, clinical scores 23.58 ± 6.33, radiological scores were 14.00 ± 6.33; and excellent and good rates were 82.2% and 77.8% respectively. Four patients occurred severe osteoporosis and collapse of articular surface; 5 patients occurred traumatic arthritis. Rafting K-wires technique with anatomized armor plate could effective fix and support platform collapse and joint bone fragments, increase support surface area and reduce postoperative reduction loss rate.

  14. Novel experience of laser-assisted 'inside-out' central venous access in a patient with bilateral subclavian vein occlusion requiring pacemaker implantation.

    PubMed

    Aye, Thandar; Phan, Thanh Trung; Muir, Douglas Findlay; Linker, Nicholas John; Hartley, Richard; Turley, Andrew John

    2017-10-01

    This new laser facilitated 'inside-out' technique was used for transvenous pacemaker insertion in a pacemaker-dependent patient with bilateral subclavian occlusion and a failed epicardial system who is not suitable for a transfemoral approach. Procedure was undertaken under general anaesthesia with venous access obtained from right femoral vein and left axillary vein. 7F multipurpose catheter was used to enter proximal edge of the occluded segment of subclavian vein via femoral approach, which then supported stiff angioplasty wires and microcatheters to tunnel into the body of occlusion. When encountered with impenetrable resistance, 1.4 mm Excimer laser helped delivery of a Pilot 200 wire, which then progressed towards the distal edge of occlusion. Serial balloon dilatations allowed wire tracked into subintimal plane, advanced towards left clavicle using knuckle wire technique, which was then externalized with blunt dissection from infraclavicular pocket area. It was later changed to Amplatz superstiff wire exiting from both ends to form a rail, which ultimately allowed passage of pacing leads after serial balloon dilatation from clavicular end. Our hybrid 'inside-out' technique permitted transvenous pacemaker insertion without complication and this is, to our knowledge, the first case using laser in this context. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  15. Development of termination and utilization concepts for flat conductor cables. Volume 3: Cost study comparison, flat versus round conductor cable

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A cost study comparing flat conductor cable (FCC) with small-gage wire (SGW) and conventional round conductor cable (RCC) is presented. This study was based on a vehicle wiring system consisting of 110,000 ft of conventional RCC equally divided between AWG sizes 20,22, and 24 using MIL-W-81044-type wire and MIL-C-26500 circular connectors. Basic cost data were developed on a similar-sized commercial jet airplane wiring system on a previous company R&D program in which advanced wiring techniques were carried through equivalent installations on an airplane mockup; and on data developed on typical average bundles during this program. Various cost elements included were engineering labor, operations (manufacturing) labor, material costs, and cost impact on payload. Engineering labor includes design, wiring system integration, wiring diagrams and cable assembly drawings, wire installations, and other related supporting functions such as the electronic data processing for the wiring. Operations labor includes mockup, tooling and production planning, fabrication, assembly, installation, and quality control cost impact on payload is the conversion of wiring system weight variations through use of different wiring concepts to program payload benefits in terms of dollars.

  16. Investigation of factors affecting the heater wire method of calibrating fine wire thermocouples

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.

    1972-01-01

    An analytical investigation was made of a transient method of calibrating fine wire thermocouples. The system consisted of a 10 mil diameter standard thermocouple (Pt, Pt-13% Rh) and an 0.8 mil diameter chromel-alumel thermocouple attached to a 20 mil diameter electrically heated platinum wire. The calibration procedure consisted of electrically heating the wire to approximately 2500 F within about a seven-second period in an environment approximating atmospheric conditions at 120,000 feet. Rapid periodic readout of the standard and fine wire thermocouple signals permitted a comparison of the two temperature indications. An analysis was performed which indicated that the temperature distortion at the heater wire produced by the thermocouple junctions appears to be of negligible magnitude. Consequently, the calibration technique appears to be basically sound, although several practical changes which appear desirable are presented and discussed. Additional investigation is warranted to evaluate radiation effects and transient response characteristics.

  17. Present status of PIT round wires of 122-type iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Tamegai, T.; Suwa, T.; Pyon, S.; Kajitani, H.; Takano, K.; Koizumi, N.; Awaji, S.; Watanabe, K.

    2017-12-01

    Outstanding characteristics with high T c and H c2 and small anisotropy in iron-based superconductors (IBSs) have triggered the development of superconducting wires and tapes using these novel superconductors. In this short article, developments and present status of round wires of 122-type IBSs are reviewed. By introducing hot-isostatic pressing (HIP) technique, J c in round wires of 122-type IBSs has been improved significantly. Further improvements have been realized by refining the fabrication process of the core material and introducing partial texturing of the wire core. The largest transport J c for round wires at 4.2 K at self-field and 100 kOe are 2.0x105 A/cm2 and 3.8x104 A/cm2, respectively. We also compare the J c characteristics of wires and tapes processed by HIP.

  18. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Stainback, P. C.; Nagabushana, K. A.

    1992-01-01

    This paper focuses on the correlation of constant temperature anemometer voltages to velocity, density, and total temperature in the transonic slip flow regime. Three different calibration schemes were evaluated. The ultimate use of these hot-wire calibrations is to obtain fluctuations in the flow variables. Without the appropriate mean flow sensitivities of the heated wire, the measurements of these fluctuations cannot be accurately determined.

  19. Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings

    ERIC Educational Resources Information Center

    Fang, Tian-Shen

    2007-01-01

    This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…

  20. Evolution of treatment mechanics and contemporary appliance design in orthodontics: A 40-year perspective.

    PubMed

    McLaughlin, Richard P; Bennett, John C

    2015-06-01

    Until the early 1970s, successful treatment with the Begg technique and the Tweed edgewise technique required tedious wire bending. The introduction of Andrews' straight wire appliance changed that, and it was one of the most significant contributions in the history of orthodontics. The straight wire appliance significantly reduced the amount of wire bending and also brought along other options in treatment mechanics. Retraction of the canines with elastic chains and ligature wires became more common. Sliding mechanics in place of closing loops became the method of space closure for a significant number of clinicians. Edgewise force levels were initially used to close spaces; however, it was soon observed that lighter forces were more effective with sliding mechanics. Along with these changes, it became apparent that compensation in the appliance was needed, depending on the type of malocclusion and particularly with varying extraction sequences. Various appliance designs were developed to accommodate changes in mechanics and force levels. These modifications improved tooth positions at the end of treatment as long as the brackets were properly placed. These major changes in appliances, force levels, and treatment mechanics can be traced back to the work of Dr Lawrence Andrews and the straight wire appliances. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. Cold-Drawn Bioabsorbable Ferrous and Ferrous Composite Wires: An Evaluation of Mechanical Strength and Fatigue Durability

    NASA Astrophysics Data System (ADS)

    Schaffer, Jeremy E.; Nauman, Eric A.; Stanciu, Lia A.

    2012-08-01

    Yield strengths exceeding 1 GPa with elastic strains exceeding 1 pct were measured in novel bioabsorbable wire materials comprising high-purity iron (Fe), manganese (Mn), magnesium (Mn), and zinc (Zn), which may enable the development of self-expandable, bioabsorbable, wire-based endovascular stents. The high strength of these materials is attributed to the fine microstructure and fiber textures achieved through cold drawing techniques. Bioabsorbable vascular stents comprising nutrient metal compositions may provide a means to overcome the limitations of polymer-based bioabsorbable stents such as excessive strut thickness and poor degradation rate control. Thin, 125- μm wires comprising combinations of ferrous alloys surrounding a relatively anodic nonferrous core were manufactured and tested using monotonic and cyclic techniques. The strength and durability properties are tested in air and in body temperature phosphate-buffered saline, and then they were compared with cold-drawn 316L stainless steel wire. The antiferromagnetic Fe35Mn-Mg composite wire exhibited more than 7 pct greater elasticity (1.12 pct vs 1.04 pct engineering strain), similar fatigue strength in air, an ultimate strength of more than 1.4 GPa, and a toughness exceeding 35 mJ/mm3 compared with 30 mJ/mm3 for 316L.

  2. Estimation of Subjective Difficulty and Psychological Stress by Ambient Sensing of Desk Panel Vibrations

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Nana; Yamamoto, Keiko; Iwai, Daisuke; Sato, Kosuke

    We investigate ambient sensing techniques that recognize writer's psychological states by measuring vibrations of handwriting on a desk panel using a piezoelectric contact sensor attached to its underside. In particular, we describe a technique for estimating the subjective difficulty of a question for a student as the ratio of the time duration of thinking to the total amount of time spent on the question. Through experiments, we confirm that our technique correctly recognizes whether or not a person writes something down on paper by measured vibration data at the accuracy of over 80 %, and that the order of computed subjective difficulties of three questions is coincident with that reported by the subject in 60 % of experiments. We also propose a technique to estimate a writer's psychological stress by using the standard deviation of the spectrum of the measured vibration. Results of a proof-of-concept experiment show that the proposed technique correctly estimates whether or not the subject feels stress at least 90 % of the time.

  3. Localized states in an arbitrarily bent quantum wire (bend-imitating approach)

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksity O.

    1996-02-01

    The bend-imitating matching technique is proposed to simplify the quantum mechanical treatment of singly and multiply bent 2D quantum wires of constant width, arbitrary bending angles, arbitrary bending radii and arbitrary distances between the bends. The spectrum of one-electron localized states and its dependence on the bending angle and the bending radius in a singly bent wire is explicitly calculated. Doubly bent wires are shown to possess doubly split localized states. The splitting energies as a function of the distance between the bends and the bending angles and bending radii have also been obtained. A similar description of bent 3D quantum wires and bent optical fibers is expected to be possible.

  4. Strategies for prevention of iatrogenic inferior vena cava filter entrapment and dislodgement during central venous catheter placement.

    PubMed

    Wu, Alex; Helo, Naseem; Moon, Eunice; Tam, Matthew; Kapoor, Baljendra; Wang, Weiping

    2014-01-01

    Iatrogenic migration of inferior vena cava (IVC) filters is a potentially life-threatening complication that can arise during blind insertion of central venous catheters when the guide wire becomes entangled with the filter. In this study, we reviewed the occurrence of iatrogenic migration of IVC filters in the literature and assessed methods for preventing this complication. A literature search was conducted to identify reports of filter/wire entrapment and subsequent IVC filter migration. Clinical outcomes and complications were identified. A total of 38 cases of filter/wire entrapment were identified. All of these cases involved J-tip guide wires. Filters included 23 Greenfield filters, 14 VenaTech filters, and one TrapEase filter. In 18 cases of filter/wire entrapment, there was migration of the filter to the heart and other central venous structures. Retrieval of the migrated filter was successful in only four of the 18 cases, and all of these cases were complicated by strut fracture and distant embolization of fragments. One patient required resuscitation during retrieval. Successful disengagement was possible in 20 cases without filter migration. Iatrogenic migration of an IVC filter is an uncommon complication related to wire/filter entrapment. This complication can be prevented with knowledge of the patient's history, use of proper techniques when placing a central venous catheter, identification of wire entrapment at an early stage, and use of an appropriate technique to disengage an entrapped wire. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  5. Automatic circuit interrupter

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S.

    1979-01-01

    In technique, voice circuits connecting crew's cabin to launch station through umbilical connector disconnect automatically unused, or deadened portion of circuits immediately after vehicle is launched, eliminating possibility that unused wiring interferes with voice communications inside vehicle or need for manual cutoff switch and its associated wiring. Technique is applied to other types of electrical actuation circuits, also launch of mapped vehicles, such as balloons, submarines, test sleds, and test chambers-all requiring assistance of ground crew.

  6. Monorail system for percutaneous repositioning of the Greenfield vena caval filter.

    PubMed

    Guthaner, D F; Wyatt, J O; Mehigan, J T; Wright, A M; Breen, J F; Wexler, L

    1990-09-01

    The authors describe a technique for removing or repositioning a malpositioned Greenfield inferior vena caval filter. A "monorail" system was used, in which a wire was passed from the femoral vein through the apical hole in the filter and out the internal jugular vein; the wire was held taut from above and below and thus facilitated repositioning or removal of the filter. The technique was used successfully in two cases.

  7. Embolization of a spinal dural arteriovenous fistula with ethylene-vinyl alcohol copolymer (Onyx) using a dual-lumen microballoon catheter and buddy wire technique.

    PubMed

    Nakae, Ryuta; Nagaishi, Masaya; Hyodo, Akio; Suzuki, Kensuke

    2017-01-01

    N -butyl 2-cyanoacrylate (NBCA) remains the standard embolic agent for spinal dural arteriovenous fistula (SDAVF) treatment. Treatment of SDAVF with ethylene-vinyl alcohol copolymer (Onyx, ev3-Covidien, Irvine CA, USA) is currently not well established. Although several cases have reported the use of Onyx to embolize an intracranial dural arteriovenous fistula using a dual-lumen microballoon catheter, Onyx embolization of an SDAVF using a dual-lumen microballoon catheter has not been reported. We treated a 57-year-old man with an SDAVF using a dual-lumen microballoon catheter and buddy wire technique to perform transarterial Onyx embolization via the left sixth intercostal artery. Onyx embolization using a dual-lumen microballoon catheter was effective. Furthermore, the buddy wire technique was useful for providing rigid support of the microcatheter in a narrow and tortuous intercostal artery.

