Science.gov

Sample records for vibration energy harvesting

  1. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  2. Nonlinear vibration energy harvester using diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Yuan, F. G.

    2011-05-01

    This letter proposes a nonlinear vibration energy harvester based on stabilized magnetic levitation using diamagnetic. Restoring forces induced by the magnetic field in harvesting vibration energy is employed instead of the forces introduced by conventional mechanical suspensions; therefore dissipation of vibration energy into heat through mechanical suspensions is eliminated. The core of the design consists of two spiral coils made of diamagnetic materials, which serve dual purposes: providing nonlinear restoring force and harnessing eddy current to power external circuits. From the theoretical analysis presented, the proposed harvester has the potential to provide wideband power outputs in low frequency range.

  3. Harvesting Vibrational Energy Using Material Work Functions

    PubMed Central

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  4. Harvesting vibrational energy using material work functions.

    PubMed

    Varpula, Aapo; Laakso, Sampo J; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  5. Harvesting vibrational energy using material work functions.

    PubMed

    Varpula, Aapo; Laakso, Sampo J; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-10-28

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications.

  6. Harvesting Vibrational Energy Using Material Work Functions

    NASA Astrophysics Data System (ADS)

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-10-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications.

  7. Internal resonance for nonlinear vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Cao, D. X.; Leadenham, S.; Erturk, A.

    2015-11-01

    The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.

  8. Piezoelectric energy harvesting from hybrid vibrations

    NASA Astrophysics Data System (ADS)

    Yan, Zhimiao; Abdelkefi, Abdessattar; Hajj, Muhammad R.

    2014-02-01

    The concept of harvesting energy from ambient and galloping vibrations of a bluff body with a triangular cross-section geometry is investigated. A piezoelectric transducer is attached to the transverse degree of freedom of the body in order to convert these vibrations to electrical energy. A coupled nonlinear distributed-parameter model is developed that takes into consideration the galloping force and moment nonlinearities and the base excitation effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear analysis is performed to determine the effects of the electrical load resistance and wind speed on the global damping and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind speed, and electrical load resistance on the performance of the harvester and the associated nonlinear phenomena that take place. The results show that, depending on the interaction between the base and galloping excitations, and the considered values of the wind speed, base acceleration, and electrical load resistance, different nonlinear phenomena arise while others disappear. Short- and open-circuit configurations for different wind speeds and base accelerations are assessed. The results show that the maximum levels of harvested power are accompanied by a minimum transverse displacement when varying the electrical load resistance.

  9. Vibration energy harvesting with polyphase AC transducers

    NASA Astrophysics Data System (ADS)

    McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko

    2016-04-01

    Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.

  10. Multiple cell configuration electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Marin, Anthony; Bressers, Scott; Priya, Shashank

    2011-07-01

    This paper reports the design of an electromagnetic vibration energy harvester that doubles the magnitude of output power generated by the prior four-bar magnet configuration. This enhancement was achieved with minor increase in volume by 23% and mass by 30%. The new 'double cell' design utilizes an additional pair of magnets to create a secondary air gap, or cell, for a second coil to vibrate within. To further reduce the dimensions of the device, two coils were attached to one common cantilever beam. These unique features lead to improvements of 66% in output power per unit volume (power density) and 27% increase in output power per unit volume and mass (specific power density), from 0.1 to 0.17 mW cm-3 and 0.41 to 0.51 mW cm-3 kg-1 respectively. Using the ANSYS multiphysics analysis, it was determined that for the double cell harvester, adding one additional pair of magnets created a small magnetic gradient between air gaps of 0.001 T which is insignificant in terms of electromagnetic damping. An analytical model was developed to optimize the magnitude of transformation factor and magnetic field gradient within the gap.

  11. Two degrees of freedom piezoelectric vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Shengsheng; Cao, Junyi; Zhou, Shengxi; Lin, Jing

    2016-04-01

    Recently, vibration energy harvesting from surrounding environments to power wearable devices and wireless sensors in structure health monitoring has received considerable interest. Piezoelectric conversion mechanism has been employed to develop many successful energy harvesting devices due to its simple structure, long life span, high harvesting efficiency and so on. However, there are many difficulties of microscale cantilever configurations in energy harvesting from low frequency ambient. In order to improve the adaptability of energy harvesting from ambient vibrations, a two degrees of freedom (2-DOF) magnetic-coupled piezoelectric energy harvester is proposed in this paper. The electromechanical governing models of the cantilever and clamped hybrid energy harvester are derived to describe the dynamic characteristics for 2-DOF magnetic-coupled piezoelectric vibration energy harvester. Numerical simulations based on Matlab and ANSYS software show that the proposed magnetically coupled energy harvester can enhance the effective operating frequency bandwidth and increase the energy density. The experimental voltage responses of 2-DOF harvester under different structure parameters are acquired to demonstrate the effectiveness of the lumped parameter model for low frequency excitations. Moreover, the proposed energy harvester can enhance the energy harvesting performance over a wider bandwidth of low frequencies and has a great potential for broadband vibration energy harvesting.

  12. A vibration energy harvester using magnet/piezoelectric composite transducer

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Chen, Hengjia; Wen, Yumei; Li, Ping; Yang, Jin; Li, Wenli

    2014-05-01

    In this research, a vibration energy harvester employing the magnet/piezoelectric composite transducer to convert mechanical vibration energy into electrical energy is presented. The electric output performance of a vibration energy harvester has been investigated. Compared to traditional magnetoelectric transducer, the proposed vibration energy harvester has some remarkable characteristic which do not need binder. The experimental results show that the presented vibration energy harvester can obtain an average power of 0.39 mW for an acceleration of 0.6g at frequency of 38 Hz. Remarkably, this power is a very encouraging power figure that gives the prospect of being able to power a widely range of wireless sensors in wireless sensor network.

  13. Note: Vibration energy harvesting based on a round acoustic fence.

    PubMed

    Cui, Xiao-bin; Huang, Cheng-ping; Hu, Jun-hui

    2015-07-01

    An energy harvester based on a round acoustic fence (RAF) has been proposed and studied. The RAF is composed of cylindrical stubs stuck in a circular array on a thin metal plate, which can confine the acoustic energy efficiently. By removing one stub and thus opening a small gap in the RAF, acoustic leakage with larger intensity can be produced at the gap opening. With the vibration source surrounded by the RAF, the energy harvesting at the gap opening has a wide bandwidth and is insensitive to the position of the vibration source. The results may have potential applications in harvesting the energy of various vibration sources in solid structure. PMID:26233415

  14. Vibration energy harvesting from random force and motion excitations

    NASA Astrophysics Data System (ADS)

    Tang, Xiudong; Zuo, Lei

    2012-07-01

    A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not

  15. A MEMS vibration energy harvester for automotive applications

    NASA Astrophysics Data System (ADS)

    van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.

    2013-05-01

    The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 μW [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of μW [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.

  16. Evaluating vehicular-induced bridge vibrations for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard

    2012-04-01

    Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.

  17. Harvesting vibration energy using nonlinear oscillations of an electromagnetic inductor

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Stamp, David; Kapania, Nitin R.; Mur-Miranda, José Oscar

    2010-04-01

    Harvesting energy from ambient vibration is a promising method for providing a continuous source of power for wireless sensor nodes. However, traditional energy harvesters are often derived from resonant linear oscillators which are capable of providing sufficient output power only if the dominant frequency of input vibrations closely matches the device resonant frequency. The limited scope of such devices has sparked an interest in the use of nonlinear oscillators as mechanisms for broadband energy harvesting. In this study, we investigate the harvesting performance of an electromagnetic harvester sustaining oscillations through the phenomena of magnetic levitation. The nonlinear behavior of the device is effectively modeled by Duffing's equation, and direct numerical integration confirms the broadband frequency response of the nonlinear harvester. The nonlinear harvester's power generation capabilities are directly compared to a linear electromagnetic harvester with similar dynamic parameters. Experimental testing shows that the presence of both high and low amplitude solutions for the nonlinear energy harvester results in a tendency for the oscillator to remain in a low energy state for non-harmonic vibration inputs, unless continuous energy impulses are provided. We conclude by considering future applications and improvements for such nonlinear devices.

  18. Piezoelectric diaphragm for vibration energy harvesting.

    PubMed

    Minazara, E; Vasic, D; Costa, F; Poulin, G

    2006-12-22

    This paper presents a technique of electric energy generation using a mechanically excited unimorph piezoelectric membrane transducer. The electrical characteristics of the piezoelectric power generator are investigated under dynamic conditions. The electromechanical model of the generator is presented and used to predict its electrical performances. The experiments was performed with a piezoelectric actuator (shaker) moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 0.65 mW was generated at the resonance frequency (1.71 kHz) across a 5.6 kOmega optimal resistor and for a 80 N force. A special electronic circuit has been conceived in order to increase the power harvested by the piezoelectric transducer. This electrical converter applies the SSHI (synchronized switch harvesting on inductor) technique, and leads to remarkable results: under the same actuation conditions the generated power reaches 1.7 mW, which is sufficient to supply a large range of low consumption sensors. PMID:16814837

  19. Delayed-feedback vibration absorbers to enhance energy harvesting

    NASA Astrophysics Data System (ADS)

    Kammer, Ayhan S.; Olgac, Nejat

    2016-02-01

    Recovering energy from ambient vibrations has recently been a popular research topic. This article is conceived as a concept study that explores new directions to enhance the performance of such energy harvesting devices from base excitation. The main idea revolves around the introduction of delayed feedback sensitization (or tuning) of an active vibration absorber setup. To clarify the concept, the Delayed Resonator theory is reviewed and its suitability for energy harvesting purposes is studied. It is recognized that an actively tuned and purely resonant absorber is infeasible for such applications. The focus is then shifted to alternative tuning schemes that deviate from resonance conditions. Also called Delayed Feedback Vibration Absorbers, these devices may indeed provide significant enhancements in energy harvesting capacity. Analytical developments are presented to study energy generation and consumption characteristics. Effects of excitation frequency and absorber damping are investigated. The influences of time-delayed feedback on the stability and the transient performance of the system are also treated. The analysis starts from a stand-alone absorber, emulating seismic mass type harvesters. The work is then extended to vibration control applications, where an absorber/harvester is coupled with a primary structure. The results are demonstrated with numerical simulations on a case study.

  20. Vibration energy harvesting using Galfenol-based transducer

    NASA Astrophysics Data System (ADS)

    Berbyuk, Viktor

    2013-04-01

    In this paper the novel design of Galfenol based vibration energy harvester is presented. The device uses Galfenol rod diameter 6.35 mm and length 50mm, polycrystalline, production grade, manufactured by FSZM process by ETREMA Product Inc. For experimental study of the harvester, the test rig was developed. It was found by experiment that for given frequency of external excitation there exist optimal values of bias and pre-stress which maximize generated voltage and harvested power. Under optimized operational conditions and external excitations with frequency 50Hz the designed transducer generates about 10 V and harvests about 0,45 W power. Within the running conditions, the Galfenol rod power density was estimated to 340mW/cm3. The obtained results show high practical potential of Galfenol based sensors for vibration-to-electrical energy conversion, structural health monitoring, etc.

  1. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  2. Low-frequency meandering piezoelectric vibration energy harvester.

    PubMed

    Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios

    2012-05-01

    The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint.

  3. Piezoelectric energy harvesting from heartbeat vibrations for leadless pacemakers

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Karami, M. Amin

    2015-12-01

    This paper studies energy harvesting from heartbeat vibrations using fan-folded piezoelectric beams. The generated energy from the heartbeat can be used to power a leadless pacemaker. In order to utilize the available 3 dimensional space to the energy harvester, we chose the fan-folded design. The proposed device consists of several piezoelectric beams stacked on top of each other. The size for this energy harvester is 2 cm by 0.5 cm by 1 cm, which makes the natural frequency very high. High natural frequency is one major concern about the micro-scaled energy harvesters. By utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, this natural frequency is reduced to the desired range. This fan-folded design makes it possible to generate more than 10 μW of power. The proposed device does not incorporate magnets and is thus Magnetic resonance imaging (MRI) compatible. Although our device is a linear energy harvester, it is shown that the device is relatively insensitive to the heartrate. The natural frequencies and the mode shapes of the device are calculated. An analytical solution is presented and the method is verified by experimental investigation. We use a closed loop shaker controller and a shaker to simulate the heartbeat vibrations. The developed analytical model is verified through comparison of theoretical and experimental tip displacement and acceleration frequency response functions.

  4. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For

  5. Interface Circuit for Vibration Energy Harvesting with Adjustable Bias Voltage

    NASA Astrophysics Data System (ADS)

    Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.

    2015-12-01

    This paper presents a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage. An electronic switch is used to modify the circuit configuration so that the harvested energy increases the voltage across a biasing capacitor. Decrease of this biasing capacitor voltage occurs naturally due to the circuit imperfections. Such a control of the bias voltage enables to adjust the amount of energy converted by the variable capacitor on each cycle. This feature can be used to optimize the mechanical damping induced by the energy conversion process in order to maximize the harvested power. Another feature of this interface circuit is that it is capable to get high bias voltage whatever the battery voltage with low energy loss.

  6. Effect of electrode configurations on piezoelectric vibration energy harvesting performance

    NASA Astrophysics Data System (ADS)

    Kim, Miso; Dugundji, John; Wardle, Brian L.

    2015-04-01

    Piezoelectric vibration energy harvesting is an attractive technology for self-powered wireless sensor networks because of the potential to deliver power to the sensor nodes from mechanical vibration sources in the surrounding medium. Systematic device designs are required in order to increase performance along with materials development of high piezoelectric coefficients and design of circuits with high power transfer efficiency. In this work, we present refined structural and electrical modeling of interdigitated electrodes (IDEs) for piezoelectric vibration energy harvesting, followed by parametric case studies on MEMS devices. Differences in geometric parameters including the size of the electrode and the number of IDE fingers for given device dimensions lead to substantial changes in harvesting performance such as capacitance, system coupling, voltage and power. When compared with parallel plate electrodes, use of IDEs results in much higher voltage generation by a factor of ten times while similar power levels are observed for both {3-1} and {3-3} configurations at optimal electrical loading conditions.

  7. Electret transducer for vibration-based energy harvesting

    SciTech Connect

    Hillenbrand, J. Sessler, G. M.; Pondrom, P.

    2015-05-04

    Vibration-based electret energy harvesters with soft cellular spacer rings are presented. These harvesters are closely related to recently introduced electret accelerometers; however, their development targets are partially differing. Various harvesters with seismic masses from 8 to 23 g and surface potentials in the 500 V regime were built and characterized and powers of up to 8 μW at about 2 kHz and an acceleration of 1 g were measured. An analytical model is presented which, for instance, allows the calculation of the frequency response of the power output into a given load resistance. Finally, experimental and calculated results are compared.

  8. Enhanced vibration based energy harvesting using embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Semperlotti, F.; Conlon, S. C.

    2014-03-01

    In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.

  9. Stacked and folded piezoelectrets for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Sessler, G. M.; Pondrom, P.; Zhang, X.

    2016-08-01

    Vibration-based energy harvesting with piezoelectrets can be significantly improved by using multiple layers of these materials. In particular, folding or stacking of piezoelectrets or a combination of these methods results in increased power output of the energy harvesters. The possibilities of these procedures are explored, together with the effect of seismic mass, resonance frequency, and terminating resistance. It is found that with seismic masses of about 20 g and using radiation-crosslinked polypropylene (IXPP) as a piezoelectret, power outputs of up to 80 µW can be achieved for an acceleration of 1 g. Expected dependencies of generated power on frequency, folding and stacking parameters, in particular number of layers, and on seismic mass, are confirmed.

  10. Efficiency enhancement of a cantilever-based vibration energy harvester.

    PubMed

    Kubba, Ali E; Jiang, Kyle

    2013-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  11. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  12. Efficiency enhancement of a cantilever-based vibration energy harvester.

    PubMed

    Kubba, Ali E; Jiang, Kyle

    2013-12-23

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).

  13. Electrostatic MEMS vibration energy harvester for HVAC applications

    NASA Astrophysics Data System (ADS)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2015-12-01

    This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.

  14. Harvesting energy from the natural vibration of human walking.

    PubMed

    Yang, Weiqing; Chen, Jun; Zhu, Guang; Yang, Jin; Bai, Peng; Su, Yuanjie; Jing, Qingsheng; Cao, Xia; Wang, Zhong Lin

    2013-12-23

    The triboelectric nanogenerator (TENG), a unique technology for harvesting ambient mechanical energy based on the triboelectric effect, has been proven to be a cost-effective, simple, and robust approach for self-powered systems. However, a general challenge is that the output current is usually low. Here, we demonstrated a rationally designed TENG with integrated rhombic gridding, which greatly improved the total current output owing to the structurally multiplied unit cells connected in parallel. With the hybridization of both the contact-separation mode and sliding electrification mode among nanowire arrays and nanopores fabricated onto the surfaces of two contact plates, the newly designed TENG produces an open-circuit voltage up to 428 V, and a short-circuit current of 1.395 mA with the peak power density of 30.7 W/m(2). Relying on the TENG, a self-powered backpack was developed with a vibration-to-electric energy conversion efficiency up to 10.62(±1.19) %. And it was also demonstrated as a direct power source for instantaneously lighting 40 commercial light-emitting diodes by harvesting the vibration energy from natural human walking. The newly designed TENG can be a mobile power source for field engineers, explorers, and disaster-relief workers. PMID:24180642

  15. Energy harvesting performance of a broadband electromagnetic vibration energy harvester for powering industrial wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ren, Long; Chen, Renwen; Xia, Huakang; Zhang, Xiaoxiao

    2016-04-01

    To supply power to wireless sensor networks, a type of broadband electromagnetic vibration energy harvester (VEH) using bistable vibration scavenging structure is proposed. It consists of a planar spring, an electromagnetic transducer with an annular magnetic circuit, and a coil assembly with a ferrite bobbin inside. A nonlinear magnetic force respecting to the relative displacement is generated by the ferrite bobbin, and to broaden the working frequency bandwidth of the VEH. Moreover, the ferrite bobbin increases the magnetic flux linkage gradient of the coil assembly in its moving region, and further to improve its output voltage. The dynamic behaviors of the VEH are analyzed and predicted by finite element analysis and ODE calculation. Validation experiments are carried out and show that the VEH can harvest high energy in a relatively wide excitation frequency band. The further test shows that the load power of the VEH with a load resistor of 90Ω can reach 10mW level in a wide frequency bandwidth when the acceleration level of the harmonic excitation is 1g. It can ensure the intermittent work of many sensors as well as wireless communication modules at least.

  16. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  17. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  18. Vibration-based energy harvesting with stacked piezoelectrets

    SciTech Connect

    Pondrom, P.; Hillenbrand, J.; Sessler, G. M.; Bös, J.; Melz, T.

    2014-04-28

    Vibration-based energy harvesters with multi-layer piezoelectrets (ferroelectrets) are presented. Using a simple setup with nine layers and a seismic mass of 8 g, it is possible to generate a power up to 1.3 µW at 140 Hz with an input acceleration of 1g. With better coupling between seismic mass and piezoelectret, and thus reduced damping, the power output of a single-layer system is increased to 5 µW at 700 Hz. Simulations indicate that for such improved setups with 10-layer stacks, utilizing seismic masses of 80 g, power levels of 0.1 to 1 mW can be expected below 100 Hz.

  19. Vibration piezoelectric energy harvester with multi-beam

    SciTech Connect

    Cui, Yan Zhang, Qunying Yao, Minglei; Dong, Weijie; Gao, Shiqiao

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  20. MEMS electrostatic vibration energy harvester without switches and inductive elements

    NASA Astrophysics Data System (ADS)

    Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.

    2014-11-01

    The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.

  1. A 3D printed electromagnetic nonlinear vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Constantinou, P.; Roy, S.

    2016-09-01

    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ∼25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ∼0.48 mW cm‑3 and normalised power integral density of 11.9 kg m‑3 (at 1 g) are comparable to other in-plane systems found in the literature.

  2. A 3D printed electromagnetic nonlinear vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Constantinou, P.; Roy, S.

    2016-09-01

    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.

  3. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data

    NASA Astrophysics Data System (ADS)

    Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.

    2013-07-01

    The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.

  4. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    SciTech Connect

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  5. Smart nanocoated structure for energy harvesting at low frequency vibration

    NASA Astrophysics Data System (ADS)

    Sharma, Sudhanshu

    Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz--1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 μW, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 μW, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection

  6. A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Wang, Xu; John, Sabu

    2015-06-01

    In this study, a dimensionless analysis method is proposed to predict the output voltage and harvested power for a 2DOF vibration energy harvesting system. This method allows us to compare the harvesting power and efficiency of the 2DOF vibration energy harvesting system and to evaluate the harvesting system performance regardless the sizes or scales. The analysis method is a hybrid of time domain simulation and frequency response analysis approaches, which would be a useful tool for parametric study, design and optimisation of a 2DOF piezoelectric vibration energy harvester. In a case study, a quarter car suspension model with a piezoelectric material insert is chosen to be studied. The 2DOF vibration energy harvesting system could potentially be applied in a vehicle to convert waste or harmful ambient vibration energy into electrical energy for charging the battery. Especially for its application in a hybrid vehicle or an electrical vehicle, the 2DOF vibration energy harvesting system could improve charge mileage, comfort and reliability.

  7. Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.

    2016-05-01

    This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic–piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3–7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.

  8. A hybrid electromagnetic energy harvesting device for low frequency vibration

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Kim, In-Ho; Min, Dong Yi; Sim, Sung-Han; Koo, Jeong-Hoi

    2013-04-01

    An electromagnetic energy harvesting device, which converts a translational base motion into a rotational motion by using a rigid bar having a moving mass pivoted on a hinged point with a power spring, has been recently developed for use of civil engineering structures having low natural frequencies. The device utilizes the relative motion between moving permanent magnets and a fixed solenoid coil in order to harvest electrical power. In this study, the performance of the device is enhanced by introducing a rotational-type generator at a hinged point. In addition, a mechanical stopper, which makes use of an auxiliary energy harvesting part to further improve the efficiency, is incorporated into the device. The effectiveness of the proposed hybrid energy harvesting device based on electromagnetic mechanism is verified through a series of laboratory tests.

  9. Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever

    NASA Astrophysics Data System (ADS)

    Umaba, M.; Nakamachi, E.; Morita, Y.

    2015-12-01

    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever, the pendulum and a pair of permanent magnets. One magnet was attached at the edge of cantilever, and the counterpart magnet at the edge of pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous existence of vibration, is converted to the electric energy via the piezoelectric unimorph cantilever vibration. At first, we studied the energy convert mechanism and analyze the performance of novel energy harvester, where the resonance free vibration of unimorph piezoelectric cantilever generated a high electric power. Next, we equipped the counterpart permanent magnet at the edge of pendulum, which vibrates with a very low frequency caused by the human walking. Then the counterpart magnet was set at the edge of unimorph piezoelectric cantilever, which vibrated with a high frequency. This low-to-high frequency convert "dual vibration system" can be characterized as an enhanced energy harvester. We examined and obtained average values of voltage and power in this system, as 8.31 mV and 0.33 μW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  10. Characterization of real-world vibration sources with a view toward optimal energy harvesting architectures

    NASA Astrophysics Data System (ADS)

    Rantz, Robert; Roundy, Shad

    2016-04-01

    A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These "idealized input signals" are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory "Real Vibration" database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.

  11. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    NASA Astrophysics Data System (ADS)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one

  12. Global stabilization of high-energy resonance for a nonlinear wideband electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Masuda, Arata; Sato, Takeru

    2016-04-01

    This paper presents an experimental verification of a wideband nonlinear vibration energy harvester which has a globally stabilized high-energy resonating response. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear resonator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear resonators often have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this study, an experimental verification of this concept are carried out. An experimental prototype harvester is designed and fabricated and the performance of the proposed harvester is experimentally verified. It has been shown that the numerical and experimental results agreed very well, and the highest-energy solutions above the threshold value were successfully stabilized globally.

  13. A Hair-cell Structure based Piezoelectric Energy Harvester Operating under Three Dimensional Arbitrary Vibrations

    NASA Astrophysics Data System (ADS)

    Park, H.; Na, Y.; Park, J.; Park, J. Y.

    2013-12-01

    A hair-cell structure based piezoelectric energy harvester was newly developed to effectively scavenge three-dimensional vibrations. The cantilever of the proposed energy harvester, called a hair-cell structure, is deliberately elongated and curled so that it oscillates with decent displacement under not only vertically induced vibrations, but also under longitudinally and horizontally induced vibrations. The proposed energy harvester is comprised of an elongated and curled piezoelectric cantilever and a proof mass with high aspect ratio at the free end of the cantilever. The fabricated device generated the peak output voltage of 15 mV under vertically induced vibrations with an acceleration of 50 m/s2 at its resonance frequency of 116 Hz. Furthermore, it also generated the peak output voltage of 33 mV and 10 mV under longitudinally and horizontally induced vibrations, respectively.

  14. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-01-01

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054

  15. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    PubMed Central

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-01-01

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054

  16. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-05-19

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  17. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  18. Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations

    NASA Astrophysics Data System (ADS)

    Karami, M. Amin; Inman, Daniel J.

    2011-03-01

    Linear and nonlinear piezoelectric devices are introduced to continuously recharge the batteries of the pacemakers by converting the vibrations from the heartbeats to electrical energy. The power requirement of the pacemakers is very low. At the same time, after about 10 years from the original implantation of the pacemakers, patients have to go through another surgical operation just to replace the batteries of their pacemakers. We investigate using vibration energy harvesters to significantly increase the battery life of the pace makers. The major source of vibrations in chest area is due to heartbeats. Linear low frequency and nonlinear mono-stable and bi-stable energy harvesters are designed according to especial signature of heart vibrations. The proposed energy harvesters are robust to variations of heart beat frequency and can meet the power requirement of the pacemakers.

  19. Tunable Vibration Energy Harvester for Condition Monitoring of Maritime Gearboxes

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    This paper reports on a new tuning concept, which enables the operation of a vibration generator for energy autonomous condition monitoring of maritime gearboxes. The tuning concept incorporates a circular tuning magnet, which interacts with a coupling magnet attached to the active transducer element. The tuning range can be tailored to the application by careful design of the gap between tuning magnet and coupling magnet. A total rotation angle of only 180° is required for the tuning magnet in order to obtain the full frequency bandwidth. The tuning concept is successfully demonstrated by charging a 0.6 F capacitor on the basis of physical vibration profiles taken from a gearbox.

  20. Roles of the Excitation in Harvesting Energy from Vibrations.

    PubMed

    Zhang, Hui; Ma, Tianwei

    2015-01-01

    The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.

  1. Roles of the Excitation in Harvesting Energy from Vibrations

    PubMed Central

    Zhang, Hui; Ma, Tianwei

    2015-01-01

    The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183

  2. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.

    PubMed

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  3. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.

    PubMed

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-05-28

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  4. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    PubMed Central

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  5. Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.

  6. Magnetostrictive vibration damper and energy harvester for rotating machinery

    NASA Astrophysics Data System (ADS)

    Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-04-01

    Vibrations generated by machine driveline components can cause excessive noise and structural dam- age. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron- dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum av- erage electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.

  7. Impacts of structural vibration on the performance of ultrasound sensor networks powered by vibration-harvested energy

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi; Shi, Yan; Dong, Bo; Biswas, Subir

    2016-04-01

    This paper develops an energy-aware ultrasonic sensor network architecture using a Pulse Switching approach for lightweight, through-substrate operation in Structural Health Monitoring applications. Pulse Switching protocols employ single pulses instead of multi-bit packets for information delivery with maximal lightness in event monitoring with binary sensing requirements i.e. where event information transmitted is only a single bit (YES / NO) based on evaluation of structural characteristics. The paper presents a simulation study of the Energy-Aware Through-Substrate Pulse Switching protocol performance for structural monitoring when operated using energy harvested from intermittent vibrations in the structure itself. The paper incorporates an energy harvesting model for simulating memory-less vibration patterns using exponentially distributed random processes at different networked nodes. These nodes are placed inside a rectangular plate structure and the corresponding harvested energy profiles are simulated. The vibration profiles are a function of the position of the node on the plate as well as time. Such spatio-temporal variation leads to interesting dynamics in the energy-aware protocol operation which have been explored in the current paper setting. Through the simulations, it is shown that the proposed Energy-Aware Pulse Switching protocol mechanisms can offer a robust through-substrate network that can be reliably used for Structural Health Monitoring using vibration-harvested energy.

  8. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-10-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

  9. Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Bibo, A.; Daqaq, M. F.

    2013-06-01

    In this letter, a single vibratory energy harvester integrated with an airfoil is proposed to concurrently harness energy from ambient vibrations and wind. In terms of its transduction capabilities and power density, the integrated device is shown to have a superior performance under the combined loading when compared to utilizing two separate devices to harvest energy independently from the two available energy sources. Even below its flutter speed, the proposed device was able to provide 2.5 times the power obtained using two separate harvesters.

  10. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters

    NASA Astrophysics Data System (ADS)

    Amin Karami, M.; Inman, Daniel J.

    2012-01-01

    Linear and nonlinear piezoelectric devices are introduced to continuously recharge the batteries of the pacemakers by converting the vibrations from the heartbeats to electrical energy. The power requirement of a pacemaker is very low. However, after few years, patients require another surgical operation just to replace their pacemaker battery. Linear low frequency and nonlinear mono-stable and bi-stable energy harvesters are designed according to the especial signature of heart vibrations. The proposed energy harvesters are robust to variation of heart rate and can meet the power requirement of pacemakers.

  11. Low Frequency Vibration Energy Harvester Using Spherical Permanent Magnet with Non-uniform Mass Distribution

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Ju, S.; Chae, S. H.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    We present a non-resonant vibration energy harvesting device using springless spherical permanent magnet with non-uniform mass distribution as a proof mass. The magnet has its center-of-mass below the geometrical center, which generates a roly-poly-like motion in response to external vibrations. Two different types of magnet assemblies with different center-of-mass position have been fabricated and tested. Using the roly-poly-like magnets, proof-of-concept electromagnetic energy harvesters have been fabricated and tested. Moreover, effect of ferrofluid as a lubricant has been tested with the fabricated energy harvester. Maximum open-circuit voltage of 154.4mV and output power of 4.53μW have been obtained at 3g vibration at 12Hz with the fabricated device.

  12. Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping

    2016-07-01

    In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).

  13. Nonlinear vibration energy harvesting based on variable double well potential function

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Towfighian, Shahrzad

    2016-04-01

    Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the variable double well potential function. The spring attached to the magnet is in its compressed position when the beam is not deflected, as the beam oscillates, the spring energy gradually releases and further increases the amplitude of vibration. To describe the motion of the cantilever beam, we obtained two coupled partial differential equations by assuming the cantilever beam as Euler-Bernoulli beam considering the effect of the moving magnet. Method of multiple scales is used to solve the coupled equations. The cantilever beam with the two magnets is a bi-stable system. Making one magnet movable can create internal resonance that is explored as a mechanism to increase the frequency bandwidth. The effect of system parameters on the frequency bandwidth of the resonator is investigated through numerical solutions. This study benefits vibration energy harvesting to achieve a higher performance when excited by the wideband ambient vibrations.

  14. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  15. Optimized energy harvesting from mechanical vibrations through piezoelectric actuators, based on a synchronized switching technique

    NASA Astrophysics Data System (ADS)

    Tsampas, P.; Roditis, G.; Papadimitriou, V.; Chatzakos, P.; Gan, Tat-Hean

    2013-05-01

    Increasing demand in mobile, autonomous devices has made energy harvesting a particular point of interest. Systems that can be powered up by a few hundreds of microwatts could feature their own energy extraction module. Energy can be harvested from the environment close to the device. Particularly, the ambient mechanical vibrations conversion via piezoelectric transducers is one of the most investigated fields for energy harvesting. A technique for optimized energy harvesting using piezoelectric actuators called "Synchronized Switching Harvesting" is explored. Comparing to a typical full bridge rectifier, the proposed harvesting technique can highly improve harvesting efficiency, even in a significantly extended frequency window around the piezoelectric actuator's resonance. In this paper, the concept of design, theoretical analysis, modeling, implementation and experimental results using CEDRAT's APA 400M-MD piezoelectric actuator are presented in detail. Moreover, we suggest design guidelines for optimum selection of the storage unit in direct relation to the characteristics of the random vibrations. From a practical aspect, the harvesting unit is based on dedicated electronics that continuously sense the charge level of the actuator's piezoelectric element. When the charge is sensed, to come to a maximum, it is directed to speedily flow into a storage unit. Special care is taken so that electronics operate at low voltages consuming a very small amount of the energy stored. The final prototype developed includes the harvesting circuit implemented with miniaturized, low cost and low consumption electronics and a storage unit consisting of a super capacitors array, forming a truly self-powered system drawing energy from ambient random vibrations of a wide range of characteristics.