  8. Embolization of a spinal dural arteriovenous fistula with ethylene-vinyl alcohol copolymer (Onyx) using a dual-lumen microballoon catheter and buddy wire technique

    PubMed Central

    Nakae, Ryuta; Nagaishi, Masaya; Hyodo, Akio; Suzuki, Kensuke

    2017-01-01

    Background: N-butyl 2-cyanoacrylate (NBCA) remains the standard embolic agent for spinal dural arteriovenous fistula (SDAVF) treatment. Treatment of SDAVF with ethylene-vinyl alcohol copolymer (Onyx, ev3-Covidien, Irvine CA, USA) is currently not well established. Although several cases have reported the use of Onyx to embolize an intracranial dural arteriovenous fistula using a dual-lumen microballoon catheter, Onyx embolization of an SDAVF using a dual-lumen microballoon catheter has not been reported. Case Description: We treated a 57-year-old man with an SDAVF using a dual-lumen microballoon catheter and buddy wire technique to perform transarterial Onyx embolization via the left sixth intercostal artery. Conclusions: Onyx embolization using a dual-lumen microballoon catheter was effective. Furthermore, the buddy wire technique was useful for providing rigid support of the microcatheter in a narrow and tortuous intercostal artery. PMID:28840070

  9. Sleeve Push Technique: A Novel Method of Space Gaining.

    PubMed

    Verma, Sanjeev; Bhupali, Nameksh Raj; Gupta, Deepak Kumar; Singh, Sombir; Singh, Satinder Pal

    2018-01-01

    Space gaining is frequently required in orthodontics. Multiple loops were initially used for space gaining and alignment. The most common used mechanics for space gaining is the use of nickel-titanium open coil springs. The disadvantage of nickel-titanium coil spring is that they cannot be used until the arches are well aligned to receive the stiffer stainless steel wires. Therefore, a new method of gaining space during initial alignment and leveling has been developed and named as sleeve push technique (SPT). The nickel-titanium wires, i.e. 0.012 inches and 0.014 inches along with archwire sleeve (protective tubing) can be used in a modified way to gain space along with alignment. This method helps in gaining space right from day 1 of treatment. The archwire sleeve and nickel-titanium wire in this new SPT act as a mutually synergistic combination and provide the orthodontist with a completely new technique for space opening.

  10. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  11. Back Pain

    MedlinePlus

    ... for back pain include being overweight, poor physical conditioning, smoking, whole body vibration, and improper lifting technique ... back and abdominal muscles). •Decrease vibrations by installing air cushions or upgrade seat to damper vibrations. • Stay ...

  12. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  13. Measurement of stapes vibration in Human temporal bones by round window stimulation using a 3-coil transducer.

    PubMed

    Shin, Dong Ho; Kim, Dong Wook; Lim, Hyung Gyu; Jung, Eui Sung; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin Ho

    2014-01-01

    Round window placement of a 3-coil transducer offers a new approach for coupling an implantable hearing aid to the inner ear. The transducer exhibits high performance at low-frequencies. One remarkable feature of the 3-coil transducer is that it minimizes leakage flux. Thus, the transducer, which consists of two permanent magnets and three coils, can enhance vibrational displacement. In human temporal bones, stapes vibration was observed by laser Doppler vibrometer in response to round window stimulation using the 3-coil transducer. Coupling between the 3-coil transducer and the round window was connected by a wire-rod. The stimulation created stapes velocity when the round window stimulated. Performance evaluation was conducted by measuring stapes velocity. To verify the performance of the 3-coil transducer, stapes velocity for round window and tympanic membrane stimulation were compared, respectively. Stapes velocity by round window stimulation using the 3-coil transducer was approximately 14 dB higher than that achieved by tympanic membrane stimulation. The study shows that 3-coil transducer is suitable for implantable hearing aids.

  14. Transverse vibration techniques : logs to structural systems

    Treesearch

    Robert J. Ross

    2008-01-01

    Transverse vibration as a nondestructive testing and evaluation technique was first examined in the early 1960s. Initial research and development efforts focused on clear wood, lumber, and laminated products. Out of those efforts, tools were developed that are used today to assess lumber properties. Recently, use of this technique has been investigated for evaluating a...

  15. Electrochemical Fabrication of Metallic Quantum Wires

    ERIC Educational Resources Information Center

    Tao, Nongjian

    2005-01-01

    The fabrication of metallic quantum wires using simple electrochemical techniques is described. The conductance of the system can be readily measured that allows one to constantly monitor the conductance during fabrication and use conductance quantization as a signature to guide the fabrication.

  16. 2012 Gordon Research Conference on Vibrational Spectroscopy - Formal Schedule and Speaker/Poster Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, Franz

    2012-08-10

    The Vibrational Spectroscopy conference brings together experimentalists and theoreticians working at the frontiers of modern vibrational spectroscopy, with a special emphasis on spectroscopies that probe the structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear, and multidimensional spectroscopies. The conference highlights both the application of these techniques in chemistry, materials, biology, the environment, and medicine as well as the development of theoretical models that enable one to connect spectroscopic signatures to underlying molecular motionsmore » including chemical reaction dynamics. The conference goal is to advance the field of vibrational spectroscopy by bringing together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules, nanomaterials, and environmental systems.« less

  17. Recent advances in micro-vibration isolation

    NASA Astrophysics Data System (ADS)

    Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming

    2015-05-01

    Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.

  18. Recanalization strategy for chronic total occlusions with tapered and stiff-tip guidewire. The results of CTO new techniQUE for STandard procedure (CONQUEST) trial.

    PubMed

    Mitsudo, Kazuaki; Yamashita, Takehiro; Asakura, Yasushi; Muramatsu, Toshiya; Doi, Osamu; Shibata, Yoshisato; Morino, Yoshihiro

    2008-11-01

    The success rate of percutaneous coronary intervention (PCI) for chronic total coronary occlusion (CTO) lesions varies depending on the guidewire manipulation skills of the operator. The standardization of guidewire technique is very important. A new technique with a new tapered wire (Conquest, Confianza Pro) was tested to verify effectiveness for higher initial success rates and standardization of PCI for CTO. A prospective, multicenter registry was conducted at 6 investigational sites. In the CONQUEST trial, The CTO lesions were treated by using an intermediate guidewire to cross the lesion. If it did not cross, the guidewire was changed to the Conquest guidewire. If it did not cross, "seesaw-wiring" or the "parallel-wire technique" was performed. The primary endpoint was the initial procedural success rate. A total of 110 patients representing 116 CTO lesions were treated from July 2003 through March 2004. The procedural success rate was 86.2% on the first try, and 88.8% on the second try, respectively. The guidewire success rate on the second try was 90.5% during the hospital stay; no deaths, or acute myocardial infarctions were confirmed. Two patients deteriorated into tamponade, and surgical or percutaneous drainage was performed in each patient without any sequelae. A guidewire technique in PCI for CTOs that starts with the intermediate guidewire and moves to the Confianza Pro tapered guidewire, either alone or by performing a see-saw or parallel-wire technique, can achieve a high initial success rate with an acceptably low major complication rate.

  19. Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Tyler

    2015-08-27

    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less

  20. Pulse Tube Interference in Cryogenic Sensors - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Tyler

    2015-08-24

    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise,more » it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.« less

  1. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  2. Structural health monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  3. Breast surgery techniques: preoperative bracketing wire localization by surgeons.

    PubMed

    Burkholder, Hans C; Witherspoon, Laura E; Burns, R Phillip; Horn, Jeffrey S; Biderman, Michael D

    2007-06-01

    With the development of expertise in image guidance for breast surgery, many surgeons now perform preoperative wire localization themselves. Use of a single wire versus multiple wires to bracket a radiographic breast abnormality has previously been described, although benefits of this technique based on clinical outcomes such as margin status, tissue volume removed, and re-excision rates have not been established. This study is a retrospective analysis of wire-localized breast biopsies performed by 14 surgeons over 29 months; stereotactic and ultrasound guidance were used. During this time, 489 wire localizations were done, of which 159 used multiple wires. Two hundred eleven of these biopsies were done for malignant disease, 86 using multiple wires. After controlling for tumor node metastases stage, single and multiple wire placements were compared using endpoints of margin status, need for re-excision, and total volume of tissue removed. Neither margin status nor re-excision was related to the number of wires placed. However, the number of wires placed was significantly related to the total volume of tissue removed. Use of more than one localizing wire was associated with greater volume of tissue removal (measured in centimeters cubed) in benign disease (46 vs 25, P < 0.001), equivalent volumes in stage 0 disease (73 vs 67), less volume in stage 1 disease (113 vs 164), and less volume in stages 2 through 4 (158 vs 207, P = 0.03). Outcomes based on surgeon case volume during the study period demonstrated that low- (1-40), medium- (41-80), and high-volume (>80) surgeons did not differ in the type or stage of breast pathology treated. Surgeons with high case volumes were more likely to place multiple localizing wires (P < 0.001) and were more likely to do a breast-conserving procedure if re-excision was performed (P < 0.018). Surgeons with low case volumes were more likely to perform a re-excision (P < 0.025). Surgeon experience has a positive impact on quality outcome measures such as performance of a definitive procedure at the time of initial surgery and use of breast-conserving procedures at the time of re-excision. Multiple wire localization can be used to significantly reduce the volume of breast tissue removed in malignant disease without sacrificing margin status or increasing the need for future re-excision.

  4. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  5. A multiplanar complex resection of a low-grade chondrosarcoma of the distal femur guided by K-wires previously inserted under CT-guide: a case report.

    PubMed

    Zoccali, Carmine; Rossi, Barbara; Ferraresi, Virginia; Anelli, Vincenzo; Rita, Alessandro

    2014-08-13

    In muscular skeletal oncology aiming to achieve wide surgical margin is one of the main factors influencing patient prognosis. In cases where lesions are either meta or epiphyseal, surgery most often compromises joint integrity and stability because muscles, tendons and ligaments are involved in wide resection. When lesions are well circumscribed they can be completely resected by performing multi-planar osteotomies guided by computer-assisted navigation. We describe a case of low-grade chondrosarcoma of the distal femur where a simple but effective technique was useful to perform complex multiplanar osteotomies. No similar techniques are reported in the literature. A 57 year-old Caucasian female was referred to our department for the presence of a distal femur chondrosarcoma. A resection with the presenting technique was scheduled. The first step consists of inserting several K-wires under CT-scan control to delimitate the tumor; the second step consists of tumor removal: in operative theatre, following surgical access, k-wires are used as guide positioning; scalpels are externally placed to k-wires to perform a safe osteotomy. Computed assisted resections can be considered the most advantageous method to reach the best surgical outcome; unfortunately navigation systems are only available in specialized centres. The present technique allows for a multiplanar complex resection when navigation systems are not available. This technique can be applied in low-grade tumours where a minimal wide margin can be considered sufficient.

  6. The Effect of Pressure Pulsations and Vibrations on Fully Developed Pipe Flow

    DTIC Science & Technology

    1981-08-01

    38 4.2 Fluid Response to a Fluttering Valve ..................................... 46 5.0 C O N C L U S I O N... valves , it is known from analysis (Refs. 1 through 4) and has been demonstrated experimentally (Refs. 5 through 8) that flow pulsations may (1...fully developed flow in a tube. 19 A E D C- TF1 -80-31 on the basis of hot-wire studies that the exchange process was altered but presented no

  7. Modified tension band wiring fixation for avulsion fractures of the calcaneus in osteoporotic bone: a review of three patients.

    PubMed

    Nagura, Issei; Fujioka, Hiroyuki; Kurosaka, Masahiro; Mori, Hiroyuki; Mitani, Makoto; Ozaki, Akihiro; Fujii, Hideo; Nabeshima, Yuji

    2012-01-01

    Calcaneal avulsion fractures are not uncommon, and they are probably more likely in patients with osteoporosis. Closed manipulation for this type of fracture often fails to achieve acceptable reduction, and open reduction and internal fixation are usually required. However, open reduction and internal fixation with either a lag screw or Steinmann pins do not provide satisfactory fixation in patients with diabetes and elderly patients because of the presence of porotic bone. Levi described a tension band fixation system used to treat a calcaneal avulsion fracture using a simple technique performed with a transverse Kirschner wire through the os calcaneus, securing a figure-of-8 metal tension band wiring to the fragment. We report the successful treatment of 3 patients with calcaneal avulsion fractures using a modified tension band wiring technique, resulting in satisfactory recovery. Re-displacement of the fragment during the initial follow-up period was not reported, and bony union was achieved in all patients. We believe this technique is a useful surgical option for the treatment of calcaneal avulsion fractures. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. A novel technique to prevent guide wire related complications while inserting the 4.0 mm cannulated screws.

    PubMed

    Qi, Bao-Chang; Ju, Wei-Na; Wang, Tie-Jun; Yu, Tie-Cheng; Zhao, Yi; Sun, Da-Hui

    2015-01-01

    Cannulated screws (4.0 mm) provide inter-fragmentary compression and stability to fractures. A guide wire is used to define the screw trajectory and hold the fracture fragment while the screw is being inserted. The cannulated shaft typically accommodates a 1.25 mm guide pin. Since the guide pin is very slender and undergoes elastic deformation during insertion, there is a high probability of pin breakage. The authors have devised a new way to place the 4.0 mm cannulated screws in a manner that prevents the intraoperative complication of guide wire breakage. For this technique, predrilling was achieved using a 2.0 mm K-wire which was subsequently replaced with a 1.25 mm guide pin under the protection of sleeve. 4.0 mm cannulated screws were then inserted into a defined trajectory over the guide pin. Using the technique, over 20 patients were managed in our department over a period of two years without any complications. We have observed that patients treated with this method experience short operation time, combined with good clinical outcome and we recommend its use in cases where cannulated screw use is warranted.

  9. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations

    PubMed Central

    2012-01-01

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of accuracy and automation. PMID:22947281

  10. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  11. Far infrared polarizing grids for use at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Novak, Giles; Sundwall, Jeffrey L.; Pernic, Robert J.

    1989-01-01

    A technique is proposed for the construction of free-standing wire grids for use as far-IR polarizers. The method involves wrapping a strand of wire around a single cylinder rather than around a pair of parallel rods, thus simplifying the problem of maintaining constant wire tension. The cylinder is composed of three separate pieces which are disassembled at a later stage in the grid-making process. Grids have been constructed using 8-micron-diameter stainless steel wire and a grid spacing of 25 microns. The grids are shown to be reliable under repeated cycling between room temperature and 1.5 K.

  12. Two dimensional exciton polaritons in microcavities with embedded quantum wires

    NASA Astrophysics Data System (ADS)

    Kavokin, A. V.; Ivchenko, E. L.; Vladimirova, M. R.; Kaliteevski, M. A.; Goupalov, S. V.

    1998-02-01

    Optical anisotropy of the periodical array of quantum wires embedded in a semiconductor microcavity is shown to result in polarization-dependent vacuum-field Rabi-splitting and a triple-anticrossing shape of the exciton-polariton dispersion curves. Both effects originate from the resonant diffraction of light at the grating of quantum wires. The calculation has been done within the nonlocal dielectric response theory and using the 4 × 4 transfer matrix technique.

  13. Manufacturing and quality control of interconnecting wire harnesses, Volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Interconnecting wire harnesses defined in the design standard are considered, including type 4, open bundle (not enclosed). Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into the document.