  16. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    SciTech Connect

    Dhote, Sharvari Zu, Jean; Zhu, Yang

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  17. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  18. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    PubMed

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life. PMID:26827346

  19. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    NASA Astrophysics Data System (ADS)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  20. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    PubMed

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  1. Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Karami, M. Amin

    2016-03-01

    This paper studies energy harvesting from heartbeat vibrations for powering leadless pacemakers. Unlike traditional pacemakers, leadless pacemakers are implanted inside the heart and the pacemaker is in direct contact with the myocardium. A leadless pacemaker is in the shape of a cylinder. Thus, in order to utilize the available 3-dimensional space for the energy harvester, we choose a fan-folded 3D energy harvester. The proposed device consists of several piezoelectric beams stacked on top of each other. The volume of the energy harvester is 1 cm3 and its dimensions are 2 cm × 0.5 cm × 1 cm. Although high natural frequency is generally a major concern with micro-scale energy harvesters, by utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, we reduced the natural frequency to the desired range. This fan-folded design makes it possible to generate more than 10 μ W of power per cubic centimeter. The proposed device is compatible with Magnetic Resonance Imaging. Although the proposed device is a linear energy harvester, it is relatively insensitive to the heart rate. The natural frequencies and the mode shapes of the device are calculated analytically. The accuracy of the analytical model is verified by experimental investigations. We use a closed loop shaker system to precisely replicate heartbeat vibrations in vitro.

  2. Effect of angle of attack on an optimized vortex induced vibrated energy harvester: A numerical approach

    NASA Astrophysics Data System (ADS)

    Haque, Md. Rejaul; Chowdhury, M. Arshad Zahangir; Goswami, Anjan

    2016-07-01

    A two-dimensional numerical study of flow induced vibration is reported in this paper to investigate flow over a semi-cricular D-shaped bluff body oriented at different angles-of-attack to determine an optimized design for energy harvesting. Bluff body structure governs fluid streamlines; therefore obtaining a suitable range of "lock in frequency" for energy harvesting purpose is dependent on refining and optimizing bluff body's shape and structure. A cantilever based novel energy harvester design incorporates the suitable angle-of-attack for optimized performance. This optimization was done by performing computations for 30°, 60° and 90° angles-of-attack. The frequency of vibration of the body was calculated at different Reynolds Number. A Fast Fourier Transformation yielded frequency of vortex shedding. From the wake velocity profile, lift oscillation and frequency of vortex shedding is estimated. Strouhal numbers of the body were analyzed at different angles-of-attack. A higher synchronized bandwidth of shedding frequencies is an indication of an optimized harvester design at different Reynolds number. The `D' shaped bluff bodies (with angle of attack of 30°,60° and 90°) are more suitable than that of cylindrical shaped bluff bodies. The research clearly stated that, bluff bodies shape has a prominent influence on vortex induced vibration and semicircular bluff body gives the highest vibration or energy under stated conditions.

  3. Efficiency improvement of a cantilever-type energy harvester using torsional vibration

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jang, Seon-Jun; Koo, Jeong-Hoi; Jung, Hyung-Jo

    2016-04-01

    In this paper, a piezoelectric vibrational energy harvester utilizing coupled bending and torsional vibrations is investigated. The proposed system consists of a cantilever-type substrate covered by the piezoelectric ceramic and a proof mass which is perpendicularly connected to the free end of the cantilever beam by a rigid bar. While the natural frequency and output voltage of the conventional system are affected by bending deformation of the piezoelectric plate, the proposed system makes use of its twisting deformation. The natural frequency of the device can be significantly decreased by manipulating the location of the proof mass on the rigid bar. In order to validate the performance of the proposed energy harvester, numerical simulations and vertical shaker tests are carried out. It is demonstrated that the proposed energy harvester can shift down its resonant frequency considerably and generate much higher output power than the conventional system. It is, therefore, concluded that the proposed energy harvester utilizing the coupled bending and torsional vibrations can be effectively applied to low-frequency vibration situations.

  4. State-of-the-art in vibration-based electrostatic energy harvesting

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Farid; Usman Qadir, Muhammad

    2016-10-01

    Recently, embedded systems and wireless sensor nodes have been gaining importance. For operating these devices several vibration-based energy harvesters have been successfully developed and reported, such as piezoelectric, electromagnetic, and electrostatic energy harvesters (EEHs). This paper presents the state-of-the-art in the field of vibration-based EEHs. Mainly, two types of EEHs, electret-free and electret-based, are reported in the literature. The developed EEHs are mostly of the centimeter scale. These energy harvesters, with resonant frequencies ranging from 2 Hz to 1.7 kHz, when subjected to excitation on the order of 0.25 g to 14.2 g, generate power that ranges from 0.46 nW to 2.1 mW.

  5. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  6. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  7. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  8. Scavenging vibration energy from seismically isolated bridges using an electromagnetic harvester

    NASA Astrophysics Data System (ADS)

    Lu, Qiuchen; Loong, Chengning; Chang, Chih-Chen; Dimitrakopoulos, Elias G.

    2014-04-01

    The increasing worldwide efforts in securing renewable energy sources increase incentive for civil engineers to investigate whether the kinetic energy associated with the vibration of larger-scale structures can be harvested. Such a research remains challenging and incomplete despite that hundreds of related articles have been published in the last decade. Base isolation is one of the most popular means of protecting a civil engineering structure against earthquake forces. Seismic isolation hinges on the decoupling of the structure from the shaking ground, hence protecting the structure from stress and damage during an earthquake excitation. The low stiffness isolator inserted between the structure and the ground dominates the response leading to a structural system of longer vibration period. As a consequence of this period shift, the spectral acceleration is reduced, but higher response displacements are produced. To mitigate this side effect, usually isolators are combined with the use of additional energy dissipation. In this study, the feasibility of scavenging the need-to-be dissipated energy from the isolator installed in a seismically isolated bridge using an electromagnetic (EM) energy harvester is investigated. The EM energy harvester consists of an energy harvesting circuit and a capacitor for energy storage. A mathematical model for this proposed EM energy harvester is developed and implemented on an idealized base-isolated single-degree-of-freedom system. The effect of having this EM energy harvester on the performance of this seismic isolated system is analyzed and discussed. The potential of installing such an EM energy harvester on a seismically isolated bridge is also addressed.

  9. Low-frequency vibration energy harvester using a spherical permanent magnet with controlled mass distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yunhee; Ju, Suna; Chae, Song Hee; Jun, Sangbeom; Ji, Chang-Hyeon

    2015-06-01

    This paper presents a vibration energy harvester using a springless spherical permanent magnet with a non-uniform mass distribution as a proof mass. The magnet has been designed to have the center of mass below the geometrical center, which generates a roly-poly-like motion in response to external vibrations and maintains the upright position. Utilizing this roly-poly-like magnet, proof-of-concept electromagnetic energy harvesters have been fabricated, tested and analyzed. An analytical model which explains the motion of the magnet assembly and resulting output voltage has been developed by finite element analysis of the magnetic field distribution and motion analysis of the magnet assembly. With the fabricated device, a maximum open-circuit voltage of 48.85 mVrms and an output power of 9.03 μW have been obtained in response to a 20 Hz sinusoidal vibration at 3 g acceleration.

  10. Theoretical analysis of linear and nonlinear piezoelectric vibrational energy harvesters for human walking

    NASA Astrophysics Data System (ADS)

    Eltanany, Ali M.; Yoshimura, Takeshi; Fujimura, Norifumi; Elsayed, Nour Z.; Ebied, Mohamed R.; Ali, Mohamed G. S.

    2015-10-01

    The role of nonlinear stiffness in the performance of the piezoelectric vibrational energy harvester (pVEH) was discussed. Harmonic balance and numerical methods are applied to characterize the electromechanical response of pVEHs based on Duffing oscillator at a deterministic harmonic excitation of fundamental vibration characteristics (2 Hz, 1 m·s-2), which corresponds to human walking. Then, the response to a vibration with two harmonic waves, which has a fixed fundamental frequency (2 Hz, 1 m·s-2) and a frequency varied from 1.5 to 2.5 Hz. The numerical results obtained in this study indicate that nonlinearity does not have a significant advantage on the energy harvesting from human walking.

  11. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion

    NASA Astrophysics Data System (ADS)

    Hudak, Nicholas S.; Amatucci, Glenn G.

    2008-05-01

    As sensors for a wide array of applications continue to shrink and become integrated, increasing attention has been focused on creating autonomous devices with long-lasting power supplies. To achieve this, energy will have to be harvested from the sensors' environment. An energy harvesting device can power the sensor either directly or in conjunction with a battery. Presented herein is a review of three types of energy harvesting with focus on devices at or below the cm3 scale. The harvesting technologies discussed are based on the conversion of temperature gradients, mechanical vibrations, and radiofrequency waves. Operation principles, current state of the art, and materials issues are presented. In addition, requirements and recent developments in power conditioning for such devices are discussed. Future challenges specific to miniaturization are outlined from both the materials and device perspectives.

  12. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder

    NASA Astrophysics Data System (ADS)

    Mehmood, A.; Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.; Akhtar, I.; Nuhait, A. O.

    2013-09-01

    The concept of harvesting energy from a circular cylinder undergoing vortex-induced vibrations is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom. Numerical simulations are performed for Reynolds numbers (Re) in the range 96≤Re≤118, which covers the pre-synchronization, synchronization, and post-synchronization regimes. Load resistances (R) in the range 500 Ω≤R≤5 MΩ are considered. The results show that the load resistance has a significant effect on the oscillation amplitude, lift coefficient, voltage output, and harvested power. The results also show that the synchronization region widens when the load resistance increases. It is also found that there is an optimum value of the load resistance for which the harvested power is maximum. This optimum value does not correspond to the case of largest oscillations, which points to the need for a coupled analysis as performed here.

  13. Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Jui; Wu, Jia-Yin

    2016-09-01

    A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral–cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.

  14. Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Jui; Wu, Jia-Yin

    2016-09-01

    A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral-cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.

  15. On the minimum coupling required for maximum theoretical power capture from vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Kim, D.; Hewa-Kasakarage, N. N.; Yoon, S.; Hall, N. A.

    2012-09-01

    The minimum transducer coupling to enable maximum theoretical power capture from vibration energy harvesters is derived, leading to the simple conclusion that the product of the transducer coupling coefficient and resonance quality factor must be greater than two. Maximum theoretical power capture is experimentally demonstrated on a micromachined piezoelectric energy harvester comprised of a 20 μm thick epitaxial silicon cantilever with 800 nm thick lead-zirconate-titanate along the top surface and a bulk silicon mass at the tip. The coupling of these structures, although small (κ2=0.0033), is entirely sufficient to enable maximum theoretical power capture owing to light damping (Q =906).

  16. A two-dimensional broadband vibration energy harvester using magnetoelectric transducer

    SciTech Connect

    Yang, Jin Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo; Bai, Xiaoling

    2013-12-09

    In this study, a magnetoelectric vibration energy harvester was demonstrated, which aims at addressing the limitations of the existing approaches in single dimensional operation with narrow working bandwidth. A circular cross-section cantilever rod, not a conventional thin cantilever beam, was adopted to extract vibration energy in arbitrary in-plane motion directions. The magnetic interaction not only resulted in a nonlinear motion of the rod with increased frequency bandwidth, but also contributed to a multi-mode motion to exhibit double power peaks. In energy harvesting with in-plane directions, it showed a maximum bandwidth of 4.4 Hz and power of 0.59 mW, with acceleration of 0.6 g (with g = 9.8 m s{sup −2})

  17. Self-suspended vibration-driven energy harvesting chip for power density maximization

    NASA Astrophysics Data System (ADS)

    Murillo, Gonzalo; Agustí, Jordi; Abadal, Gabriel

    2015-11-01

    This work introduces a new concept to integrate energy-harvesting devices with the aim of improving their throughput, mainly in terms of scavenged energy density and frequency tunability. This concept, named energy harvester in package (EHiP), is focused on the heterogeneous integration of a MEMS die, dedicated to scavenging energy, with an auxiliary chip, which can include the control and power management circuitry, sensors and RF transmission capabilities. The main advantages are that the whole die can be used as an inertial mass and the chip area usage is optimized. Based on this concept, in this paper we describe the development and characterization of a MEMS die fully dedicated to harvesting mechanical energy from ambient vibrations through an electrostatic transduction. A test PCB has been fabricated to perform the assembly that allows measurement of the resonance motion of the whole system at 289 Hz. An estimated maximum generated power of around 11 μW has been obtained for an input vibration acceleration of ˜10 m s-2 when the energy harvester operates in a constant-charge cycle for the best-case scenario. Therefore, a maximum scavenged power density of 0.85 mW cm-3 is theoretically expected for the assembled system. These results demonstrate that the generated power density of any vibration-based energy harvester can be significantly increased by applying the EHiP concept, which could become an industrial standard for manufacturing this kind of system, independently of the transduction type, fabrication technology or application.

  18. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Erturk, A.

    2013-01-01

    We present electroelastic modeling, analytical and numerical solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The modeling approach employed herein is based on a distributed-parameter electroelastic formulation to ensure that the effects of higher vibration modes are included, since broadband random vibrations, such as Gaussian white noise, might excite higher vibration modes. The goal is to predict the expected value of the power output and the mean-square shunted vibration response in terms of the given power spectral density (PSD) or time history of the random vibrational input. The analytical method is based on the PSD of random base excitation and distributed-parameter frequency response functions of the coupled voltage output and shunted vibration response. The first of the two numerical solution methods employs the Fourier series representation of the base acceleration history in an ordinary differential equation solver while the second method uses an Euler-Maruyama scheme to directly solve the resulting electroelastic stochastic differential equations. The analytical and numerical simulations are compared with several experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The simulations exhibit very good agreement with the experimental measurements for a range of resistive electrical boundary conditions and input PSD levels. It is also shown that lightly damped higher vibration modes can alter the expected power curve under broadband random excitation. Therefore, the distributed-parameter modeling and solutions presented herein can be used as a more accurate alternative to the existing single-degree-of-freedom solutions for broadband random vibration energy harvesting.

  19. A vibration energy harvester using five-phase laminate composite transducer based on nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia; Yang, Jin

    2015-05-01

    In this research, a vibration energy harvester employing the FeCuNbSiB/Terfenol-D/PZT/Terfenol-D/FeCuNbSiB five-phase laminate composite transducer to convert mechanical vibration energy into electrical energy was presented. The electric output performance of the proposed vibration energy harvester has been investigated. It was found that appropriate FeCuNbSiB layer thickness was propitious to the electric output characteristics. Compared to traditional vibration energy harvester using Terfenol-D/PZT/Terfenol-D (MPM) transducer, the experimental results show that the proposed vibration energy harvester provides a remarkably enhanced output power performance. When the thickness of FeCuNbSiB layer was 30 μm, the optimum output power of vibration energy harvester achieved 4.00 mW/g for an acceleration of 0.8 g at frequency of 34.5 Hz, which was 1.29 times as great as that of traditional MPM transducer. Remarkably, this power is a very encouraging power figure and the proposed vibration energy harvester has great potential as far as its application in wireless sensor network.

  20. Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system

    NASA Astrophysics Data System (ADS)

    Harne, R. L.; Sun, A.; Wang, K. W.

    2016-02-01

    Trees exploit intriguing mechanisms such as multimodal frequency distributions and nonlinearities to distribute and dampen the aerodynamically-induced vibration energies to which they are subjected. In dynamical systems, these mechanisms are comparable to internal resonance phenomena. In recent years, researchers have harnessed strong nonlinearities, including internal resonance, to induce energetic dynamics that enhance performance of vibration energy harvesting systems. For trees, the internal resonance-like dynamics are evidently useful to dampen swaying motions in spite of the high variation associated with excitation and structural parameters. Yet for dynamic systems, studies show narrow operating regimes which exhibit internal resonance-based behaviors; this additionally suggests that the energetic dynamics may be susceptible to deactivation if stochastic inputs corrupt ideal excitation properties. To address these issues and to investigate whether the underlying motivation of exploiting internal resonance-induced saturation dynamics is truly justified, this research evaluates the opportunities enabled by exploiting nonlinear, multimodal motions in an L-shaped energy harvester platform. The system dynamics are probed analytically, numerically, and experimentally for comprehensive insights on the versatility of internal resonance-based behaviors for energy harvesting. It is found that although activating the high amplitude nonlinear dynamics to enhance power generation is robust to significant additive noise in the harmonic excitations, parameter sensitivities may pose practical challenges in application. Discussion is provided on means to address such concerns and on future strategies that may favorably exploit nonlinearity and multimodal dynamics for robust energy harvesting performance.

  1. A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2016-09-01

    Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm-3 g-2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.

  2. A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2016-09-01

    Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm‑3 g‑2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.

  3. Piezoelectric Vibration Energy Harvester Using Indirect Impact of Springless Proof Mass

    NASA Astrophysics Data System (ADS)

    Ju, S.; Ji, C.-H.

    2015-12-01

    This paper presents an impact-based piezoelectric vibration energy harvester using freely movable spherical proof mass and MFC (Macro Fiber Composite) beams as piezoelectric cantilevers. When external vibration is applied, a metal sphere moves freely along the channel and collides with both ends of the cavity, which induces the vibration of parallel- connected MFCs and generates electric power. A proof-of-concept device having the form- factor of a wristwatch has been designed and tested. Moreover, spherical proof mass made of different materials has been tested to analyze the relationship between output power, long-term reliability, and audible noise level during operation. Maximum peak-to-peak open circuit voltage of 41.2V and average power of 908.7 μW have been obtained in response to a 3g vibration at 17Hz for device with parallel-connected MFC beams.

  4. Simulation of an ultralow-power power management circuit for MEMS cantilever piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Takei, Ryohei; Okada, Hironao; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeishi

    2016-10-01

    We developed a power management circuit for piezoelectric microelectromechanical system cantilever vibration energy harvesters (VEHs) with ultralow-power consumption. The power management circuit was effective in a wireless vibration monitoring system. To operate the system, ultralow-power electronics were required because only a small amount of electrical power was generated from the faint environmental vibration. Pb(Zr,Ti)O3 (PZT) and aluminum nitride (AlN) VEHs were fabricated and their equivalent circuits were extracted from output voltage measurements. The power management circuit was simulated using the extracted circuits. The simulation suggested that the power management circuit can be driven by a vibration acceleration of 1.0 m/s2 by lowering the power consumption of the power management circuit using existing electronics.

  5. Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation

    NASA Astrophysics Data System (ADS)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-02-01

    We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.

  6. Integration of microfabricated low resistance and thousand-turn coils for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Yufeng; Zhao, Lurui; Sok Kim, Eun

    2016-02-01

    This paper presents two microfabrication approaches for multi-layer coils for vibration-energy harvesters. A magnet array is arranged with alternating north- and south-orientation to provide a rapidly changing magnetic field for high electromagnetic energy conversion. Multi-turn spiral coils on silicon wafer are aligned to the magnet array for maximum magnetic flux change. One type of coil is made out of 300 μm-thick copper that is electroplated with silicon mold, and the other is built on 25 μm-thick copper electroplated with photoresist mold. The low resistive coils fabricated by the first approach are integrated in a microfabricated energy harvester of 17  ×  7  ×  1.7 mm3 (=0.2 cm3) weighing 0.8 g, which generates 14.3 μW power output (into 0.7 Ω load) from vibration amplitude of 6 μm at 250 Hz. The latter approach is used to make a 1080-turn coil for a microfabricated electromagnetic energy harvester with magnet array and plastic spring. Though the size and weight of the harvester are only 44  ×  20  ×  6 mm3 (=5.3 cm3) and 12 g, respectively, it generates 1.04 mW power output (into 190 Ω load) when it is vibrated at 75 Hz with vibration amplitude of 220 μm.

  7. Energy harvesting of radio frequency and vibration energy to enable wireless sensor monitoring of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno; McCullagh, James; Peterson, Rebecca L.; Najafi, Khalil; Mortazawi, Amir

    2011-04-01

    To power distributed wireless sensor networks on bridges, traditional power cables or battery replacement are excessively expensive or infeasible. This project develops two power harvesting technologies. First, a novel parametric frequency-increased generator (PFIG) is developed. The fabricated PFIG harvests the non-periodic and unprecedentedly low frequency (DC to 30 Hz) and low acceleration (0.55-9.8 m/s2) mechanical energy available on bridges with an average power > 2 μW. Prototype power conversion and storage electronics were designed and the harvester system was used to charge a capacitor from arbitrary bridge-like vibrations. Second, an RF scavenger operating at medium and shortwave frequencies has been designed and tested. Power scavenging at MHz frequencies allows for lower antenna directivities, reducing sensitivity to antenna positioning. Furthermore, ambient RF signals at these frequencies have higher power levels away from cities and residential areas compared to the UHF and SHF bands utilized for cellular communication systems. An RF power scavenger operating at 1 MHz along with power management and storage circuitry has been demonstrated. It powers a LED at a distance of 10 km from AM radio stations.

  8. Investigation of geometries of bistable piezoelectric-laminate plates for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Betts, David N.; Bowen, Christopher R.; Inman, Daniel J.; Weaver, Paul M.; Kim, H. A.

    2014-04-01

    The need for reduced power requirements for small electronic components, such as wireless sensor networks, has prompted interest in recent years for energy harvesting technologies capable of capturing energy from broadband ambient vibrations. Encouraging results have been reported for an arrangement of piezoelectric layers attached to carbon fiber / epoxy laminates which possess bistability by virtue of their specific asymmetric stacking sequence. The inherent bistability of the underlying structure is exploited for energy harvesting since a transition from one stable configuration to another, or `snap-through', is used to repeatedly strain the surface-bonded piezoelectric and generate electrical energy. Existing studies, both experimental and modelling, have been limited to simple geometric laminate shapes, restricting the scope for improved energy harvesting performance by limiting the number of design variables. In this paper we present an analytical model to predict the static shapes of laminates of any desired profile, validated experimentally using a digital image correlation system. Good accuracy in terms of out-of-plane displacements (5-7%) are shown in line with existing square modelling results. The static model is then mapped to a dynamics model and used to compare results against an experimental study of the harvesting performance of an example arbitrary geometry piezoelectric-laminate energy harvester.

  9. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  10. Magnetoelastic beam with extended polymer for low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad; Su, Quang

    2016-04-01

    Ambient energy in the form of mechanical kinetic energy is mostly considered waste energy. The process of scavenging and storing such energy is known as energy harvesting. Energy harvesting from mechanical vibration is performed using resonant energy harvesters (EH) with two major goals: enhancing the power scavenged at low frequency sources of vibrations, and increasing the efficiency of scavenging energy by increasing the bandwidth near the resonant frequency. Toward such goals, we propose a piezoelectric EH of a composite cantilever beam with a tip magnet facing another magnet at a distance. The composite cantilever consists of a piezoelectric bimorph with an extended polymer material. With the effect of the nonlinearity of the magnetic force, higher amplitude can be achieved because of the generated bi-stability oscillations of the cantilever beam under harmonic excitation. The contribution of the this paper is to demonstrate lowering the achieved resonant frequency down to 17 Hz compared to 100 Hz for the piezoelectric bimorph beam without the extended polymer. Depending on the magnetic distance, the beam responses are divided to mono and bi-stable regions, for which we investigate static and dynamic behaviors. The dynamics of the system and the frequency and voltage responses of the beam are obtained using the shooting method.

  11. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank

    2015-08-01

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  12. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    SciTech Connect

    Qiu, Jing Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  13. Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers.

    PubMed

    Zuo, Lei; Cui, Wen

    2013-10-01

    This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load.

  14. Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers.

    PubMed

    Zuo, Lei; Cui, Wen

    2013-10-01

    This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load. PMID:23918165

  15. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    PubMed

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass.

  16. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    SciTech Connect

    Li, Pengwei Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong; Liu, Ying; Liu, Wei

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  17. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    NASA Astrophysics Data System (ADS)

    Sharpes, Nathan; Abdelkefi, Abdessattar; Abdelmoula, Hichem; Kumar, Prashant; Adler, Jan; Priya, Shashank

    2016-07-01

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the "Elephant" two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  18. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.

    PubMed

    Tang, Qiaochu; Yang, Yongliang; Li, Xinxin

    2014-04-01

    An electromagnetic kinetic energy harvester has been developed, which can convert ultra-low-frequency motion and vibration energy into electrical power. This harvester employs a two-stage vibratory structure to collect low-frequency kinetic energy and effectively transfer it into electric power by using a pair of high-frequency resonant generators. Non-contact magnetic repulsive force is herein utilized for the 1st-stage sliding vibrator to drive the 2nd-stage resonators into frequency-up-conversion resonance. The non-contact actuation is helpful for durable and long-life working of the device. The prototyped device is fabricated and the design is well confirmed by experimental test. The harvester can be well operated at the frequency as low as 0.25 Hz. Under driving acceleration of 1 g at 0.5 Hz, the miniaturized harvester can generate a peak power of 4.42 mW and an average power of 158 μW. PMID:24784650

  19. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    PubMed

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis.

  20. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    PubMed

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever. PMID:25971046

  1. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    PubMed

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  2. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  3. Vibration Energy Harvesting Characterization of 1 cm2 Poly(vinylidene fluoride) Generators in Vacuum

    NASA Astrophysics Data System (ADS)

    Cao, Ziping; Zhang, Jinya; Kuwano, Hiroki

    2011-09-01

    In this study, poly(vinylidene fluoride) (PVDF) was used as a piezoelectric element to fabricate small size (two-dimensional area <1 cm2) generators with low resonant frequency (about 100 Hz) for matching the frequency of vibration sources. To clarify the effect of the air damping on the vibration energy harvesting, PVDF generators were investigated in three measurement conditions: “unpackaged in air”, “packaged in air”, and “unpackaged in vacuum”. It was found that the output power of generators “unpackaged in vacuum” was almost twice that of generators “packaged in air” at 0.5g acceleration. With the increase in vibration acceleration, the output power of generators “unpackaged in vacuum” rapidly increased in a quadratic relationship with the acceleration at low acceleration level, and then the increasing ratio decreased at high acceleration. At 4.31g acceleration, the output power reached 100.833 µW.

  4. Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Gottardi, M.; Serra, E.; Di Criscienzo, R.; Borrielli, A.; Bonaldi, M.

    2013-05-01

    The aim of this contribution is to report and discuss a preliminary study and rough optimization of a novel concept of MEMS device for vibration energy harvesting, based on a multi-modal dynamic behavior. The circular-shaped device features Four-Leaf Clover-like (FLC) double spring-mass cascaded systems, kept constrained to the surrounding frame by means of four straight beams. The combination of flexural bending behavior of the slender beams plus deformable parts of the petals enable to populate the desired vibration frequency range with a number of resonant modes, and improve the energy conversion capability of the micro-transducer. The harvester device, conceived for piezoelectric mechanical into electric energy conversion, is intended to sense environmental vibrations and, thereby, its geometry is optimized to have a large concentration of resonant modes in a frequency range below 5-10 kHz. The results of FEM (Finite Element Method) based analysis performed in ANSYSTM Workbench are reported, both concerning modal and harmonic response, providing important indications related to the device geometry optimization. The analysis reported in this work is limited to the sole mechanical modeling of the proposed MEMS harvester device concept. Future developments of the study will encompass the inclusion of piezoelectric conversion in the FEM simulations, in order to have indications of the actual power levels achievable with the proposed harvester concept. Furthermore, the results of the FEM studies here discussed, will be validated against experimental data, as soon as the MEMS resonator specimens, currently under fabrication, are ready for testing.

  5. A fuzzy-logic based dual-purpose adaptive circuit for vibration control and energy harvesting using piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Liu, Zhe Peng; Li, Qing

    2013-04-01

    Due to their two-way electromechanical coupling effect, piezoelectric transducers can be used to synthesize passive vibration control schemes, e.g., RLC circuit with the integration of inductance and resistance elements that is conceptually similar to damped vibration absorber. Meanwhile, the wide usage of wireless sensors has led to the recent enthusiasm of developing piezoelectric-based energy harvesting devices that can convert ambient vibratory energy into useful electrical energy. It can be shown that the integration of circuitry elements such as resistance and inductance can benefit the energy harvesting capability. Here we explore a dual-purpose circuit that can facilitate simultaneous vibration suppression and energy harvesting. It is worth noting that the goal of vibration suppression and the goal of energy harvesting may not always complement each other. That is, the maximization of vibration suppression doesn't necessarily lead to the maximization of energy harvesting, and vice versa. In this research, we develop a fuzzy-logic based algorithm to decide the proper selection of circuitry elements to balance between the two goals. As the circuitry elements can be online tuned, this research yields an adaptive circuitry concept for the effective manipulation of system energy and vibration suppression. Comprehensive analyses are carried out to demonstrate the concept and operation.

  6. Study of the Ambient Vibration Energy Harvesting Based on Piezoelectric Effect

    NASA Astrophysics Data System (ADS)

    Si, Hongyu; Dong, Jinlu; Chen, Lei; Sun, Laizhi; Zhang, Xiaodong; Gao, Mintian

    2014-01-01

    The resonance between piezoelectric vibrator and the vibration source is the key to maximize the ambient vibration energy harvesting by using piezoelectric generator. In this paper, the factors that influence the output power of a single piezoelectric vibrator are analyzed. The effect of geometry size (length, thickness, width of piezoelectric chip and thickness of metal shim) of a single cantilever piezoelectric vibrator to the output power is analyzed and simulated with the help of MATLAB (matrix laboratory). The curves that output power varies with geometry size are obtained when the displacement and load at the free end are constant. Then the paper points out multi-resonant frequency piezoelectric power generation, including cantilever multi-resonant frequency piezoelectric power generation and disc type multi-resonant frequency piezoelectric generation. Multi-resonant frequency of cantilever piezoelectric power generation can be realized by placing different quality mass at the free end, while disc type multi-resonant frequency piezoelectric generation can be realized through series and parallel connection of piezoelectric vibrator.

  7. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    PubMed Central

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  8. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    PubMed

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  9. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  10. Piezoelectric Vibrational Energy Harvester Using Lead-Free Ferroelectric BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Yoshimura, Takeshi; Murakami, Shuichi; Wakazono, Keisuke; Kariya, Kento; Fujimura, Norifumi

    2013-05-01

    We have proposed that BiFeO3 films are suitable for piezoelectric vibrational energy harvester (VEH) applications, because BiFeO3 has high spontaneous polarization and low dielectric permittivity. We demonstrated that energy can be harvested by a micromachined VEH using a BiFeO3 film deposited using a sol-gel process. A VEH with a resonant frequency of ˜98 Hz produced an output voltage of 1.5 V·G-1 and electrical power of 2.8 µW·mm-3·G-2 (G=9.8 m/s2) at a load resistance of 1 MΩ. Using the analytical model for VEH, the generalized electromechanical coupling factor was estimated to be 0.41%. These results were comparable to those of the best-performing VEHs using other piezoelectric films.

  11. Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations

    NASA Astrophysics Data System (ADS)

    Alamin Dow, Ali B.; Al-Rubaye, Hasan A.; Koo, David; Schneider, Michael; Bittner, Achim; Schmid, Ulrich; Kherani, Nazir P.

    2011-06-01

    Piezoelectric energy microgenerators are devices that continuously generate electricity when they are subjected to varying mechanical strain due to vibrations. They can generate electrical power up to 100 μW which can be used to drive various sensing and actuating MEMS devices. Today, piezoelectric energy harvesters are considered autonomous and reliable energy sources to actuate low power microdevices such as wireless sensor networks, indoor-outdoor monitoring, facility management and biomedical applications. The advantages of piezoelectric energy harvesters including high power density, moderate output power and CMOS compatible fabrication in particular with aluminum nitride (AlN) have fuelled and motivated researchers to develop MEMS based energy harvesters. Recently, the use of AlN as a piezoelectric material has increased fabrication compatibility, enabling the realization of smart integrated systems on chip which include sensors, actuators and energy storage. Piezoelectric MEMS energy microgenerator is used to capture and transform the available ambient mechanical vibrations into usable electric energy via resonant coupling in the thin film piezoelectric material. Analysis and modeling of piezoelectric energy generators are very important aspects for improved performance. Aluminum nitride as the piezoelectric material is sandwiched between two electrodes. The device design includes a silicon cantilever on which the AlN film is deposited and which features a seismic mass at the end of the cantilever. Beam theory and lumped modeling with circuit elements are applied for modeling and analysis of the device operation at various acceleration values. The model shows good agreement with the experimental findings, thus giving confidence in the model.

  12. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    NASA Astrophysics Data System (ADS)

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-02-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response

  13. Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

    NASA Astrophysics Data System (ADS)

    Du, Sijun; Jia, Yu; Seshia, Ashwin

    2015-12-01

    A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.

  14. Design and analysis of vibration energy harvesters based on peak response statistics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Friswell, M. I.; Litak, G.; Haddad Khodaparast, H.

    2016-06-01

    Energy harvesting using cantilever piezoelectric vibration energy harvesters excited by Gaussian broadband random base excitation is considered. The optimal design and analysis of energy harvesters under random excitation is normally performed using the mean and standard deviation of a response quantity of interest, such as the voltage. An alternative approach based on the statistics of the peak voltage is developed in this paper. Three extreme response characteristics, namely (a) level crossing, (b) response peaks above certain level, and (c) fractional time spend above a certain level, have been employed. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions have been derived for number of level crossings, statistics of response peaks and fractional time spend above a certain level for the output voltage. It is shown that these quantities can be related to the standard deviation of the voltage and its derivative with respect to time. Direct numerical simulation has been used to validate the analytical expressions. Based on the analytical results, closed-form expressions for optimal system parameters have been proposed. Numerical examples are given to illustrate the applicability of the analytical results.

  15. Energy Harvesting from Ambient Vibrations with Arbitrary In-Plane Motion Directions Using a Magnetostrictive/Piezoelectric Laminate Composite Transducer

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo

    2014-07-01

    A magnetoelectric (ME) vibration energy harvester has been designed to scavenge sufficient energy from ambient vibration with arbitrary motion directions in a plane and over a range of frequencies. In the harvester, a circular-cross-section cantilever rod is adopted to extract the vibration energy due to its ability to host accelerations in arbitrary in-plane motion directions. The magnetic coupling between the magnet and the ME transducer results in nonlinear oscillation of the cantilever rod with increased frequency bandwidth. To achieve optimal vibration energy harvesting performance, the effects of the nonlinear vibration and the harvester parameters including the magnetic circuit and the separation distance on the electrical output and the␣working bandwidth are analyzed. The experimental results show that the harvester can scavenge vibration energy in arbitrary in-plane directions, exhibiting a bandwidth of 4.0 Hz and maximum power of 0.22 mW at acceleration of 0.6 g (with g = 9.8 m s-2).

  16. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    SciTech Connect

    Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  17. Nonlinear restoring force of spring with stopper for ferroelectric dipole electret-based electrostatic vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Hara, M.; Oguchi, H.; Kuwano, H.

    2016-07-01

    Previously, we succeeded in developing a new electret [termed a ferroelectric dipole electret (FDE)] having an extremely high electric field using a polarized ferroelectric material. However, the pull-in, in which an oscillator sticks to the FDE under its strong electrostatic force, poses a problem for practical vibration energy harvesters. In this study, we propose use of nonlinear restoring force of a spring with a stopper in order to prevent pull-in for FDE-based vibration energy harvesters. The spring with a stopper was designed using a finite element method (FEM) analysis such that the restoring force of the spring will exceed the electrostatic force of the FDE. The proposed harvester combines the FDE and the spring successfully, and generated electricity without the pull-in. It also showed the highest figure of merit of output power and wide frequency band when compared with other available electret-based vibration energy harvesters.

  18. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

  19. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

    PubMed

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

  20. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

    PubMed

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized. PMID:27587151

  1. Ferroelectric dipole electrets for output power enhancement in electrostatic vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Asanuma, Haruhiko; Oguchi, Hiroyuki; Hara, Motoaki; Yoshida, Ryo; Kuwano, Hiroki

    2013-10-01

    We propose a ferroelectric dipole electret composed of polarized lead zirconate titanate. Deep insight into the physics behind the parallel plate capacitor theoretically predicts that we can extract large electric field near the surface of the ferroelectric dipole electret by increasing its surface charge density and thickness. Experiment for ferroelectric dipole electret shows good agreement with the theory. The maximum output power density of electrostatic vibration energy harvesters using the ferroelectric dipole electret was 78 μW/cm3, a three-fold increase over a conventional polymer electret. Our results will pave the way for use of ferroelectrics as electrets.

  2. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning

    NASA Astrophysics Data System (ADS)

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio

    2015-12-01

    This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.

  3. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact

    NASA Astrophysics Data System (ADS)

    Basset, P.; Galayko, D.; Cottone, F.; Guillemet, R.; Blokhina, E.; Marty, F.; Bourouina, T.

    2014-03-01

    This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.

  4. Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-06-01

    We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.

  5. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator

    NASA Astrophysics Data System (ADS)

    Gatti, G.; Brennan, M. J.; Tehrani, M. G.; Thompson, D. J.

    2016-01-01

    With the advent of wireless sensors, there has been an increasing amount of research in the area of energy harvesting, particularly from vibration, to power these devices. An interesting application is the possibility of harvesting energy from the track-side vibration due to a passing train, as this energy could be used to power remote sensors mounted on the track for strutural health monitoring, for example. This paper describes a fundamental study to determine how much energy could be harvested from a passing train. Using a time history of vertical vibration measured on a sleeper, the optimum mechanical parameters of a linear energy harvesting device are determined. Numerical and analytical investigations are both carried out. It is found that the optimum amount of energy harvested per unit mass is proportional to the product of the square of the input acceleration amplitude and the square of the input duration. For the specific case studied, it was found that the maximum energy that could be harvested per unit mass of the oscillator is about 0.25 J/kg at a frequency of about 17 Hz. The damping ratio for the optimum harvester was found to be about 0.0045, and the corresponding amplitude of the relative displacement of the mass is approximately 5 mm.

  6. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Montanini, Roberto; Quattrocchi, Antonino

    2016-06-01

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  7. Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters.

    PubMed

    Minh, Le Van; Hara, Motoaki; Yokoyama, Tsuyoshi; Nishihara, Tokihiro; Ueda, Masanori; Kuwano, Hiroki

    2015-11-01

    The first MgZr co-doped AlN-based vibrational energy harvester (VEH) is presented. (MgZr)AlN, which is a new class of doped AlN, provides high piezoelectricity and cost advantage. Using 13%-(MgZr)-doped AlN for micromachined VEHs, maximum output power of 1.3 μW was achieved with a Q-factor of 400 when resonant frequency, vibration acceleration, load resistance were 792 Hz, 8 m/s(2), and 1.1 MΩ, respectively. Normalized power density was 8.1 kW·g(-2)·m(-3). This was one of the highest values among the currently available piezoelectric VEHs. PMID:26559628

  8. Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters.

    PubMed

    Minh, Le Van; Hara, Motoaki; Yokoyama, Tsuyoshi; Nishihara, Tokihiro; Ueda, Masanori; Kuwano, Hiroki

    2015-11-01

    The first MgZr co-doped AlN-based vibrational energy harvester (VEH) is presented. (MgZr)AlN, which is a new class of doped AlN, provides high piezoelectricity and cost advantage. Using 13%-(MgZr)-doped AlN for micromachined VEHs, maximum output power of 1.3 μW was achieved with a Q-factor of 400 when resonant frequency, vibration acceleration, load resistance were 792 Hz, 8 m/s(2), and 1.1 MΩ, respectively. Normalized power density was 8.1 kW·g(-2)·m(-3). This was one of the highest values among the currently available piezoelectric VEHs.

  9. A high figure of merit vibrational energy harvester for low frequency applications

    NASA Astrophysics Data System (ADS)

    Nico, V.; Boco, E.; Frizzell, R.; Punch, J.

    2016-01-01

    Small-scale vibration energy harvesters that respond efficiently at low frequencies are challenging to realize. This paper describes the design and implementation of one such harvester, which achieves a high volumetric Figure of Merit (FoMv = 2.6% at 11.50 Hz) at the scale of a C-type battery and outperforms other state-of-the-art devices in the sub 20 Hz frequency range. The device employs a 2 Degree-of-Freedom velocity-amplified approach and electromagnetic transduction. The harvester comprises two masses oscillating one inside the other, between four sets of magnetic springs. Collisions between the two masses transfer momentum from the heavier to the lighter mass, exploiting velocity amplification. The paper first presents guidelines for designing and optimizing the transduction mechanism, before a nonlinear numerical model for the system dynamics is developed. Experimental characterisation of the harvester design is then presented to validate both the transducer optimization and the dynamics model. The resulting high FoMV demonstrates the effectiveness of the device for low frequency applications, such as human motion.

  10. An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2016-04-01

    This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

  11. Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes

    NASA Astrophysics Data System (ADS)

    Liu, Huicong; Soon, Bo Woon; Wang, Nan; Tay, C. J.; Quan, Chenggen; Lee, Chengkuo

    2012-12-01

    A novel electromagnetic energy harvester (EH) with multiple vibration modes has been developed and characterized using three-dimensional (3D) excitation at different frequencies. The device consists of a movable circular-mass patterned with three sets of double-layer aluminum (Al) coils, a circular-ring system incorporating a magnet and a supporting beam. The 3D dynamic behavior and performance analysis of the device shows that the first vibration mode of 1285 Hz is an out-of-plane motion, while the second and third modes of 1470 and 1550 Hz, respectively, are in-plane at angles of 60° (240°) and 150° (330°) to the horizontal (x-) axis. For an excitation acceleration of 1 g, the maximum power density achieved are 0.444, 0.242 and 0.125 µW cm-3 at vibration modes of I, II and III, respectively. The experimental results are in good agreement with the simulation and indicate a good potential in the development of a 3D EH device.

  12. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    NASA Astrophysics Data System (ADS)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  13. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  14. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration. PMID:26233403

  15. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  16. Modeling and design of a vibration energy harvester using the magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Saren, A.; Musiienko, D.; Smith, A. R.; Tellinen, J.; Ullakko, K.

    2015-09-01

    In this study, a vibration energy harvester is investigated which uses a Ni-Mn-Ga sample that is mechanically strained between 130 and 300 Hz while in a constant biasing magnetic field. The crystallographic reorientation of the sample during mechanical actuation changes its magnetic properties due to the magnetic shape memory (MSM) effect. This leads to an oscillation of the magnetic flux in the yoke which generates electrical energy by inducing an alternating current within the pick-up coils. A power of 69.5 mW (with a corresponding power density of 1.37 mW mm-3 compared to the active volume of the MSM element) at 195 Hz was obtained by optimizing the biasing magnetic field, electrical resistance and electrical resonance. The optimization of the electrical resonance increased the energy generated by nearly a factor of four when compared to a circuit with no resonance. These results are strongly supported by a theoretical model and simulation which gives corresponding values with an error of approximately 20% of the experimental data. This model will be used in the design of future MSM energy harvesters and their optimization for specific frequencies and power outputs.

  17. Modeling and simulation of linear and nonlinear MEMS scale electromagnetic energy harvesters for random vibration environments.

    PubMed

    Khan, Farid; Stoeber, Boris; Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency.

  18. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  19. Modeling and simulation of linear and nonlinear MEMS scale electromagnetic energy harvesters for random vibration environments.

    PubMed

    Khan, Farid; Stoeber, Boris; Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  20. From MEMS to macro-world: a micro-milling machined wideband vibration piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Sordo, G.

    2015-05-01

    In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys Worbench™, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.

  1. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting.

    PubMed

    Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-15

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  2. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-01

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m-3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ˜4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  3. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting.

    PubMed

    Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-15

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators. PMID:27256619

  4. The influence of mass configurations on velocity amplified vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    O'Donoghue, D.; Frizzell, R.; Kelly, G.; Nolan, K.; Punch, J.

    2016-05-01

    Vibrational energy harvesters scavenge ambient vibrational energy, offering an alternative to batteries for the autonomous operation of low power electronics. Velocity amplified electromagnetic generators (VAEGs) utilize the velocity amplification effect to increase power output and operational bandwidth, compared to linear resonators. A detailed experimental analysis of the influence of mass ratio and number of degrees-of-freedom (dofs) on the dynamic behaviour and power output of a macro-scale VAEG is presented. Various mass configurations are tested under drop-test and sinusoidal forced excitation, and the system performances are compared. For the drop-test, increasing mass ratio and number of dofs increases velocity amplification. Under forced excitation, the impacts between the masses are more complex, inducing greater energy losses. This results in the 2-dof systems achieving the highest velocities and, hence, highest output voltages. With fixed transducer size, higher mass ratios achieve higher voltage output due to the superior velocity amplification. Changing the magnet size to a fixed percentage of the final mass showed the increase in velocity of the systems with higher mass ratios is not significant enough to overcome the reduction in transducer size. Consequently, the 3:1 mass ratio systems achieved the highest output voltage. These findings are significant for the design of future reduced-scale VAEGs.

  5. Note: A cubic electromagnetic harvester that convert vibration energy from all directions.

    PubMed

    Han, Mengdi; Qiu, Guolin; Liu, Wen; Meng, Bo; Zhang, Xiao-Sheng; Zhang, Haixia

    2014-07-01

    We investigate the output performance of a cubic harvester which can scavenge low-frequency vibration energy from all directions. By adjusting the size and shape of the inside magnets, higher induced voltages and output power can be achieved. The optimal magnet is found to be cubic shape with the length of 6.35 mm (25.6% volume ratio), which can generate 4.27 mV root mean square voltage and 2.45 μW average power at the frequency of 28.86 Hz and acceleration of 1.17 g. The device is also demonstrated as a self-powered tilt sensor by measuring induced voltages at different tilt angles. PMID:25085194

  6. Note: A cubic electromagnetic harvester that convert vibration energy from all directions.

    PubMed

    Han, Mengdi; Qiu, Guolin; Liu, Wen; Meng, Bo; Zhang, Xiao-Sheng; Zhang, Haixia

    2014-07-01

    We investigate the output performance of a cubic harvester which can scavenge low-frequency vibration energy from all directions. By adjusting the size and shape of the inside magnets, higher induced voltages and output power can be achieved. The optimal magnet is found to be cubic shape with the length of 6.35 mm (25.6% volume ratio), which can generate 4.27 mV root mean square voltage and 2.45 μW average power at the frequency of 28.86 Hz and acceleration of 1.17 g. The device is also demonstrated as a self-powered tilt sensor by measuring induced voltages at different tilt angles.

  7. Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.

  8. Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping

    NASA Astrophysics Data System (ADS)

    Shen, Wenai; Zhu, Songye; Zhu, Hongping

    2016-06-01

    Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck-boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.

  9. Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping

    NASA Astrophysics Data System (ADS)

    Shen, Wenai; Zhu, Songye; Zhu, Hongping

    2016-06-01

    Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck–boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.

  10. A composite beam with dual bistability for enhanced vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Litak, Grzegorz; Bowen, Chris R.; Arafa, Mustafa

    2016-05-01

    In this paper a bistable composite cantilever beam comprising asymmetric laminates is studied for vibration energy harvesting applications. An additional magnetic bistability is introduced to the harvesting system to lower the level of excitation that triggers the snap-through for the cantilever from one stable state to another, while retaining the favorable broadband performance. In order to achieve the, the cantilever beam is fitted with a permanent magnet at its tip that is oriented so that there is magnetic repulsion with a stationary magnet. The system performance can be adjusted by varying the separation between the magnets. Experimental results reveal that the use of magnetic bistability enhances broadband performance and improves the output power within a certain level of drive level and magnet separation. The load-deflection characteristic of the bistable beam is experimentally determined, and is subsequently used to model the system by a reduced single-degree-of-freedom (SDOF) system having the form of the Duffing equation for a double-well potential system. The dynamics of the beam are investigated using bifurcation diagrams and shows that the qualitative behavior given by the experimentally measured response is predicted well by the simple SDOF model.

  11. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester.

    PubMed

    Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2013-11-26

    An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.

  12. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Nataraj

    Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement. In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous

  13. An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.

    2016-07-01

    Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.

  14. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams

    NASA Astrophysics Data System (ADS)

    Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.

    2015-04-01

    In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized

  15. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    PubMed Central

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-01-01

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623

  16. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.

    PubMed

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-01-01

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623

  17. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.

    PubMed

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-12-23

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  18. A performance-enhanced energy harvester for low frequency vibration utilizing a corrugated cantilevered beam

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jin, SeungSeop; Jang, Seon-Jun; Jung, Hyung-Jo

    2014-03-01

    This note proposes a performance-enhanced piezoelectric energy harvester by replacing a conventional flat cantilevered beam with a corrugated beam. It consists of a proof mass and a sinusoidally or trapezoidally corrugated cantilevered beam covered by a polyvinylidene fluoride (PVDF) film. Compared to the conventional energy harvester of the same size, it has a more flexible bending stiffness and a larger bonding area of the PVDF layer, so higher output voltage from the device can be expected. In order to investigate the characteristics of the proposed energy harvester, analytical developments and numerical simulations on its natural frequency and tip displacement are carried out. Shaking table tests are also conducted to verify the performance of the proposed device. It is clearly shown from the tests that the proposed energy harvester not only has a lower natural frequency than an equivalent sized standard energy harvester, but also generates much higher output voltage than the standard one.

  19. Broadband pendulum energy harvester

    NASA Astrophysics Data System (ADS)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  20. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  1. Broadband vibration energy harvesting by application of stochastic resonance from rotational environments

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.; Cartmell, M. P.

    2015-11-01

    A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.

  2. Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate

    NASA Astrophysics Data System (ADS)

    Li, Hao; Dai, Fuhong; Du, Shanyi

    2015-04-01

    Recently bistable composite laminates have been investigated for broadband energy harvesting, by taking advantage of their nonlinear oscillations around the first vibration mode. However, it has been reported that the excitation acceleration needed for the desired large amplitude limit cycle oscillation is too high, if the first vibration mode is elevated to relative higher frequencies (60 Hz e.g.). This study investigates the feasibility of exploiting the nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate (RPBL), for broadband vibration energy harvesting at relative higher frequencies, but with relative low excitation acceleration. The proposed RPBL has three oscillation patterns around the second vibration mode, including single-well oscillation, chaotic intermittency oscillation and limit cycle oscillation. The broadband characteristics and the considerable energy conversion efficiency of the RPBL are demonstrated in experiments. The static nonlinearity and the dynamic responses of the RPBL are investigated by finite element method. Finite element analysis (FEA) reveals that the enhanced dynamic responses of the RPBL are due to its softening bending stiffness and the local snap through phenomenon. The FEA results coincide reasonably well with experimental results.

  3. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

    PubMed

    Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang

    2011-04-01

    A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz.

  4. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

    PubMed

    Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang

    2011-04-01

    A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. PMID:21507747

  5. Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Litak, G.; Manoach, E.

    2015-11-01

    An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.

  6. Nonlinear dynamics and comparative analysis of hybrid piezoelectric-inductive energy harvesters subjected to galloping vibrations

    NASA Astrophysics Data System (ADS)

    Javed, U.; Dai, H. L.; Abdelkefi, A.

    2015-11-01

    Modeling and comparative analysis of galloping-based hybrid piezoelectric-inductive energy harvesting systems are investigated. Both piezoelectric and electromagnetic transducers are attached to the transverse degree of freedom of the prismatic structure in order to harvest energy from two possible sources. A fully-coupled electroaeroelastic model is developed which takes into account the coupling between the generated voltage from the piezoelectric transducer, the induced current from the electromagnetic transducer, and the transverse displacement of the bluff body. A nonlinear quasi-steady approximation is employed to model the galloping force. To determine the influences of the external load resistances that are connected to the piezoelectric and electromagnetic circuits on the onset speed of galloping, a deep linear analysis is performed. It is found that the external load resistances in these two circuits have significant effects on the onset speed of galloping of the harvester with the presence of optimum values. To investigate the effects of these transduction mechanisms on the performance of the galloping energy harvester, a nonlinear analysis is performed. Using the normal form of the Hopf bifurcation, it is demonstrated that the hybrid energy harvester has a supercritical instability for different values of the external load resistances. For well-defined wind speed and external load resistance in the electromagnetic circuit, the results showed that there is a range of external load resistances in the piezoelectric circuit at which the output power generated by the electromagnetic induction is very small. On the other hand, there are two optimal load resistances at which the output power by the piezoelectric transducer is maximum. Based on a comparative study, it is demonstrated the hybrid piezoelectric-inductive energy harvester is very beneficial in terms of having two sources of energy. However, compared to the classical piezoelectric and

  7. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  8. On enhancement of vibration-based energy harvesting by a random parametric excitation

    NASA Astrophysics Data System (ADS)

    Bobryk, Roman V.; Yurchenko, Daniil

    2016-03-01

    An electromechanical linear oscillator with a random ambient excitation and telegraphic noise parametric excitation is considered as an energy harvester model. It is shown that a parametric colored excitation can have a dramatic effect on the enhancement of the energy harvesting. A close relation with mean-square stability of the oscillator is established. Four sources of the ambient excitation are considered: the white noise, the Ornstein-Uhlenbeck noise, the harmonic noise and the periodic function. Analytical expressions for stationary electrical net mean power are presented for all the considered cases, confirming the proposed approach.

  9. Extremely low-loss rectification methodology for low-power vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Tiwari, R.; Ryoo, K.; Schlichting, A.; Garcia, E.

    2013-06-01

    Because of its promise for the generation of wireless systems, energy harvesting technology using smart materials is the focus of significant reported effort. Various techniques and methodologies for increasing power extraction have been tested. One of the key issues with the existing techniques is the use of diodes in the harvesting circuits with a typical voltage drop of 0.7 V. Since most of the smart materials, and other transducers, do not produce large voltage outputs, this voltage drop becomes significant in most applications. Hence, there is a need for designing a rectification method that can convert AC to DC with minimal losses. This paper describes a new mechanical rectification scheme, designed using reed switches, in a full-bridge configuration that shows the capability of working with signals from millivolts to a few hundred volts with extremely low losses. The methodology has been tested for piezoelectric energy harvesters undergoing mechanical excitation.

  10. Investigation of gap-closing interdigitated capacitors for electrostatic vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Oxaal, John; Foster, Daniel; Hella, Mona; Borca-Tasciuc, Diana-Andra

    2015-10-01

    This paper reports on the dynamic characteristics of a MEMS electrostatic harvester employing interdigitated gap-closing topology. Devices are fabricated using SOIMUMPS technology and are characterized with and without biasing voltages for a broad range of excitation accelerations. At low vibration amplitudes the presence of a dc bias causes the resonant frequency peak to shift to lower frequencies with increasing bias. At higher vibration amplitudes the dynamic response of the devices exhibits the behavior of a Duffing oscillator with spring softening due to nonlinear stiffness attributed to the effect of electrostatic forces. Specifically, the devices exhibit sweep direction hysteresis with jump phenomena due to the multivaluedness of the response curve. Amplitude sweeps at constant frequency and varying bias voltage also show jump phenomena, highlighting how slight differences in operating conditions dramatically affect device performance. Spring hardening effects are reported for devices contaminated with dust particles. The paper also discusses SOIMUMPS limitations, the importance of reducing off-axis vibration during testing, characterization methods, and the effect of grounding on parasitic capacitance.

  11. Optimization and performance improvement of an electromagnetic-type energy harvester with consideration of human walking vibration

    NASA Astrophysics Data System (ADS)

    Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung

    2016-02-01

    In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.

  12. Design, fabrication and characterization of a very low frequency piezoelectric energy harvester designed for heart beat vibration scavenging

    NASA Astrophysics Data System (ADS)

    Colin, M.; Basrour, S.; Rufer, L.

    2013-05-01

    Current version of implantable cardioverter defibrillators (ICDs) and pacemakers consists of a battery-powered pulse generator connected onto the heart through electrical leads inserted through the veins. However, it is known that long-term lead failure may occur and cause a dysfunction of the device. When required, the removal of the failed leads is a complex procedure associated with a potential risk of mortality. As a consequence, the main players in the field of intracardiac implants prepare a next generation of devices: miniaturized and autonomous leadless implants, which could be directly placed inside the heart. In this paper, we discuss the frequency content of a heart vibration spectrum, and the dimensional restrictions in the case of a leadless pacemaker. In combination with the requirements in terms of useable energy, we will present a design study of a resonant piezoelectric scavenger aimed at powering such a device. In particular, we will show how the frequency-volume-energy requirement leads to new challenges in terms of power densities, which are to be addressed through implementation of innovative piezoelectric thick films fabrication processes. This paper also presents the simulation, fabrication and the testing of an ultralow frequency (15Hz) resonant piezoelectric energy harvester prototype. Using both harmonic (50mg) and real heart-induced vibrations, we obtained an output power of 60μW and 10μW respectively. Finally, we will place emphasis on the new constraint represented by the gravitational (orientation) sensitivity inherent to these ultra low frequency resonant energy harvesters.

  13. A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and nonmagnetic ball

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Cho, H. O.; Park, J. Y.

    2014-11-01

    We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.

  14. Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: Numerical and analytical validations

    NASA Astrophysics Data System (ADS)

    Lumentut, Mikail F.; Howard, Ian M.

    2016-02-01

    This paper focuses on the primary development of novel numerical and analytical techniques of the modal damped vibration energy harvesters with arbitrary proof mass offset. The key equations of electromechanical finite element discretisation using the extended Lagrangian principle are revealed and simplified to give matrix and scalar forms of the coupled system equations, indicating the most relevant numerical technique for the power harvester research. To evaluate the performance of the numerical study, the analytical closed-form boundary value equations have been developed using the extended Hamiltonian principle. The results from the electromechanical frequency response functions (EFRFs) derived from two theoretical studies show excellent agreement with experimental studies. The benefit of the numerical technique is in providing effective and quick predictions for analysing parametric designs and physical properties of piezoelectric materials. Although analytical technique provides a challenging process for analysing the complex smart structure, it shows complementary study for validating the numerical technique.

  15. The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film

    NASA Astrophysics Data System (ADS)

    Isarakorn, D.; Briand, D.; Janphuang, P.; Sambri, A.; Gariglio, S.; Triscone, J.-M.; Guy, F.; Reiner, J. W.; Ahn, C. H.; de Rooij, N. F.

    2011-02-01

    This paper focuses on the fabrication and evaluation of vibration energy harvesting devices by utilizing an epitaxial Pb(Zr0.2Ti0.8)O3 (PZT) thin film. The high quality of the c-axis oriented PZT layer results in a high piezoelectric coefficient and a low dielectric constant, which are key parameters for realizing high performance piezoelectric energy harvesters. Different cantilever structures, with and without a Si proof mass, are realized using micro-patterning techniques optimized for the epitaxial oxide layers, to maintain the piezoelectric properties throughout the process. The characteristics and the energy harvesting performances of the fabricated devices are experimentally investigated and compared against analytical calculations. The optimized device based on a 0.5 µm thick epitaxial PZT film, a cantilever beam of 1 mm × 2.5 mm × 0.015 mm, with a Si proof mass of 1 mm × 0.5 mm × 0.23 mm, generates an output power, current and voltage of, respectively, 13 µW g - 2, 48 µA g - 1 and 0.27 V g - 1 (g = 9.81 m s - 2) at the resonant frequency of 2.3 kHz for an optimal resistive load of 5.6 kΩ. The epitaxial PZT harvester exhibits higher power and current with usable voltage, while maintaining lower optimal resistive load as compared with other examples present in the literature. These results indicate the potential of epitaxial PZT thin films for the improvement of the performances of energy harvesting devices.

  16. Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Mehedi; Hossain, Md. Yeam; Mazumder, Rakib; Rahman, Roussel; Rahman, Md. Ashiqur

    2016-07-01

    This work is aimed at developing a way to harvest energy from a fluid stream with the application of piezoelectric transducers in a small channel. In this COMSOL Multiphysics based simulation study, it is attempted to harvest energy from the abundant renewable source of energy available in the form of kinetic energy of naturally occurring flow of fluids. The strategy involves harnessing energy from a fluid-actuator through generation of couples, eddies and vortices, resulting from the stagnation and separation of flow around a semi-circular bluff-body attached to a cantilever beam containing a piezoceramic layer. Fluctuation of fluidic pressure impulse on the beam due to vortex shedding and varying lift forces causes the flexible cantilever beam to oscillate in the direction normal to the fluid flow in a periodic manner. The periodic application and release of a mechanical strain upon the beam effected a generation of electric potential within the piezoelectric layer, thus enabling extraction of electrical energy from the kinetic energy of the fluid. The piezoelectric material properties and transducer design are kept unchanged throughout the study, whereas the configuration is tested with different fluids and varying flow characteristics. The size and geometry of the obstructing entity are systematically varied to closely inspect the output from different iterations and for finding the optimum design parameters. The intermittent changes in the generated forces and subsequent variation in the strain on the beam are also monitored to find definitive relationship with the electrical energy output.

  17. Concept study of a novel energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) device for vibration control of harmonically-excited structures

    NASA Astrophysics Data System (ADS)

    Salvi, Jonathan; Giaralis, Agathoklis

    2016-09-01

    A novel dynamic vibration absorber (DVA) configuration is introduced for simultaneous vibration suppression and energy harvesting from oscillations typically exhibited by large-scale low-frequency engineering structures and structural components. The proposed configuration, termed energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) comprises a mass grounded via an in-series electromagnetic motor (energy harvester)-inerter layout, and attached to the primary structure through linear spring and damper in parallel connection. The governing equations of motion are derived and solved in the frequency domain, for the case of harmonically-excited primary structures, here modelled as damped single-degree- of-freedom (SDOF) systems. Comprehensive parametric analyses proved that by varying the mass amplification property of the grounded inerter, and by adjusting the stiffness and the damping coefficients using simple optimum tuning formulae, enhanced vibration suppression (in terms of primary structure peak displacement) and energy harvesting (in terms of relative velocity at the terminals of the energy harvester) may be achieved concurrently and at nearresonance frequencies, for a fixed attached mass. Hence, the proposed EH-TMDI allows for relaxing the trade-off between vibration control and energy harvesting purposes, and renders a dual-objective optimisation a practically-feasible, reliable task.

  18. Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Lin, Shun-Chiu; Wu, Wen-Jong

    2016-10-01

    This paper presents the development of a bimorph microelectromechanical system (MEMS) generator for vibration energy harvesting. The bimorph generator is in cantilever beam structure formed by laminating two lead zirconate titanate thick-film layers on both sides of a stainless steel substrate. Aiming to scavenge vibration energy efficiently from the environment and transform into useful electrical energy, the two piezoelectric layers on the device can be poled for serial and parallel connections to enhance the output voltage or output current respectively. In addition, a tungsten proof mass is bonded at the tip of the device to adjust the resonance frequency. The experimental result shows superior performance the generator. At the 0.5 g base excitation acceleration level, the devices pooled for serial connection and the device poled for parallel connection possess an open-circuit output voltage of 11.6 VP-P and 20.1 VP-P, respectively. The device poled for parallel connection reaches a maximum power output of 423 μW and an output voltage of 15.2 VP-P at an excitation frequency of 143.4 Hz and an externally applied based excitation acceleration of 1.5 g, whereas the device poled serial connection achieves a maximum power output of 413 μW and an output voltage of 33.0 VP-P at an excitation frequency of 140.8 Hz and an externally applied base excitation acceleration of 1.5 g. To demonstrate the feasibility of the MEMS generator for real applications, we finished the demonstration of a self-powered Bluetooth low energy wireless temperature sensor sending readings to a smartphone with only the power from the MEMS generator harvesting from vibration.