  14. Pulsed differential holographic measurements of vibration modes of high temperature panels

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Aprahamian, R.; Overoye, K. R.

    1972-01-01

    Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.

  15. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    PubMed Central

    2014-01-01

    Summary Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR) are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis. PMID:25551056

  16. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.

    PubMed

    Weis, J C; Cunningham, B W; Kanayama, M; Parker, L; McAfee, P C

    1996-09-15

    The biomechanical stability of six different methods of cervical spine stabilization, three using multistrand cables, were evaluated in a bovine model. To quantify and compare the in vitro biomechanical properties of multistrand cables used for posterior cervical wiring to standard cervical fixation techniques. Fixation of the posterior cervical spine with monofilament stainless steel wire is a proven technique for stabilization of the cervical spine. Recently, multistrand braided cables have been used as a substitute for monofilament stainless steel wires. These cables, made of stainless steel, titanium, or polyethylene, are reported to be stronger, more flexible, and fatigue resistant than are monofilament wire based on mechanical testing. However, no in vitro biomechanical studies have been performed testing a standard posterior cervical wiring technique using multistrand cables. Thirty-six fresh frozen cervical calf spines consistent in size and age were mounted and fixed rigidly to isolate the C4-C5 motion segment. Six different reconstruction techniques were evaluated for Rogers' posterior cervical wiring technique using: 1) 20-gauge stainless steel monofilament wire, 2) stainless steel cable, 3) titanium cable, 4) polyethylene cables, 5) anterior locking plate construct with interbody graft, and 6) posterior plate construct. Six cervical spines were included in each group (n = 6), with each specimen statically evaluated under three stability conditions: 1) intact, 2) reconstructed, and 3) postfatigue. The instability model created before the reconstruction consisted of a distractive flexion Stage 3 injury at C4-C5. Nondestructive static biomechanical testing, performed on an material testing machine (MTS 858 Bionix test system, Minneapolis, MN), included axial compression, axial rotation, flexion-extension, and lateral bending. After reconstruction and static analysis, the specimens were fatigued for 1500 cycles and then statically retested. Data analysis included normalization of the reconstructed and postfatigue data to the intact condition. The calculated static parameters included operative functional unit stiffness and range of motion. Posterior cervical reconstruction with stainless steel monofilament wire proved inadequate under fatigue testing. Two of the six specimens failed with fatigue, and this construct permitted the greatest degree of flexion-extension motion after fatigue in comparison with all other constructs (P < 0.05). There were no significant differences in flexural stiffness or range of motion between stainless steel, titanium, or polyethylene cable constructs before or after fatigue testing. The posterior cervical plate constructs were the stiffest constructs under flexion, extension, and lateral bending modes, before and after fatigue testing (P < 0.05). Multistrand cables were superior to monofilament wire with fatigue testing using an in vitro calf cervical spine model. There were no failures or detectable differences in elongation after fatigue testing between the stainless steel, titanium, and polyethylene cables, as shown by the flexion-extension range of motion. The posterior cervical plate construct offered the greatest stability compared with all other constructs.

  17. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    NASA Astrophysics Data System (ADS)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect and the solder interconnect. The numerical model simulated using ANSYS program was validated with the numerical/experimental results of other published researchers. In addition the results were cross-checked by IDEAS program. A prototype non-working wire interconnect is proposed to emphasize practical application. The numerical analysis, in this dissertation is based on a U.S. Patent granted to G. Peter(42).

  18. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    PubMed

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.

  19. The flying hot wire and related instrumentation

    NASA Technical Reports Server (NTRS)

    Coles, D.; Cantnell, B.; Wadcock, A.

    1978-01-01

    A flying hot-wire technique is proposed for studies of separated turbulent flow in wind tunnels. The technique avoids the problem of signal rectification in regions of high turbulence level by moving the probe rapidly through the flow on the end of a rotating arm. New problems which arise include control of effects of torque variation on rotor speed, avoidance of interference from the wake of the moving arms, and synchronization of data acquisition with rotation. Solutions for these problems are described. The self-calibrating feature of the technique is illustrated by a sample X-array calibration.

  20. Low-Cost Intra-Articular Distraction Technique Using Kirschner Wires and a Toothed Lamina Spreader.

    PubMed

    Shymon, Stephen Joseph; Harris, Thomas Gregory

    We describe a low-cost (instrument cost) technique for joint distraction using 2 Kirschner wires and a toothed lamina spreader in lieu of a Hintermann distractor. The described technique allows for temporary intra-articular distraction and visualization and preservation of the articular surface with extra-articular instrumentation. The technique can also allow for closed reduction and percutaneous treatment in cases of soft tissue compromise. Additionally, the technique uses common orthopedic surgical instruments, leading to a minimal learning curve for novice surgeons. We have found this distraction technique to be most effective for intra-articular preparation of hindfoot and midfoot arthrodeses and for navicular fracture reduction. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be applied to any unknown chip before inspection. A wealth of information can be provided by this learning procedure, which greatly benefits the interpretation of inspection signals afterwards.

  2. Prevention of longitudinal crack propagation around a femoral prosthesis: a study of cerclage wire fixation.

    PubMed

    Difazio, F A; Incavo, S J; Howe, J D

    1993-09-01

    This study examined the effect of single versus triple-wrap cerclage fixation techniques in preventing propagation of a longitudinal fracture around a cementless femoral prosthesis. A proximal filling femoral component was implanted in 14 matched pairs of fresh-frozen bovine femora, following placement of a 45-mm longitudinal crack in the anteromedial cortical wall of the proximal femur. In one group of seven pairs, a single cerclage wire was applied to one specimen of each pair. A triple-wrap of a single cerclage wire was similarly placed in one specimen of each of the other seven pairs. All specimens were axially loaded on a materials testing system machine and the force required to propagate the fracture of the proximal femur was recorded. A triple-wrap cerclage technique required a significant increase in the force to propagate a proximal femur fracture around a non-cemented prosthesis when compared to a single cerclage wire. Copyright © 1993. Published by Elsevier Ltd.

  3. Offline impedance measurements for detection and mitigation of dangerous implant interactions: an RF safety prescreen.

    PubMed

    Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C

    2015-03-01

    The concept of a "radiofrequency safety prescreen" is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. © 2014 Wiley Periodicals, Inc.

  4. Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity

    NASA Astrophysics Data System (ADS)

    Krebs, J.; Rao, S. I.; Verheyden, S.; Miko, C.; Goodall, R.; Curtin, W. A.; Mortensen, A.

    2017-07-01

    Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 μm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale.

  5. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets

    PubMed Central

    Behroozian, Ahmad; Kachoei, Mojgan; Khatamian, Masumeh; Divband, Baharak

    2016-01-01

    Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO). Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS) orthodonticwires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnOnanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electronmicroscope) evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wiresand brackets in four groups: group ZZ (coated wire and bracket), group OO (uncoated wire and bracket), group ZO (coatedwire and uncoated bracket) and group OZ (uncoated wire and coated bracket). Kolmogorov-Smirnov, Mann-Whitney andKruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N) was the highest (P <0.05), and OZ (2.18±0.5 N) had the lowest amount of friction (P <0.05) among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively). Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique,and wire coating combined with bracket coating is not recommended due to its effect on friction. PMID:27429727

  6. An effective parameter optimization technique for vibration flow field characterization of PP melts via LS-SVM combined with SALS in an electromagnetism dynamic extruder

    NASA Astrophysics Data System (ADS)

    Xian, Guangming

    2018-03-01

    A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.

  7. Vibration amplitude sonoelastography lesion imaging using low-frequency audible vibration

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence; Parker, Kevin

    2003-04-01

    Sonoelastography or vibration amplitude imaging is an ultrasound imaging technique in which low-amplitude, low-frequency shear waves, less than 0.1-mm displacement and 1-kHz frequency, are propagated deep into tissue, while real time Doppler techniques are used to image the resulting vibration pattern. Finite-element studies and experiments on tissue-mimicking phantoms verify that a discrete hard inhomogeneity present within a larger region of soft tissue will cause a decrease in the vibration field at its location. This forms the basis for tumor detection using sonoelastography. Real time relative imaging of the vibration field is possible because a vibrating particle will phase modulate an ultrasound signal. The particle's amplitude is directly proportional to the spectral spread of the reflected Doppler echo. Real time estimation of the variance of the Doppler power spectrum at each pixel allows the vibration field to be imaged. Results are shown for phantom lesions, thermal lesions, and 3-D in vitro and 2-D in vivo prostate cancer. MRI and whole mount histology is used to validate the system accuracy.

  8. Evaluation of vibration limits and mitigation techniques for urban construction.

    DOT National Transportation Integrated Search

    2013-10-01

    The overriding purpose of this research was to develop a comprehensive framework to address : vibration issues prior to and during construction, including calculation of anticipated ground : vibrations during project design, condition surveys of stru...

  9. Soil chemical insights provided through vibrational spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  10. Vibration testing and analysis using holography

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Time average holography is useful in recording steady state vibrational mode patterns. Phase relationships under steady state conditions are measured with real time holography and special phase shifting techniques. Data from Michelson interferometer verify vibration amplitudes from holographic data.

  11. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  12. A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers

    DTIC Science & Technology

    1989-05-01

    between the two vertically separated wires closer to the wall. This indicates that the structure becomes less coherent closer to the wall sgain explaining...bibliography prepared by Freymuth (1978), and the application of hot- wire anemometry to subsonic flows has been systematicallv researched since that time...the wire and through the prongs modifies the frequency response of the sensor . Steps in the amplitude Bode diagram can occur, similar to those arising

  13. Development of a Miniaturized Hadamard Transform Time-of-Flight Mass Spectrometer

    DTIC Science & Technology

    2007-02-01

    technique’s name. These pulses are generated using a Bradbury- Nielson gate (BNG), which is a set of two interleaved, electrically isolated and...interleaved sets of wire electrodes that are electrically isolated from one another and that lie in a plane perpendicular to the trajectory of the ion beam...electrical isolation of the two wire sets that are interleaved. In .the• im-ethod develioped in -th-is ab,-both- challengesar-e- overcome by-weaving wires

  14. Sixty-four-Channel Inline Cable Tester

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Faults in wiring are a serious concern for the aerospace and aeronautics (commercial, military, and civil) industries. A number of accidents have occurred because faulty wiring created shorts or opens that resulted in the loss of control of the aircraft or because arcing led to fires and explosions. Some of these accidents have resulted in the massive loss of lives (such as in the TWA Flight 800 accident). Circuits on the Space Shuttle have also failed because of faulty insulation on wiring. STS-93 lost power when a primary power circuit in one engine failed and a second engine had a backup power circuit fault. Cables are usually tested on the ground after the crew reports a fault encountered during flight. Often such failures result from vibration and cannot be replicated while the aircraft is stationary. It is therefore important to monitor faults while the aircraft is in operation, when cables are more likely to fail. Work is in progress to develop a cable fault tester capable of monitoring up to 64 individual wires simultaneously. Faults can be monitored either inline or offline. In the inline mode of operation, the monitoring is performed without disturbing the normal operation of the wires under test. That is, the operations are performed unintrusively and are essentially undetectable for the test signal levels are below the noise floor. A cable can be monitored several times per second in the offline mode and once a second in the inline mode. The 64-channel inline cable tester not only detects the occurrence of a fault, but also determines the type of fault (short/open) and the location of the fault. This will enable the detection of intermittent faults that can be repaired before they become serious problems.

  15. A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    2008-01-01

    One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.

  16. Effect of electrical spot welding on load deflection rate of orthodontic wires.

    PubMed

    Alavi, Shiva; Abrishami, Arezoo

    2015-01-01

    One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P < 0.001). Considering the limitation of this study, the electric spot welding process performed on stainless steel and chromium-cobalt wires increased their load deflection rates.

  17. Lightning induced currents in aircraft wiring using low level injection techniques

    NASA Technical Reports Server (NTRS)

    Stevens, E. G.; Jordan, D. T.

    1991-01-01

    Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.

  18. Corrosion behavior and surface structure of orthodontic Ni-Ti alloy wires.

    PubMed

    Iijima, M; Endo, K; Ohno, H; Yonekura, Y; Mizoguchi, I

    2001-03-01

    The corrosion behaviors of a commercial Ni-Ti alloy orthodontic wire and a polished plate with same composition in 0.9% NaCl and 1% lactic acid solutions were examined using an electrochemical technique, an analysis of released ions, and a surface analysis by X-ray photoelectron spectroscopy (XPS). The effect of polishing the wire on the corrosion was also examined. The XPS analysis demonstrated the presence of a thick oxide film mainly composed of TiO2 with trace amounts of Ni hydroxide, which had formed on the wire surface during the heat treatment and subsequent pickling processes. This oxide layer contributed to the higher resistance of the as-received wire to both general and localized corrosion in 0.9% NaCl solution, compared with that of the polished plate and the polished wire. The thick oxide layer, however, was not stable and did not protect the orthodontic wire from corrosion in 0.1% lactic acid solution.

  19. Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    NASA Technical Reports Server (NTRS)

    Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah

    2017-01-01

    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.

  20. Evaluation of cable tension sensors of FAST reflector from the perspective of EMI

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao

    2016-06-01

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

  1. Dual-Wavelength Interferometry and Light Emission Study for Experimental Support of Dual-Wire Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John

    2017-10-01

    In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.

  2. A method for the measurement and analysis of ride vibrations of transportation systems

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Clevenson, S. A.; Scholl, H. F.

    1972-01-01

    The measurement and recording of ride vibrations which affect passenger comfort in transportation systems and the subsequent data-reduction methods necessary for interpreting the data present exceptional instrumentation requirements and necessitate the use of computers for specialized analysis techniques. A method is presented for both measuring and analyzing ride vibrations of the type encountered in ground and air transportation systems. A portable system for measuring and recording low-frequency, low-amplitude accelerations and specialized data-reduction procedures are described. Sample vibration measurements in the form of statistical parameters representative of typical transportation systems are also presented to demonstrate the utility of the techniques.

  3. Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Smits, A. J.; Bogdonoff, S. M.

    1984-01-01

    A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.

  4. Nanowire and microwire fabrication technique and product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Zach, Michael; Marten, Alan David

    A continuous or semi-continuous process for fabricating nanowires or microwires makes use of the substantially planar template that may be moved through electrochemical solution to grow nanowires or microwires on exposed conductive edges on the surface of that template. The planar template allows fabrication of the template using standard equipment and techniques. Adhesive transfer may be used to remove the wires from the template and in one embodiment to draw a continuous wire from the template to be wound around the drum.

  5. Technique tip: use of anterior cruciate ligament jig for hindfoot fusion by calcanio-talo-tibial nail.

    PubMed

    Haque, Syed; Sarkar, Jay

    2012-08-01

    The use of intramedullary nail fixation for tibio-talo-calcaneal fusion is gaining popularity. There is chance of failure of procedure following faulty operative technique specially alignment. The article describes a useful application of tibial tunnel jig in inserting the calcanio-talo-tibial guide wire. There is precision of few millimeters in the exit point of guide wire on talus. The authors believe that this helps in better positioning of nail and hence better alignment and better operative outcome.

  6. Temperature and field dependence of critical currents in V/sub 3/Ga wire produced by the MJR technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francavilla, T.L.; Gubser, D.U.; Pande, C.S.

    1985-03-01

    The temperature dependence of V/sub 3/Ga multifilamentary wire produced by the modified jelly roll technique is reported as a function of applied magnetic field in the range 10K - 14K and 0-13T. Parameters which relate J /SUB c/ to H at 4.2K were found to apply at these temperatures and fields. The form of the temperature dependence of the critical current density is compared with theory.

  7. Heterodyne-detected dispersed vibrational echo spectroscopy.

    PubMed

    Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei

    2009-12-24

    We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.

  8. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  9. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  10. Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.

    PubMed

    Karjalainen, T; Göransson, H; Viinikainen, A; Jämsä, T; Ryhänen, J

    2010-07-01

    Nickel-titanium shape memory alloy (NiTi) is a new suture material that is easy to handle, is strong, and biocompatible. The purpose of this study was to evaluate the material properties and biomechanical behaviour of 150 microm and 200 microm NiTi wires in flexor tendon repair. Braided polyester (4-0 Ethibond) was used as control. Fifty fresh-frozen porcine flexor tendons were repaired using the Pennington modification of the Kessler repair or a double Kessler technique. NiTi wires were stiffer and reached higher tensile strength compared to braided polyester suture. Repairs with 200 microm NiTi wire had a higher yield force, ultimate force and better resistance to gapping than 4-0 braided polyester repairs. Repairs made with 200 microm NiTi wire achieved higher stiffness and ultimate force than repairs made with 150 microm NiTi wire.

  11. Sternal closure reinforced with rib heads: a novel technique for prevention and treatment of sternal dehiscence.

    PubMed

    Vural, A Hakan; Yalçinkaya, Serhat; Türk, Tamer; Oztürk, Alpaslan; Sezen, Mustafa; Yavuz, Senol; Ozyazicioglu, Ahmet

    2007-01-01

    When a sternotomy cannot be performed at the midline and/or there is infection at the operation site, sternotomy revision can cause problems that increase the mortality and morbidity of the patients. There is no agreement on the best treatment method. In this paper we present a modified wiring technique. This technique consisted of wrapping wires twice around each rib head and placing standard circumferential wire sutures, thus providing full stability by decreasing the load on the sternum using only steel wires. The study group included 23 patients with sternal dehiscence because of inappropriate sternotomy (n = 10) and/or mediastinitis (n = 13). Two mediastinal tubes were placed for irrigation in 13 patients with mediastinitis and/or wound infection, and mobilization and interposition of omentum as an axial graft was performed in 2 patients. Irrigation and antibiotherapy were continued for 4 to 6 weeks. Complete wound healing was obtained in all patients. Twenty-two patients treated with this technique survived. One patient died on postoperative 42nd day because of renal insufficiency and multi-organ failure. Early and aggressive debridement of infected and necrotic tissue, irrigation, and antibiotics are necessary for successful treatment, but we believe that the most important factor is full stabilization of the sternal tissue with minimal use of foreign stabilization material. Despite the limited number of cases, we suggest that our stabilization technique seems to be successful in achieving full stabilization even in infected and fragile sternal bony tissue in patients with sternal dehiscence and/or inappropriate sternotomy.

  12. A multiplanar complex resection of a low-grade chondrosarcoma of the distal femur guided by K-wires previously inserted under CT-guide: a case report

    PubMed Central

    2014-01-01

    Background In muscular skeletal oncology aiming to achieve wide surgical margin is one of the main factors influencing patient prognosis. In cases where lesions are either meta or epiphyseal, surgery most often compromises joint integrity and stability because muscles, tendons and ligaments are involved in wide resection. When lesions are well circumscribed they can be completely resected by performing multi-planar osteotomies guided by computer-assisted navigation. We describe a case of low-grade chondrosarcoma of the distal femur where a simple but effective technique was useful to perform complex multiplanar osteotomies. No similar techniques are reported in the literature. Case presentation A 57 year-old Caucasian female was referred to our department for the presence of a distal femur chondrosarcoma. A resection with the presenting technique was scheduled. The first step consists of inserting several K-wires under CT-scan control to delimitate the tumor; the second step consists of tumor removal: in operative theatre, following surgical access, k-wires are used as guide positioning; scalpels are externally placed to k-wires to perform a safe osteotomy. Conclusions Computed assisted resections can be considered the most advantageous method to reach the best surgical outcome; unfortunately navigation systems are only available in specialized centres. The present technique allows for a multiplanar complex resection when navigation systems are not available. This technique can be applied in low-grade tumours where a minimal wide margin can be considered sufficient. PMID:25123066

  13. Electron beams scanning: A novel method

    NASA Astrophysics Data System (ADS)

    Askarbioki, M.; Zarandi, M. B.; Khakshournia, S.; Shirmardi, S. P.; Sharifian, M.

    2018-06-01

    In this research, a spatial electron beam scanning is reported. There are various methods for ion and electron beam scanning. The best known of these methods is the wire scanning wherein the parameters of beam are measured by one or more conductive wires. This article suggests a novel method for e-beam scanning without the previous errors of old wire scanning. In this method, the techniques of atomic physics are applied so that a knife edge has a scanner role and the wires have detector roles. It will determine the 2D e-beam profile readily when the positions of the scanner and detectors are specified.

  14. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  15. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOEpatents

    Fernandez, Felix E.

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  16. Propellant grain dynamics in aft attach ring of shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1979-01-01

    An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.

  17. Manufacture and quality control of interconnecting wire harnesses, Volume 3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The document covers interconnecting wire harnesses defined in the design standard, including type 6, enclosed in TFE heat shrink tubing; and type 7, flexible armored. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into this document.

  18. -X Mixing in T- and V-Shaped Quantum Wires

    NASA Astrophysics Data System (ADS)

    di Carlo, A.; Pescetelli, S.; Kavokin, A.; Vladimirova, M.; Lugli, P.

    1997-11-01

    We have applied both tight-binding (TB) and multivalley envelope function (MEF) techniques to calculate the electronic states in T- and V-shaped realistic quantum wires taking into account -X mixing in the conduction band. Strong reduction of the electron quantization energy due to the off-resonant -X mixing has been found in all types of quantum wires. This effect appears to be tied to the localization of the electron wave function and to its overlap with atomic layers next to interfaces.

  19. The Fine Wire Technique for Flexor Tenolysis

    PubMed Central

    Baltodano, Pablo A.; Weinberg, Maxene H.; Whipple, Lauren A.; Gemmiti, Amanda L.; Whipple, Richard E.

    2017-01-01

    Background: Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. Methods: This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Results: Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire’s thinness allows for a swift tenolysis. Conclusions: The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive. PMID:29263961

  20. Use of Cryoablation and Osteoplasty Reinforced with Kirschner Wires in the Treatment of Femoral Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Aal, Ahmed Kamel, E-mail: akamel@uabmc.edu; Underwood, Edgar S.; Saddekni, Souheil

    2012-10-15

    Purpose: We report the case of a 43-year-old man with metastatic breast carcinoma to the proximal right femur resulting in severe painful pathological fracture. The patient experienced severe pain despite large doses of analgesia, resulting in impaired functionality and quality of life. The patient had significant comorbidities, making him a high surgical risk. Materials and Methods: The patient was treated with cryoablation and osteoplasty, followed by a novel technique consisting of osteoplasty reinforced with bone marrow Kirschner wires (K-wires) which will be described in details in this report. Results: The patient reported significant pain relief after the procedure, and gainedmore » right lower extremity functionality, as compared to total immobility before the procedure. Conclusion: Our technique offers an alternative feasible treatment for patients at high surgical risk with pathological fractures in weight-bearing bones, in which osteoplasty alone has a high risk of cement leakage, inadequate fracture reduction, and early refracture. To our knowledge, our technique has not been previously described.« less

  1. Posterior cervical fixation for fracture and degenerative disc disease.

    PubMed

    An, H S; Coppes, M A

    1997-02-01

    There are numerous newer techniques that have been developed for the internal fixation of the cervical spine in recent years. Wiring techniques are still appropriate for posterior stabilization of the cervical spine. The halo vest is still widely used for the conservative management of cervical fractures and for postoperative external immobilization. The authors stress that the surgical indications for more modern rigid implants should be adhered to strictly. These implants also should be selected by weighing their advantages versus potential risks. In the upper cervical spine, the surgeon may choose traditional wiring methods and newer C1-C2 screw fixation, occipitocervical plate fixation. For the lower cervical spine, triple wiring technique or lateral mass plating may be used. The surgeon must choose an appropriate device based on the mechanism of injury, pathoanatomy of the lesion, and familiarity with the device, keeping in mind that the goals of internal fixation are stabilization, reduction and maintenance of alignment, early rehabilitation and perhaps enhancement of fusion rates, and avoidance of use of an external halo vest.

  2. The biomechanical analysis of sublaminar wires and cables using luque segmental spinal instrumentation.

    PubMed

    Parsons, J R; Chokshi, B V; Lee, C K; Gundlapalli, R V; Stamer, D

    1997-02-01

    Data was gathered from biomechanical testing of 10 thoracic human cadaveric spines. Spines were tested intact and with a Luque rectangle fixed with wire or cable. To compare the rigidity of fixation and intraspinal penetration of sublaminar monofilament wire and multistrand cable under identical conditions using human cadaveric spines. Reports of neurologic and mechanical complications associated with sublaminar wiring techniques have led to the recent development of more flexible multistrand cable systems. The relative performance of flexible cable versus monofilament wire has not been explored fully in a controlled mechanical environment. A servohydraulic mechanical testing machine was used to measure the static mechanical stiffness of sublaminar wire or cable fixation in conjunction with a Luque rectangle for thoracic human cadaveric spine segments in flexion-extension and torsion modes. Cyclic testing was performed in the flexion-extension mode. Intraspinal penetration of wires and cables was measured. Spine fixation with sublaminar wire and cable resulted in constructs of equal stiffness in flexion-extension and torsion modes. Cyclic testing also indicated similar fatigue profiles for wire- and cable-instrumented spines. Wire and cable fixed spines displayed greater stiffness than the intact spines. Cable encroachment of the spinal canal was less than that seen with wire. Sublaminar multistrand cable may be a rational alternative to monofilament wire in segmental spinal instrumentation because it provides less encroachment into the spinal canal. Further, cadaveric spines instrumented with wire and cable display equivalent mechanical behavior, statically and under cyclic loading. The potential advantages of cable, however, must be balanced against a substantial increase in cost relative to wire.

  3. Numerical Modeling of Nonlinear Thermodynamics in SMA Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D R; Kloucek, P

    We present a mathematical model describing the thermodynamic behavior of shape memory alloy wires, as well as a computational technique to solve the resulting system of partial differential equations. The model consists of conservation equations based on a new Helmholtz free energy potential. The computational technique introduces a viscosity-based continuation method, which allows the model to handle dynamic applications where the temporally local behavior of solutions is desired. Computational experiments document that this combination of modeling and solution techniques appropriately predicts the thermally- and stress-induced martensitic phase transitions, as well as the hysteretic behavior and production of latent heat associatedmore » with such materials.« less

  4. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  5. Statistical evaluation of vibration analysis techniques

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  6. Occipitocervical fusions in children. Retrospective analysis and technical considerations.

    PubMed

    Rodgers, W B; Coran, D L; Emans, J B; Hresko, M T; Hall, J E

    1999-07-01

    This report presents a retrospective analysis of the authors' experience with occipitocervical fusions in children and adolescents during the last 2 decades. A description of an operative technique devised by the senior author (JEH), and a comparison of the results using this and other methods of fusion are given. Twenty-three patients underwent occipitocervical fusion. Fifteen of the patients were operated on using the authors' technique. To achieve stable fixation of the distal cervical vertebra a threaded Kirschner wire was passed transversely through the spinous process; occipital fixation was achieved by the traditional method of wiring corticocancellous bone graft to the skull through burr holes. The occipital wires then were wrapped around the Kirschner wire and the graft was cradled in the resulting nest. Halo immobilization was used in 10 patients for an average of 12.5 weeks (range, 6-24 weeks). Twenty-two patients achieved successful fusion at an average followup of 5.8 years (range, 1-14.33 years). Several complications, including transient quadriplegia in one patient, pseudarthrosis in two (one of which persists), hardware fixation failure in one, unintended distal extension of the fusion, pneumonia, wound infection, halo pin infection, skin breakdown under the halo vest, hydrocephalus, cerebrospinal fluid leak, and traumatic fusion fracture were encountered. Results using the technique described herein are comparable with or better than the results reported in the previous literature, and the results of the patients in this series in whom the technique was not used.

  7. Microgravity Disturbance Predictions in the Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Just, M.; Grodsinsky, Carlos M.