  19. Vibration shape effects on the power output in piezoelectric vibro-impact energy harvesters

    NASA Astrophysics Data System (ADS)

    Twiefel, Jens

    2013-04-01

    Vibro-Impcact harvesting devices are one concept to increase the bandwidth of resonant operated piezoelectric vibration generators. The fundamental setup is a piezoelectric bending element, where the deflection is limited by two stoppers. After starting the system in resonance operation the bandwidth increases towards higher frequencies as soon the deflection reach the stopper. If the stoppers are rigid, the frequency response gives constant amplitude for increasing frequencies, as long the system is treated as ideal one-DOF system with symmetric stoppers. In consequence, the bandwidth is theoretically unlimited large. However, such a system also has two major drawbacks, firstly the complicated startup mechanism and secondly the tendency to drop from the high constant branch in the frequency response on the much smaller linear branch if the system is disturbed. Nevertheless, the system has its application wherever the startup problem can be solved. Most modeling approaches utilize modal one-DOF models to describe the systems behavior and do not tread the higher harmonics of the beam. This work investigates the effects of the stoppers on the vibration shape of the piezoelectric beam, wherefore a finite element model is used. The used elements are one-dimensional two node elements based on the Timoshenko-beam theory. The finite element code is implemented in Matlab. The model is calculated utilizing time step integration for simulation, to reduce the computation time an auto-resonant calculation method is implemented. A control loop including positive feedback and saturation is used to create a self-excited system. Therefore, the system is always operated in resonance (on the backbone curve) and the frequency is a direct result of the computation. In this case tip velocity is used as feedback. This technique allows effective parametric studies. Investigated parameters include gap, excitation amplitude, tip mass as well as the stiffness of the stopper. The stress and

  20. Vibration harvesting in traffic tunnels to power wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Wischke, M.; Masur, M.; Kröner, M.; Woias, P.

    2011-08-01

    Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.

  1. Experimental verificatio of load resistance switching for global stabilization of high-energy response of a nonlinear wideband electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Sato, T.; Masuda, A.; Sanada, T.

    2015-12-01

    This paper presents an experimental verification of a self-excitation control of a resonance- type vibration energy harvester with a Duffing-type nonlinearity which is designed to perform effectively in a wide frequency range. For the conventional linear vibration energy harvester, the performance of the power generation at the resonance frequency and the bandwidth of the resonance peak are trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear oscillator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator can have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. It has been experimentally validated that this control law imparts the self-excitation capability to the oscillator to show an entrainment into the highest-energy solution.

  2. Experimental verification of a bridge-shaped, nonlinear vibration energy harvester

    SciTech Connect

    Gafforelli, Giacomo Corigliano, Alberto; Xu, Ruize; Kim, Sang-Gook

    2014-11-17

    This paper reports a comprehensive modeling and experimental characterization of a bridge shaped nonlinear energy harvester. A doubly clamped beam at large deflection requires stretching strain in addition to the bending strain to be geometrically compatible, which stiffens the beam as the beam deflects and transforms the dynamics to a nonlinear regime. The Duffing mode non-linear resonance widens the frequency bandwidth significantly at higher frequencies than the linear resonant frequency. The modeling includes a nonlinear measure of strain coupled with piezoelectric constitutive equations which end up in nonlinear coupling terms in the equations of motion. The main result supports that the power generation is bounded by the mechanical damping for both linear and nonlinear harvesters. Modeling also shows the power generation is over a wider bandwidth in the nonlinear case. A prototype is manufactured and tested to measure the power generation at different load resistances and acceleration amplitudes. The prototype shows a nonlinear behavior with well-matched experimental data to the modeling.

  3. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  4. Low-Frequency MEMS Electrostatic Vibration Energy Harvester With Corona-Charged Vertical Electrets and Nonlinear Stoppers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.

    2015-12-01

    This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.

  5. Design and fabrication of bimorph transducer for optimal vibration energy harvesting.

    PubMed

    Bedekar, Vishwas; Oliver, Josiah; Priya, Shashank

    2010-07-01

    High energy density piezoelectric composition corresponding to 0.9Pb(Zr0.56Ti0.44)O3–0.1Pb[(Zn0.8/3Ni0.2/3) Nb2/3]O3 + 2 mol% MnO2 (PZTZNN) and 0.8[Pb(Zr0.52Ti0.48) O3]-0.2[Pb(Zn1/3Nb2/3)O3] (PZTPZN) were synthesized by conventional ceramic processing technique using three different sintering profiles. Plates of the sintered samples were used to fabricate the piezoelectric bimorphs with optimized dimensions to exhibit resonance in the loaded condition in the range of ~200 Hz. An analytical model for energy harvesting from bimorph transducer was developed which was confirmed by experimental measurements. The results of this study clearly show that power density of bimorph transducer can be enhanced by increasing the magnitude of product (d ∙ g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant. PMID:20941885

  6. Low-frequency two-dimensional resonators for vibrational micro energy harvesting

    NASA Astrophysics Data System (ADS)

    Bartsch, U.; Gaspar, J.; Paul, O.

    2010-03-01

    The fabrication, characterization and theoretical analysis of a novel two-dimensional silicon resonator with threefold rotational symmetry are described. The resonator consists of a 4 mm wide disk-shaped seismic mass having the full-wafer thickness of 525 µm and suspended by a system of concentric circular springs. The device is structured using two-sided deep reactive-ion etching of silicon. With its current spring thickness and height, the device has two closely spaced resonance frequencies at 370.5 and 373.9 Hz and a quality factor of 1800 at ambient pressure. The spring height and thus the resonance frequency of the device are easily tuned by simple adjustment of a single etch duration in the entire fabrication process. The dynamic response of the structure is modeled under the two assumptions that silicon is elastically (i) isotropic and (ii) anisotropic. In comparison with the isotropic model, the elastic anisotropy leads to a predicted mode splitting by 6.2 Hz, with oscillation directions aligned with the cubic crystal axes. Even small geometrical imperfections are found to significantly rotate the eigenmodes and to further modulate their frequency splitting. Experimental and numerical results corroborate these conclusions. Overall the present resonator design has the potential for a higher energy harvesting efficiency than a combination of two separate one-dimensional oscillators.

  7. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-07-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a ‑3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.

  8. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    PubMed Central

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  9. Modeling and characterization of electret based vibration energy harvesters in slot-effect configuration

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Altena, G.; Elfrink, R.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-08-01

    The purpose of this article is to elaborate a model and the optimization guidelines for electret based harvesters with a specific electret/electrodes configuration, namely the slot-effect configuration. Slot-effect configured harvesters have been investigated experimentally by several research groups. A model describing their dynamic behavior has also been recently proposed in the literature. However, the simplifications used in the existing model can lead to inaccuracies and a refined analysis is elaborated in the present article. The model is compared with experimental measurements on MEMS fabricated devices with a corrugated electret. The electrodes dimensioning in the MEMS device are chosen so that the harvester behaves in a quasi-linear manner over its full range of displacement. This quasi-linearity simplifies greatly the device optimization. Indeed, the behavior of the developed electrostatic harvester is shown to be very comparable to that of piezoelectric harvesters, which are very well understood and documented. The influence of several design parameters on output power performance is investigated. As long as pull-in and breakdown voltage effects can be avoided, the electret surface potential should be maximized and the air gap minimized. We also investigate theoretically the influence of three types of electret on the generated power: planar, corrugated with partial charge coverage, and corrugated with full charge coverage. With the dimensions corresponding to our MEMS devices, the output power characteristics for the three types of electret are similar. However, it is shown that this is not always true. In some conditions, corrugated electrets with full charge coverage are detrimental for the generated power.

  10. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  11. 3D capacitive vibrational micro harvester using isotropic charging of electrets deposited on vertical sidewalls

    NASA Astrophysics Data System (ADS)

    Nimo, Antwi; Mescheder, Ulrich; Müller, Bernhard; Saad Abou Elkeir, Awad

    2011-06-01

    In this paper the design and fabrication of an integrated micro energy harvester capable of harvesting electrical energy from low amplitude mechanical vibrations is presented. A specific feature of the presented energy harvester is its capability to harvest vibrational energy from different directions (3D). This is done through an innovative approach for electrets placed on vertical sidewalls and thereby allowing for miniaturization of 3D capacitive energy harvester on monolithic CMOS substrates. A new simple electret charging method using ionic hair-dryers/hair ionizers is reported and shown that it can be effectively used for electrets-based micro energy harvesters.

  12. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Kacem, N.; Bouhaddi, N.

    2014-07-01

    A multiphysics model of a hybrid piezoelectric-electromagnetic vibration energy harvester (VEH), including the main sources of nonlinearities, is developed. The continuum problem is derived on the basis of the extended Hamilton principle, and the modal Galerkin decomposition method is used in order to obtain a reduced-order model consisting of a nonlinear Duffing equation of motion coupled with two transduction equations. The resulting system is solved analytically using the method of multiple time scales and numerically by means of the harmonic balance method coupled with the asymptotic numerical continuation technique. Closed-form expressions for the moving magnet critical amplitude and the critical load resistance are provided in order to allow evaluation of the linear dynamic range of the proposed device. Several numerical simulations have been performed to highlight the performance of the hybrid VEH. In particular, the power density and the frequency bandwidth can be boosted, by up to 60% and 29% respectively, compared to those for a VEH with pure magnetic levitation thanks to the nonlinear elastic guidance. Moreover, the hybrid transduction permits enhancement of the power density by up to 84%.

  13. Evaluation of piezoelectret foam in a multilayer stack configuration for low-level vibration energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ray, Chase A.; Anton, Steven R.

    2015-04-01

    Electronic devices are high demand commodities in today's world, and such devices will continue increasing in popularity. Currently, batteries are implemented to provide power to these devices; however, the need for battery replacement, their cost, and the waste associated with battery disposal present a need for advances in self-powered technology. Energy harvesting technology has great potential to alleviate the drawbacks of batteries. In this work, a novel piezoelectret foam material is investigated for low-level energy harvesting. Specifically, piezoelectret foam assembled in a multilayer stack configuration is explored. Modeling and experimentation of the stack behavior when excited in compression at low frequencies are performed to investigate piezoelectret foam as a multilayer energy harvester. An examination of modeling piezoelectret foam as a stack with an equivalent circuit is made following recently published work and is used in this study. A 20-layer prototype device is fabricated and experimentally tested via harmonic base excitation. Electromechanical testing is performed by compressing the foam stack to obtain output electrical energy; consequently, allowing the frequency response between input mechanical energy and output electrical energy to be developed. Modeling results are compared to the experimental measurements to assess the fidelity of the model. Lastly, energy harvesting experimentation in which the device is subject to harmonic base excitation at the natural frequency is conducted to determine the ability of the piezoelectret foam stack to successfully charge a capacitor.

  14. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  15. A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Liu, Shuwei; Woh Lye, Sun; Miao, Jianmin; Hu, Xiao

    2014-06-01

    A novel three-dimensional (3D) electret-based micro power generator with multiple vibration modes has been developed, which is capable of converting low-level ambient kinetic energy to electrical energy. The device is based on a rotational symmetrical resonator which consists of a movable disc-shaped seismic mass suspended by three sets of spiral springs. Experimental analysis shows that the proposed generator operates at an out-of-plane direction at mode I of 66 Hz and two in-plane directions at mode II of 75 Hz and mode III of 78.5 Hz with a phase difference of about 90°. A corona localized charging method is also proposed that employs a shadow mask and multiple discharge needles for the production of micro-sized electret array. From tests conducted at an acceleration of 0.05 g, the prototype can generate a maximum power of 4.8 nW, 0.67 nW and 1.2 nW at vibration modes of I, II and III, respectively. These values correspond to the normalized power densities of 16 µW cm-3 g-2, 2.2 µW cm-3 g-2 and 4 µW cm-3 g-2, respectively. The results show that the generator can potentially offer an intriguing alternative for scavenging low-level ambient energy from 3D vibration sources.

  16. Porous ferroelectrics for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Roscow, J.; Zhang, Y.; Taylor, J.; Bowen, C. R.

    2015-11-01

    This paper provides an overview of energy harvesting using ferroelectric materials, with a particular focus on the energy harvesting capabilities of porous ferroelectric ceramics for both piezo- and pyroelectric harvesting. The benefits of introducing porosity into ferro- electrics such as lead zirconate titanate (PZT) has been known for over 30 years, but the potential advantages for energy harvesting from both ambient vibrations and temperature fluctuations have not been studied in depth. The article briefly discusses piezoelectric and pyro- electric energy harvesting, before evaluating the potential benefits of porous materials for increasing energy harvesting figures of merits and electromechanical/electrothermal coupling factors. Established processing routes are evaluated in terms of the final porous structure and the resulting effects on the electrical, thermal and mechanical properties.

  17. Fundamental Limits to Nonlinear Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2015-12-01

    Linear and nonlinear vibration energy harvesting has been the focus of considerable research in recent years. However, fundamental limits on the harvestable energy of a harvester subjected to an arbitrary excitation force and different constraints is not yet fully understood. Understanding these limits is not only essential for an assessment of the technology potential, but it also provides a broader perspective on the current harvesting mechanisms and guidance in their improvement. Here, we derive the fundamental limits on the output power of an ideal energy harvester for arbitrary excitation waveforms and build on the current analysis framework for the simple computation of this limit for more sophisticated setups. We show that the optimal harvester maximizes the harvested energy through a mechanical analog of a buy-low-sell-high strategy. We also propose a nonresonant passive latch-assisted harvester to realize this strategy for an effective harvesting. It is shown that the proposed harvester harvests energy more effectively than its linear and bistable counterparts over a wider range of excitation frequencies and amplitudes. The buy-low-sell-high strategy also reveals why the conventional bistable harvester works well at low-frequency excitation.

  18. M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: Harmonic balance analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Leadenham, S.; Erturk, A.

    2014-11-01

    Over the past few years, nonlinear oscillators have been given growing attention due to their ability to enhance the performance of energy harvesting devices by increasing the frequency bandwidth. Duffing oscillators are a type of nonlinear oscillator characterized by a symmetric hardening or softening cubic restoring force. In order to realize the cubic nonlinearity in a cantilever at reasonable excitation levels, often an external magnetic field or mechanical load is imposed, since the inherent geometric nonlinearity would otherwise require impractically high excitation levels to be pronounced. As an alternative to magnetoelastic structures and other complex forms of symmetric Duffing oscillators, an M-shaped nonlinear bent beam with clamped end conditions is presented and investigated for bandwidth enhancement under base excitation. The proposed M-shaped oscillator made of spring steel is very easy to fabricate as it does not require extra discrete components to assemble, and furthermore, its asymmetric nonlinear behavior can be pronounced yielding broadband behavior under low excitation levels. For a prototype configuration, linear and nonlinear system parameters extracted from experiments are used to develop a lumped-parameter mathematical model. Quadratic damping is included in the model to account for nonlinear dissipative effects. A multi-term harmonic balance solution is obtained to study the effects of higher harmonics and a constant term. A single-term closed-form frequency response equation is also extracted and compared with the multi-term harmonic balance solution. It is observed that the single-term solution overestimates the frequency of upper saddle-node bifurcation point and underestimates the response magnitude in the large response branch. Multi-term solutions can be as accurate as time-domain solutions, with the advantage of significantly reduced computation time. Overall, substantial bandwidth enhancement with increasing base excitation is

  19. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-01

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN. PMID:24722065

  20. Piezoelectric energy harvesting computer controlled test bench

    NASA Astrophysics Data System (ADS)

    Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  1. Motorcycle waste heat energy harvesting

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.

  2. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting

  3. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.

    PubMed

    Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel

    2008-10-01

    This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting. PMID:18986861

  4. A novel bistable energy harvesting concept

    NASA Astrophysics Data System (ADS)

    Scarselli, G.; Nicassio, F.; Pinto, F.; Ciampa, F.; Iervolino, O.; Meo, M.

    2016-05-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%-6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments.

  5. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  6. Energy harvesting circuit for sensor system power supply

    NASA Astrophysics Data System (ADS)

    Fiala, P.; Drexler, P.

    2011-06-01

    The paper presents two example approaches to energy harvesting. Mechanical energy harvesting system is based on vibrational minigenerator. Basic relations of its analytical model are given in order to obtain an idea about the operating conditions. Electromagnetic harvesting system is based on tuned resonant nano-structure. Its concepts allows impedance matching in order to operate in given frequency range. The matching properties are verified by means of numerical finite element analysis. For power management of vibration energy harvesting system several circuit design concepts are presented together with simulation results and basic properties comparison.

  7. Vibration and noise characteristics of flap type olive harvesters.

    PubMed

    Cakmak, Bülent; Saraçoğlu, Türker; Alayunt, Fazilet N; Ozarslan, Cengiz

    2011-03-01

    The object of this study was to measure and evaluate the vibration and noise characteristics of five flap type portable harvesters using for olive harvesting and their effect on operator health during harvesting time. The vibration and sound pressure levels of different harvesters were measured at both idling and full load conditions. The vibration values of harvesters were measured and analyzed for both right and left hands and the sound pressure level was measured at ear level of the operator. The vibration total value was expressed as the root-mean-squares (rms) of three component values. The results indicated that in 10% of the exposed population traumatic vasospastic disease (TVD) appeared after 0.7-7.1 years for the left hand, 1.0-4.7 years for the right hand of the operator in continuous use of these harvesters, under usual working conditions. The sound pressure values at operator's ear level of harvesters were found below risk levels when compared with ILO standards. PMID:20869693

  8. Flexible electret energy harvesters with parylene electret on PDMS substrates

    NASA Astrophysics Data System (ADS)

    Chiu, Yi; Wu, Shih-Hsien

    2013-12-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to harvest energy from periodic motions in specific directions. However, in some situations the motion is random and aperiodic; or the targeted energy source is the strain energy in deformation, rather than the kinetic energy in vibration. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with parylene-C electret that can be attached to any deformable surfaces to harvest the stain energy caused by external deformation. The proposed flexible harvester was fabricated and characterized. The measured power at 20 Hz is 0.18 μW and 82 nW in the compression and bending modes, respectively. Such a harvester has the potential for wearable and implantable electronics applications.

  9. Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture

    SciTech Connect

    Killoran, N.; Huelga, S. F.; Plenio, M. B.

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.

  10. Nonlinear piezomagnetoelastic harvester array for broadband energy harvesting

    NASA Astrophysics Data System (ADS)

    Upadrashta, Deepesh; Yang, Yaowen

    2016-08-01

    This article proposes an array of nonlinear piezomagnetoelastic energy harvesters (NPEHs) for scavenging electrical energy from broadband vibrations with low amplitudes (<2 m/s2). The array consists of monostable NPEHs combined to generate useful power output (˜100 μW) over wide bandwidth. The nonlinearity in each of the NPEHs is induced by the magnetic interaction between an embedded magnet in the tip mass of cantilever and a fixed magnet clamped to the rigid platform. The dynamic responses of two NPEHs, one with attractive configuration and the other with repulsive configuration, are combined to achieve a bandwidth of 3.3 Hz at a power level of 100 μW. A parametric study is carried out to obtain the gap distances between the magnets to achieve wide bandwidth. Experiments are performed to validate the proposed idea, the theoretical predictions, and to demonstrate the advantage of array of NPEHs over the array of linear piezoelectric energy harvesters (LPEHs). The experiments have clearly shown the advantage of NPEH array over its linear counterpart under both harmonic and random excitations. Approximately, 100% increase in the operation bandwidth is achieved by the NPEH array at harmonic excitation level of 2 m/s2. The NPEH array exhibits up to 80% improvement in the accumulated energy under random excitation when compared with the LPEH array. Furthermore, the performance of NPEH array with series and parallel connections between the individual harvesters using standard AC/DC interface circuits is also investigated and compared with its linear counterpart.

  11. Enhanced energy harvesting in commercial ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2014-04-01

    Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.

  12. Experiment and modeling of a two-dimensional piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Yaowen; Wu, Hao; Kiong Soh, Chee

    2015-12-01

    Vibration energy harvesting using piezoelectric materials has attracted much research interest in recent years. Numerous efforts have been devoted to improving the efficiency of vibration energy harvesters and broadening their bandwidths. In most reported literature, energy harvesters are designed to harvest energy from vibration source with a specific excitation direction. However, a practical environmental vibration source may include multiple components from different directions. Thus, it is an important concern to design a vibration energy harvester to be adaptive to multiple excitation directions. In this article, a piezoelectric energy harvester with frame configuration is proposed to achieve two-dimensional (2D) vibration energy harvesting. The harvester works in two fundamental modes, i.e., its vertical and horizontal vibration modes. By tuning the structural parameters, the harvester can capture vibration energy from arbitrary directions in a 2D plane. Experimental studies are carried out to prove its feasibility. A finite element model and an equivalent circuit model are built to simulate the system and validate the experiment outcomes. The study of this 2D energy harvester indicates its promising potential in practical vibration scenarios.

  13. Electrochemically driven mechanical energy harvesting.

    PubMed

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition-voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities. PMID:26733282

  14. Electrochemically driven mechanical energy harvesting

    PubMed Central

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition–voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities. PMID:26733282

  15. Electrochemically driven mechanical energy harvesting.

    PubMed

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-06

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition-voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities.

  16. Piezoelectric energy harvesting from raised crosswalk devices

    NASA Astrophysics Data System (ADS)

    Ticali, Dario; Denaro, Mario; Barracco, Alessandro; Guerrieri, Marco

    2015-03-01

    This paper presents the main characteristics of an experimental energy harvesting device that can be used to recover energy from the vehicular and pedestrian traffic. The use of a piezoelectric bender devices leads to a innovative approach to Henergy Harvesting. The study focuses on the definition and specification of a mechanical configuration able to transfer the vibration from the main box to the piezoelectric transducer. The piezoelectric devices tested is the commonly used monolithic piezoceramic material lead-zirconate-titanate (PZT). The experimental results estimate the efficiency of this device tested and identify the feasibility of their use in real world applications. The results presented in this paper show the potential of piezoelectric materials for use in power harvesting applications.

  17. Power conditioning for low-voltage piezoelectric stack energy harvesters

    NASA Astrophysics Data System (ADS)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  18. Piezoelectric cantilevers energy harvesting in MEMS technique

    NASA Astrophysics Data System (ADS)

    Shang, Yingqi; Qiu, Chengjun; Liu, Hongmei; Chen, Xiaojie; Qu, Wei; Dou, Yanwei

    2011-11-01

    Piezoelectric cantilevers energy harvesting made by micro-electromechanical system (MEMS) technology can scavenge power from low-level ambient vibration sources. The developed cantilevers energy harvesting are featured with resonate frequency and power output in microwatt level, which is sufficient to the self-supportive sensors for in-service integrity monitoring of large social and environmental infrastructures at remote locations. In this paper, piezoelectric energy harvesting based on thick-film piezoelectric cantilevers is investigated to resonate at specific frequencies of an external vibration energy source, which creating electrical energy via the piezoelectric effect. Our cantilever device has a multiple structure with a proof mass added to the end. The thick film lead zirconate titanate Pb(Zr,Ti)O3 (PZT) coated on the top of Au/Cr/SiO2/Si substrates by sol-gel-spin method. The thickness of the PZT membrane was up to 2μm and the cantilevers substrates thickness 50μm, wideness 1.5mm, length 4mm. The Au/Ti top electrode is patterned on top of the sol-gel-spin coated PZT thick film in order to employ the d31 mode. The prototype energy generator has a measured performance of 0.74μW effective electrical power, and 4.93 DC output voltages to resistance load. The effect of proof mass, beam shape and damping on the power generating performance are modeled to provide a design guideline for maximum power harvesting from environmentally available low frequency vibrations. A multiple structure cantilever is designed to achieve compactness, low resonant frequency and minimum damping coefficient, simultaneously. This device is promising to support networks of ultra-low-power sensor.

  19. Piezoelectric cantilevers energy harvesting in MEMS technique

    NASA Astrophysics Data System (ADS)

    Shang, Yingqi; Qiu, Chengjun; Liu, Hongmei; Chen, Xiaojie; Qu, Wei; Dou, Yanwei

    2012-04-01

    Piezoelectric cantilevers energy harvesting made by micro-electromechanical system (MEMS) technology can scavenge power from low-level ambient vibration sources. The developed cantilevers energy harvesting are featured with resonate frequency and power output in microwatt level, which is sufficient to the self-supportive sensors for in-service integrity monitoring of large social and environmental infrastructures at remote locations. In this paper, piezoelectric energy harvesting based on thick-film piezoelectric cantilevers is investigated to resonate at specific frequencies of an external vibration energy source, which creating electrical energy via the piezoelectric effect. Our cantilever device has a multiple structure with a proof mass added to the end. The thick film lead zirconate titanate Pb(Zr,Ti)O3 (PZT) coated on the top of Au/Cr/SiO2/Si substrates by sol-gel-spin method. The thickness of the PZT membrane was up to 2μm and the cantilevers substrates thickness 50μm, wideness 1.5mm, length 4mm. The Au/Ti top electrode is patterned on top of the sol-gel-spin coated PZT thick film in order to employ the d31 mode. The prototype energy generator has a measured performance of 0.74μW effective electrical power, and 4.93 DC output voltages to resistance load. The effect of proof mass, beam shape and damping on the power generating performance are modeled to provide a design guideline for maximum power harvesting from environmentally available low frequency vibrations. A multiple structure cantilever is designed to achieve compactness, low resonant frequency and minimum damping coefficient, simultaneously. This device is promising to support networks of ultra-low-power sensor.

  20. The case for energy harvesting on wildlife in flight

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; MacCurdy, Robert; Shipley, J. Ryan; Winkler, David; Guglielmo, Christopher G.; Garcia, Ephrahim

    2015-02-01

    The confluence of advancements in microelectronic components and vibrational energy harvesting has opened the possibility of remote sensor units powered solely from the motion of their hosts. There are numerous applications of such systems, including the development of modern wildlife tracking/data-logging devices. These ‘bio-logging’ devices are typically mass-constrained because they must be carried by an animal. Thus, they have historically traded scientific capability for operational longevity due to restrictions on battery size. Recently, the precipitous decrease in the power requirements of microelectronics has been accompanied by advancements in the area of piezoelectric vibrational energy harvesting. These energy harvesting devices are now capable of powering the type of microelectronic circuits used in bio-logging devices. In this paper we consider the feasibility of employing these vibrational energy harvesters on flying vertebrates for the purpose of powering a bio-logging device. We show that the excess energy available from birds and bats could be harvested without adversely affecting their overall energy budget. We then present acceleration measurements taken on flying birds in a flight tunnel to understand modulation of flapping frequency during steady flight. Finally, we use a recently developed method of estimating the maximum power output from a piezoelectric energy harvester to determine the amount of power that could be practically harvested from a flying bird. The results of this analysis show that the average power output of a piezoelectric energy harvester mounted to a bird or bat could produce more than enough power to run a bio-logging device. We compare the power harvesting capabilities to the energy requirements of an example system and conclude that vibrational energy harvesting on flying birds and bats is viable and warrants further study, including testing.

  1. Development of enhanced piezoelectric energy harvester induced by human motion.

    PubMed

    Minami, Y; Nakamachi, E

    2012-01-01

    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever and a couple of permanent magnets. One magnet was attached at the end of cantilever, and the counterpart magnet was set at the end of the pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous presence of vibration, is converted to the electric energy via the piezoelectric cantilever vibration system. At first, we studied the energy convert mechanism and the performance of our energy harvester, where the resonance free vibration of unimorph cantilever with one permanent magnet under a rather high frequency was induced by the artificial low frequency vibration. The counterpart magnet attached on the pendulum. Next, we equipped the counterpart permanent magnet pendulum, which was fluctuated under a very low frequency by the human walking, and the piezoelectric cantilever, which had the permanent magnet at the end. The low-to-high frequency convert "hybrid system" can be characterized as an enhanced energy harvest one. We examined and obtained maximum values of voltage and power in this system, as 1.2V and 1.2 µW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  2. Multi-source energy harvesting for wireless SHM systems

    NASA Astrophysics Data System (ADS)

    Choi, Mijin; Farinholt, Kevin M.; Anton, Steven; Lee, Jung-Ryul; Park, Gyuhae

    2013-03-01

    In wireless SHM systems, energy harvesting technology is essential for a reliable long-term energy supply for wireless sensors. Conventional wireless SHM systems using single source energy harvesting (vibration, solar, and etc.) have limitations because it could not be operated adequately without enough ambient energy present. To overcome this obstacle, multi-source energy harvesting which utilizes several ambient energy sources simultaneously is necessary to accumulate enough electrical energy to power wireless embedded sensor nodes. This study proposes a multi-source energy harvesting technique using a MISO (Multiple Input, Single Output) circuit board developed and studied by the authors. For multi-source energy harvesting, piezoelectric bimorph and electro-magnetic energy harvesters are excited at the first natural frequency of each harvester, 126.7 and 12.5 Hz, respectively. Then, generated voltage from each energy harvester is combined using the MISO circuit and then used to charge a 0.1 F capacitor. Combined energy harvesting results presented better performance than that of a single energy source, demonstrating that this multi-source system could be a promising energy harvesting solution for wireless sensing systems.

  3. Tree-inspired piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Hobbs, William B.; Hu, David L.

    2012-01-01

    We design and test micro-watt energy-harvesters inspired by tree trunks swaying in the wind. A uniform flow vibrates a linear array of four cylinders affixed to piezoelectric energy transducers. Particular attention is paid to measuring the energy generated as a function of cylinder spacing, flow speed, and relative position of the cylinder within the array. Peak power is generated using cylinder center-to-center spacings of 3.3 diameters and flow speeds in which the vortex shedding frequency is 1.6 times the natural frequency of the cylinders. Using these flow speeds and spacings, the power generated by downstream cylinders can exceed that of leading cylinders by more than an order of magnitude. We visualize the flow in this system by studying the behavior of a dynamically matched flowing soap film with imbedded styrofoam disks. Our qualitative visualizations suggest that peak energy harvesting occurs under conditions in which vortices have fully detached from the leading cylinder.

  4. Experimental evaluation of a cruciform piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Tsuruta, Karina M.; Rade, Domingos A.; Finzi Neto, Roberto M.; Cavalini, Aldemir A.

    2016-10-01

    This paper describes the development and experimental evaluation of a particular type of piezoelectric energy harvester, composed of four aluminum cantilever blades to which piezoelectric patches are bonded, in such way that electric energy is generated when the blades undergo bending vibrations. Concentrated masses, whose values can be varied, are attached to the tips of the blades. Due to the geometric shape of the harvester, in which the four blades are oriented forming right angles, the harvester is named cruciform. As opposed to the large majority of previous works on the subject, in which harvesters are excited at their bases by prescribed acceleration, herein the harvester is connected to a vibrating structure excited by an imbalance force. Hence, the amount of harvested energy depends upon the dynamic interaction between the harvester and the host structure. Laboratory experiments were carried-out on a prototype connected to a tridimensional truss. The experimental setup includes a force generator consisting of an imbalanced disc driven by an electrical motor whose rotation is controlled electronically, a voltage rectifier circuit, and a battery charged with the harvested energy. After characterization of the dynamic behavior of the harvester and the host structure, both numerically and experimentally, the results of experiments are presented and discussed in terms of the voltage output of the piezoelectric transducers as function of the excitation frequency and the values of the tip masses. Also, the capacity of the harvester to charge a Lithium battery is evaluated.

  5. Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization

    NASA Astrophysics Data System (ADS)

    Aravind Kumar, K.; Ali, S. F.; Arockiarajan, A.

    2015-11-01

    Piezomagnetoelastic energy harvesters are one among the widely explored configurations to improve the broadband characteristics of vibration energy harvesters. Such nonlinear harvesters follow a Moon beam model with two magnets at the base and one at the tip of the beam. The present article develops a geometric nonlinear mathematical model for the broadband piezomagnetoelastic energy harvester. The electromechanical coupling and the nonlinear magnetic potential equations are developed from the dimensional system parameters to describe the nonlinear dynamics exhibited by the system. The developed model is capable of characterizing the monostable, bistable and tristable operating regimes of the piezomagnetoelastic energy harvester, which are not explicit in the Duffing representation of the system. Bifurcations and attractor motions are analyzed as nonlinear functions of the distance between base magnets and the field strength of the tip magnet. The model is further used to characterize the potential wells and stable states, with due focus on the performance of the system in broadband energy harvesting.

  6. Rotational Electromagnetic Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Dinulovic, Dragan; Brooks, Michael; Haug, Martin; Petrovic, Tomislav

    This paper presents development of the rotational electromagnetic energy harvesting transducer. The transducer is driven mechanically by pushing a button; therefore, the mechanical energy will be converted into electrical energy. The energy harvesting (EH) transducer consists of multilayer planar coils embedded in a PCB, multipolar NdFeB hard magnets, and a mechanical system for movement conversion. The EH transducer generate an energy of about 4 mJ at a load of 10 Ω. The maximum open circuit output voltage is as high as 2 V and the maximum short circuit output current is 800 mA.

  7. A Hip Implant Energy Harvester

    NASA Astrophysics Data System (ADS)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2014-11-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω.

  8. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  9. Implementation of a piezoelectric energy harvester in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2014-03-01

    With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.