    2002-01-01

    This paper will focus on the approach used to characterize microgravity disturbances in the Combustion Integrated Rack (CIR), currently scheduled for launch to the International Space Station (ISS) in 2005. Microgravity experiments contained within the CIR are extremely sensitive to vibratory and transient disturbances originating on-board and off-board the rack. Therefore, several techniques are implemented to isolate the critical science locations from external vibration. A combined testing and analysis approach is utilized to predict the resulting microgravity levels at the critical science location. The major topics to be addressed are: 1) CIR Vibration Isolation Approaches, 2) Disturbance Sources and Characterization, 3) Microgravity Predictive Modeling, 4) Science Microgravity Requirements, 6) Microgravity Control, and 7) On-Orbit Disturbance Measurement. The CIR is using the Passive Rack Isolation System (PaRIS) to isolate the rack from offboard rack disturbances. By utilizing this system, CIR is connected to the U.S. Lab module structure by either 13 or 14 umbilical lines and 8 spring / damper isolators. Some on-board CIR disturbers are locally isolated by grommets or wire ropes. CIR's environmental and science on board support equipment such as air circulation fans, pumps, water flow, air flow, solenoid valves, and computer hard drives cause disturbances within the rack. These disturbers along with the rack structure must be characterized to predict whether the on-orbit vibration levels during experimentation exceed the specified science microgravity vibration level requirements. Both vibratory and transient disturbance conditions are addressed. Disturbance levels/analytical inputs are obtained for each individual disturber in a "free floating" condition in the Glenn Research Center (GRC) Microgravity Emissions Lab (MEL). Flight spare hardware is tested on an Orbital Replacement Unit (ORU) basis. Based on test and analysis, maximum disturbance level allocations are developed for each ORU. The worst-case disturbances are input into an on-orbit analytical dynamic model of the rack. These models include both NASTRAN and MATLAB Simulink models , which include eigenvector and frequency inputs of the rack rigid body modes, the rack umbilical modes, and the racks' structural modes. The disturbance areas and science locations need to be modeled accurately to give valid predictions. The analytically determined microgravity vibration levels are compared to the CIR science requirements contained in the FCF Science Requirements Envelope Document (SRED). The predicted levels will be compared with the on-orbit measurements provided by the Space Acceleration Measurement System (SAMS) sensor, which is to be mounted on the CIR optics bench.

  8. Techniques for obtaining subjective response to vertical vibration

    NASA Technical Reports Server (NTRS)

    Clarke, M. J.; Oborne, D. J.

    1975-01-01

    Laboratory experiments were performed to validate the techniques used for obtaining ratings in the field surveys carried out by the University College of Swansea. In addition, attempts were made to evaluate the basic form of the human response to vibration. Some of the results obtained by different methods are described.

  9. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor

    NASA Astrophysics Data System (ADS)

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  10. Frequency-feature based antistrong-disturbance signal processing method and system for vortex flowmeter with single sensor.

    PubMed

    Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo

    2010-07-01

    Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.

  11. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  12. Analytical transmissibility based transfer path analysis for multi-energy-domain systems using four-pole parameter theory

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Mohammad Jalali; Behdinan, Kamran

    2017-10-01

    The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.

  13. Vibrational Spectroscopy and Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  14. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  15. Adaptive vibration control of structures under earthquakes

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung

    2017-04-01

    techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.

  16. A Comparison of pical Root Resorption in Incisors after Fixed Orthodontic Treatment with Standard Edgewise and Straight Wire (MBT) Method

    PubMed Central

    Zahed Zahedani, SM; Oshagh, M; Momeni Danaei, Sh; Roeinpeikar, SMM

    2013-01-01

    Statement of Problem: One of the major outcomes of orthodontic treatment is the apical root resorption of teeth moved during the treatment. Identifying the possible risk factors, are necessary for every orthodontist. Purpose: The aim of this study was to compare the rate of apical root resorption after fixed orthodontic treatment with standard edgewise and straight wire (MBT) method, and also to evaluate other factors effecting the rate of root resorption in orthodontic treatments. Materials and Method: In this study, parallel periapical radiographs of 127 patients imaging a total of 737 individual teeth, were collected. A total of 76 patients were treated by standard edgewise and 51 patients by straight wire method. The periapical radiographs were scanned and then the percentage of root resorption was calculated by Photoshop software. The data were analyzed by Paired-Samples t-test and the Generalized Linear Model adopting the SPSS 15.0. Results: In patients treated with straight wire method (MBT), mean root resorption was 18.26% compared to 14.82% in patients treated with standard edgewise technique (p< .05). Male patients had higher rate of root resorption,statistically significant (p< .05). Age at onset of treatment, duration of treatment, type of dental occlusion, premolar extractions and the use of intermaxillary elastics had no significant effect on the root resorption in this study. Conclusion: Having more root resorption in the straight wire method and less in the standard edgewise technique can be attributed to more root movement in pre-adjusted MBT technique due to the brackets employed in this method. PMID:24724131

  17. A Comparison of pical Root Resorption in Incisors after Fixed Orthodontic Treatment with Standard Edgewise and Straight Wire (MBT) Method.

    PubMed

    Zahed Zahedani, Sm; Oshagh, M; Momeni Danaei, Sh; Roeinpeikar, Smm

    2013-09-01

    One of the major outcomes of orthodontic treatment is the apical root resorption of teeth moved during the treatment. Identifying the possible risk factors, are necessary for every orthodontist. The aim of this study was to compare the rate of apical root resorption after fixed orthodontic treatment with standard edgewise and straight wire (MBT) method, and also to evaluate other factors effecting the rate of root resorption in orthodontic treatments. In this study, parallel periapical radiographs of 127 patients imaging a total of 737 individual teeth, were collected. A total of 76 patients were treated by standard edgewise and 51 patients by straight wire method. The periapical radiographs were scanned and then the percentage of root resorption was calculated by Photoshop software. The data were analyzed by Paired-Samples t-test and the Generalized Linear Model adopting the SPSS 15.0. In patients treated with straight wire method (MBT), mean root resorption was 18.26% compared to 14.82% in patients treated with standard edgewise technique (p< .05). Male patients had higher rate of root resorption,statistically significant (p< .05). Age at onset of treatment, duration of treatment, type of dental occlusion, premolar extractions and the use of intermaxillary elastics had no significant effect on the root resorption in this study. Having more root resorption in the straight wire method and less in the standard edgewise technique can be attributed to more root movement in pre-adjusted MBT technique due to the brackets employed in this method.

  18. Intra-operative localisation of thoracic spine level: a simple "'K'-wire in pedicle" technique.

    PubMed

    Thambiraj, Sathya; Quraishi, Nasir A

    2012-05-01

    To describe a simple and reliable method of intra-operative localisation of thoracic spine in a single surgical setting. Intra-operative localisation of thoracic spine levels can be difficult due to anatomical constraints, such as scapular shadow, patient's size and poor bone quality. This is particularly true in cases of thoracic discectomies in which the vertebral bodies appear normal. There are several methods described in recent literature to address this. Many of them require a separate procedure which was performed often the previous day. We report a technique which addresses the issue of localising thoracic level intra-operatively. After induction of general anaesthesia, the patient was placed prone and the pedicle of interest was identified using fluoroscopy. A K-wire was then inserted percutaneously into this pedicle under image guidance [confirmed in the antero-posterior (AP) and lateral views]. The wire was then cut close to the skin after bending it. The patient was now positioned laterally and the intended procedure performed through an anterior trans-thoracic approach. The 'K' wire was removed at the end of the procedure. We routinely used this technique in all our thoracic discectomies (four cases in 2 years). There were no intra-operative complications. This method is simple, avoids the patient undergoing two procedures and requires no more ability than placing an implant in the pedicle under fluoroscopy. Placing the 'K' wire into a fixed point like the pedicle facilitates rapid intra-operative viewing of the level of interest and is removed easily at the conclusion of surgery.

  19. Acoustic resonance spectroscopy (ARS): ARS300 operations manual, software version 2.01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Acoustic Resonance Spectroscopy (ARS) is a nondestructive evaluation technology developed at the Los Alamos National Laboratory. The ARS technique is a fast, safe, and nonintrusive technique that is particularly useful when a large number of objects need to be tested. Any physical object, whether solid, hollow, or fluid filled, has many modes of vibration. These modes of vibration, commonly referred to as the natural resonant modes or resonant frequencies, are determined by the object`s shape, size, and physical properties, such as elastic moduli, speed of sound, and density. If the object is mechanically excited at frequencies corresponding to its characteristicmore » natural vibrational modes, a resonance effect can be observed when small excitation energies produce large amplitude vibrations in the object. At other excitation frequencies, i.e., vibrational response of the object is minimal.« less

  20. Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit

    NASA Technical Reports Server (NTRS)

    Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira

    1991-01-01

    The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.

  1. Observation of Vibrational Relaxation Dynamics in X(sup 3)Sigma(sup -)(sub g) Oxygen Following Stimulated Raman Excitation to the v=1 Level: Implications for the RELIEF Flow Tagging Technique

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; Lempert, Walter R.; Miles, Richard B.

    1996-01-01

    The vibrational relaxation of ground-state molecular oxygen (O2, X(sup 3)Sigma(sup -)(sub g)) has been observed, following stimulated Raman excitation to the first excited vibrational level (v=1). Time delayed laser-induced fluorescence probing of the ro-vibrational population distribution was used to examine the temporal relaxation behavior. In the presence of water vapor, the relaxation process is rapid, and is dominated by near-resonant vibrational energy exchange between the v=1 level of O2 and the n2 bending mode of H2O. In the absence of H2O, reequilibration proceeds via homogeneous vibrational energy transfer, in which a collision between two v=1 O2 molecules leaves one molecule in the v=2 state and the other in the v=0 state. Subsequent collisions between molecules in v=1 and v>1 result in continued transfer of population up the vibrational ladder. The implications of these results for the RELIEF flow tagging technique are discussed.

  2. AGARD Flight Test Instrumentation Series. Volume 13. Practical Aspects of Instrumentation System Installation

    DTIC Science & Technology

    1981-09-01

    III I’ CANOWN" AA HNE Figure 3.3-4 Rzxsqle. Block Diagrami 24 PI LOT AIRBORNE IGROUND AGC AMPLIFIER AGC AMPLIFIER BASE • FM BASEBAND LINKE SQUARE I OO...in that T 0- •,~ ao •, _4 U- - & - @ Figure 3.3-6 Point to Point Inter- Connect Diagram. 25 the wires are merged, or joined, into no @ Lot ".U~ AFT...result in a " bottoning -out" of the isolators during high amplitude vibration. For a properly selected rubber mount, the wearing should be conservative

  3. Internal fixation of displaced inferior pole of the patella fractures using vertical wiring augmented with Krachow suturing.

    PubMed

    Oh, Hyoung-Keun; Choo, Suk-Kyu; Kim, Ji-Wan; Lee, Mark

    2015-12-01

    We present the surgical technique of separate vertical wiring for displaced inferior pole fractures of the patella combined with Krachow suture and report the surgical outcomes. Between September 2007 to May 2012, 11 consecutive patients (mean age, 54.6 years) with inferior pole fractures of the patella (AO/OTA 34-A1) were retrospectively enrolled in this study. Through longitudinal incision, all patients underwent open reduction and internal fixation by separate vertical wiring combined with Krackow suture. The range of motion, loss of fixation, and Bostman score were primary outcome measures. The union time was 10 weeks after surgery on average (range: 8-12). No patient had nonunion, loss of reduction and wire breakage. There was no case of wound problem and irritation from the implant. At final follow-up, the average range of motion arc was 129.4° (range: 120-140). The mean Bostman score at last follow-up was 29.6 points (range: 28-30) and graded excellent in all cases. Separate vertical wiring combined with Krackow suture for inferior pole fractures of the patella is a useful technique that is easy to perform and can provide stable fixation with excellent results in knee function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development and Status of Cu Ball/Wedge Bonding in 2012

    NASA Astrophysics Data System (ADS)

    Schneider-Ramelow, Martin; Geißler, Ute; Schmitz, Stefan; Grübl, Wolfgang; Schuch, Bernhard

    2013-03-01

    Starting in the 1980s and continuing right into the last decade, a great deal of research has been published on Cu ball/wedge (Cu B/W) wire bonding. Despite this, the technology has not been established in industrial manufacturing to any meaningful extent. Only spikes in the price of Au, improvements in equipment and techniques, and better understanding of the Cu wire-bonding process have seen Cu B/W bonding become more widespread—initially primarily for consumer goods manufacturing. Cu wire bonding is now expected to soon be used for at least 20% of all ball/wedge-bonded components, and its utilization in more sophisticated applications is around the corner. In light of this progress, the present paper comprehensively reviews the existing literature on this topic and discusses wire-bonding materials, equipment, and tools in the ongoing development of Cu B/W bonding technology. Key bonding techniques, such as flame-off, how to prevent damage to the chip (cratering), and bond formation on various common chip and substrate finishes are also described. Furthermore, apart from discussing quality assessment of Cu wire bonds in the initial state, the paper also provides an overview of Cu bonding reliability, in particular regarding Cu balls on Al metalization at high temperatures and in humidity (including under the influence of halide ions).

  5. Hy-wire measurements of atmospheric potential

    NASA Astrophysics Data System (ADS)

    Holzworth, Robert H.

    1984-02-01

    A method of directly measuring the electric potential drop across the lowest portion of the atmosphere by using an apparatus called Hy-wire is described. This tethered balloon-borne system has been operated extensively at altitudes near 0.62 km at which voltages over 150 k V were measured with a high impedance device. Also described are measurements of system parameters such as system capacitance (5.6 pf/m), impedance (1010Ω), and response time (tens of seconds). Hy-wire measurements from an around the-clock experiment at Wallops Island, Va., having a characteristic repetitive diurnal pattern of variability exceeding 40% of the mean, are presented. This diurnal pattern is discussed in terms of both local and global current sources. A demonstration using Hy-wire as a lightning channel model is also presented. These experiments have so far been conducted at mid-latitudes but can also be flown from other locations in an effort to determine whether the lowest atmospheric electric circuit is affected by high altitude and possibly global current systems, and if so how much. The data presented in this paper are not definitive about the source of potential variations. The data are, however, representative of the new Hy-wire technique and demonstrative of the potential usefulness of this technique.

  6. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2010-05-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s2). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  7. Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti; Allaire, Paul E.

    1996-01-01

    A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.