  10. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro

    2014-01-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  11. Vibration-energy-harvesting properties of hydrothermally synthesized (K,Na)NbO3 films deposited on flexible metal foil substrates

    NASA Astrophysics Data System (ADS)

    Shiraishi, Takahisa; Kaneko, Noriyuki; Kurosawa, Minoru; Uchida, Hiroshi; Suzuki, Yasuhiro; Kobayashi, Takeshi; Funakubo, Hiroshi

    2015-10-01

    Energy-harvesting properties were investigated for the flexible piezoelectric devices, Pt/hydrothermally synthesized (K0.88Na0.12)NbO3/SrRuO3/metal foil, fabricated at low process temperatures below 300 °C. Fabricated devices had high flexibility, and cracking and peeling were not observed under the bending condition with the maximum curvature of 5.2 mm. The estimated Young’s modulus of the fabricated flexible devices was 37 GPa. The pulse poling treatment with AC voltage above 150 V enhanced the energy-harvesting properties. Although the dielectric constant was almost unchanged (ɛr = 120 at 200 Hz), the maximum output voltage measured at an acceleration of 10 m/s2 was observed at a resonance frequency of 126 Hz, and this voltage increased from 7.2 to 11 V after pulse poling treatment at 200 V. The maximum output power was 7.7 µW at a load resistance of 560 kΩ. The calculated Q and K2 values were 30 and 0.0014, respectively. The power density was 1.8 µW/(G2·mm3), which is higher than the previous reports for films and sintered bodies of (KxNa1-x) fabricated above 500 °C.

  12. An innovative tri-directional broadband piezoelectric energy harvester

    SciTech Connect

    Su, Wei-Jiun Zu, Jean

    2013-11-11

    This paper presents a tri-directional piezoelectric energy harvester that is able to harvest vibration energy over a wide bandwidth from three orthogonal directions. The harvester consists of a main beam, an auxiliary beam, and a spring-mass system, with magnets integrated to introduce nonlinear force and couple the three sub-systems. Theoretical analysis and experiments were performed at constant acceleration under frequency sweeps to acquire frequency responses. The experimental results show that the voltage can achieve more than 2 V over more than 5 Hz of bandwidth with 1 MΩ load in the three orthogonal directions.

  13. An innovative tri-directional broadband piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Su, Wei-Jiun; Zu, Jean

    2013-11-01

    This paper presents a tri-directional piezoelectric energy harvester that is able to harvest vibration energy over a wide bandwidth from three orthogonal directions. The harvester consists of a main beam, an auxiliary beam, and a spring-mass system, with magnets integrated to introduce nonlinear force and couple the three sub-systems. Theoretical analysis and experiments were performed at constant acceleration under frequency sweeps to acquire frequency responses. The experimental results show that the voltage can achieve more than 2 V over more than 5 Hz of bandwidth with 1 MΩ load in the three orthogonal directions.

  14. Energy harvesting with coupled magnetostrictive resonators

    NASA Astrophysics Data System (ADS)

    Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.

    2014-03-01

    We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.

  15. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  16. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  17. Energy harvesting from mastication forces via a smart tooth

    NASA Astrophysics Data System (ADS)

    Bani-Hani, Muath; Karami, M. Amin

    2016-04-01

    The batteries of the current pacing devices are relatively large and occupy over 60 percent of the size of pulse generators. Therefore, they cannot be placed in the subtle areas of human body. In this paper, the mastication force and the resulting tooth pressure are converted to electricity. The pressure energy can be converted to electricity by using the piezoelectric effect. The tooth crown is used as a power autonomous pulse generator. We refer to this envisioned pulse generator as the smart tooth. The smart tooth is in the form of a dental implant. A piezoelectric vibration energy harvester is designed and modeled for this purpose. The Piezoelectric based energy harvesters investigated and analyzed in this paper initially includes a single degree of freedom piezoelectric based stack energy harvester which utilizes a harvesting circuit employing the case of a purely resistive circuit. The next step is utilizing and investigating a bimorph piezoelectric beam which is integrated/embedded in the smart tooth implant. Mastication process causes the bimorph beam to buckle or return to unbuckled condition. The transitions results in vibration of the piezoelectric beam and thus generate energy. The power estimated by the two mechanisms is in the order of hundreds of microwatts. Both scenarios of the energy harvesters are analytically modeled. The exact analytical solution of the piezoelectric beam energy harvester with Euler-Bernoulli beam assumptions is presented. The electro-mechanical coupling and the geometric nonlinearities have been included in the model for the piezoelectric beam.

  18. Cantilever piezoelectric energy harvester with multiple cavities

    NASA Astrophysics Data System (ADS)

    Srinivasulu Raju, S.; Umapathy, M.; Uma, G.

    2015-11-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity.

  19. A nonlinear piezoelectric energy harvester for various mechanical motions

    SciTech Connect

    Fan, Kangqi; Chang, Jianwei; Liu, Zhaohui; Zhu, Yingmin; Pedrycz, Witold

    2015-06-01

    This study presents a nonlinear piezoelectric energy harvester with intent to scavenge energy from diverse mechanical motions. The harvester consists of four piezoelectric cantilever beams, a cylindrical track, and a ferromagnetic ball, with magnets integrated to introduce the magnetic coupling between the ball and the beams. The experimental results demonstrate that the harvester is able to collect energy from various directions of vibrations. For the vibrations perpendicular to the ground, the maximum peak voltage is increased by 3.2 V and the bandwidth of the voltage above 4 V is increased by more than 4 Hz compared to the results obtained when using a conventional design. For the vibrations along the horizontal direction, the frequency up-conversion is realized through the magnetic coupling. Moreover, the proposed design can harvest energy from the sway motion around different directions on the horizontal plane. Harvesting energy from the rotation motion is also achieved with an operating bandwidth of approximately 6 Hz.

  20. An electromechanical finite element model for piezoelectric energy harvester plates

    NASA Astrophysics Data System (ADS)

    De Marqui Junior, Carlos; Erturk, Alper; Inman, Daniel J.

    2009-10-01

    Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper, an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton's principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit.

  1. Enhanced PVDF film for multi energy harvesting

    NASA Astrophysics Data System (ADS)

    Karunarathna, Ranmunige Nadeeka

    PVDF is a very important piezoelectric polymer material which has a promising range of applications in a variety of fields such as acoustic sensors and transducers, electrical switches, medical instrumentation, artificial sensitive skin in robotics, automotive detection on roads, nondestructive testing, structural health monitoring and as a biocampatible material. In this research cantilever based multi energy harvester was developed to maximize the power output of PVDF sensor. Nano mixture containing ferrofluid (FF) and ZnO nano particles were used to enhance the piezoelectric output of the sensor. The samples were tested under different energy conditions to observe the behavior of nano coated PVDF film under multi energy conditions. Composition of the ZnO and FF nano particles were changed by weight, in order to achieve the optimal composition of the nano mixture. Light energy, vibration energy, combined effect of light and vibration energy, and magnetic effect were used to explore the behavior of the sensor. The sensor with 60% ZnO and 40% FF achieved a maximum power output of 10.7 microwatts when it is under the combined effect of light and vibration energy. Which is nearly 16 times more power output than PVDF sensor. When the magnetic effect is considered the sensor with 100% FF showed the highest power output of 11.2 microwatts which is nearly 17 times more power output than pure PVDF. The effective piezoelctric volume of the sensor was 0.017 cm3. In order to explore the effect of magnetic flux, cone patterns were created on the sensor by means of a external magnetic field. Stability of the cones generated on the sensor played a major role in generated power output.

  2. The Search for High-Impact Diagnostic and Management Tools for Low- and Middle-Income Countries: A Self-Powered Low-Cost Blood Pressure Measurement Device Powered by a Solid-State Vibration Energy Harvester.

    PubMed

    Bilgen, Onur; Kenerson, John G; Akpinar-Elci, Muge; Hattery, Rebecca; Hanson, Lisbet M

    2015-08-01

    The World Health Organization has established recommendations for blood pressure measurement devices for use in low-resource venues, setting the "triple A" expectations of Accuracy, Affordability, and Availability. Because of issues related to training and assessment of proficiency, the pendulum has swung away from manual blood pressure devices and auscultatory techniques towards automatic oscillometric devices. As a result of power challenges in the developing world, there has also been a push towards semiautomatic devices that are not dependent on external power sources or batteries. Beyond solar solutions, disruptive technology related to solid-state vibrational energy harvesting may be the next iterative solution to attain the ultimate goal of a self-powered low-cost validated device that is simple to use and reliable. PMID:25913774

  3. The Search for High-Impact Diagnostic and Management Tools for Low- and Middle-Income Countries: A Self-Powered Low-Cost Blood Pressure Measurement Device Powered by a Solid-State Vibration Energy Harvester.

    PubMed

    Bilgen, Onur; Kenerson, John G; Akpinar-Elci, Muge; Hattery, Rebecca; Hanson, Lisbet M

    2015-08-01

    The World Health Organization has established recommendations for blood pressure measurement devices for use in low-resource venues, setting the "triple A" expectations of Accuracy, Affordability, and Availability. Because of issues related to training and assessment of proficiency, the pendulum has swung away from manual blood pressure devices and auscultatory techniques towards automatic oscillometric devices. As a result of power challenges in the developing world, there has also been a push towards semiautomatic devices that are not dependent on external power sources or batteries. Beyond solar solutions, disruptive technology related to solid-state vibrational energy harvesting may be the next iterative solution to attain the ultimate goal of a self-powered low-cost validated device that is simple to use and reliable.

  4. Principles of thermoacoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Avent, A. W.; Bowen, C. R.

    2015-11-01

    Thermoacoustics exploit a temperature gradient to produce powerful acoustic pressure waves. The technology has a key role to play in energy harvesting systems. A time-line in the development of thermoacoustics is presented from its earliest recorded example in glass blowing through to the development of the Sondhauss and Rijke tubes to Stirling engines and pulse-tube cryo-cooling. The review sets the current literature in context, identifies key publications and promising areas of research. The fundamental principles of thermoacoustic phenomena are explained; design challenges and factors influencing efficiency are explored. Thermoacoustic processes involve complex multi-physical coupling and transient, highly non-linear relationships which are computationally expensive to model; appropriate numerical modelling techniques and options for analyses are presented. Potential methods of harvesting the energy in the acoustic waves are also examined.

  5. Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Lee, Joonhee; Venugopal, Vineeth; Kim, Dong-Joo; Lee, Jinkee; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2016-06-01

    Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ˜10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ˜90 pm/V and -8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.

  6. Tree-inspired Piezoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Hobbs, William; Hu, David

    2009-11-01

    We design and build a tabletop wind energy harvester inspired by the swaying of trees. The device consists of cantilevered cylinders (``tree trunks'') arranged linearly downwind. The bases of the cylinders contain piezoelectric transducers that capture energy from vibration of the cylinder transverse to the flow. For a particular Reynolds number, and ratio of vortex shedding frequency to cylinder natural frequency, we experimentally measure the power generated (˜ 1 micro-watt) as a function of cylinder arrangement. We report optimal spacings for generating peak power. We also report the distribution of power down the array. We qualitatively account for these trends using flow visualizations of vortex shedding using a flowing soap film dynamically matched with our piezoelectric system.

  7. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  8. Development of MEMS piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung-Hyun

    The research of powering devices in a microwatt range has been activated and developed by the emergence of low-power Very Large Scale Integration (VLSI) technology in the past few years. The powering devices require a size that is compatible with the application, sufficient power, and extended lifetime using permanent and ubiquitous energy sources. The piezoelectric energy harvester using vibration sources is attractive due to its high conversion efficiency, simple design for miniaturizing, and lack of external voltage source. While bulk piezoelectric energy harvesters produce enough power for a few tens of mW, the insufficient power is still a major issue during miniaturizing into micro size. The piezoelectric energy harvester was fabricated by micro-electro-mechanical systems (MEMS) and developed to enhance its output power. It was designed to be resonated at the frequency range of ambient vibration source (50˜300 Hz) and convert the mechanical stress to electricity by piezoelectric thin film. The cantilever structure was chosen in this study due to its large strain, and a big proof mass at the end of tip was integrated for the same reason. This study focuses on three specific issues related to the robust fabrication process, including the integration of piezoelectric thin film, structure design for high power density, and the reliability of device. The Lead Zirconate Titanate (PZT) thin films were prepared by a sol-gel process and were used to fabricate energy harvesters by an optimized MEMS process. The properties of PZT thin film were studied considering the substrate effect, heat treatment, and thickness effects. The fabricated energy harvester produced 769 mVpk-pk, and 6.72 muW with the optimal resistive load of 11 kO at 127 Hz of resonant frequency. The device had dimensions of about 4 mm(L) x 2 mm(w) x 0.021 mm(H), and the Si proof mass had dimensions of 3 mm(L) x 2 mm(W) x 0.5 mm(H). Beyond this result, the technical platform for the robust fabrication

  9. Power management for energy harvesting wireless sensors

    NASA Astrophysics Data System (ADS)

    Arms, S. W.; Townsend, C. P.; Churchill, D. L.; Galbreath, J. H.; Mundell, S. W.

    2005-05-01

    The objective of this work was to demonstrate smart wireless sensing nodes capable of operation at extremely low power levels. These systems were designed to be compatible with energy harvesting systems using piezoelectric materials and/or solar cells. The wireless sensing nodes included a microprocessor, on-board memory, sensing means (1000 ohm foil strain gauge), sensor signal conditioning, 2.4 GHz IEEE 802.15.4 radio transceiver, and rechargeable battery. Extremely low power consumption sleep currents combined with periodic, timed wake-up was used to minimize the average power consumption. Furthermore, we deployed pulsed sensor excitation and microprocessor power control of the signal conditioning elements to minimize the sensors" average contribution to power draw. By sleeping in between samples, we were able to demonstrate extremely low average power consumption. At 10 Hz, current consumption was 300 microamps at 3 VDC (900 microwatts); at 5 Hz: 400 microwatts, at 1 Hz: 90 microwatts. When the RF stage was not used, but data were logged to memory, consumption was further reduced. Piezoelectric strain energy harvesting systems delivered ~2000 microwatts under low level vibration conditions. Output power levels were also measured from two miniature solar cells; which provided a wide range of output power (~100 to 1400 microwatts), depending on the light type & distance from the source. In summary, system power consumption may be reduced by: 1) removing the load from the energy harvesting & storage elements while charging, 2) by using sleep modes in between samples, 3) pulsing excitation to the sensing and signal conditioning elements in between samples, and 4) by recording and/or averaging, rather than frequently transmitting, sensor data.

  10. Energy harvesting from low frequency applications using piezoelectric materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  11. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Pearson, M. R.; Eaton, M. J.; Pullin, R.; Featherston, C. A.; Holford, K. M.

    2012-08-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  12. Contacting mode operation of work function energy harvester

    NASA Astrophysics Data System (ADS)

    Varpula, A.; Laakso, S. J.; Havia, T.; Kyynäräinen, J.; Prunnila, M.

    2014-11-01

    The work function energy harvester (WFEH) is a variable capacitance vibration energy harvester where the charging of the capacitor electrodes is driven by the work function difference of the electrode materials. In this work, we investigate operation modes of the WFEH by utilizing a macroscopic parallel plate capacitor with Cu and Al electrodes and varying plate distance. We show that by charging the electrodes of the WFEH by letting the electrode plates touch during the operation a significant output power enhancement can be achieved in comparison to the case where the electrodes are charged and discharged only through a load resistor.

  13. An improved stability characterization for aeroelastic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Javed, U.; Abdelkefi, A.; Akhtar, I.

    2016-07-01

    An enhanced stability characterization for aeroelastic energy harvesters is introduced by using both the normal form of the Hopf bifurcation and shooting method. Considering a triangular cylinder subjected to transverse galloping oscillations and a piezoelectric transducer to convert mechanical vibrations to electrical power, it is demonstrated that the nonlinear normal form is very beneficial to characterize the type of instability near bifurcation and determine the influence of structural and/or aerodynamic nonlinearities on the performance of the harvester. It is also shown that this tool is strong in terms of designing reliable aeroelastic energy harvesters. The results show that this technique can accurately predict the harvester's response only near bifurcation, however, cannot predict the stable solutions of the harvester when subcritical Hopf bifurcation takes place. To cover these drawbacks, the shooting method is employed. It turns out that this approach is beneficial in determining the stable and unstable solutions of the system and associated turning points. The results also show that the Floquet multipliers, obtained as the by-product of this method, can be used to characterize the response's type of the harvester. Thus, the normal form of the Hopf bifurcation and shooting method predictions can supplement each other to design stable and reliable aeroelastic energy harvesters.

  14. Piezoelectric energy harvesting in internal fluid flow.

    PubMed

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-10-14

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.

  15. Piezoelectric energy harvesting in internal fluid flow.

    PubMed

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  16. Piezoelectric Energy Harvesting in Internal Fluid Flow

    PubMed Central

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  17. Dual-phase self-biased magnetoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Apo, Daniel J.; Priya, Shashank

    2013-11-01

    We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient ˜50 V/cm Oe and power density ˜4.5 mW/cm3 (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system.

  18. Investigations of biomimetic light energy harvesting pigments

    SciTech Connect

    Van Patten, P.G.; Donohoe, R.J.; Lindsey, J.S.; Bocian, D.F.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Nature uses chlorophyll and other porphyrinic pigments to capture and transfer light energy as a preliminary step in photosynthesis. The design of synthetic assemblies of light harvesting and energy directing pigments has been explored through synthesis and characterization of porphyrin oligomers. In this project, pigment electronic and vibrational structures have been explored by electrochemistry and dynamic and static optical measurements. Transient absorption data reveal energy transfer between pigments with lifetimes on the order of 20--200 picoseconds, while Raman data reveal that the basic porphyrin core structure is unperturbed relative to the individual monomer units. These two findings, along with an extensive series of experiments on the oxidized oligomers, reveal that coupling between the pigments is fundamentally weak, but sufficient to allow facile energy transfer as the predominant excited state process. Modeling of the expected quantum yields for energy transfer within a variety of arrays was accomplished, thereby providing a tool to guide synthetic goals.

  19. Effect of boundary conditions on piezoelectric buckled beams for vibrational noise harvesting

    NASA Astrophysics Data System (ADS)

    Cottone, F.; Mattarelli, M.; Vocca, H.; Gammaitoni, L.

    2015-11-01

    Nonlinear bistable systems have proven to be advantageous for energy harvesting of random and real ambient vibrations. One simple way of implementing a bistable transducer is setting a piezoelectric beam in a post-buckled configuration by axial compression. Besides, hinged or clamped-clamped type of boundary conditions correspond to two different post-buckled shape functions. Here we study, through theoretical analysis and numerical simulations, the efficiency of a hinged and clamped-clamped piezoelectric bridge under band-limited random noise with progressive axial load. Clamped configuration results to harvest 26% more power than hinged around an optimal axial load of 0.05%, while, in the intra-well trapped situation, above 0.1%, the two configurations present no substantial difference. Nevertheless, simulations confirm the advantage of exploiting inter-well oscillations in bistable regime.

  20. Energy harvesting from controlled buckling of piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  1. Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Hongjin; Meng, Qingfeng

    2013-03-01

    Power harvesting techniques that convert vibration energy into electrical energy through piezoelectric transducers show strong potential for powering smart wireless sensor devices in applications of structural health monitoring. This paper presents an analytical model of the dynamic behavior of an electromechanical piezoelectric bimorph cantilever harvester connected with an AC-DC circuit based on the Euler-Bernoulli beam theory and Hamiltonian theorem. A new cantilevered piezoelectric bimorph structure is proposed in which the plug-type connection between support layer and tip-mass ensures that the gravity center of the tip-mass is collinear with the gravity center of the beam so that the brittle fracture of piezoelectric layers can also be avoided while vibrating with large amplitude. The tip-mass is equated by the inertial force and inertial moment acting at the end of the piezoelectric bimorph beam based on D'Alembert's principle. An AC-DC converting circuit soldered with the piezoelectric elements is also taken into account. A completely new analytic expression of the global behavior of the electromechanical piezoelectric bimorph harvesting system with AC-DC circuit under input base transverse excitation is derived. Moreover, an experimental energy harvester is fabricated and the theoretical analysis and experimental results of the piezoelectric harvester under the input base transverse displacement excitation are validated by using measurements of the absolute tip displacement, electric voltage response, electric current response and electric power harvesting.

  2. Disentangling Electronic and Vibrational Coherence in the Phycocyanin-645 Light-Harvesting Complex.

    PubMed

    Richards, G H; Wilk, K E; Curmi, P M G; Davis, J A

    2014-01-01

    Energy transfer between chromophores in photosynthesis proceeds with near-unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilize a two-color, four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited-state structure based on two strongly coupled electronic states and two vibrational modes. Separation of the coherence pathways also uncovers the complex evolution of these coherences and the states involved. PMID:26276179

  3. Disentangling Electronic and Vibrational Coherence in the Phycocyanin-645 Light-Harvesting Complex.

    PubMed

    Richards, G H; Wilk, K E; Curmi, P M G; Davis, J A

    2014-01-01

    Energy transfer between chromophores in photosynthesis proceeds with near-unity quantum efficiency. Understanding the precise mechanisms of these processes is made difficult by the complexity of the electronic structure and interactions with different vibrational modes. Two-dimensional spectroscopy has helped resolve some of the ambiguities and identified quantum effects that may be important for highly efficient energy transfer. Many questions remain, however, including whether the coherences observed are electronic and/or vibrational in nature and what role they play. We utilize a two-color, four-wave mixing experiment with control of the wavelength and polarization to selectively excite specific coherence pathways. For the light-harvesting complex PC645, from cryptophyte algae, we reveal and identify specific contributions from both electronic and vibrational coherences and determine an excited-state structure based on two strongly coupled electronic states and two vibrational modes. Separation of the coherence pathways also uncovers the complex evolution of these coherences and the states involved.

  4. High-efficiency integrated piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  5. Tunable bistable devices for harvesting energy from spinning wheels

    NASA Astrophysics Data System (ADS)

    Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser

    2015-04-01

    Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.

  6. Responses of bistable piezoelectric-composite energy harvester by means of recurrences

    NASA Astrophysics Data System (ADS)

    Syta, Arkadiusz; Bowen, Christopher R.; Kim, H. Alicia; Rysak, Andrzej; Litak, Grzegorz

    2016-08-01

    In this paper we examine the modal response of a bistable electro-mechanical energy harvesting device based on characterization of the experimental time-series. A piezoelectric element attached to a vibrating bistable carbon-fibre reinforced polymer laminate plate was used for the conversion of mechanical vibrations to electrical energy under harmonic excitations at a variety of frequencies and amplitudes. The inherent bistability of the mechanical resonator and snap-through phenomenon between stable states were exploited for energy harvesting. To identify the dynamics of the response of the studied harvesting structure and the associated output power generation we used the Fourier spectrum and Recurrence Quantification Analysis (RQA).

  7. Study on Tire-attached Energy Harvester for Low-speed Actual Vehicle Driving

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.

    2015-12-01

    This study reports a tire-attached energy harvester, in which a cantilever beam pasted piezoelectric film and magnets with the same polarity are fabricated as a bistable vibrating system, for low-speed actual-vehicle driving. As the wheel rotates, the energy harvester is subjected to the noise produced from the interaction between the paved road and the rotating tire, and tangentially gravitational force as a periodic input can be applied to achieve the occurrence of stochastic resonance. Stochastic resonance can significantly stimulate the response of the bistable vibrating system, and therefore enhance the energy harvesting efficiency.

  8. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    NASA Astrophysics Data System (ADS)

    Corr, L. R.; Ma, D. T.

    2016-08-01

    Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact) area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system) dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  9. A novel inertial energy harvester using magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Askari Farsangi, Mohammad Amin; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza

    2016-10-01

    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli model and von Kármán theory are derived. A thermodynamics-based constitutive model is used to predict the nonlinear strain and magnetization response of the MSMAs. Also, the induced voltage during martensite variant reorientation in MSMAs is investigated with the help of Faraday’s law of induction. Finally, the effect of different parameters including bias magnetic field, pre-strain and number of MSMA elements are investigated in details. The results show that this novel energy harvester has the capability of using as an alternative to the current piezoelectric and magnetostrictive ones for harvesting energy from ambient vibration.

  10. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  11. Broadband energy harvesting using acoustic black hole structural tailoring

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2014-06-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions.

  12. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  13. Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam

    NASA Astrophysics Data System (ADS)

    Xu, Chundong; Liang, Zhu; Ren, Bo; Di, Wenning; Luo, Haosu; Wang, Dong; Wang, Kailing; Chen, Zhifang

    2013-09-01

    Bi-stable piezoelectric energy harvester has been found as a promising structure for vibration energy harvesting. This paper presents a high performance and simple structure bi-stable piezoelectric energy harvester based on simply supported piezoelectric buckled beam. The potential energy function is established theoretically, and electrical properties of the device under different axial compressive displacements, excitation frequencies, and accelerations are investigated systematically. Experimental results demonstrate that the output properties and bandwidth of the bi-stable nonlinear energy harvester under harmonic mechanical excitation are improved dramatically compared with the traditional linear energy harvester. The device demonstrates the potential in energy harvesting application to low-power portable electronics and wireless sensor nodes.

  14. Flight Test Results of a Thermoelectric Energy Harvester for Aircraft

    NASA Astrophysics Data System (ADS)

    Samson, D.; Kluge, M.; Fuss, T.; Schmid, U.; Becker, Th.

    2012-06-01

    The idea of thermoelectric energy harvesting for low-power wireless sensor systems in aircraft and its practical implementation was recently published. The concept of using a thermoelectric generator (TEG) attached to the aircraft inner hull and a thermal storage device to create an artificial temperature gradient at the TEG during take-off and landing from the temperature changes of the fuselage has passed initial tests and is now subject to flight testing. This work presents preflight test results, e.g., vibration and temperature testing of the harvesters, the practical installation of two harvesting devices inside a test plane, and the first test flight results. Several flight cycles with different flight profiles, flight lengths, and outside temperatures have been performed. Although the influence of different flight profiles on the energy output of the harvester can be clearly observed, the results are in good agreement with expectations from numerical simulations with boundary conditions evaluated from initial climate chamber experiments. In addition, the flight test demonstrates that reliable operation of thermoelectric energy harvesting in harsh aircraft environments seems to be feasible, therefore paving the way for realization of energy-autonomous, wireless sensor networks.

  15. Thermal Energy Harvesting from Wildlife

    NASA Astrophysics Data System (ADS)

    Woias, P.; Schule, F.; Bäumke, E.; Mehne, P.; Kroener, M.

    2014-11-01

    In this paper we present the measurement of temperature differences between the ambient air and the body temperature of a sheep (Heidschnucke) and its applicability for thermoelectric energy harvesting from livestock, demonstrated via the test of a specially tailored TEG system in a real-life experiment. In three measurement campaigns average temperature differences were found between 2.5 K and 3.5 K. Analytical models and FEM simulations were carried out to determine the actual thermal resistance of the sheep's fur from comparisons with the temperature measurements. With these data a thermoelectric (TEG) generator was built in a thermally optimized housing with adapted heats sink. The whole TEG system was mounted to a collar, including a data logger for recording temperature and TEG voltage. First measurements at the neck of a sheep were accomplished, with a calculated maximal average power output of 173 μW at the TEG. Taking the necessity of a low-voltage step-up converter into account, an electric output power of 54 μW is available which comes close to the power consumption of a low-power VHF tracking system.

  16. Energy harvesting via ferrofluidic induction

    NASA Astrophysics Data System (ADS)

    Monroe, J. G.; Vasquez, Erick S.; Aspin, Zachary S.; Fairley, John D.; Walters, Keisha B.; Berg, Matthew J.; Thompson, Scott M.

    2015-05-01

    A series of experiments were conducted to investigate and characterize the concept of ferrofluidic induction - a process for generating electrical power via cyclic oscillation of ferrofluid (iron-based nanofluid) through a solenoid. Experimental parameters include: number of bias magnets, magnet spacing, solenoid core, fluid pulse frequency and ferrofluid-particle diameter. A peristaltic pump was used to cyclically drive two aqueous ferrofluids, consisting of 7-10 nm iron-oxide particles and commercially-available hydroxyl-coated magnetic beads (~800 nm), respectively. The solutions were pulsated at 3, 6, and 10 Hz through 3.2 mm internal diameter Tygon tubing. A 1000 turn copper-wire solenoid was placed around the tube 45 cm away from the pump. The experimental results indicate that the ferrofluid is capable of inducing a maximum electric potential of approximately +/- 20 μV across the solenoid during its cyclic passage. As the frequency of the pulsating flow increased, the ferro-nanoparticle diameter increased, or the bias magnet separation decreased, the induced voltage increased. The type of solenoid core material (copper or plastic) did not have a discernible effect on induction. These results demonstrate the feasibility of ferrofluidic induction and provide insight into its dependence on fluid/flow parameters. Such fluidic/magneto-coupling can be exploited for energy harvesting and/or conversion system design for a variety of applications.

  17. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  18. Structural modelling of a compliant flexure flow energy harvester

    NASA Astrophysics Data System (ADS)

    Chatterjee, Punnag; Bryant, Matthew

    2015-09-01

    This paper presents the concept of a flow-induced vibration energy harvester based on a one-piece compliant flexure structure. This energy harvester utilizes the aeroelastic flutter phenomenon to convert flow energy to structural vibrational energy and to electrical power output through piezoelectric transducers. This flexure creates a discontinuity in the structural stiffness and geometry that can be used to tailor the mode shapes and natural frequencies of the device to the desired operating flow regime while eliminating the need for discrete hinges that are subject to fouling and friction. An approximate representation of the flexure rigidity is developed from the flexure link geometry, and a model of the complete discontinuous structure and integrated flexure is formulated based on the transfer matrix method. The natural frequencies and mode shapes predicted by the model are validated using finite element simulations and are shown to be in close agreement. A proof-of-concept energy harvester incorporating the proposed flexure design has been fabricated and investigated in wind tunnel testing. The aeroelastic modal convergence, critical flutter wind speed, power output and limit cycle behavior of this device is experimentally determined and discussed.

  19. Energy harvesting for dielectric elastomer sensing

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Illenberger, Patrin; O'Brien, Ben M.

    2016-04-01

    Soft and stretchy dielectric elastomer (DE) sensors can measure large strains on robotic devices and people. DE strain measurement requires electric energy to run the sensors. Energy is also required for information processing and telemetering of data to phone or computer. Batteries are expensive and recharging is inconvenient. One solution is to harvest energy from the strains that the sensor is exposed to. For this to work the harvester must also be wearable, soft, unobtrusive and profitable from the energy perspective; with more energy harvested than used for strain measurement. A promising way forward is to use the DE sensor as its own energy harvester. Our study indicates that it is feasible for a basic DE sensor to provide its own power to drive its own sensing signal. However telemetry and computation that are additional to this will require substantially more power than the sensing circuit. A strategy would involve keeping the number of Bluetooth data chirps low during the entire period of energy harvesting and to limit transmission to a fraction of the total time spent harvesting energy. There is much still to do to balance the energy budget. This will be a challenge but when we succeed it will open the door to autonomous DE multi-sensor systems without the requirement for battery recharge.

  20. Applications of energy harvesting for ultralow power technology

    NASA Astrophysics Data System (ADS)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  1. Novel composite piezoelectric material for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Prosycevas, Igoris; Ponelyte, Sigita; Baltrusaitis, Valentinas; Sakalys, Rokas

    2015-04-01

    Past few decades were concentrated on researches related to effective energy harvesting applied in modern technologies, MEMS or MOEMS systems. There are many methods for harvesting energy as, for example, usage of electromagnetic devices, but most dramatic changes were noticed in the usage of piezoelectric materials in small scale devices. Major limitation faced was too small generated power by piezoelectric materials or high resonant frequencies of such smallscale harvesters. In this research, novel composite piezoelectric material was created by mixing PZT powder with 20% solution of polyvinyl butyral in benzyl alcohol. Obtained paste was screen printed on copper foil using 325 mesh stainless steel screen and dried for 30 min at 100 °C. Polyvinyl butyral ensures good adhesion and flexibility of a new material at the conditions that requires strong binding. Five types of a composite piezoelectric material with different concentrations of PZT (40%, 50%, 60%, 70% and 80 %) were produced. As the results showed, these harvesters were able to transform mechanical strain energy into electric potential and, v.v. In experimental setup, electromagnetic shaker was used to excite energy harvester that is fixed in the custom-built clamp, while generated electric potential were registered with USB oscilloscope PICO 3424. The designed devices generate up to 80 μV at 50 Hz excitation. This property can be applied to power microsystem devices or to use them in portable electronics and wireless sensors. However, the main advantage of the created composite piezoelectric material is possibility to apply it on any uniform or nonuniform vibrating surface and to transform low frequency vibrations into electricity.

  2. Design and experimental evaluation of flextensional-cantilever based piezoelectric transducers for flow energy harvesting

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Colonius, Tim

    2016-04-01

    Cantilever type piezoelectric harvesters, such as bimorphs, are typically used for vibration induced energy harvesting. However, a major drawback of a piezoelectric bimorph is its brittle nature in harsh environments, precipitating short life-times as well as output power degradation. The emphasis in this work is to design robust, highly efficient piezoelectric harvesters that are capable of generating electrical power in the milliwatt range. Various harvesters were modeled, designed and prototyped, and the flextensional actuator based harvester, where the metal cantilever is mounted and coupled between two flextensional actuators, was found to be a viable alternative to the cantilever type piezoelectric harvesters. Preliminary tests show that these devices equipped with 5x5x36 mm two piezoelectric PZT stacks can produce greater than 50 mW of power under air flow induced vibrations.

  3. Investigation of Energy Harvesting Using Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mivehchi, Amin; Persichetti, Amanda; Dunham, Brandon; Dahl, Jason M.

    2013-11-01

    When harvesting kinetic energy using a flapping foil, the separation of coherent structures in the wake is crucial for determining forces on the body. Applications for utilizing energy harvesting with a flapping foil include powering of local, low power equipment and recharging AUV batteries that use flapping foils for propulsion and maneuvering. In each of these cases, it is critical to accurately predict the physical behavior and location of vortices in relation to the motion of the body in order to maximize energy output. A two-dimensional open source boundary data immersion method (LilyPad) is used for simulating the flapping motion of a foil for energy harvesting in a current. Forced motion of the flapping body indicates theoretical efficiencies for energy harvesting near 43 percent under specific flapping conditions. A simple control scheme based on pressure sensing on the surface of the foil is developed to control pitch of the foil while energy harvesting occurs in the heave direction. The control scheme is tested through real time numerical simulation. Comparisons are made with physical laboratory experiments, demonstrating high efficiencies in energy harvesting.

  4. Exploration of new cymbal design in energy harvesting

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Kinsel, William; Clark, William W.; Mo, Changki

    2011-03-01

    Harvesting wasted energy and converting it into electrical energy to use as needed is an emerging technology area. In this work, a new design of a cymbal energy harvester is developed and tested to validate analytical energy generating performance. Cymbal transducers have been demonstrated to be beneficial as energy harvesters for vibrating systems under modest load and frequency. In this paper a new design is adopted using a unimorph circular piezoelectric disc between the metal end caps to deal with higher loads. Simple analysis for the new cymbal design to predict voltage output was first conducted. The new cymbal design, 25.4 mm diameter and 8.2 mm thickness, was then fabricated and tested on the load frame with up to 324 lb load and 1 Hz frequency to measure output voltages. This device could be used in numerous applications for potentially self sustaining sensors or other electronic devices. By changing the structure between the metal end caps of cymbal harvesters the new design could be extended in higher load applications.

  5. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, T.; Yan, Z.; Hajj, M.

    2016-09-01

    Analysis of cantilever-based piezoelectric energy harvesting systems is usually performed using coupled equations that represent the mechanical displacement and the voltage output. These equations are then solved simultaneously. In contrast to this representation, we use analytical solutions of the governing equation to derive an algebraic equation of the power as a function of the beam displacement, electromechanical coefficients, and the load resistance. Such an equation can be more useful in the design of such harvesters. Particularly, the mechanical displacement is computed from a mechanical governing equation with modified natural frequency and damping ratio that account for the electromechanical coupling. The voltage and the harvested power are then obtained by relating them directly to the mechanical displacement. We validate the proposed analysis by comparing its solution including the tip displacement and harvested power with those of numerical simulations of the governing equations. To demonstrate the generality of the proposed approach, we consider the cases of base excitation, galloping, and autoparametric vibration. The model proposed in this study simplifies the electromechanical coupling problem for practical applications of cantilever-beam piezoelectric energy harvesting systems.

  6. Piezoelectric energy harvesting from transverse galloping of bluff bodies

    NASA Astrophysics Data System (ADS)

    Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.

    2013-01-01

    The concept of harvesting energy from transverse galloping oscillations of a bluff body with different cross-section geometries is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom of the body. The power levels that can be generated from these vibrations and the variations of these levels with the load resistance, cross-section geometry, and freestream velocity are determined. A representative model that accounts for the transverse displacement of the bluff body and harvested voltage is presented. The quasi-steady approximation is used to model the aerodynamic loads. A linear analysis is performed to determine the effects of the electrical load resistance and the cross-section geometry on the onset of galloping, which is due to a Hopf bifurcation. The normal form of this bifurcation is derived to determine the type (supercritical or subcritical) of the instability and to characterize the effects of the linear and nonlinear parameters on the level of harvested power near the bifurcation. The results show that the electrical load resistance and the cross-section geometry affect the onset speed of galloping. The results also show that the maximum levels of harvested power are accompanied with minimum transverse displacement amplitudes for all considered (square, D, and triangular) cross-section geometries, which points to the need for performing a coupled analysis of the system.

  7. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    SciTech Connect

    Zakaria, Mohamed Y. Al-Haik, Mohammad Y.; Hajj, Muhammad R.

    2015-07-13

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  8. Characterization of a rotary hybrid multimodal energy harvester

    NASA Astrophysics Data System (ADS)

    Larkin, Miles R.; Tadesse, Yonas

    2014-04-01

    In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.

  9. Enhance piezoelectric energy harvesting by stiffness compensation using magnetic effect

    NASA Astrophysics Data System (ADS)

    Xu, Jiawen; Tang, J.

    2013-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. The efficiency of piezoelectric transducers fundamentally hinges upon the electro-mechanical coupling effect. While at the material level such coupling is decided by material property, at the device level it is possible to vary and improve the energy conversion capability between the electrical and mechanical regimes by a variety of means. In this research, a new approach of compensating the effective flexibility of piezoelectric transducers by using non-contact magnetic effect is explored. It is shown that properly configured and positioned magnet arrays can induce approximately linear attraction force that can improve the electro-mechanical coupling of the piezoelectric energy harvester. Analytical and experimental studies are carried out to demonstrate the enhancement.

  10. Triboelectric Nanogenerators for Blue Energy Harvesting.

    PubMed

    Khan, Usman; Kim, Sang-Woo

    2016-07-26

    Blue energy in the form of ocean waves offers an enormous energy resource. However, it has yet to be fully exploited in order to make it available for the use of mankind. Blue energy harvesting is a challenging task as the kinetic energy from ocean waves is irregular in amplitude and is at low frequencies. Though electromagnetic generators (EMGs) are well-known for harvesting mechanical kinetic energies, they have a crucial limitation for blue energy conversion. Indeed, the output voltage of EMGs can be impractically low at the low frequencies of ocean waves. In contrast, triboelectric nanogenerators (TENGs) are highly suitable for blue energy harvesting as they can effectively harvest mechanical energies from low frequencies (<1 Hz) to relatively high frequencies (∼kHz) and are also low-cost, lightweight, and easy to fabricate. Several important steps have been taken by Wang's group to develop TENG technology for blue energy harvesting. In this Perspective, we describe some of the recent progress and also address concerns related to durable packaging of TENGs in consideration of harsh marine environments and power management for an efficient power transfer and distribution for commercial applications. PMID:27408982

  11. Triboelectric Nanogenerators for Blue Energy Harvesting.

    PubMed

    Khan, Usman; Kim, Sang-Woo

    2016-07-26

    Blue energy in the form of ocean waves offers an enormous energy resource. However, it has yet to be fully exploited in order to make it available for the use of mankind. Blue energy harvesting is a challenging task as the kinetic energy from ocean waves is irregular in amplitude and is at low frequencies. Though electromagnetic generators (EMGs) are well-known for harvesting mechanical kinetic energies, they have a crucial limitation for blue energy conversion. Indeed, the output voltage of EMGs can be impractically low at the low frequencies of ocean waves. In contrast, triboelectric nanogenerators (TENGs) are highly suitable for blue energy harvesting as they can effectively harvest mechanical energies from low frequencies (<1 Hz) to relatively high frequencies (∼kHz) and are also low-cost, lightweight, and easy to fabricate. Several important steps have been taken by Wang's group to develop TENG technology for blue energy harvesting. In this Perspective, we describe some of the recent progress and also address concerns related to durable packaging of TENGs in consideration of harsh marine environments and power management for an efficient power transfer and distribution for commercial applications.

  12. Nanoscale domain patterns and a concept for an energy harvester

    NASA Astrophysics Data System (ADS)

    Renuka Balakrishna, Ananya; Huber, John E.

    2016-10-01

    The current work employs a phase-field model to test the stability of nanoscale periodic domain patterns, and to explore the application of one pattern in an energy harvester device. At first, the stability of several periodic domain patterns with in-plane polarizations is tested under stress-free and electric field-free conditions. It is found that simple domain patterns with stripe-like features are stable, while patterns with more complex domain configurations are typically unstable at the nanoscale. Upon identifying a stable domain pattern with suitable properties, a conceptual design of a thin film energy harvester device is explored. The harvester is modeled as a thin ferroelectric film bound to a substrate. In the initial state a periodic stripe domain pattern with zero net charge on the top electrode is modeled. On bending the substrate, a mechanical strain is induced in the film, causing polarized domains to undergo ferroelectric switching and thus generate electrical energy. The results demonstrate the working cycle of a conceptual energy harvester which, on operating at kHz frequencies, such as from vibrations in the environment, could produce an area power density of about 40 W m-2.

  13. Impedance matching for broadband piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Hagedorn, F.; Leicht, J.; Sanchez, D.; Hehn, T.; Manoli, Y.

    2013-12-01

    This paper presents a system design for broadband piezoelectric energy harvesting by means of impedance matching. An inductive load impedance is emulated by controlling the output current of the piezoelectric harvester with a bipolar boost converter. The reference current is derived from the low pass filtered voltage measured at the harvester terminals. In order to maximize the harvested power especially for nonresonant frequencies the filter parameters are adjusted by a simple optimization algorithm. However the amount of harvested power is limited by the efficiency of the bipolar boost converter. Therefore an additional switch in the bipolar boost converter is proposed to reduce the capacitive switching losses. The proposed system is simulated using numerical parameters of available discrete components. Using the additional switch, the harvested power is increased by 20%. The proposed system constantly harvests 80% of the theoretically available power over frequency. The usable frequency range of ±4Hz around the resonance frequency of the piezoelectric harvester is mainly limited due to the boost converter topology. This comparison does not include the power dissipation of the control circuit.

  14. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.

    PubMed

    Xue, Huan; Hu, Yuantai; Wang, Qing-Ming

    2008-09-01

    This paper presents a novel approach for designing broadband piezoelectric harvesters by integrating multiple piezoelectric bimorphs (PBs) with different aspect ratios into a system. The effect of 2 connecting patterns among PBs, in series and in parallel, on improving energy harvesting performance is discussed. It is found for multifrequency spectra ambient vibrations: 1) the operating frequency band (OFB) of a harvesting structure can be widened by connecting multiple PBs with different aspect ratios in series; 2) the OFB of a harvesting structure can be shifted to the dominant frequency domain of the ambient vibrations by increasing or decreasing the number of PBs in parallel. Numerical results show that the OFB of the piezoelectric energy harvesting devices can be tailored by the connection patterns (i.e., in series and in parallel) among PBs. PMID:18986908

  15. Nonlinear time-varying potential bistable energy harvesting from human motion

    NASA Astrophysics Data System (ADS)

    Cao, Junyi; Wang, Wei; Zhou, Shengxi; Inman, Daniel J.; Lin, Jing

    2015-10-01

    A theoretical and experimental investigation into nonlinear bistable energy harvesting with time-varying potential energy is presented. The motivation for examining time-varying potentials comes from the desire to harvest energy from human motion. Time-varying potential energy function of bistable oscillator with respect to the swing angle are established to derive the governing electromechanical model for harvesting vibration energy from the swaying motion during human walking or running. Numerical simulations show good agreement with the experimental potential energy function under different swing angles. Various motion speed treadmill tests are performed to demonstrate the advantage of time-varying bistable harvesters over linear and monostable ones in harvesting energy from human motion.

  16. Sound insulation and energy harvesting based on acoustic metamaterial plate

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  17. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate

    NASA Astrophysics Data System (ADS)

    Aridogan, U.; Basdogan, I.; Erturk, A.

    2014-04-01

    Vibration-based energy harvesting using piezoelectric cantilevers has been extensively studied over the past decade. As an alternative to cantilevered harvesters, piezoelectric patch harvesters integrated to thin plates can be more convenient for use in marine, aerospace and automotive applications since these systems are often composed of thin plate-like structures with various boundary conditions. In this paper, we present analytical electroelastic modeling of a piezoelectric energy harvester structurally integrated to a thin plate along with experimental validations. The distributed-parameter electroelastic model of the thin plate with the piezoceramic patch harvester is developed based on Kirchhoff’s plate theory for all-four-edges clamped (CCCC) boundary conditions. Closed-form steady-state response expressions for coupled electrical output and structural vibration are obtained under transverse point force excitation. Analytical electroelastic frequency response functions (FRFs) relating the voltage output and vibration response to force input are derived and generalized for different boundary conditions. Experimental validation and extensive theoretical analysis efforts are then presented with a case study employing a thin PZT-5A piezoceramic patch attached on the surface of a rectangular aluminum CCCC plate. The importance of positioning of the piezoceramic patch harvester is discussed through an analysis of dynamic strain distribution on the overall plate surface. The electroelastic model is validated by a comparison of analytical and experimental FRFs for a wide range of resistive electrical boundary conditions. Finally, power generation performance of the structurally integrated piezoceramic patch harvester from multiple vibration modes is investigated analytically and experimentally.

  18. Global stabilization of high-energy response of a nonlinear wideband electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kato, S.; Masuda, A.

    2016-09-01

    This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.

  19. A hydrostatic pressure-cycle energy harvester

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Hahn, Gregory; Morgan, Eric

    2015-04-01

    There have been a number of new applications for energy harvesting with the ever-decreasing power consumption of microelectronic devices. In this paper we explore a new area of marine animal energy harvesting for use in powering tags known as bio-loggers. These devices record data about the animal or its surroundings, but have always had limited deployment times due to battery depletion. Reduced solar irradiance below the water's surface provides the impetus to explore other energy harvesting concepts beyond solar power for use on marine animals. We review existing tag technologies in relation to this application, specifically relating to energy consumption. Additionally, we propose a new idea for energy harvesting, using hydrostatic pressure changes as a source for energy production. We present initial testing results of a bench-top model and show that the daily energy harvesting potential from this technology can meet or exceed that consumed by current marine bio-logging tags. The application of this concept in the arena of bio-logging technology could substantially increase bio-logger deployment lifetimes, allowing for longitudinal studies over the course of multiple breeding and/or migration cycles.

  20. Broadband vibratory energy harvesting via bubble shaped response curves

    NASA Astrophysics Data System (ADS)

    Lu, Ze-Qi; Chen, Li-Qun

    2016-09-01

    This paper concerns an investigation into the characteristics of a linear-nonlinear coupled electromagnetic energy harvester. The nonlinear oscillator consists of a linear (mass-spring-damper) oscillator with two additional horizontal springs. It is assumed that the vibration is restricted to one direction of harvesting mass to which the parallel magnetic field is induced. Of interest here, however, is the bubble shaped response curves for the amplitude- frequency response, and its potential benefits on the energy harvesting. The Harmonic balance method is used to analysis the power amplitude-frequency response of the system. It is found that the linear and nonlinear resonances could interact with each other at moderate excitation levels, so bubble shaped response curves are formed. The benefits of the nonlinearity on the energy harvesting are achieved. The results are also validated by some numerical work. Then the averaged power under Gaussian white noise is also calculated numerically, the results demonstrate that the bubble shaped response curves design produces more power than other designs under random excitation.

  1. Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro; Tomii, Kazuki; Hagiwara, Saori; Miyake, Shuntaro; Hasegawa, Yuichi; Sato, Takamitsu; Kaneko, Yuta; Nishioka, Yasushiro

    2013-12-01

    Acoustic energy harvesters that function in environments where sound pressure is extremely high (~150 dB), such as in engine rooms of aircrafts, are expected to be capable of powering wireless health monitoring systems. This paper presents the power generation performances of a lead-zirconate-titanate (PZT) acoustic energy harvester with a vibrating PZT diaphragm. The diaphragm had a diameter of 2 mm, consisting of Al(0.1 μm)/PZT(1 μm)/Pt(0.1 μm)/Ti(0.1 μm)/SiO2(1.5 μm). The harvester generated a power of 1.7×10-13 W under a sound pressure level of 110 dB at the first resonance frequency of 6.28 kHz. It was found that the generated power was increased to 6.8×10-13 W using a sound-collecting Helmholtz resonator cone with the height of 60 mm. The cone provided a Helmholtz resonance at 5.8 kHz, and the generated power increased from 3.4×10-14 W to 1.4×10-13 W at this frequency. The cone was also effective in increasing the bandwidth of the energy harvester.

  2. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    NASA Astrophysics Data System (ADS)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  3. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  4. Impulse-Excited Energy Harvester based on Potassium-Ion- Electret

    NASA Astrophysics Data System (ADS)

    Ashizawa, H.; Mitsuya, H.; Ishibashi, K.; Ishikawa, T.; Fujita, H.; Hashiguchi, G.; Toshiyoshi, H.

    2015-12-01

    We have developed an energy harvester that is specifically desired for impulse acceleration of infrastructure vibrations such as sudden motion at railway bridges. The energy harvester based on potassium-ion-electret on the sidewalls of 1.8- μm-gap comb electrodes generated a 64 μAp-p current during low impulse acceleration, which was large enough to light a green LED.

  5. Energy harvesting devices, systems, and related methods

    DOEpatents

    Kotter, Dale K.

    2016-10-18

    Energy harvesting devices include a substrate and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to collect energy in the visible and infrared light spectra and to reradiate energy having a wavelength in the range of about 0.8 .mu.m to about 0.9 .mu.m. The resonance elements are arranged in groups of two or more resonance elements. Systems for harvesting electromagnetic radiation include a substrate, a plurality of resonance elements including a conductive material carried by the substrate, and a photovoltaic material coupled to the substrate and to at least one resonance element. The resonance elements are arranged in groups, such as in a dipole, a tripole, or a bowtie configuration. Methods for forming an energy harvesting device include forming groups of two or more discrete resonance elements in a substrate and coupling a photovoltaic material to the groups of discrete resonance elements.

  6. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    NASA Astrophysics Data System (ADS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  7. Energy harvesting under excitation of clamped-clamped beam

    NASA Astrophysics Data System (ADS)

    Batra, Ashok; Alomari, Almuatasim; Aggarwal, Mohan; Bandyopadhyay, Alak

    2016-04-01

    In this article, a piezoelectric energy harvesting has been developed experimentally and theoretically based on Euler- Bernoulli Theory. A PVDF piezoelectric thick film has attached along of clamped-clamped beam under sinusoidal base excitation of shaker. The results showed a good agreement between the experimental and simulation of suggested model. The voltage output frequency response function (FRF), current FRF, and output power has been studied under short and open circuit conditions at first vibration mode. The mode shape of the clamped-clamped beam for first three resonance frequency has been modeled and investigated using COMSOL Multiphysics and MATLAB.

  8. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  9. Thermal energy harvesting plasmonic based chemical sensors.

    PubMed

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A

    2014-10-28

    Detection of gases such as H2, CO, and NO2 at 500 °C or greater requires materials with thermal stability and reliability. One of the major barriers toward integration of plasmonic-based chemical sensors is the requirement of multiple components such as light sources and spectrometers. In this work, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The combination of a plasmonic-based energy harvesting sensing paradigm with PCA analysis offers a novel path toward simplification and integration of plasmonic-based sensing methods. PMID:25280004

  10. Vibrational energy transfer in fluids

    NASA Astrophysics Data System (ADS)

    Miller, David W.; Adelman, Steven A.

    A review of several of the available theories of vibrational energy transfer (VET) in the gas and liquid phases is presented. First the classical theory of gas phase VET mainly due to Landau and Teller, to Jackson and Mott and to Zener is developed in some detail. Next the Schwartz-Slawsky-Herzfeld theory, a framework for analysing VET data based on the classical theory, is outlined. Experimental tests of the classical theory and theoretical critiques of its assumptions are then described. Next a brief review of the modern ab-initio quantum approach to gas phase VET rates, taking as an example the work of Banks, Clary and Werner, is given. Theories of VET at elevated densities are then discussed. The isolated binary collision model is reviewed and a new molecular approach to the density, temperature and isotope dependences of vibrational energy relaxation rates, due to Adelman and co-workers, is outlined.

  11. Exact H2 optimal tuning and experimental verification of energy-harvesting series electromagnetic tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Liu, Yilun; Zuo, Lei; Lin, Chi-Chang; Parker, Jason

    2016-04-01

    Energy-harvesting series electromagnetic tuned mass dampers (EMTMDs) have been recently proposed for dual-functional energy harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. In this paper, we derive ready-to-use analytical tuning laws for the energy-harvesting series EMTMD system when the primary structure is subjected to force or ground excitations, like wind loads or earthquakes. Both vibration mitigation and energy harvesting performances are optimized using H2 criteria to minimize root-mean-square values of the deformation of the primary structure, or maximize the average harvestable power. These analytical tuning laws can easily guide the design of series EMTMDs under various ambient loadings. Later, extensive numerical analysis is presented to show the effectiveness of the series EMTMDs. The numerical analysis shows that the series EMTMD is superior to mitigate the vibration of the primary structure nearly across the whole frequency spectrum, as compared to that of classic TMDs. Simultaneously, the series EMTMD can better harvest the energy due to broader bandwidth effect. Beyond simulations, this paper also experimentally verifies the effectiveness of the energy-harvesting series electromagnetic TMDs in both vibration mitigation and energy harvesting.

  12. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Shengxi; Cao, Junyi; Inman, Daniel J.; Lin, Jing; Li, Dan

    2016-07-01

    Nonlinear energy harvesters are very sensitive to ambient vibrations. If the excitation level is too low, their large-amplitude oscillations for high-energy voltage output cannot be obtained. A nonlinear tristable energy harvester has been previously proposed to achieve more effective broadband energy harvesting for low-level excitations. However, the sensitivity of its dynamic characteristics to the system parameters remains uninvestigated. Therefore, this paper theoretically analyzes the influence of the external load, the external excitation, the internal system parameters and the equilibrium positions on the dynamic responses of nonlinear tristable energy harvesters by using the harmonic balance method. In addition, numerical acceleration excitation thresholds and basins of attraction are provided to investigate the potential for energy harvesting performance enhancement using the suitable equilibrium positions, appropriate initial conditions or external disturbances, due to high-energy interwell oscillations in the multi-solution ranges. More importantly, experimental voltage responses of a given tristable energy harvester versus the external excitation frequency and amplitude verify the existence of experimental multi-solution ranges and the effectiveness of the theoretical analysis. It is also revealed that achieving high-energy interwell oscillations in the multi-solution ranges of tristable energy harvesters will be feasible for improving energy harvesting from low-level ambient excitations.

  13. Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo; Priya, Shashank; Uchino, Kenji

    2006-07-01

    This study reports the experimental and analytical results on a piezoelectric cymbal with 29 mm diameter and 1 mm thickness operating under force of 70 N in the frequency range of 10-200 Hz. It was found that the generated power increases with the frequency and around 100 mW can be harvested at frequency of 200 Hz across a 200 kΩ resistor. Power generation from the cymbal transducer was modeled by using the theory developed for the Belleville spring. The calculated results were found to be in good agreement with the experimental results. The results indicate that the metal-ceramic composite transducer “CYMBAL” is the most promising structure for harvesting the electric energy from automobile engine vibrations. The metal cap enhances the endurance of the ceramic to sustain high loads along with stress amplification.

  14. Acoustic energy harvesting using an electromechanical Helmholtz resonator.

    PubMed

    Liu, Fei; Phipps, Alex; Horowitz, Stephen; Ngo, Khai; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2008-04-01

    This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices. PMID:18397006

  15. Prototyping of Battery-less Wireless Sensor Node Using Electret-based Kinetic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Saruwatari, Kumio; Suzuki, Yuji

    A battery-less wireless sensor node using a vibration-driven MEMS electret energy harvester has been prototyped. With hybrid high-aspect ratio parylene springs and high-performance electret material based on perfluoro polymer CYTOP, more than 3μW output power can be obtained in a broad range vibration frequency of 26-40 Hz at 1.4 G. By integrating the energy harvester with a power management circuit, low-power-consumption CPU, and RF IC, intermittent wireless transmission with an interval of 80.6 s has been realized.

  16. An eddy current-induced magnetic plucking for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Do, Nam Ho; Baek, Yoon Su

    2016-04-01

    Frequency up-conversion is a very efficient method of energy harvesting in order to overcome low, non-periodic, or altered ambient vibration. In order to perform frequency up-conversion and transference of mechanical energy without contact, an eddy current-induced magnetic drag force is used. In this paper, we present a novel configuration of eddy current-induced magnetic plucking for piezoelectric energy harvesting. Our method consists of two permanent magnets, a piezoelectric beam, and a copper disk piece. We design our harvesting method to achieve loading, sudden release, and free vibration using the actuation of the piezoelectric beam through the magnetic mutual coupling between the magnet and copper disk piece. We present the principle of magnetic drag force-generation, characterize the energy harvesting performance of our harvesting method, and demonstrate our harvesting method’s capability of frequency up-conversion and transference of mechanical energy without contact under low, non-periodic, or altered ambient vibration. To that end, we describe the calculation of magnetic drag force with various geometric dimensions and material properties, model of the piezoelectric cantilever beam, comparison between estimation response and measured experiment response, and the measured voltage and power responses.

  17. Modeling and analysis of a biomorph piezoelectric energy harvester for railway bridge monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2012-04-01

    Wireless sensor network is one of prospective methods for railway bridge health monitoring. It has drawn much attention due to the long-term operation and low-maintenance performances. However, how to provide power to wireless sensors is a big issue. In railway health monitoring, the idea of converting ambient vibration energy from the vibration of railway track induced by passing train to electric energy has made it an efficient way for powering the wireless sensor networks. In this paper, a bimorph piezoelectric energy harvester from base excitation was investigated in the laboratory, and the energy output of the bimorph energy harvester was predicted by an equivalent single-degree-of-freedom (SDOF) model. Reasonable results have been found between the tested and predicted data. Based on the theoretical model, further works on optimization of the bimorph piezoelectric energy harvester will be performed in future.

  18. Exploring the roles of standard rectifying circuits on the performance of a nonlinear piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Tang, Lihua; Han, Yue; Hand, James; Harne, Ryan L.

    2016-04-01

    To enhance the energy conversion performance of piezoelectric vibration energy harvesters, such structures have been recently designed to leverage bandwidth-enhancing nonlinear dynamics. While key findings have been made, the majority of researchers have evaluated the opportunities when the harvesters are connected to pure resistive loads (AC interface). The alternating voltage generated by such energy harvesting systems cannot be directly utilized to power conventional electronics. Rectifying circuits are required to interface the device and electronic load but few efforts have considered how a standard rectifying DC interface circuit (DC interface) connected to a nonlinear piezoelectric energy harvester influences the system performance. The aim of this research is to begin exploring this critical feature of the nonlinear energy harvesting system. A nonlinear, monostable piezoelectric energy harvester (MPEH) is fabricated and evaluated to determine the generated power and useful operating bandwidth when connected to a DC interface. The nonlinearity is introduced into the harvester design by tuneable magnetic force. An equivalent circuit model of the MPEH is implemented with a user-defined nonlinear behavioral voltage source representative of the magnetic interaction. The model is validated comparing the open circuit voltage from circuit simulation and experiment. The practical energy harvesting capability of the MPEH connected to the AC and DC interface circuits are then investigated and compared, focusing on the influence of the varying load on the nonlinear dynamics and subsequent bandwidth and harvested power.

  19. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework

    PubMed Central

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2013-01-01

    The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel. PMID:23267114

  20. 3-dimensional fabrication of soft energy harvesters

    NASA Astrophysics Data System (ADS)

    McKay, Thomas; Walters, Peter; Rossiter, Jonathan; O'Brien, Benjamin; Anderson, Iain

    2013-04-01

    Dielectric elastomer generators (DEG) provide an opportunity to harvest energy from low frequency and aperiodic sources. Because DEG are soft, deformable, high energy density generators, they can be coupled to complex structures such as the human body to harvest excess mechanical energy. However, DEG are typically constrained by a rigid frame and manufactured in a simple planar structure. This planar arrangement is unlikely to be optimal for harvesting from compliant and/or complex structures. In this paper we present a soft generator which is fabricated into a 3 Dimensional geometry. This capability will enable the 3-dimensional structure of a dielectric elastomer to be customised to the energy source, allowing efficient and/or non-invasive coupling. This paper demonstrates our first 3 dimensional generator which includes a diaphragm with a soft elastomer frame. When the generator was connected to a self-priming circuit and cyclically inflated, energy was accumulated in the system, demonstrated by an increased voltage. Our 3D generator promises a bright future for dielectric elastomers that will be customised for integration with complex and soft structures. In addition to customisable geometries, the 3D printing process may lend itself to fabricating large arrays of small generator units and for fabricating truly soft generators with excellent impedance matching to biological tissue. Thus comfortable, wearable energy harvesters are one step closer to reality.

  1. Advanced model for fast assessment of piezoelectric micro energy harvesters

    NASA Astrophysics Data System (ADS)

    Ardito, Raffaele; Corigliano, Alberto; Gafforelli, Giacomo; Valzasina, Carlo; Procopio, Francesco; Zafalon, Roberto

    2016-04-01

    The purpose of this work is to present recent advances in modelling and design of piezoelectric energy harvesters, in the framework of Micro-Electro-Mechanical Systems (MEMS). More specifically, the case of inertial energy harvesting is considered, in the sense that the kinetic energy due to environmental vibration is transformed into electrical energy by means of piezoelectric transduction. The execution of numerical analyses is greatly important in order to predict the actual behaviour of MEMS devices and to carry out the optimization process. In the common practice, the results are obtained by means of burdensome 3D Finite Element Analyses (FEA). The case of beams could be treated by applying 1D models, which can enormously reduce the computational burden with obvious benefits in the case of repeated analyses. Unfortunately, the presence of piezoelectric coupling may entail some serious issues in view of its intrinsically three-dimensional behaviour. In this paper, a refined, yet simple, model is proposed with the objective of retaining the Euler-Bernoulli beam model, with the inclusion of effects connected to the actual three-dimensional shape of the device. The proposed model is adopted to evaluate the performances of realistic harvesters, both in the case of harmonic excitation and for impulsive loads.

  2. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    NASA Astrophysics Data System (ADS)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  3. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  4. Power management circuit for resonant energy harvesters

    NASA Astrophysics Data System (ADS)

    Jirku, Tomas; Steinbauer, Miloslav; Kluge, Martin

    2009-05-01

    This paper deals with the design of the power management circuit for the vibration generator developed in the frame of the European WISE project and its testing in the connection with the generator and the dynamic load simulating the real load. This generator is used as an autonomous energy source for wireless sensor applications. It can be used for example in the aeronautic, automotive and many other applications. The generator output power analysis was based on the vibration spectrum measured on the helicopter engine, provided by the consortium EADS, EUROCOPTER, DASSAULT AVIATION - 6.RP -WIreless SEnsing (WISE) project. This spectrum shows very unstable vibration levels. It was done the statistical analysis of these vibration levels and it was shown that there is a need of the power management circuit, which can provide a stable output voltage for the supplied circuit and if there is a need it can store an immediately unusable generated energy. The generator can't be used as the only energy source for the sensor circuit, because there are not any vibrations when for example a motor is stopped. In these periods and in the time of low vibration levels the circuit must be supplied from battery. The power management circuit described in this paper fulfills these requirements. It has two power inputs - the battery and the generator. It can switch between them at certain defined generator output levels by the threshold detector. Also when there is too much of the generated power, it can store the extra energy in the storage for the later usage. The storage device is the advanced capacitor. The advanced capacitor is a device containing three capacitors. These capacitors are connected (and charged) sequentially so the increasing capacity is provided. The developed power management was tested in the connection with the real vibration generator raised by stable vibration levels and the dynamic load simulating the real sensor in the main operation stages - sampling and data

  5. Hybrid piezoelectric-inductive flow energy harvesting and dimensionless electroaeroelastic analysis for scaling

    NASA Astrophysics Data System (ADS)

    Dias, J. A. C.; De Marqui, C.; Erturk, A.