  8. Improvement of sternal closure stability with reinforced steel wires.

    PubMed

    McGregor, Walter E; Payne, Maryann; Trumble, Dennis R; Farkas, Kathleen M; Magovern, James A

    2003-11-01

    Sternal dehiscence occurs when steel wires pull through sternal bone. This study tests the hypothesis that closure stability can be improved by jacketing sternal wires with stainless steel coils, which distribute the force exerted on the bone over a larger area. Midline sternotomies were performed in 6 human cadavers (4 male). Two sternal closure techniques were tested: (1) approximation with six interrupted wires, and (2) the same closure technique reinforced with 3.0-mm-diameter stainless steel coils that jacket wires at the lateral and posterior aspects of the sternum. Intrathoracic pressure was increased with an inflatable rubber bladder placed beneath the anterior chest wall, and sternal separation was measured by means of sonomicrometry crystals. In each trial, intrathoracic pressure was increased until 2.0 mm of motion was detected. Differences in displacement pressures between groups were examined at 0.25-mm intervals using the paired Student's t test. The use of coil-reinforced closures produced significant improvement in sternal stability at all eight displacement levels examined (p < 0.03). Mean pressure required to cause displacement increased 140% (15.5 to 37.3 mm Hg) at 0.25 mm of separation, 103% (34.3 to 69.8 mm Hg) at 1.0 mm of separation, and 122% (46.8 to 103.8 mm Hg) at 2.0 mm of separation. Reinforcement of sternal wires with stainless steel coils substantially improves stability of sternotomy closure in a human cadaver model.

  9. [Biomechanical testing of the new torque-segmented arch (TSA)].

    PubMed

    Wichelhaus, A; Sander, F G

    1995-07-01

    New torque-segmented arch wires are presented which consist of a superelastic anterior component with 30 degrees or 45 degrees torque and which are connected to 2 steel lateral components by means of a crimped connector. When using such torque-segmented arch wires, the crimped connector rests mesially to the canine bracket and the lateral components exhibit a torque of 0 degree. The use of the torque-segmented arch wires requires the practitioner to adjust the anterior tooth segment, to bend in first order bends in the steel lateral portion as well as to bend in a sweep to avoid an anterior tooth extrusion, and, if desired, to bend in third order bends to influence premolars and molars. In some cases the simultaneous application of palatal arches can become necessary, because each torque transfer results in a transversal enlargement in the molar area. Compared to conventional steel wires with dimensions of 0.016 x 0.022 in which an anterior tooth torque is bent, the torque segmented arch wires exhibit considerably fewer side effects, but there is a larger distally rotating moment for the molars. 1. When applying torque-segmented arch wires, the extrusive force transferred to the anterior teeth is considerably smaller. 2. The protrusive force acting on the anterior teeth is also considerably smaller, which results in a reduced demand being placed on the anchorage of the molars. 3. The torque transfer to the incisors rests in a quite moderate range, even in the case of a 50 degrees torque. For this reason, the practitioner can expect diminished or no resorptions at all compared to the aforementioned steel wires. 4. The Martensite plateau of the torque-segmented arch wires exhibit constant moments in large areas so that such arch wires can be used in almost every anterior tooth position. 5. The segmented wires presented here can be applied not only in the case of the standard edgewise technique but also in each case of the straight-wire technique. 6. These new arch wires require no readjustment of torque values. 7. To control the transferred torque values it is recommended that the already transferred torque values be monitored during each check-up with the help of the described torque key. 8. When the torque values of the brackets are known, the torque key renders frequent patient X-rays superfluous. 9. When the desired torque values are attained, treatment can proceed using conventional arch wires.

  10. Single-Shot Rotational Raman Thermometry for Turbulent Flames Using a Low-Resolution Bandwidth Technique

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.

  11. Vibrations Detection in Industrial Pumps Based on Spectral Analysis to Increase Their Efficiency

    NASA Astrophysics Data System (ADS)

    Rachid, Belhadef; Hafaifa, Ahmed; Boumehraz, Mohamed

    2016-03-01

    Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analysis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  12. Development of a non-explosive release actuator using shape memory alloy wire.

    PubMed

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju

    2013-01-01

    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  13. Impact of Complex-Valued Energy Function Singularities on the Behaviour of RAYLEIGH-SCHRöDINGER Perturbation Series. H_2CO Molecule Vibrational Energy Spectrum.

    NASA Astrophysics Data System (ADS)

    Duchko, Andrey; Bykov, Alexandr

    2015-06-01

    Nowadays the task of spectra processing is as relevant as ever in molecular spectroscopy. Nevertheless, existing techniques of vibrational energy levels and wave functions computation often come to a dead-lock. Application of standard quantum-mechanical approaches often faces inextricable difficulties. Variational method requires unimaginable computational performance. On the other hand perturbational approaches beat against divergent series. That's why this problem faces an urgent need in application of specific resummation techniques. In this research Rayleigh-Schrödinger perturbation theory is applied to vibrational energy levels calculation of excited vibrational states of H_2CO. It is known that perturbation series diverge in the case of anharmonic resonance coupling between vibrational states [1]. Nevertheless, application of advanced divergent series summation techniques makes it possible to calculate the value of energy with high precision (more than 10 true digits) even for highly excited states of the molecule [2]. For this purposes we have applied several summation techniques based on high-order Pade-Hermite approximations. Our research shows that series behaviour completely depends on the singularities of complex energy function inside unit circle. That's why choosing an approximation function modelling this singularities allows to calculate the sum of divergent series. Our calculations for formaldehyde molecule show that the efficiency of each summation technique depends on the resonant type. REFERENCES 1. J. Cizek, V. Spirko, and O. Bludsky, ON THE USE OF DIVERGENT SERIES IN VIBRATIONAL SPECTROSCOPY. TWO- AND THREE-DIMENSIONAL OSCILLATORS, J. Chem. Phys. 99, 7331 (1993). 2. A. V. Sergeev and D. Z. Goodson, SINGULARITY ANALYSIS OF FOURTH-ORDER MöLLER-PLESSET PERTURBATION THEORY, J. Chem. Phys. 124, 4111 (2006).

  14. Ultrasonic technique for imaging tissue vibrations: preliminary results.

    PubMed

    Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin

    2005-02-01

    We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.

  15. Validation of nonlinear interferometric vibrational imaging as a molecular OCT technique by the use of Raman microscopy

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.

    2009-02-01

    We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.

  16. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  17. Offline Impedance Measurements for Detection and Mitigation of Dangerous Implant Interactions: An RF Safety Prescreen

    PubMed Central

    Ellenor, Christopher W; Stang, Pascal P; Etezadi-Amoli, Maryam; Pauly, John M; Scott, Greig C

    2015-01-01

    Purpose The concept of a “radiofrequency safety prescreen” is investigated, wherein dangerous interactions between radiofrequency fields used in MRI, and conductive implants in patients are detected through impedance changes in the radiofrequency coil. Theory The behavior of coupled oscillators is reviewed, and the resulting, observable impedance changes are discussed. Methods A birdcage coil is loaded with a static head phantom and a wire phantom with a wire close to its resonant length, the shape, position, and orientation of which can be changed. Interactions are probed with a current sensor and network analyzer. Results Impedance spectra show dramatic, unmistakable splitting in cases of strong coupling, and strong correlation is observed between induced current and scattering parameters. Conclusions The feasibility of a new, low-power prescreening technique has been demonstrated in a simple phantom experiment, which can unambiguously detect resonant interactions between an implanted wire and an imaging coil. A new technique has also been presented which can detect parallel transmit null modes for the wire. Magn Reson Med 73:1328–1339, 2015. © 2014 Wiley Periodicals, Inc. PMID:24623586

  18. Turbulence measurements in a complex plowfield using a crossed hot-wire. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckillop, B. E.

    1983-01-01

    Turbulence was quantified in complex axisymmetric, nonreacting, nonswirling flowfields using a crossed hot-wire anemometer. Mean velocity, turbulence intensities, turbulent viscosity, and Reynolds tree were measured in round free jet and confined jet flowfields. The confined jet, a model of an axisymmetric can combustor, had an expansion ratio D/d=2, an expansion angle of 90 deg, and an axial location increments of 0.5 diameters. The confined jet was studied with and without a contraction nozzle. Free jet measurements validated the experimental technique and data reduction. Results show good agreement with those of previous research. Measurements in the confined jet indicate that the cross hot-wire used cannot handle axial flow reversal and the experimental technique is inadequate for measuring time-mean radial velocity. Other quantities show a high level of comparability.

  19. Development of improved electroforming technique. [for fabricating regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mccandles, L. C.; Davies, L. G.

    1973-01-01

    Techniques were studied to reinforce or strengthen electroformed nickel to allow a fuller utilization of electroforming as a reliable and low cost fabrication technique for regenerately cooled thrust chambers. Techniques for wire wrapping while electrodepositing were developed that can result in a structurally strong wall with less weight than a conventional electroformed wall. Also a technique of codepositing submicron sized THO2 particles with the nickel to form a dispersion strengthened structure was evaluated. The standard nickel cylinders exhibited an average hoop strength of 80,000 psi with a yield strength of 65,000 psi and a modulus of 25.6 x 10 to the 6th power psi. The as produced dispersion strengthened nickel showed a hoop strength of 97,000 psi with a yield strength of 67,000 psi. This is an increase of 17,000 psi or 21% over the standard nickel hoop strength. The wire wrapping cylinders showed an increased strength over the standard nickel test samples of 26,000 to 66,800 psi which is in the range of 26 to 104% increase in strength over the base standard nickel. These latter test results are indicative of a volume percent wire reinforcement from 15 to 31. The measured hoop strengths agree with calculated composite strengths based upon rule of mixtures.

  20. Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.

    PubMed

    Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter

    2016-11-14

    Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.

  1. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yuhu; Calzolaio, Ciro; Senatore, Carmine

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanicalmore » loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.« less

  2. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging.

    PubMed

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  3. Biomechanical analysis comparing three C1-C2 transarticular screw salvaging fixation techniques.

    PubMed

    Elgafy, Hossein; Potluri, Tejaswy; Goel, Vijay K; Foster, Scott; Faizan, Ahmad; Kulkarni, Nikhil

    2010-02-15

    This is an in vitro biomechanical study. To compare the biomechanical stability of the 3 C1-C2 transarticular screw salvaging fixation techniques. Stabilization of the atlantoaxial complex is a challenging procedure because of its complicated anatomy. Many posterior stabilization techniques of the atlantoaxial complex have been developed with C1-C2 transarticular screw fixation been the current gold standard. The drawback of using the transarticular screws is that it has a potential risk of vertebral artery injury due to a high riding transverse foramen of C2 vertebra, and screw malposition. In such cases, it is not recommended to proceed with inserting the contralateral transarticular screw and the surgeon should find an alternative to fix the contralateral side. Many studies are available comparing different atlantoaxial stabilization techniques, but none of them compared the techniques to fix the contralateral side while using the transarticular screw on one side. The current options are C1 lateral mass screw and short C2 pedicle screw or C1 lateral mass screw and C2 intralaminar screw, or C1-C2 sublaminar wire. Nine fresh human cervical spines with intact ligaments (C0-C4) were subjected to pure moments in the 6 loading directions. The resulting spatial orientations of the vertebrae were recorded using an Optotrak 3-dimensional Motion Measurement System. Measurements were made sequentially for the intact spine after creating type II odontoid fracture and after stabilization with unilateral transarticular screw placement across C1-C2 (TS) supplemented with 1 of the 3 transarticular salvaging techniques on the contralateral side; C1 lateral mass screw and C2 pedicle screw (TS+C1LMS+C2PS), C1 lateral mass and C2 intralaminar screw (TS+C1LMS+C2ILS), or sublaminar wire (TS + wire). The data indicated that all the 3 stabilization techniques significantly decreased motion when compared to intact in all the loading cases (left/right lateral bending, left/right axial rotation, flexion) except extension. All the 3 instrumented specimens were equally stable in extension/flexion and lateral bending modes. TS+C1LMS+C2PS was equivalent to TS+C1LMS+C2ILS (P > 0.05) and superior to TS + wire in axial rotation (P < 0.05). Also, TS+C1LMS+C2ILS was superior to TS + wire in axial rotation (P < 0.05). Fixation of atlantoaxial complex using unilateral transarticular screw supplemented with contralateral C1 lateral mass and C2 intralaminar screws is biomechanically equivalent to C1 lateral mass and C2 pedicle screws and both are biomechanically superior to C1-C2 sublaminar wire in axial rotation.

  4. Comparison of the Eder-Puestow and Celestin techniques for dilating benign oesophageal strictures.

    PubMed

    Hine, K R; Hawkey, C J; Atkinson, M; Holmes, G K

    1984-10-01

    The Celestin and Eder-Puestow methods of dilating benign oesophageal strictures have been compared prospectively in a randomised trial. One hundred and thirty three dilatations were performed on 72 patients. There was no significant difference between the two techniques with regard to the long term relief of symptoms. Celestin dilatation was quicker, less likely to cause pharyngeal trauma, and less damaging to guide wires. It could not be used, however, in those patients in whom only a short length of guide wire could be passed through the stricture.

  5. Comparison of the Eder-Puestow and Celestin techniques for dilating benign oesophageal strictures.

    PubMed Central

    Hine, K R; Hawkey, C J; Atkinson, M; Holmes, G K

    1984-01-01

    The Celestin and Eder-Puestow methods of dilating benign oesophageal strictures have been compared prospectively in a randomised trial. One hundred and thirty three dilatations were performed on 72 patients. There was no significant difference between the two techniques with regard to the long term relief of symptoms. Celestin dilatation was quicker, less likely to cause pharyngeal trauma, and less damaging to guide wires. It could not be used, however, in those patients in whom only a short length of guide wire could be passed through the stricture. PMID:6479685

  6. Simple and Efficient Technique for Correction of Unilateral Scissor Bite Using Straight Wire.

    PubMed

    Dolas, Siddhesh Gajanan; Chitko, Shrikant Shrinivas; Kerudi, Veerendra Virupaxappa; Patil, Harshal Ashok; Bonde, Prasad Vasudeo

    2016-03-01

    Unilateral scissor bite is a relatively rare malocclusion. However, its correction is often difficult and a challenge for the clinician. This article presents simple and efficient technique for the correction of severe unilateral scissor bite in a 14 year old boy, using 0.020 S.S. A. J. Wilcock wire (premium plus) out of the spool, with minimal adjustments and placed in mandibular arch. After about six weeks time, good amount of correction was seen in the lower arch and the lower molar had been relieved of scissor bite.