    2013-01-01

    Piezoelectric and electromagnetic transduction techniques have peculiar advantages to leverage in the growing field of flow energy harvesting from aeroelastic vibrations. This letter presents the concept of hybrid piezoelectric-inductive power generation with electroaeroelastic modeling and simulations. Dimensionless analysis of the coupled system dynamics is indispensable to proper geometric scaling and optimization of aeroelastic energy harvesters. The governing electroaeroelastic equations are given in dimensionless form, and the effects of aeroelastic and electrical properties are investigated in detail toward understanding the dependence of the cut-in speed (flutter speed) and the maximum power output of the harvester on the system parameters.

  6. Broadband magnetic levitation-based nonlinear energy harvester

    NASA Astrophysics Data System (ADS)

    Nammari, Abdullah; Doughty, Seth; Savage, Dustin; Weiss, Leland; Jaganathan, Arun; Bardaweel, Hamzeh

    2016-05-01

    In this work, development of a broadband nonlinear electromagnetic energy harvester is described. The energy harvester consists of a casing housing stationary magnets, a levitated magnet, oblique mechanical springs, and a coil. Magnetic and oblique springs introduce nonlinear behavior into the energy harvester. A mathematical model of the proposed device is developed and validated. The results show good agreement between model and experiment. The significance of adding oblique mechanical springs to the energy harvester design is investigated using the model simulation. The results from the model suggest that adding oblique springs to the energy harvester will improve the performance and increase the frequency bandwidth and amplitude response of the energy harvester.

  7. Energy-harvesting at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew; Sothmann, Björn; Sánchez, Rafael; Büttiker, Markus

    2013-03-01

    Energy harvesting is the process by which energy is taken from the environment and transformed to provide power for electronics. Specifically, the conversion of thermal energy into electrical power, or thermoelectrics, can play a crucial role in future developments of alternative sources of energy. Unfortunately, present thermoelectrics have low efficiency. Therefore, an important task in condensed matter physics is to find new ways to harvest ambient thermal energy, particularly at the smallest length scales where electronics operate. To achieve this goal, there is on one hand the miniaturizing of electrical devices, and on the other, the maximization of either efficiency or power the devices produce. We will present the theory of nano heat engines able to efficiently convert heat into electrical power. We propose a resonant tunneling quantum dot engine that can be operated either in the Carnot efficient mode, or maximal power mode. The ability to scale the power by putting many such engines in a ``Swiss cheese sandwich'' geometry gives a paradigmatic system for harvesting thermal energy at the nanoscale. This work was supported by the US NSF Grant No. DMR-0844899, the Swiss NSF, the NCCR MaNEP and QSIT, the European STREP project Nanopower, the CSIC and FSE JAE-Doc program, the Spanish MAT2011-24331 and the ITN Grant 234970 (EU)

  8. Magneto-Thermo-Triboelectric Generator (MTTG) for thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Yeop; Lee, James; Lee, Dong-Gun

    2016-04-01

    We present a novel thermal energy harvesting system using triboelectric effect. Recently, there has been intensive research efforts on energy harvesting using triboelectric effect, which can produce surprising amount of electric power (when compared to piezoelectric materials) by rubbing or touching (i.e, electric charge by contact and separation) two different materials together. Numerous studies have shown the possibility as an attractive alternative with good transparency, flexibility and low cost abilities for its use in wearable device and smart phone applications markets. However, its application has been limited to only vibration source, which can produce sustained oscillation with maintaining contact and separation states repeatedly for triboelectric effect. Thus, there has been no attempt toward thermal energy source. The proposed approach can convert thermal energy into electricity by pairing triboelectric effect and active ferromagnetic materials The objective of the research is to develop a new manufacturing process of design, fabrication, and testing of a Magneto-Thermo-Triboelectric Generator (MTTG). The results obtained from the approach show that MTTG devices have a feasible power energy conversion capability from thermal energy sources. The tunable design of the device is such that it has efficient thermal capture over a wide range of operation temperature in waste heat.

  9. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.

    PubMed

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2016-05-01

    A piezoelectric vibration energy harvester with interdigital shaped cantilever was developed by using silicon bulk micromachining technology. The proposed energy harvester was designed to obtain multi degree-of-freedom (m-DOF). Most of the piezoelectric vibration energy harvesters are comprised of mass-loaded cantilever beams having several resonant frequencies. The second resonant frequency of such a device has lower amplitude compared to its first resonant frequency (fundamental frequency). Therefore, the interdigital shaped cantilever has been proposed for multiple fundamental resonant frequencies. The fabricated piezoelectric vibration energy harvester is composed of main cantilever (MC), sub-main cantilever (SMC), and secondary cantilevers (SC). MC surrounds SMC and SC which have same dimension of 5600 x 800 x 10 μm3. The fabricated piezoelectric energy harvester can generate 51.4 mV(p-p) and 11 mV(p-p) of output voltages at 24.2 Hz and 33 Hz of its resonant frequencies by MC. Moreover, it can generate 8 mV(p-p) and 6.6 mV(p-p) of output voltages at 24.2 Hz and 33.2 Hz of its resonant frequencies by SMC; and 364 mV(p-p) of output voltage at 33.6 Hz of its resonant frequency by SC. PMID:27483909

  10. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.

    PubMed

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2016-05-01

    A piezoelectric vibration energy harvester with interdigital shaped cantilever was developed by using silicon bulk micromachining technology. The proposed energy harvester was designed to obtain multi degree-of-freedom (m-DOF). Most of the piezoelectric vibration energy harvesters are comprised of mass-loaded cantilever beams having several resonant frequencies. The second resonant frequency of such a device has lower amplitude compared to its first resonant frequency (fundamental frequency). Therefore, the interdigital shaped cantilever has been proposed for multiple fundamental resonant frequencies. The fabricated piezoelectric vibration energy harvester is composed of main cantilever (MC), sub-main cantilever (SMC), and secondary cantilevers (SC). MC surrounds SMC and SC which have same dimension of 5600 x 800 x 10 μm3. The fabricated piezoelectric energy harvester can generate 51.4 mV(p-p) and 11 mV(p-p) of output voltages at 24.2 Hz and 33 Hz of its resonant frequencies by MC. Moreover, it can generate 8 mV(p-p) and 6.6 mV(p-p) of output voltages at 24.2 Hz and 33.2 Hz of its resonant frequencies by SMC; and 364 mV(p-p) of output voltage at 33.6 Hz of its resonant frequency by SC.

  11. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  12. Opportunities for energy harvesting in automobile factories

    NASA Astrophysics Data System (ADS)

    Adegoke, E. I.; Edwards, R. M.; Whittow, Will; Bindel, Axel; Peca, Marco

    2016-04-01

    This paper investigates the opportunities of deploying distributed sensors within the manufacturing environment of a large scale automobile plant using energy harvesting techniques. Measurements were taken in three domains at the plant in order to characterize ambient energy. Due to the location of the plant, the RF power density for radio access technologies present varied between -127 dBm/cm2 and -113 dBm/cm2. The maximum temperature difference measured within accessible distance from machine parts on the production lines surveyed was 10°C. Indoor lighting was dominant at the plant via fluorescent tubes, with average irradiance of 1 W/m2. The results obtained from this measurement campaign showed that indoor lighting was the most suitable ambient source for energy harvesting.

  13. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. Simple piezoelectric cantilever for energy harvesting is uni-directional and has bandwidth limitation. In this research we explore utilizing internal resonances to harvest vibratory energy due to excitations from an arbitrary direction with the usage of a single piezoelectric cantilever. Specifically, it is identified that by attaching a pendulum to the piezoelectric cantilever, 1:2 internal resonances can be induced based on the nonlinear coupling. The nonlinear effect induces modal energy exchange between beam bending motion and pendulum motions in 3-dimensional space, which ultimately yield multidirectional energy harvesting by a single cantilever. Systematic analysis and experimental investigation are carried out to demonstrate this new concept.

  14. 3D, wideband vibro-impacting-based piezoelectric energy harvester

    SciTech Connect

    Yu, Qiangmo; Yang, Jin Yue, Xihai; Yang, Aichao; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping

    2015-04-15

    An impacting-based piezoelectric energy harvester was developed to address the limitations of the existing approaches in single-dimensional operation as well as a narrow working bandwidth. In the harvester, a spiral cylindrical spring rather than the conventional thin cantilever beam was utilized to extract the external vibration with arbitrary directions, which has the capability to impact the surrounding piezoelectric beams to generate electricity. And the introduced vibro-impacting between the spiral cylindrical spring and multi-piezoelectric-beams resulted in not only a three-dimensional response to external vibration, but also a bandwidth-broadening behavior. The experimental results showed that each piezoelectric beam exhibited a maximum bandwidth of 8 Hz and power of 41 μW with acceleration of 1 g (with g=9.8 ms{sup −2}) along the z-axis, and corresponding average values of 5 Hz and 45 μW with acceleration of 0.6 g in the x-y plane. .

  15. 3D, wideband vibro-impacting-based piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yu, Qiangmo; Yang, Jin; Yue, Xihai; Yang, Aichao; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping

    2015-04-01

    An impacting-based piezoelectric energy harvester was developed to address the limitations of the existing approaches in single-dimensional operation as well as a narrow working bandwidth. In the harvester, a spiral cylindrical spring rather than the conventional thin cantilever beam was utilized to extract the external vibration with arbitrary directions, which has the capability to impact the surrounding piezoelectric beams to generate electricity. And the introduced vibro-impacting between the spiral cylindrical spring and multi-piezoelectric-beams resulted in not only a three-dimensional response to external vibration, but also a bandwidth-broadening behavior. The experimental results showed that each piezoelectric beam exhibited a maximum bandwidth of 8 Hz and power of 41 μW with acceleration of 1 g (with g=9.8 ms-2) along the z-axis, and corresponding average values of 5 Hz and 45 μW with acceleration of 0.6 g in the x-y plane.

  16. Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates

    NASA Astrophysics Data System (ADS)

    Rafiee, M.; He, X. Q.; Liew, K. M.

    2014-06-01

    This paper investigates the nonlinear analysis of energy harvesting from piezoelectric functionally graded carbon nanotube reinforced composite plates under combined thermal and mechanical loadings. The excitation, which derives from harmonically varying mechanical in-plane loading, results in parametric excitation. The governing equations of the piezoelectric functionally graded carbon nanotube reinforced composite plates are derived based on classical plate theory and von Kármán geometric nonlinearity. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned, straight and have a uniform layout. The linear buckling and vibration behavior of the nanocomposite plates is obtained in the first step. Then, Galerkin’s method is employed to derive the nonlinear governing equations of the problem with cubic nonlinearities associated with mid-plane stretching. Periodic solutions are determined by using the Poincaré-Lindstedt perturbation scheme with movable simply supported boundary conditions. The effects of temperature change, the volume fraction and the distribution pattern of the SWCNTs on the parametric resonance, in particular the amplitude of vibration and the average harvested power of the smart functionally graded carbon nanotube reinforced composite plates, are investigated through a detailed parametric study.

  17. Flexible piezoelectric energy harvesting from jaw movements

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2014-10-01

    Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.

  18. Vibrational dynamics of plant light-harvesting complex LHC II investigated by quasi- and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golub, Maksym; Irrgang, Klaus-Dieter; Rusevich, Leonid; Pieper, Jörg

    2015-01-01

    Vibrational dynamics of the light-harvesting complex II (LHC II) from spinach was investigated by quasi- and inelastic neutron scattering (QENS and INS) at three different temperatures of 80, 160, and 285 K. QENS/INS spectra of solubilised LHC II and of the corresponding buffer solution were obtained separately and exhibit characteristic inelastic features. After subtraction of the buffer contribution, the INS spectrum of LHC II reveals a distinct Boson peak at ˜ 2.5 meV at 80 K that shifts towards lower energies if the temperature is increased to 285 K. This effect is interpreted in terms of a "softening" of the protein matrix along with the dynamical transition at ˜ 240 K. Our findings indicate that INS is a valuable method to obtain the density of vibrational states not only at cryogenic, but also at physiological temperatures.

  19. Design and analysis of a MEMS-based bifurcate-shape piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Gan, Ruyi; Wan, Shalang; Xu, Ruilin; Zhou, Hanxing

    2016-04-01

    This paper presents a novel piezoelectric energy harvester, which is a MEMS-based device. This piezoelectric energy harvester uses a bifurcate-shape. The derivation of the mathematical modeling is based on the Euler-Bernoulli beam theory, and the main mechanical and electrical parameters of this energy harvester are analyzed and simulated. The experiment result shows that the maximum output voltage can achieve 3.3V under an acceleration of 1g at 292.11Hz of frequency, and the output power can be up to 0.155mW under the load of 0.4MΩ. The power density is calculated as 496.79μWmm-3. Besides that, it is demonstrated efficiently at output power and voltage and adaptively in practical vibration circumstance. This energy harvester could be used for low-power electronic devices.

  20. Recent Advancements in Nanogenerators for Energy Harvesting.

    PubMed

    Hu, Fei; Cai, Qian; Liao, Fan; Shao, Mingwang; Lee, Shuit-Tong

    2015-11-11

    Nanomaterial-based generators are a highly promising power supply for micro/nanoscale devices, capable of directly harvesting energy from ambient sources without the need for batteries. These generators have been designed within four main types: piezoelectric, triboelectric, thermoelectric, and electret effects, and consist of ZnO-based, silicon-based, ferroelectric-material-based, polymer-based, and graphene-based examples. The representative achievements, current challenges, and future prospects of these nanogenerators are discussed.

  1. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation.

  2. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation. PMID:17941391

  3. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.

    PubMed

    Hu, Yuantai; Xue, Huan; Hu, Ting; Hu, Hongping

    2008-01-01

    This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times.

  4. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.

    PubMed

    Hu, Yuantai; Xue, Huan; Hu, Ting; Hu, Hongping

    2008-01-01

    This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times. PMID:18334321

  5. Multi-physics model of a thermo-magnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Joshi, Keyur B.; Priya, Shashank

    2013-05-01

    Harvesting small thermal gradients effectively to generate electricity still remains a challenge. Ujihara et al (2007 Appl. Phys. Lett. 91 093508) have recently proposed a thermo-magnetic energy harvester that incorporates a combination of hard and soft magnets on a vibrating beam structure and two opposing heat transfer surfaces. This design has many advantages and could present an optimum solution to harvest energy in low temperature gradient conditions. In this paper, we describe a multi-physics numerical model for this harvester configuration that incorporates all the relevant parameters, including heat transfer, magnetic force, beam vibration, contact surface and piezoelectricity. The model was used to simulate the complete transient behavior of the system. Results are presented for the evolution of the magnetic force, changes in the internal temperature of the soft magnet (gadolinium (Gd)), thermal contact conductance, contact pressure and heat transfer over a complete cycle. Variation of the vibration frequency with contact stiffness and gap distance was also modeled. Limit cycle behavior and its bifurcations are illustrated as a function of device parameters. The model was extended to include a piezoelectric energy harvesting mechanism and, using a piezoelectric bimorph as spring material, a maximum power of 318 μW was predicted across a 100 kΩ external load.

  6. Energy scavenging from environmental vibration.

    SciTech Connect

    Galchev, Tzeno; Apblett, Christopher Alan; Najafi, Khalil

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The

  7. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    NASA Astrophysics Data System (ADS)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  8. Environmental effects of harvesting forests for energy

    SciTech Connect

    Van Hook, R. I.; Johnson, D. W.; West, D. C.; Mann, L. K.

    1980-01-01

    Present interest in decreasing US dependence on foreign oil by increasing the use of wood for energy may bring about a change in our forest utilization policies. In the past, forests have been removed in areas believed to be suited for agriculture, or sawtimber and pulp have been the only woody material removed in any quantity from land not generally considered tillable. The new demands on wood for energy are effecting a trend toward (1) removing all woody biomass from harvested areas, (2) increasing the frequency of harvesting second growth forests, and (3) increasing production with biomass plantations. Considering the marginal quality of much of the remaining forested land, the impacts of these modes of production could be significant. For example, it is anticipated that increased losses of nutrients and carbon will occur by direct forest removal and through erosion losses accelerated by forest clearing. There are, however, control measures that can be utilized in minimizing both direct and indirect effects of forest harvesting while maximizing woody biomass production.

  9. Nonlinearities in energy-harvesting media

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Jenkins, Robert D.

    2001-07-01

    Both in natural photosynthetic systems and also their molecularly engineered mimics, energy is generally transferred to the sites of its chemical storage from other sites of primary optical excitation. This migration process generally entails a number of steps, frequently involving intermediary chromophore units, with each step characterised by high efficiency and rapidity. Energy thereby accrues at reaction centres where its chemical storage occurs. At high levels of irradiation, energy harvesting material can exhibit novel forms of optical nonlinearity. Such behaviour is associated with the direct pooling of excitation energy, enabling secondary acceptors to undergo transitions to states whose energy equals that of two or more input photons, subject to decay losses. Observations of this kind have now been made on a variety of materials, ranging from photoactive dyes, through fullerene derivatives, to lanthanide doped crystals. Recently developed theory has established the underlying principles and links between the modes of operation of these systems. Key factors include the chromophore layout and geometry, electronic structure and optical selection rules. Mesoscopic symmetry, especially in photosynthetic pigment arrays and also in their dendrimeric mimics, is here linked to the transient establishment of excitons. The involvement of excitons in energy harvesting is nonetheless substantially compromised by local disorder. The interplay of these factors in photoactive materials design is discussed in the context of new materials for operation with intense laser light.

  10. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    SciTech Connect

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  11. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Ou, Yi; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Wen

    2015-07-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  12. Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting

    PubMed Central

    Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M.; Choi, Yang-Kyu

    2015-01-01

    A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running. PMID:26553524

  13. Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M.; Choi, Yang-Kyu

    2015-11-01

    A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running.

  14. Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting.

    PubMed

    Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M; Choi, Yang-Kyu

    2015-11-10

    A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running.

  15. A wideband acoustic energy harvester using a three degree-of-freedom architecture

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this study, an acoustic energy harvester consisting of a perforated brass plate sandwiched between two cavities is designed and fabricated for scavenging energy from wide-spectrum acoustic sources. The multi-mode resonances of the device are adjusted closely spaced over a wide range of frequencies by properly tuned acoustic coupling of the vibrating plate and the two cavities. The experimental results show that the proximity of the multiple peaks enables the harvester operating in the frequency range of 1100-1400 Hz, which provides useful leads for the realization of acoustic energy generators of practical interest.

  16. Low power interface IC's for electrostatic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Kempitiya, Asantha

    interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the

  17. A Silicon Disk with Sandwiched Piezoelectric Springs for Ultra-low Frequency Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lu, J.; Zhang, L.; Yamashita, T.; Takei, R.; Makimoto, N.; Kobayashi, T.

    2015-12-01

    Exploiting the sporadic availability of energy by energy harvesting devices is an attractive solution to power wireless sensor nodes and many other distributed modules for much longer operation duration and much lower maintenance cost after they are deployed. MEMS energy harvesting devices exhibit unique advantageous of super-compact size, mass productivity, and easy-integration with sensors, actuators and other integrated circuits. However, MEMS vibration energy harvesting devices are rather difficult to be used practically due to their poor response to most of the ambient vibrations at ultra-low frequency range. In this paper, a micromachined silicon disk with sandwiched piezoelectric springs was successfully developed with resonant frequency of 15.36∼42.42 Hz and quality factor of 39∼55 for energy harvesting. Footprint size of the device was 6 mm × 6 mm, which is less than half of the piezoelectric cantilevers, while the device can scavenge reasonably high power of 0.57 μW at the acceleration of 0.1 g. The evaluation results also suggested that the device was quite sensitive as a sensor for selective monitoring of vibrations at a certain frequency.

  18. Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Maruccio, Claudio; Quaranta, Giuseppe; De Lorenzis, Laura; Monti, Giorgio

    2016-08-01

    Wireless monitoring could greatly impact the fields of structural health assessment and infrastructure asset management. A common problem to be tackled in wireless networks is the electric power supply, which is typically provided by batteries replaced periodically. A promising remedy for this issue would be to harvest ambient energy. Within this framework, the present paper proposes to harvest ambient-induced vibrations of bridge structures using a new class of piezoelectric textiles. The considered case study is an existing cable-stayed bridge located in Italy along a high-speed road that connects Rome and Naples, for which a recent monitoring campaign has allowed to record the dynamic responses of deck and cables. Vibration measurements have been first elaborated to provide a comprehensive dynamic assessment of this infrastructure. In order to enhance the electric energy that can be converted from ambient vibrations, the considered energy harvester exploits a power generator built using arrays of electrospun piezoelectric nanofibers. A finite element analysis is performed to demonstrate that such power generator is able to provide higher energy levels from recorded dynamic loading time histories than a standard piezoelectric energy harvester. Its feasibility for bridge health monitoring applications is finally discussed.

  19. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  20. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  1. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  2. Development of a biomechanical energy harvester

    PubMed Central

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-01-01

    Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313

  3. Microfabrication and Integration of a Sol-Gel PZT Folded Spring Energy Harvester

    PubMed Central

    Lueke, Jonathan; Badr, Ahmed; Lou, Edmond; Moussa, Walied A.

    2015-01-01

    This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing. PMID:26016911

  4. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

    PubMed

    Lueke, Jonathan; Badr, Ahmed; Lou, Edmond; Moussa, Walied A

    2015-01-01

    This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing. PMID:26016911

  5. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.

    PubMed

    Lueke, Jonathan; Badr, Ahmed; Lou, Edmond; Moussa, Walied A

    2015-05-26

    This paper presents the methodology and challenges experienced in the microfabrication, packaging, and integration of a fixed-fixed folded spring piezoelectric energy harvester. A variety of challenges were overcome in the fabrication of the energy harvesters, such as the diagnosis and rectification of sol-gel PZT film quality and adhesion issues. A packaging and integration methodology was developed to allow for the characterizing the harvesters under a base vibration. The conditioning circuitry developed allowed for a complete energy harvesting system, consisting a harvester, a voltage doubler, a voltage regulator and a NiMH battery. A feasibility study was undertaken with the designed conditioning circuitry to determine the effect of the input parameters on the overall performance of the circuit. It was found that the maximum efficiency does not correlate to the maximum charging current supplied to the battery. The efficiency and charging current must be balanced to achieve a high output and a reasonable output current. The development of the complete energy harvesting system allows for the direct integration of the energy harvesting technology into existing power management schemes for wireless sensing.

  6. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, N.; Thompson, L. L.

    2016-04-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation.

  7. Models for 31-Mode PVDF Energy Harvester for Wearable Applications

    PubMed Central

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%. PMID:25114981

  8. Models for 31-mode PVDF energy harvester for wearable applications.

    PubMed

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%. PMID:25114981

  9. Models for 31-mode PVDF energy harvester for wearable applications.

    PubMed

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%.

  10. Electromagnetic energy harvesting from a dual-mass pendulum oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Tang, Jiong

    2016-04-01

    This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.

  11. Rotational piezoelectric wind energy harvesting using impact-induced resonance

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Shen, Qinlong; Jin, Jiamei; Wang, Yiping; Qian, Wangjie; Yuan, Dewang

    2014-08-01

    To improve the output power of a rotational piezoelectric wind energy harvester, impact-induced resonance is proposed to enable effective excitation of the piezoelectric cantilevers' vibration modes and obtain optimum deformation, which enhances the mechanical/electrical energy transformation. The impact force is introduced by forming a piezoelectric bimorph cantilever polygon that is fixed at the circumference of the rotating fan's internal surface. Elastic balls are placed inside the polygon. When wind rotates the device, the balls strike the piezoelectric cantilevers, and thus electricity is generated by the piezoelectric effect. The impact point is carefully chosen to use the first bending mode as much as possible, and thus maximize the harvesting efficiency. The design enables each bimorph to be struck in a similar area and every bimorph is struck in that area at different moments. As a result, a relatively stable output frequency can be obtained. The output frequency can also be changed by choosing different bimorph dimensions, which will also make the device simpler and the costs lower. A prototype piezoelectric energy harvester consisting of twelve piezoelectric cantilevers was constructed. The piezoelectric cantilevers were made from phosphor bronze, the lead zirconium titanate (PZT)-based bimorph cantilever had dimensions of 47 mm × 20 mm × 0.5 mm, and the elastic balls were made from steel with a diameter of 10 mm. The optimal DC output power was 613 μW across the 20 kΩ resistor at a rotation speed of 200 r/min with an inscribed circle diameter of 31 mm.

  12. Energy harvesting to power embedded condition monitoring hardware

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin; Brown, Nathan; Siegel, Jake; McQuown, Justin; Humphris, Robert

    2015-04-01

    The shift toward condition-based monitoring is a key area of research for many military, industrial, and commercial customers who want to lower the overall operating costs of capital equipment and general facilities. Assessing the health of rotating systems such as gearboxes, bearings, pumps and other actuation systems often rely on the need for continuous monitoring to capture transient signals that are evidence of events that could cause (i.e. cavitation), or be the result of (i.e. spalling), damage within a system. In some applications this can be accomplished using line powered analyzers, however for wide-spread monitoring, the use of small-scale embedded electronic systems are more desirable. In such cases the method for powering the electronics becomes a significant design factor. This work presents a multi-source energy harvesting approach meant to provide a robust power source for embedded electronics, capturing energy from vibration, thermal and light sources to operate a low-power sensor node. This paper presents the general design philosophy behind the multi-source harvesting circuit, and how it can be extended from powering electronics developed for periodic monitoring to sensing equipment capable of providing continuous condition-based monitoring.

  13. On the use of nonlinear solitary waves for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Kaiyuan; Rizzo, Piervincenzo

    2015-04-01

    In the last decade there has been an increasing attention on the use of highly- and weakly- nonlinear solitary waves in engineering and physics. These waves can form and travel in nonlinear systems such as one-dimensional chains of spherical particles. One engineering application of solitary waves is the fabrication of acoustic lenses, which are employed in a variety of fields ranging from biomedical imaging and surgery to defense systems and damage detection. In this paper we propose to couple an acoustic lens to a wafer-type lead zirconate titanate transducer (PZT) to harvest energy from the vibration of an object tapping the lens. The lens is composed of a circle array made of chains of particles in contact with a polycarbonate material where the nonlinear waves coalesce into linear waves. The PZT located at the designed focal point converts the mechanical energy carried by the stress wave into electricity to power a load resistor. The performance of the designed harvester is compared to a conventional cantilever beam, and the experimental results show that the power generated with the nonlinear lens has the same order of magnitude of the beam.

  14. System for harvesting water wave energy

    DOEpatents

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  15. Thermoelectric energy harvesting with quantum dots.

    PubMed

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  16. Energy harvesting using a thermoelectric material

    DOEpatents

    Nersessian, Nersesse; Carman, Gregory P.; Radousky, Harry B.

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  17. Vibrational energy transfer in high explosives: Nitromethane

    SciTech Connect

    Hong, X.; Hill, J.R.; Dlott, D.D.

    1996-03-01

    Time resolved vibrational spectroscopy with picosecond tunable mid-infrared pulses is used to measure the rates and investigate the detailed mechanisms of multiphonon up-pumping and vibrational cooling in a condensed high explosive, nitromethane. Both processes occur on the 100 ps time scale under ambient conditions. The mechanisms involve sequential climbing or descending the ladder of molecular vibrations. Efficient intermolecular vibrational energy transfer from various molecules to the symmetric stretching excitation of NO2 is observed. The implications of these measurements for understanding shock initiation to detonation and the sensitivities of energetic materials to shock initiation are discussed briefly.

  18. Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters

    NASA Astrophysics Data System (ADS)

    Abdelkefi, A.; Ghommem, M.; Nuhait, A. O.; Hajj, M. R.

    2014-01-01

    We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming's fourth-order predictor-corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds.

  19. Portable Wind Energy Harvesters for Low-Power Applications: A Survey

    PubMed Central

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-01-01

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline. PMID:27438834

  20. Portable Wind Energy Harvesters for Low-Power Applications: A Survey.

    PubMed

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-01-01

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline. PMID:27438834

  1. Portable Wind Energy Harvesters for Low-Power Applications: A Survey.

    PubMed

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-07-16

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline.

  2. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks.

    PubMed

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-01-01

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414

  3. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.

    PubMed

    Zhang, Haifeng; Afzalul, Karim

    2014-06-01

    The rapid growth of remote, wireless, and microelectromechanical system (MEMS) devices over the past decades has motivated the development of a self-powered system that can replace traditional electrochemical batteries. Piezoelectric energy harvesters are ideal for capturing energy from mechanical vibrations in the ambient environment. Numerous studies have been made of this application of piezoelectric energy conversion; however, the narrow frequency operation band has limited its application to generate useful power. In this paper, a broadband energy harvester with an array/matrix of piezoelectric bimorphs connected by springs has been designed and analyzed based on the 1-D piezoelectric beam equations. The predicted result shows that the operational frequency band can be enlarged significantly by carefully adjusting the small end masses, length of the beam and spring stiffness. An optimal selection of the load impedance to realize the maximum power output is discussed. The results provide an important foundation for future broadband energy harvester design. PMID:24859665

  4. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-01-01

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414

  5. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks.

    PubMed

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-05-14

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio.

  6. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.

    PubMed

    Zhang, Haifeng; Afzalul, Karim

    2014-06-01

    The rapid growth of remote, wireless, and microelectromechanical system (MEMS) devices over the past decades has motivated the development of a self-powered system that can replace traditional electrochemical batteries. Piezoelectric energy harvesters are ideal for capturing energy from mechanical vibrations in the ambient environment. Numerous studies have been made of this application of piezoelectric energy conversion; however, the narrow frequency operation band has limited its application to generate useful power. In this paper, a broadband energy harvester with an array/matrix of piezoelectric bimorphs connected by springs has been designed and analyzed based on the 1-D piezoelectric beam equations. The predicted result shows that the operational frequency band can be enlarged significantly by carefully adjusting the small end masses, length of the beam and spring stiffness. An optimal selection of the load impedance to realize the maximum power output is discussed. The results provide an important foundation for future broadband energy harvester design.

  7. Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits

    NASA Astrophysics Data System (ADS)

    Zhao, Liya; Liang, Junrui; Tang, Lihua; Yang, Yaowen; Liu, Haili

    2015-04-01

    Galloping phenomenon has attracted extensive research attention for small-scale wind energy harvesting. In the reported literature, the dynamics and harvested power of a galloping-based energy harvesting system are usually evaluated with a resistive AC load; these characteristics might shift when a practical harvesting interface circuit is connected for extracting useful DC power. In the family of piezoelectric energy harvesting interface circuits, synchronized switching harvesting on inductor (SSHI) has demonstrated its advantage for enhancing the harvested power from existing base vibrations. This paper investigates the harvesting capability of a galloping-based wind energy harvester using SSHI interfaces, with a focus on comparing the performances of Series SSHI (S-SSHI) and Parallel SSHI (P-SSHI) with that of a standard DC interface, in terms of power at various wind speeds. The prototyped galloping-based piezoelectric energy harvester (GPEH) comprises a piezoelectric cantilever attached with a square-sectioned bluff body made of foam. Equivalent circuit model (ECM) of the GPEH is established and system-level circuit simulations with SSHI and standard interfaces are performed and validated with wind tunnel tests. The benefits of SSHI compared to standard circuit become more significant when the wind speed gets higher; while SSHI circuits lose the benefits at small wind speeds. In both experiment and simulation, the superiority of P-SSHI is confirmed while S-SSHI demands further investigation. The power output is increased by 43.75% with P-SSHI compared to the standard circuit at a wind speed of 6m/s.