  7. Recurrent clot anuria following laparoscopic pyeloplasty in a solitary functioning kidney: managing with double guide wire technique

    PubMed Central

    Kumar, Santosh; Singh, Shivanshu; Parmar, Kalpesh Mahesh; Garg, Nitin

    2014-01-01

    Clot anuria in a solitary functioning kidney is an emergency situation. Haematuria with clot anuria in an early postoperative period represents a challenge, as treatment options are limited. Manipulation of the anastomotic site may lead to anastomotic disruption and urinoma while use of thrombolytic therapy poses the danger of increasing haematuria. We report a case of anuria due to clot retention in the upper tract following laparoscopic dismembered pyeloplasty in a solitary functioning kidney, managed successfully with double guide wire technique. PMID:25540210

  8. Effect of dry heat and steam sterilization on load-deflection characteristics of β-titanium wires: An in vitro study

    PubMed Central

    Alavi, Shiva; Sinaee, Neda

    2012-01-01

    Background: Sterilization techniques could affect the characteristics of orthodontic wires. The aim of the present study was to evaluate the effect of steam and dry heat sterilization techniques on load-deflection behavior of five types of β-titanium alloy wires. Materials and Methods: The samples consisted of 30 straight lengths of five types of β-titanium alloy wires: Titanium Molybdenum Alloy (TMA) Low Friction (TMAL), TMA Low Friction Colored (HONE), Resolve (RES), BetaForce (BETA), and BETA CNA (CNA). Thirty wire segments were divided into three groups of 10. Group 1 was the control group and the group 2 samples were sterilized by dry heat in an oven (60 minutes at 160°C) and group 3 by steam in an autoclave (15 minutes at 121°C). Then all the wire samples underwent a three-point bending test in a testing machine to evaluate load-deflection properties. Data was analyzed by repeated measures ANOVA and Scheffé's test (α = 0.05). Results: The results showed that dry heat sterilization significantly increased force levels during both loading and unloading of CNA, BETA and RES and during loading of HONE (P < 0.05). Steam sterilization significantly increased force levels during both loading and unloading of BETA and during unloading of HONE (P < 0.05), with no effects on the load-deflection characteristics of TMAL, CNA and RES (P > 0.05). Conclusion: It appears dry heat sterilization increases stiffness of RES, BETA, CNA and HONE but autoclave sterilization did not have any effect on load-deflection characteristics of most of the β-titanium wires tested, indicating that clinicians who want to provide maximum safety for their patients can autoclave TMAL, RES and CNA before applying them. PMID:23559917

  9. Wire-guided sphincterotomy.

    PubMed

    Sherman, S; Uzer, M F; Lehman, G A

    1994-12-01

    Guidewire-assisted techniques have acquired an important role in endoscopic interventions in the pancreaticobiliary tree. The wire-guided sphincterotome allows the endoscopist to maintain direct access to the biliary tree before or after the sphincterotomy. It has the additional advantages of allowing for more expeditious placement of accessories and being useful in combined percutaneous-endoscopic procedures. There are two basic designs of wire-guided sphincterotomes. The single-channel model has a single lumen for both the cutting wire and guidewire and requires guidewire removal before the application of power. The double-channel model has two separate lumens for the guidewire and stainless steel cutting wire. In vitro data suggest that significant capacitive coupling currents (or short circuits) may occur on the standard Teflon-coated guidewire when used with a double lumen sphincterotome, resulting in electrosurgical burns. Thus, the manufacturers of the double-lumen models recommend removing the Teflon-coated wire before performing sphincterotomy. Although limited data in humans have been published, it appears that wire-guided sphincterotomy and standard sphincterotomy have similar complication rates. More safety information in humans is awaited.

  10. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.

  11. A Method for Implementing Force-Limited Vibration Control

    NASA Technical Reports Server (NTRS)

    Worth, Daniel B.

    1997-01-01

    NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.

  12. Ultra-high efficiency moving wire combustion interface for on-line coupling of HPLC

    PubMed Central

    Thomas, Avi T.; Ognibene, Ted; Daley, Paul; Turteltaub, Ken; Radousky, Harry; Bench, Graham

    2011-01-01

    We describe a 100% efficient moving-wire interface for on-line coupling of high performance liquid chromatography which transmits 100% of carbon in non-volatile analytes to a CO2 gas accepting ion source. This interface accepts a flow of analyte in solvent, evaporates the solvent, combusts the remaining analyte, and directs the combustion products to the instrument of choice. Effluent is transferred to a periodically indented wire by a coherent jet to increase efficiency and maintain peak resolution. The combustion oven is plumbed such that gaseous combustion products are completely directed to an exit capillary, avoiding the loss of combustion products to the atmosphere. This system achieves the near complete transfer of analyte at HPLC flow rates up to 125 μL/min at a wire speed of 6 cm/s. This represents a 30x efficiency increase and 8x maximum wire loading compared to the spray transfer technique used in earlier moving wire interfaces. PMID:22004428

  13. Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun

    2018-03-01

    The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.

  14. Magneto-mechanical modeling study of CO-based amorphous micro- and nanowires for acoustic sensing medical applications

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stancu, Alexandru; Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia

    2016-04-01

    Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.

  15. Synthesis and characterization of magnetic of Ni/ABS nanocomposites by electrical explosion of wire in liquid and solution blending methods

    NASA Astrophysics Data System (ADS)

    Thuyet-Nguyen, Minh; Hai-Nguyen, Hong; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun

    2017-03-01

    Nanomaterials have attracted great attention from chemists, physicists and materials scientists because of their application benefits and special properties. Thermoplastics have been used in many applications such as molding of non-electrical components, conducting, magnetic field and 3D printing. Nanocomposites are known as a material which blends the best properties of components, a high performance material exhibits unusual property combinations and unique design possibilities. In this research, we focused to investigate and report primary results in the synthesis of magnetic nanocomposites based on acrylonitrile butadiene styrene (ABS), which are useful and important thermoplastics. Nickel nanopowder was prepared by electrical explosion of wire in a liquid were used as magnetic component. The composites were prepared by following steps, first the obtained Ni nanopowders were incorporated into the ABS matrix via a solution blending method (drop-casting), and then the solvent was evaporated. The characterizations of obtaining composites were analyzed by field emission scanning electron microscopy, X-Ray Diffraction analysis and vibrating sample magnetometer.

  16. Fiber optics for propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1985-01-01

    In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

  17. Fiberoptics for propulsion control system

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1984-01-01

    In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.

  18. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  19. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes

    PubMed Central

    2017-01-01

    Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe 57Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe–Im stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational “baseline” for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes. PMID:28921972

  20. Instant Variations in Velocity and Attenuation of Seismic Waves in a Friable Medium Under a Vibrational Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Geza, N.; Yushin, V.

    2007-12-01

    Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.

  1. Vibrational-rotational deexcitation of HF in collision with He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniek, R.J.

    State-to-state cross sections are reported for vibrational-rotational transitions for HF in collisions with He, at collisional energies of 0.5 and 1.0 eV. These were computed within the infinite-order sudden (IOS) approximation using adiabatic, distorted-wave techniques. Values are tabulated for the vibrational-rotational deexcitation sequences (v, j) ..-->.. (v--1, 0), with v = 1, 2, 3, 4 and j = 0 -- 40. These quenching cross sections can be used in conjunction with IOS factorization formulas to compute VRT cross sections for final rotational states other than j/sub f/ = 0. In addition to IOS results, vibrational quenching cross sections were computedmore » using the much more simple breathing-sphere technique. The breathing-sphere results compare favorably to the more accurate IOS results, particularly as to energy dependence. This suggests a simple method of utilizing known quenching cross sections to predict values for different vibrational levels and/or collisional energies.« less

  2. Coronary and peripheral stenting in aorto-ostial protruding stents: The balloon assisted access to protruding stent technique.

    PubMed

    Helmy, Tarek A; Sanchez, Carlos E; Bailey, Steven R

    2016-03-01

    Treatment of aorto-ostial in-stent restenosis lesions represents a challenge for interventional cardiologists. Excessive protrusion of the stent into the aorta may lead to multiple technical problems, such as difficult catheter reengagement of the vessel ostium or inability to re-wire through the stent lumen in repeat interventions. We describe a balloon assisted access to protruding stent technique in cases where conventional coaxial engagement of an aorto-ostial protruding stent with the guide catheter or passage of the guide wire through the true lumen is not feasible. This technique is applicable both in coronary and peripheral arteries. © 2015 Wiley Periodicals, Inc.

  3. Electrolyzer assembly method and system

    DOEpatents

    Swala, Dana Ray; Bourgeois, Richard Scott; Paraszczak, Steven; Buckley, Donald Joseph

    2017-05-23

    The present techniques provide a novel electrolyzer and methods for welding components of such electrolyzers. The techniques may use conductors, such as resistance wires, placed in paths around the internal structural features and edges of the components. The conductors may be incorporated into the components during manufacture by injection molding, or other molding techniques, or may be tacked or otherwise applied to the surface of the components after manufacture. When current, a field or other excitation is applied to the conductors, the plastic surrounding the wire is melted. If this plastic is in direct contact with an adjoining component, a strong, hermetic seal may be formed between the two components, including the internal structural features.

  4. Hot-wire calibration in subsonic/transonic flow regimes

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented in an appendix.

  5. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex

    PubMed Central

    Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100

  6. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.

  7. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  8. Progress in ETA-II magnetic field alignment using stretched wire and low energy electron beam techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deadrick, F.J.; Griffith, L.V.

    1990-08-17

    Flux line alignment of the solenoidal focus magnets used on the ETA-II linear induction accelerator is a key element leading to a reduction of beam corkscrew motion. Two techniques have been used on the ETA-II accelerator to measure and establish magnet alignment. A low energy electron beam has been used to directly map magnetic field lines, and recent work has utilized a pulsed stretched wire technique to measure magnet tilts and offsets with respect to a reference axis. This paper reports on the techniques used in the ETA-II accelerator alignment, and presents results from those measurements which show that acceleratormore » is magnetically aligned to within {approximately}{plus minus}200 microns. 3 refs., 8 figs.« less

  9. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    NASA Astrophysics Data System (ADS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-08-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, Sebastian, E-mail: skos@gmx.de; Guerke, Lorenz; Jacob, Augustinus L.

    Purpose: This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and 'cheese-wire' technique for fenestration of abdominal aortic dissection membranes. Methods: Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. Themore » membrane was then fenestrated using the cheese-wire maneuver. Results: We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. Conclusions: The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.« less

  11. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    ERIC Educational Resources Information Center

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  12. Investigation on the use of optimization techniques for helicopter airframe vibrations design studies

    NASA Technical Reports Server (NTRS)

    Sreekanta Murthy, T.

    1992-01-01

    Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.

  13. Current Bypassing Properties by Thermal Switch for PCS Application on NMR/MRI HTS Magnets

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Takahashi, M.; Saito, R.; Park, Y. J.; Lee, M. W.; Oh, Y. K.; Ann, H. S.

    We develop the compact NMR/MRI device using high temperature superconducting (HTS) wires with the persistent current mode operating. So, the joint techniques between 2G wires are very important issue and many studies have been carried out. Recently, the Kbigdot JOINS, Inc. has developed successfully the high performance superconducting joints between 2G wires by partial melting diffusion and oxygenation annealing process [1]. In this study, the current bypassing properties in a loop-shaped 2G wire are measured experimentally to develop the permanent current switch (PSC). The current bypassing properties of loop-shaped test coil wound with 2G wire (GdBCO) are evaluated by measured the self-magnetic field due to bypassed current by Hall sensors. The strain gauge was used as heater for persistent current switch, and thermal properties against various thermal inputs were investigated experimentally.

  14. Turbulence measurements in a swirling confined jet flowfield using a triple hot-wire probe

    NASA Technical Reports Server (NTRS)

    Janjua, S. I.; Mclaughlin, D. K.

    1982-01-01

    An axisymmetric swirling confined jet flowfield, similar to that encountered in gas turbine combustors was investigated using a triple hot-wire probe. The raw data from the three sensors were digitized using ADC's and stored on a Tektronix 4051 computer. The data were further reduced on the computer to obtain time-series for the three instantaneous velocity components in the flowfield. The time-mean velocities and the turbulence quantities were deduced. Qualification experiments were performed and where possible results compared with independent measurements. The major qualification experiments involved measurements performed in a non-swirling flow compared with conventional X-wire measurements. In the swirling flowfield, advantages of the triple wire technique over the previously used multi-position single hot-wire method are noted. The measurements obtained provide a data base with which the predictions of turbulence models in a recirculating swirling flowfield can be evaluated.

  15. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  16. Fog Harvesting with Harps.

    PubMed

    Shi, Weiwei; Anderson, Mark J; Tulkoff, Joshua B; Kennedy, Brook S; Boreyko, Jonathan B

    2018-04-11

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps". Under controlled laboratory conditions, the fog-harvesting rates for fog harps with three different wire diameters were compared to conventional meshes of equivalent dimensions. As expected for the mesh structures, the mid-sized wires exhibited the largest fog collection rate, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog-harvesting rate continually increased with decreasing wire diameter for the fog harps due to efficient droplet shedding that prevented clogging. This resulted in a 3-fold enhancement in the fog-harvesting rate for the harp design compared to an equivalent mesh.

  17. Printed wiring board system programmer's manual

    NASA Technical Reports Server (NTRS)

    Brinkerhoff, C. D.

    1973-01-01

    The printed wiring board system provides automated techniques for the design of printed circuit boards and hybrid circuit boards. The system consists of four programs: (1) the preprocessor program combines user supplied data and pre-defined library data to produce the detailed circuit description data; (2) the placement program assigns circuit components to specific areas of the board in a manner that optimizes the total interconnection length of the circuit; (3) the organizer program assigns pin interconnections to specific board levels and determines the optimal order in which the router program should attempt to layout the paths connecting the pins; and (4) the router program determines the wire paths which are to be used to connect each input pin pair on the circuit board. This document is intended to serve as a programmer's reference manual for the printed wiring board system. A detailed description of the internal logic and flow of the printed wiring board programs is included.

  18. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  19. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  20. Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance

    NASA Technical Reports Server (NTRS)

    Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.

    2004-01-01

    In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.

  1. An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source

    NASA Astrophysics Data System (ADS)

    Bovone, G.; Vignolo, M.; Bernini, C.; Kawale, S.; Siri, A. S.

    2014-02-01

    Here, we report a new technique to synthesize carbon-doped MgB2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB2, in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB2 powder. Mono-filamentary MgB2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB2 and pure MgB2 powders. Transport property measurements on these wires were made and compared with MgB2 wire produced using commercial boron.

  2. Intraoperative reduction of the scapular body--a technical trick.

    PubMed

    Bartonícek, Jan; Fric, Vladimír; Tucek, Michal

    2009-04-01

    When internal fixation of the scapular neck and body fractures is performed, a problem may occur with reduction and retention of position of the lateral border of the scapula during surgery. For this purpose, the authors have developed their own technique of stabilization using a K-wire in a novel way. The technique is indicated in a 2-part shear unstable fracture of the lateral border. It cannot be used in fractures with an intercalated segment. A 2.5-mm drill bit is used to drill a 1.5-cm deep hole into the "medullary cavity" of each of the 2 fragments of the lateral border. A K-wire, 1.5 mm in diameter and 2.5-cm long, is inserted into the distal fragment. The protruding end of the K-wire is inserted into the hole in the proximal fragment. This intramedullary peg helps to maintain reduction and keeps both fragments stable. Subsequently, the lateral border is stabilized with a 3.5-mm reconstruction plate. This technique is quite simple and allows for a temporary stabilization of fragments without compromising the subsequent fixation by plate screws.

  3. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  4. The Use of MMF Screws: Surgical Technique, Indications, Contraindications, and Common Problems in Review of the Literature

    PubMed Central

    Cornelius, Carl-Peter; Ehrenfeld, Michael

    2010-01-01

    Mandibulo-maxillary fixation (MMF) screws are inserted into the bony base of both jaws in the process of fracture realignment and immobilisation. The screw heads act as anchor points to fasten wire loops or rubber bands connecting the mandible to the maxilla. Traditional interdental chain-linked wiring or arch bar techniques provide the anchorage by attached cleats, hooks, or eyelets. In comparison to these tooth-borne appliances MMF screws facilitate and shorten the way to achieve intermaxillary fixation considerably. In addition, MMF screws help to reduce the hazards of glove perforation and wire stick injuries. On the downside, MMF screws are attributed with the risk of tooth root damage and a lack of versatility beyond the pure maintenance of occlusion such as stabilizing loose teeth or splinting fragments of the alveolar process. The surgical technique of MMF screws as well as the pros and cons of the clinical application are reviewed. The adequate screw placement to prevent serious tooth root injuries is still an issue to rethink and modify conceptual guidelines. PMID:22110819

  5. Estimation of vibration frequency of loudspeaker diaphragm by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.

    2014-11-01

    We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.

  6. Arthroscopic fixation of the clavicle shaft fracture.

    PubMed

    Kim, Yang-Soo; Lee, Hyo-Jin; Kim, Jong-Ick; Yang, Hyo; Jin, Hong-Ki; Patel, Hiren Kirtibhai; Kim, Jong-Ho; Park, In

    2017-01-01

    This article describes an arthroscopic technique for the fixation of clavicle shaft fractures. A viewing portal is made 2 cm anterior to the fracture site, and a working portal is made 2 cm lateral to the fracture site. The guide wire for a 4.0-mm cannulated screw is inserted through the fracture site to the medial fracture fragment under arthroscopic guidance. Through the medial fragment, the guide wire is delivered through the skin anteriorly. The fracture is reduced, and then, the guide wire is drilled back across the fracture site to the lateral fracture fragment. After confirming the reduction under arthroscopy, the appropriately sized cannulated screw is inserted after reaming. This arthroscopic technique would be useful for the precise reduction and minimal invasive fixation of clavicle shaft fractures. Preliminary results are encouraging, and further studies with long-term follow-up are needed to determine the precise indications and limitations of the procedure.

  7. Nickel-titanium wire in circumferential suture of a flexor tendon repair: a comparison to polypropylene.

    PubMed

    Karjalainen, T; He, M; Chong, A K S; Lim, A Y T; Ryhanen, J

    2010-07-01

    Nickel-titanium (NiTi) has been proposed as an alternative material for flexor tendon core suture. To our knowledge, its suitability as a circumferential suture of flexor tendon repair has not been investigated before. The purpose of this ex vivo study was to investigate the biomechanical properties of NiTi circumferential repairs and to compare them with commonly used polypropylene. Forty porcine flexor tendons were cut and repaired by simple running or interlocking mattress technique using 100 microm NiTi wire or 6-0 polypropylene. The NiTi circumferential repairs showed superior stiffness, gap resistance, and load to failure when compared to polypropylene repairs with both techniques. Nickel-titanium wire seems to be a potential material for circumferential repair of flexor tendons. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. New thermal method for evaluating vaginal blood flow.

    PubMed

    Frisinger, J E; Abrams, R M; Graichen, H; Cassin, S

    1981-01-01

    The goal of this study was the development noninvasive technique for measurement of vaginal blood flow. A vaginal probe (diameter 1.84 cm; length 7.0 cm) was constructed by winding 23 m of 34-gauge enameled copper wire around a hollow cylinder of epoxy-impregnated glass wool. Resistance of the wire was 20 omega at 40 degrees C. Surface area of coil was 40.5 cm2. The temperature of the wire midway along the coil was measured continuously with a thermcouple. Temperature difference (delta T) between coil and vagina was raised by delivery of 300 mA with a resultant production of 1.8 W. In ewes treated with 1 mg estrone im., delta T fell significantly (p less than 0.025) by 90 min and (p less than 0.005) by 120 min after injection. There was a significant correlation between delta T and vaginal blood flow as measured by the radiolabeled microsphere technique.

  9. Nanophotonic applications for silicon-on-insulator (SOI)

    NASA Astrophysics Data System (ADS)

    de la Houssaye, Paul R.; Russell, Stephen D.; Shimabukuro, Randy L.

    2004-07-01

    Silicon-on-insulator is a proven technology for very large scale integration of microelectronic devices. The technology also offers the potential for development of nanophotonic devices and the ability to interface such devices to the macroscopic world. This paper will report on fabrication techniques used to form nano-structured silicon wires on an insulating structure that is amenable to interfacing nanostructured sensors with high-performance microelectronic circuitry for practical implementation. Nanostructures formed on silicon-on-sapphire can also exploit the transparent substrate for novel device geometries. This research harnesses the unique properties of a high-quality single crystal film of silicon on sapphire and uses the film thickness as one of the confinement dimensions. Lateral arrays of silicon nanowires were fabricated in the thin (5 to 20 nm) silicon layer and studied. This technique offers simplified contact to individual wires and provides wire surfaces that are more readily accessible for controlled alteration and device designs.

  10. Residential magnetic fields predicted from wiring configurations: I. Exposure model.

    PubMed

    Bowman, J D; Thomas, D C; Jiang, L; Jiang, F; Peters, J M

    1999-10-01

    A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.

  11. PREFERED SURGICAL TECHNIQUE USED BY ORTHOPEDISTS IN ACUTE ACROMIOCLAVICULAR DISLOCATION

    PubMed Central

    NISHIMI, ALEXANDRE YUKIO; ARBEX, DEMETRIO SIMÃO; MARTINS, DIOGO LUCAS CAMPOS; GUSMÃO, CARLOS VINICIUS BUARQUE DE; BONGIOVANNI, ROBERTO RANGEL; PASCARELLI, LUCIANO

    2016-01-01

    ABSTRACT Objective: To determine whether training on shoulder and elbow surgery influences the orthopedist surgeons' preferred technique to address acute acromioclavicular joint dislocation (ACD). Methods: A survey was conducted with shoulder and elbow specialists and general orthopedists on their preferred technique to address acute ACD. Results: Thirty specialists and forty-five general orthopedists joined the study. Most specialists preferred the endobutton technique, while most general orthopedists preferred the modified Phemister procedure for coracoclavicular ligament repair using anchors. We found no difference between specialists and general orthopedists in the number of tunnels used to repair the coracoclavicular ligament; preferred method for wire insertion through the clavicular tunnels; buried versus unburied Kirschner wire insertion for acromioclavicular temporary fixation; and time for its removal; and regarding the suture thread used for deltotrapezoidal fascia closure. Conclusion: Training on shoulder and elbow surgery influences the surgeons' preferred technique to address acute ACD. Level of Evidence V, Expert Opinion. PMID:28149190

  12. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  13. Closed retrograde multiple intramedullary Kirschner wires fixation for humeral shaft fractures with the limb flexed over an articulated support

    PubMed Central

    Sié, Essoh J.B.; Kacou, Aka D.; Traoré, A.; Mobiot, C.; Bamba, I.; Lambin, Y.

    2014-01-01

    Objective To evaluate the results of multiple closed intramedullary Kirschner wiring via a supracondylar entry point for humeral shaft fractures. Patients and methods The charts of 37 patients with humeral shaft fractures treated with the Hackethal's technique between January 2007 and December 2011 were reviewed retrospectively. The operation was performed with the patient lying in supine (n = 22) or lateral (n = 15) position. The elbow was flexed over an articulated support with the arm kept in a vertical position. Thirty-three patients were available for final evaluation with a mean follow-up delay of 14 (range, 6–24) months. We were concerned about fracture union, range of motion of the shoulder and the elbow, and complications. Final evaluation used the criteria by Qidwai. Results Bone union rate was 94%. Restriction of ranges of motion of the shoulder more than 20° was noticed in two patients due to protruding wires. Three patients developed limitation of elbow extension owing to backing out of the wires. The overall results were excellent (n = 26; 79%), good (n = 4; 12%), and poor (n = 3; 9%). Conclusion Closed Hackethal's technique using K-wires gives satisfactory results in terms of bone union and elbow and shoulder function in selected humeral shaft fractures. The articulated support precludes the transolecranon traction. PMID:25983469

  14. An investigation into the effects of polishing on surface hardness and corrosion of orthodontic archwires.

    PubMed

    Hunt, N P; Cunningham, S J; Golden, C G; Sheriff, M

    1999-10-01

    The purpose of this study was to investigate the effect of surface roughness on the relative corrosion rates of wires of four alloys-stainless steel, nickel titanium, cobalt chromium, and beta titanium. Batches of wire were divided into two groups. Wires in one group were industrially polished to provide a uniform surface finish; wires in the other group were left for comparison "as received." Wire diameter, hardness, and relative corrosion rates were compared within groups before and after polishing. Comparisons were also made across the four groups of alloys. The samples of as-received wires showed variations in surface finish, with beta titanium having the roughest appearance and cobalt chromium the smoothest. Nickel titanium and stainless steel surfaces were similar. Polishing provided a more uniform finish, but significantly reduced the diameter of the wires. Microhardness testing of wire surfaces of each alloy indicated that no significant work-hardening occurred as a result of polishing. The relative corrosion rates (expressed in terms of corrosion current density) in a 0.9% sodium chloride solution were estimated using the electrochemical technique of polarization resistance. Nickel titanium wires exhibited the greatest corrosion current density in the as-received state. Polishing significantly reduced the corrosion rate of nickel titanium, such that comparison between the four alloys in the polished state revealed no significant difference in their relative corrosion rate/corrosion current density.

  15. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  16. Development of a 3-wire probe for the simultaneous measurement of turbulent velocity, concentration and temperature fields

    NASA Astrophysics Data System (ADS)

    Hewes, Alaïs; Mydlarski, Laurent

    2015-11-01

    The present work focuses on the design and optimization of a probe used to simultaneously measure the velocity, concentration and temperature fields in a turbulent jet. The underlying principles of this sensor are based in thermal-anemometry techniques, and the design of this 3-wire probe builds off the previous work of Sirivat and Warhaft, J. Fluid Mech., 1982. In the first part of this study, the effect of different overheat ratios in the first two wires (called the ``interference'' or ``Way-Libby'' probe - used to infer velocity and concentration) are investigated. Of particular interest is their effect on the quality of the resulting calibration, as well as the measured velocity and concentration data. Four different overheat ratio pairs for the two wires comprising the interference probe are studied. In the second part of this work, a third wire, capable of detecting temperature fluctuations, is added to the 3-wire probe. The optimal configuration of this probe, including wire type and overheat ratio for the third wire, is studied and the simultaneously-measured velocity, concentration, and temperature data (e.g. spectra, PDFs) for different probe configurations are presented. Supported by the Natural Sciences and Engineering Research Council of Canada (Grant 217184).

  17. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    ERIC Educational Resources Information Center

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  18. Endovascular Retrieval of Entrapped Elephant Trunk Graft During Complex Hybrid Aortic Arch Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodharan, Karthikeyan, E-mail: drdkarthik@hotmail.com; Chao, Victor T. T., E-mail: victor.chao.t.t@singhealth.com.sg; Tay, Kiang Hiong, E-mail: tay.kiang.hiong@singhealth.com.sg

    Entrapment of the elephant trunk graft within the false lumen is a rare complication of surgical repair of an aortic dissection. This is normally retrieved by emergent open surgery. We describe a technique of endovascular retrieval of the dislodged graft, during hybrid aortic arch repair. The elephant trunk was cannulated through and through from a femoral access and the free end of the wire was snared and retrieved from a brachial access. The wire was externalised from both accesses and was used to reposition the graft into the true lumen using a body flossing technique.

  19. Progress in speckle-shift strain measurement

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Barranger, John P.; Oberle, Lawrence G.; Greer, Lawrence C., III

    1991-01-01

    The Instrumentation and Control Technology Division of the Lewis Research Center has been developing an in-house capability to make one dimensional and two dimensional optical strain measurements on high temperature test specimens. The measurements are based on a two-beam speckle-shift technique. The development of composite materials for use in high temperature applications is generating interest in using the speckle-shift technique to measure strains on small diameter fibers and wires of various compositions. The results of preliminary speckle correlation tests on wire and fiber specimens are covered, and the advanced system currently under development is described.

  20. JAG Tearing Technique with Radiofrequency Guide Wire for Aortic Fenestration in Thoracic Endovascular Aneurysm Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Carmelo; Ceccherini, Claudio, E-mail: claudiocec@hotmail.it; Leonini, Sara

    An innovative approach, the JAG tearing technique, was performed during thoracic endovascular aneurysm repair in a patient with previous surgical replacement of the ascending aorta with a residual uncomplicated type B aortic dissection who developed an aneurysm of the descending thoracic aorta with its lumen divided in two parts by an intimal flap. The proximal landing zone was suitable to place a thoracic stent graft. The distal landing zone was created by cutting the intimal flap in the distal third of the descending thoracic aorta with a radiofrequency guide wire and intravascular ultrasound catheter.

Top