  8. Energy harvesting from dancing: for broadening in participation in STEM fields

    NASA Astrophysics Data System (ADS)

    Hamidi, Armita; Tadesse, Yonas

    2016-04-01

    Energy harvesting from structure vibration, human motion or environmental source has been the focus of researchers in the past few decades. This paper proposes a novel design that is suitable to harvest energy from human motions such as dancing or physical exercise and use the device to engage young students in Science, Technology, Engineering and Math (STEM) fields and outreach activities. The energy harvester (EH) device was designed for a dominant human operational frequency range of 1-5 Hz and it can be wearable by human. We proposed to incorporate different genres of music coupled with energy harvesting technologies for motivation and energy generation. Students will learn both science and art together, since the energy harvesting requires understanding basic physical phenomena and the art enables various physical movements that imparts the largest motion transfer to the EH device. Therefore, the systems are coupled to each other. Young people follow music updates more than robotics or energy harvesting researches. Most popular videos on YouTube and VEVO are viewed more than 100 million times. Perhaps, integrating the energy harvesting research with music or physical exercise might enhance students' engagement in science, and needs investigation. A multimodal energy harvester consisting of piezoelectric and electromagnetic subsystems, which can be wearable in the leg, is proposed in this study. Three piezoelectric cantilever beams having permanent magnets at the ends are connected to a base through a slip ring. Stationary electromagnetic coils are installed in the base and connected in series. Whenever the device is driven by any oscillation parallel to the base, the unbalanced rotor will rotate generating energy across the stationary coils in the base. In another case, if the device is driven by an oscillation perpendicular to the base, a stress will be induced within the cantilever beams generating energy across the piezoelectric materials.

  9. Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Xu, Chundong; Ren, Bo; Liang, Zhu; Chen, Jianwei; Zhang, Haiwu; Yue, Qingwen; Xu, Qing; Zhao, Xiangyong; Luo, Haosu

    2012-11-01

    Cantilever driving low frequency piezoelectric energy harvester (CANDLE) has been found as a promising structure for vibration energy harvesting. This paper presents the nonlinear output properties of the CANDLE to optimize the performance of the device. Simulation results of the finite element method illustrate that nonlinear contacts between the cymbal transducers and the cantilever beam are main reasons of the nonlinear output. However, high excitation acceleration of the nonlinear leap point limits the application of the device. Based on the simulation results and theory analysis, the excitation acceleration is reduced to 30 m/s2 by increasing the proof mass.

  10. Potential Ambient Energy-Harvesting Sources and Techniques

    ERIC Educational Resources Information Center

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  11. PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Lee, M. H.; Wu, S.-H.

    2015-10-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to scavenge kinetic energy from periodic motion in specific directions. However, in some situations the motion is random in amplitude, frequency, and direction; or the targeted energy sources apply direct deformation or displacement to the harvesters. In these applications, flexible energy harvesters that are light, flat, and conformable to arbitrary 3D surfaces of the sources are desired to scavenge the energy from device deformation, rather than the motion of a moving mass. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with Parylene-C electret that can be attached to deformable surfaces. Furthermore, copper mesh is embedded in the flexible electrodes for robust electrode metallization as compared with traditional sputtered metal thin films. The fabricated harvesters achieved net output power of 2.2 μW, area power density of 2.2 μW cm-2, and volume power density of 22 μW cm-3 at the maximum test frequency of 20 Hz. Power generation by finger tapping and bending was demonstrated. Such harvesters have the potential for wearable and implantable electronic applications.

  12. Influence of the excitation parameters of the mechanical subsystem on effectiveness of energy harvesting system

    NASA Astrophysics Data System (ADS)

    Buchacz, A.; Banaś, W.; Płaczek, M.

    2015-11-01

    Piezoelectric transducers are used more and more often in modern technical devices. The wide range of their possible applications is a result of the possibility to use both direct and reverse piezoelectric effect. Nowadays, application of piezoelectric transducers in energy harvesting systems is getting more and more popular. It is caused by the easy way to convert energy of mechanical vibration to the electric voltage using piezoelectric transducers. This paper presents results of influence analysis of the vibrating mechanical subsystem's excitation parameters on the effectiveness of the system designed for energy harvesting. The considered vibrating system is a composite plate with piezoelectric transducer bonded to its surface. Vibrations of the system are excited by means of an actuator with possibility to change the excitation amplitude and frequency. Recovering of electrical energy from mechanical vibrations is possible by using the direct piezoelectric effect - generation of the electric voltage while the transducer is mechanically deformed. In carried out test Macro Fiber Composite (MFC) piezoelectric transducers were used. It was proved that the time that is necessary for switch on the output voltage in analyzed system depends on the frequency of the excitation.

  13. Multi-source energy harvester for wildlife tracking

    NASA Astrophysics Data System (ADS)

    Wu, You; Zuo, Lei; Zhou, Wanlu; Liang, Changwei; McCabe, Michael

    2014-03-01

    Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional way of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking device with multi-source energy harvester with advantage of high efficiency and reliability is investigated and developed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will remarkably extend the duration of wild life tracking. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. The rotational electromagnetic energy harvester can mechanically rectify the irregular bidirectional motion into unidirectional motion has been modeled and demonstrated.

  14. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    PubMed

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  15. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions.

    PubMed

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-07-06

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ.

  16. Flexible Piezoelectric Energy Harvesting from Mouse Click Motions

    PubMed Central

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2016-01-01

    In this paper, we study energy harvesting from the mouse click motions of a robot finger and a human index finger using a piezoelectric material. The feasibility of energy harvesting from mouse click motions is experimentally and theoretically assessed. The fingers wear a glove with a pocket for including the piezoelectric material. We model the energy harvesting system through the inverse kinematic framework of parallel joints in a finger and the electromechanical coupling equations of the piezoelectric material. The model is validated through energy harvesting experiments in the robot and human fingers with the systematically varying load resistance. We find that energy harvesting is maximized at the matched load resistance to the impedance of the piezoelectric material, and the harvested energy level is tens of nJ. PMID:27399705

  17. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  18. Energy harvesting with piezoelectric applied on shoes

    NASA Astrophysics Data System (ADS)

    Camilloni, Enrico; Carloni, Mirko; Giammarini, Marco; Conti, Massimo

    2013-05-01

    In the last few years the continuous demand of energy saving has brought continuous research on low-power devices, energy storage and new sources of energy. Energy harvesting is an interesting solution that captures the energy from the environment that would otherwise be wasted. This work presents an electric-mechanical model of a piezoelectric transducer in a cantilever configuration. The model has been characterized measuring the acceleration and the open circuit voltage of a piezoelectric cantilever subjected to a sinusoidal force with different values frequency and subject to an impulsive force. The model has been used to identify the optimal position in which the piezoelectric cantilever has to be placed on a shoe in order to obtain the maximum energy while walking or running. As a second step we designed the DC-DC converter with an hysteresis comparator. The circuit is able to give energy to switch on a microprocessor for the amount of time long enough to capture and store the information required. The complete system has been implemented, installed on a shoe and used in a 10 Km running competition.

  19. Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application

    NASA Astrophysics Data System (ADS)

    Betts, D. N.; Bowen, C. R.; Kim, H. A.; Gathercole, N.; Clarke, C. T.; Inman, D. J.

    2013-09-01

    The continuing need for reduced power requirements for small electronic components, such as wireless sensor networks, has prompted renewed interest in recent years for energy harvesting technologies capable of capturing energy from ambient vibrations. A particular focus has been placed on piezoelectric materials and devices due to the simplicity of the mechanical to electrical energy conversion and their high strain energy densities compared to electrostatic and electromagnetic equivalents. In this paper an arrangement of piezoelectric layers attached to a bistable asymmetric laminate is investigated experimentally to understand the dynamic response of the structure and power generation characteristics. The inherent bistability of the underlying structure is exploited for energy harvesting since a transition from one stable configuration to another, or "snap-through", is used to repeatedly strain the surface bonded piezoelectric and generate electrical energy. This approach has been shown to exhibit high levels of power extraction over a wide range of vibrational frequencies. Using high speed digital image correlation, a variety of dynamic modes of oscillation are identified in the harvester. The sensitivity of such modes to changes in vibration frequency and amplitude are investigated. Power outputs are measured for repeatable snap-through events of the device and are correlated with the measured modes of oscillation. The typical power generated is approximately 3.2 mW, comparing well with the needs of typical wireless senor node applications.

  20. Piezoelectric energy harvesting: State-of-the-art and challenges

    NASA Astrophysics Data System (ADS)

    Toprak, Alperen; Tigli, Onur

    2014-09-01

    Piezoelectric energy harvesting has attracted wide attention from researchers especially in the last decade due to its advantages such as high power density, architectural simplicity, and scalability. As a result, the number of studies on piezoelectric energy harvesting published in the last 5 years is more than twice the sum of publications on its electromagnetic and electrostatic counterparts. This paper presents a comprehensive review on the history and current state-of-the art of piezoelectric energy harvesting. A brief theory section presents the basic principles of piezoelectric energy conversion and introduces the most commonly used mechanical architectures. The theory section is followed by a literature survey on piezoelectric energy harvesters, which are classified into three groups: (i) macro- and mesoscale, (ii) MEMS scale, and (iii) nanoscale. The size of a piezoelectric energy harvester affects a variety of parameters such as its weight, fabrication method, achievable power output level, and potential application areas. Consequently, size-based classification provides a reliable and effective basis to study various piezoelectric energy harvesters. The literature survey on each scale group is concluded with a summary, potential application areas, and future directions. In a separate section, the most prominent challenges in piezoelectric energy harvesting and the studies focusing on these challenges are discussed. The conclusion part summarizes the current standing of piezoelectric energy harvesters as possible candidates for various applications and discusses the issues that need to be addressed for realization of practical piezoelectric energy harvesting devices.

  1. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae.

    PubMed

    Kolli, Avinash; O'Reilly, Edward J; Scholes, Gregory D; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  2. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  3. Parametrization of ambient energy harvesters for complementary balanced electronic applications

    NASA Astrophysics Data System (ADS)

    Verbelen, Yannick; Braeken, An; Touhafi, Abdellah

    2013-05-01

    The specific technical challenges associated with the design of an ambient energy powered electronic system currently requires thorough knowledge of the environment of deployment, energy harvester characteristics and power path management. In this work, a novel flexible model for ambient energy harvesters is presented that allows decoupling of the harvester's physical principles and electrical behavior using a three dimensional function. The model can be adapted to all existing harvesters, resulting in a design methodology for generic ambient energy powered systems using the presented model. Concrete examples are included to demonstrate the versatility of the presented design in the development of electronic appliances on system level.

  4. On Kinetics Modeling of Vibrational Energy Transfer

    NASA Technical Reports Server (NTRS)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  5. Mechanics of flexible and stretchable piezoelectrics for energy harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, BingWei; Ou, DaPeng; Feng, Xue

    2015-09-01

    As rapid development in wearable/implantable electronic devices benefit human life in daily health monitoring and disease treatment medically, all kinds of flexible and/or stretchable electronic devices are booming, together with which is the demanding of energy supply with similar mechanical property. Due to its ability in converting mechanical energy lying in human body into electric energy, energy harvesters based on piezoelectric materials are promising for applications in wearable/ implantable device's energy supply in a renewable, clean and life-long way. Here the mechanics of traditional piezoelectrics in energy harvesting is reviewed, including why piezoelectricity is the choice for minor energy harvesting to power the implantable/wearable electronics and how. Different kinds of up to date flexible piezoelectric devices for energy harvesting are introduced, such as nanogenerators based on ZnO and thin and conformal energy harvester based on PZT. A detailed theoretical model of the flexible thin film energy harvester based on PZT nanoribbons is summarized, together with the in vivo demonstration of energy harvesting by integrating it with swine heart. Then the initial researches on stretchable energy harvesters based on piezoelectric material in wavy or serpentine configuration are introduced as well.

  6. A multiscale-based approach for composite materials with embedded PZT filaments for energy harvesting

    NASA Astrophysics Data System (ADS)

    El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.

    2014-03-01

    Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.

  7. Adjustable Nonlinear Mechanism System for Wideband Energy Harvesting in Rotational Circumstances

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Nakano, K.; Zheng, R.; Cartmell, M. P.

    2016-09-01

    Nonlinear energy harvesters have already been exhibited to draw energy from ambient vibration owing to their particular dynamic characteristics, and are feasible to desirable responses for broadband excitations of bistable and monostable systems. This study proposes an energy harvester for rotational applications, in which a cantilever beam pasted piezoelectric film and magnets with the same polarity are comprised as a nonlinear vibrating system. As the rotationally angular velocity gradually increases, the tensile stress to the cantilever beam is also self-adjusted with the increscent centrifugal force, causing the potential barriers of bistable type become shallow, so that the cantilever beam has the ability to maintain the high energy orbit motion from bistable hardening type to monostable hardening behavior. From the implemented results, the valid bandwidth of angular frequency can be improved from 26 rad/s - 132 rad/s to 15 rad/s - 215 rad/s, under the case of the effect of centrifugal force on nonlinear vibrating behavior. It demonstrates that the centrifugal force can significantly promote the performance of nonlinear energy harvesters.

  8. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Shang, Shuai; Yang, Shizhong; Liu, Jing; Shan, Meng; Cao, Hailin

    2016-07-01

    In this paper, a metamaterial electromagnetic energy harvester constructed via the capacitive loading of metal circular split rings is presented. Each energy-harvesting cell is loaded with a resistance that imitates the input impedance of a rectifier circuit. Specifically, the metamaterial energy harvester has high selective harvesting for left- and right-handed circularly polarized waves. Here, the energy absorption is mostly induced by the resistive load; thus, effective energy harvesting can be achieved. Moreover, the proposed energy harvester exhibits a high-efficiency harvesting for right-handed circularly polarized waves over a wide range of incident angles. Further, a transmission line model is adopted to interpret the energy harvesting mechanism, which shows that a good impedance matching and low dielectric loss can further enhance the harvesting efficiency. To demonstrate the design, a 15 × 15 unit-cell prototype is fabricated and measured, and the measured results reasonably agree with the simulated ones.

  9. Performance modeling of unmanned aerial vehicles with on-board energy harvesting

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Inman, Daniel J.

    2011-03-01

    The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition

  10. Optimization of vibratory energy harvesters with stochastic parametric uncertainty: a new perspective

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-04-01

    Vibration energy harvesting has been shown as a promising power source for many small-scale applications mainly because of the considerable reduction in the energy consumption of the electronics and scalability issues of the conventional batteries. However, energy harvesters may not be as robust as the conventional batteries and their performance could drastically deteriorate in the presence of uncertainty in their parameters. Hence, study of uncertainty propagation and optimization under uncertainty is essential for proper and robust performance of harvesters in practice. While all studies have focused on expectation optimization, we propose a new and more practical optimization perspective; optimization for the worst-case (minimum) power. We formulate the problem in a generic fashion and as a simple example apply it to a linear piezoelectric energy harvester. We study the effect of parametric uncertainty in its natural frequency, load resistance, and electromechanical coupling coefficient on its worst-case power and then optimize for it under different confidence levels. The results show that there is a significant improvement in the worst-case power of thus designed harvester compared to that of a naively-optimized (deterministically-optimized) harvester.

  11. Evaluation of the performance of a lead-free piezoelectric material for energy harvesting

    NASA Astrophysics Data System (ADS)

    Machado, S. P.; Febbo, M.; Rubio-Marcos, F.; Ramajo, L. A.; Castro, M. S.

    2015-11-01

    Vibration-based energy harvesting has been explored as an auxiliary power source, which can provide small amounts of energy to power remote sensors installed in inaccessible locations. This paper presents an experimental and analytical study of an energy harvesting device using a lead-free piezoelectric material based on {{MoO}}3-doped ({{{K}}}0.44{{Na}}0.52{{Li}}0.04)({{Nb}}0.86{{Ta}}0.10{{Sb}}0.04){{{O}}}3 KNL-(NTS)Mo. The harvesting model corresponds to a cantilever beam with a KNL-(NTS)Mo piezoelectric disc attached to it. We analyze the effect of electromechanical coupling and load resistance on the generated electrical power. Electromechanical frequency response functions that relate the voltage output to the translational base acceleration are shown for experimental and analytical results.

  12. Harvesting dissipated energy with a mesoscopic ratchet

    NASA Astrophysics Data System (ADS)

    Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.

    2015-04-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.

  13. Harvesting dissipated energy with a mesoscopic ratchet.

    PubMed

    Roche, B; Roulleau, P; Jullien, T; Jompol, Y; Farrer, I; Ritchie, D A; Glattli, D C

    2015-04-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.

  14. Nonlinear modeling of MEMS piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Huang, T. W.; Shu, Y. C.; Lin, S. C.; Wu, W. J.

    2016-04-01

    This article presents the modeling of nonlinear response of micro piezoelectric energy harvesters under amplified base excitation. The micro transducer is a composite cantilever beam made of the PZT thick film deposited on the stainless-steel substrate. The model is developed based on the Euler-Bernoulli beam theory considering geometric and inertia nonlinearities, and the reduced formulation is derived based on the Hamiltonian variational principle. The harmonic balance method is used to simulate the nonlinear frequency response under various magnitudes of excitation and electric loads. The hardening type of nonlinearity is predicted and is found to be in good agreement with experiment. However, the softening response is also observed in different samples fabricated under different conditions. Such disagreement is under investigation.

  15. Energy Harvesting Using PVDF Piezoelectric Nanofabric

    NASA Astrophysics Data System (ADS)

    Shafii, Chakameh Shafii

    Energy harvesting using piezoelectric nanomaterial provides an opportunity for advancement towards self-powered electronics. The fabrication complexities and limited power output of these nano/micro generators have hindered these advancements thus far. This thesis presents a fabrication technique with electrospinning using a grounded cylinder as the collector. This method addresses the difficulties with the production and scalability of the nanogenerators. The non-aligned nanofibers are woven into a textile form onto the cylindrical drum that can be easily removed. The electrical poling and mechanical stretching induced by the electric field and the drum rotation increase the concentration of the piezoelectric beta phase in the PVDF nanofabric. The nanofabric is placed between two layers of polyethylene terephthalate (PET) that have interdigitated electrodes painted on them with silver paint. Applying continuous load onto the flexible PVDF nanofabric at 35Hz produces a peak voltage of 320 mV and maximum power of 2200 pW/(cm2) .

  16. MEMS based pyroelectric thermal energy harvester

    DOEpatents

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  17. Testing and evaluation of stretching strain in clamped–clamped beams for energy harvesting

    NASA Astrophysics Data System (ADS)

    Emad, Ahmed; Mahmoud, Mohamed A. E.; Ghoneima, Maged; Dessouky, Mohamed

    2016-11-01

    In this paper, evaluation of stretching strain capabilities to harvest energy from a piezoelectric clamped–clamped beam is theoretically modeled and experimentally tested. The utilization of stretching strain has many advantages as: elimination of any substrate material, and the simple electrode configuration. The doubly clamped structure exhibits a highly nonlinear frequency response (Hardening Duffing) that widens the bandwidth during the frequency up-ward sweep. The wide bandwidth makes it suitable for practical applications. A design of 53.5 {{mm}}3 (29.7 {{mm}}3 piezoelectric material + 23.8 {{mm}}3 proof mass) energy harvester was tested using PVDF (polyvinylidene fluoride) that can generate up to 15 μW from vibrations of 0.5{g} at 128 {Hz} and 2 MΩ load. The design can also generate up to 41 μ {{W}} from vibrations of 1{g} at 140 {Hz} and 2 MΩ load.

  18. Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance

    USGS Publications Warehouse

    Berger, Alaina L.; Palik, Brian; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.; Nislow, Keith H.; King, David; Brooks, Robert T.

    2013-01-01

    Recent interest in using forest residues and small-diameter material for biofuels is generating a renewed focus on harvesting impacts and forest sustainability. The rich legacy of research from whole-tree harvesting studies can be examined in light of this interest. Although this research largely focused on consequences for forest productivity, in particular carbon and nutrient pools, it also has relevance for examining potential consequences for biodiversity and aquatic ecosystems. This review is framed within a context of contrasting ecosystem impacts from whole-tree harvesting because it represents a high level of biomass removal. Although whole-tree harvesting does not fully use the nonmerchantable biomass available, it indicates the likely direction and magnitude of impacts that can occur through energy-wood harvesting compared with less-intensive conventional harvesting and to dynamics associated with various natural disturbances. The intent of this comparison is to gauge the degree of departure of energy-wood harvesting from less intensive conventional harvesting. The review of the literature found a gradient of increasing departure in residual structural conditions that remained in the forest when conventional and whole-tree harvesting was compared with stand-replacing natural disturbance. Important stand- and landscape-level processes were related to these structural conditions. The consequence of this departure may be especially potent because future energy-wood harvests may more completely use a greater range of forest biomass at potentially shortened rotations, creating a great need for research that explores the largely unknown scale of disturbance that may apply to our forest ecosystems.

  19. Pyroelectric nanogenerators for harvesting thermoelectric energy.

    PubMed

    Yang, Ya; Guo, Wenxi; Pradel, Ken C; Zhu, Guang; Zhou, Yusheng; Zhang, Yan; Hu, Youfan; Lin, Long; Wang, Zhong Lin

    2012-06-13

    Harvesting thermoelectric energy mainly relies on the Seebeck effect that utilizes a temperature difference between two ends of the device for driving the diffusion of charge carriers. However, in an environment that the temperature is spatially uniform without a gradient, the pyroelectric effect has to be the choice, which is based on the spontaneous polarization in certain anisotropic solids due to a time-dependent temperature variation. Using this effect, we experimentally demonstrate the first application of pyroelectric ZnO nanowire arrays for converting heat energy into electricity. The coupling of the pyroelectric and semiconducting properties in ZnO creates a polarization electric field and charge separation along the ZnO nanowire as a result of the time-dependent change in temperature. The fabricated nanogenerator has a good stability, and the characteristic coefficient of heat flow conversion into electricity is estimated to be ∼0.05-0.08 Vm(2)/W. Our study has the potential of using pyroelectric nanowires to convert wasted energy into electricity for powering nanodevices.

  20. Harvesting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the introduction of the first successful mechanical harvester, mechanized cotton harvest has continued to decrease the cost and man hours required to produce a bale of cotton. Cotton harvesting in the US is completely mechanized and is accomplished by two primary machines, the spindle picker a...

  1. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are

  2. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  3. Energy harvesting for human wearable and implantable bio-sensors.

    PubMed

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  4. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are

  5. A dimensionless model of impact piezoelectric energy harvesting with dissipation

    NASA Astrophysics Data System (ADS)

    Fu, Xinlei; Liao, Wei-Hsin

    2016-04-01

    Impact excitation is common in the environment. Impact piezoelectric energy harvesting could realize frequency up-conversion. However, the dissipation mechanism in impact piezoelectric energy harvesting has not been investigated so far. There is no comprehensive model to be able to analyze the impact piezoelectric energy harvesting thoroughly. This paper is aimed to develop a generalized model that considers dissipation mechanism of impact piezoelectric energy harvesting. In this electromechanical model, Hertzian contact theory and impact dissipation mechanism are identified as constitutive mechanisms. The impact force is compared and the energy distribution is analyzed so that input energy corresponds to impact dissipated energy, structural damping dissipated energy and harvested electrical energy. We then nondimensionalize the developed model and define five dimensionless parameters with attributed physical meanings, including dimensionless parameters of impact dissipation, mass ratio, structural damping, electromechanical coupling, and electrical load. We conclude it is more accurate to consider impact dissipation mechanism to predict impact force and harvested energy. The guideline for improving harvested energy based on parametric studies of dimensionless model is to increase mass ratio, to minimize structural damping, to maximize electromechanical coupling, to use optimal load resistance for impedance matching, and to choose proper impact velocity .

  6. Energy harvesting efficiency optimization via varying the radius of curvature of a piezoelectric THUNDER

    NASA Astrophysics Data System (ADS)

    Wang, Fengxia; Wang, Zengmei; Soroush, Mahmoudiandehkordi; Abedini, Amin

    2016-09-01

    In this work the energy harvesting performance of a piezoelectric curved energy generator (THin layer UNimorph DrivER (THUNDER)) is studied via experimental and analytical methods. The analytical model of the THUNDER is created based on the linear mechanical electrical constitutive law of the piezoelectric material, the linear elastic constitutive law of the substrate, and the Euler–Bernoulli beam theory. With these linear modal functions, the Rayleigh-Ritz approach was used to obtain the reduced mechanical–electrical coupled modulation equations. The analytical model is verified by the experimental results. Both the experimental and analytical results of the THUNDER’s AC power output, DC power output with Rectifier Bridge and a capacitor, as well as the power output with a microcontroller energy harvesting circuit are reported. Based on the theoretical model, the analytical solution of the DC power is derived in terms of the vibration amplitude, frequency, and the electrical load. To harvest energy from low-frequency vibration source by a piezoelectric generator requires the piezoelectric device possessing low resonance frequency and good flexibility. The THUNDER developed by Langley Research Center exhibits high power when it is used as an energy generator and large displacement when it is used as an actuator. Compared to the less flexible PZT, although THUNDER is more difficult to model, THUNDER has better vibration absorption capacity and higher energy recovery efficiency. The effect of the THUNDER’s radius of curvature on energy harvesting efficiency is mainly investigated. We set the THUNDER’s radius of curvature as a dynamic tuning parameter which can tune the piezoelectric generators’ frequency with the source excitation frequency.

  7. Energy harvesting efficiency optimization via varying the radius of curvature of a piezoelectric THUNDER

    NASA Astrophysics Data System (ADS)

    Wang, Fengxia; Wang, Zengmei; Soroush, Mahmoudiandehkordi; Abedini, Amin

    2016-09-01

    In this work the energy harvesting performance of a piezoelectric curved energy generator (THin layer UNimorph DrivER (THUNDER)) is studied via experimental and analytical methods. The analytical model of the THUNDER is created based on the linear mechanical electrical constitutive law of the piezoelectric material, the linear elastic constitutive law of the substrate, and the Euler-Bernoulli beam theory. With these linear modal functions, the Rayleigh-Ritz approach was used to obtain the reduced mechanical-electrical coupled modulation equations. The analytical model is verified by the experimental results. Both the experimental and analytical results of the THUNDER’s AC power output, DC power output with Rectifier Bridge and a capacitor, as well as the power output with a microcontroller energy harvesting circuit are reported. Based on the theoretical model, the analytical solution of the DC power is derived in terms of the vibration amplitude, frequency, and the electrical load. To harvest energy from low-frequency vibration source by a piezoelectric generator requires the piezoelectric device possessing low resonance frequency and good flexibility. The THUNDER developed by Langley Research Center exhibits high power when it is used as an energy generator and large displacement when it is used as an actuator. Compared to the less flexible PZT, although THUNDER is more difficult to model, THUNDER has better vibration absorption capacity and higher energy recovery efficiency. The effect of the THUNDER’s radius of curvature on energy harvesting efficiency is mainly investigated. We set the THUNDER’s radius of curvature as a dynamic tuning parameter which can tune the piezoelectric generators’ frequency with the source excitation frequency.

  8. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys

    NASA Astrophysics Data System (ADS)

    Murray, R.; Rastegar, J.

    2009-03-01

    Harvesting mechanical energy from ocean wave oscillations for conversion to electrical energy has long been pursued as an alternative or self-contained power source. The attraction to harvesting energy from ocean waves stems from the sheer power of the wave motion, which can easily exceed 50 kW per meter of wave front. The principal barrier to harvesting this power is the very low and varying frequency of ocean waves, which generally vary from 0.1Hz to 0.5Hz. In this paper the application of a novel class of two-stage electrical energy generators to buoyant structures is presented. The generators use the buoy's interaction with the ocean waves as a low-speed input to a primary system, which, in turn, successively excites an array of vibratory elements (secondary system) into resonance - like a musician strumming a guitar. The key advantage of the present system is that by having two decoupled systems, the low frequency and highly varying buoy motion is converted into constant and much higher frequency mechanical vibrations. Electrical energy may then be harvested from the vibrating elements of the secondary system with high efficiency using piezoelectric elements. The operating principles of the novel two-stage technique are presented, including analytical formulations describing the transfer of energy between the two systems. Also, prototypical design examples are offered, as well as an in-depth computer simulation of a prototypical heaving-based wave energy harvester which generates electrical energy from the up-and-down motion of a buoy riding on the ocean's surface.

  9. Transfer matrix modeling of a tensioned piezo-solar hybrid energy harvesting ribbon

    NASA Astrophysics Data System (ADS)

    Chatterjee, Punnag; Bryant, Matthew

    2015-04-01

    This paper proposes a multifunctional compliant structure that can harvest electrical power from both incident sunlight and ambient mechanical energy including wind flow or vibration. The energy harvesting device consists of a slender, ribbon-like, flexible thin film solar cell that is laminated with piezoelectric patches. The harvester is mounted in longitudinal tension and subjected to a transverse wind flow to excite flow-induced aeroelastic vibrations. This paper formulates an analytic model of the bending dynamics of the device. We present a Transfer Matrix formulation that also accounts for the changes in natural frequencies and mode shapes of the system when subjected to axial loads in a beam. It also observed that mode shape obtained using TMM formulation shows numerical stability even for very high tensile loads providing results consistent with the geometric boundary conditions applied at the ends of a beam. This article also discusses about structurally modeling a piezo - solar energy harvester using TMM methodology, where a thin clampedclamped solar film is bonded with piezo patches having a much higher bending stiffness. Additionally, the effect of axial tension on the mode shape of the thin host structure of the piezo-solar ribbon is presented and it is shown how this tension can be used advantageously to affect the strain distribution of the entire structure and introduce higher strains at the piezo patches.

  10. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    SciTech Connect

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-09-15

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  11. Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications

    NASA Astrophysics Data System (ADS)

    Pozzi, Michele; Zhu, Meiling

    2012-05-01

    Wearable medical and electronic devices demand a similarly wearable electrical power supply. Human-based piezoelectric energy harvesters may be the solution, but the mismatch between the typical frequencies of human activities and the optimal operating frequencies of piezoelectric generators calls for the implementation of a frequency up-conversion technique. A rotary piezoelectric energy harvester designed to be attached to the knee-joint is here implemented and characterized. The wearable harvester is based on the plucking method of frequency up-conversion, where a piezoelectric bimorph is deflected by a plectrum and permitted to vibrate unhindered upon release. Experiments were conducted to characterize the energy produced by the rotary piezoelectric energy harvester with different electric loads and different excitation speeds, covering the range between 0.1 and 1 rev s-1 to simulate human gait speeds. The electrical loads were connected to the generator either directly or through a rectifying bridge, as would be found in most power management circuits. The focus of the paper is to study the capability of energy generation of the harvester for knee-joint wearable applications, and study the effects of the different loads and different excitation speeds. It is found that the energy harvested is around 160-490 µJ and strongly depends on the angular speed, the connected electric loads and also the manufacturing quality of the harvester. Statistical analysis is used to predict the potential energy production of a harvester manufactured to tighter tolerances than the one presented here.

  12. Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment

    NASA Astrophysics Data System (ADS)

    Masoumi, Masoud; Wang, Ya

    2016-10-01

    This paper investigates a magnetic levitation characteristic used in a vibration based energy harvester, called repulsive magnetic scavenger (RMS). The RMS is capable of harvesting ocean wave energy with a unique repelling permanent magnet array, which provides a stronger and more uniform magnetic field, compared to its attracting magnetic counterparts. The levitating magnets are stacked together around a threaded rod so that the same pole is facing each other. Two fixed magnets placed with one at each end of the RMS provides a collocated harvesting and braking mechanism in the face of high amplitude vibrations. Magnets in the levitated magnet stack are separated by pole pieces which are made of metals to intensify the magnetic field strength. The effect of the thickness and the use of different materials with different permeability for pole pieces is also studied to obtain an optimal energy harvesting efficiency. Moreover, the procedure to find the restoring force applied to the levitating magnet stack is demonstrated. Then, the Duffing vibration equation of the harvester is solved and the frequency response function is calculated for various force amplitudes and electrical damping so as to investigate the effect of these parameters on the response of the system. Furthermore, the effect of the maximum displacement of the moving magnet stack on the natural frequency of the device is studied. And finally, Faraday's law is employed to estimate the output voltage and power of the system under the specified input excitation force. Experiments show that the output emf voltage of the manufactured prototype reaches up to 42 V for an excitation force with the frequency of 9 Hz and the maximum amplitude of 3.4 g.

  13. Hybrid energy harvesting/transmission system for embedded devices

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Park, Gyuhae; Farinholt, Kevin

    2012-04-01

    In most energy harvesting applications the need for a reliable long-term energy supply is essential in powering embedded sensing and control electronics. The goal of many harvesters is to extract energy from the ambient environment to power hardware; however in some applications there may be conditions in which the harvester's performance cannot meet all of the demands of the embedded electronics. One method for addressing this shortfall is to supplement harvested power through the transmission of wireless energy, a concept that has successfully been demonstrated by the authors in previous studies. In this paper we present our findings on the use of a single electromagnetic coil to harvest kinetic energy in a solenoid configuration, as well as background and directed wireless energy in the 2.4 GHz radio frequency (RF) bands commonly used in WiFi and cellular phone applications. The motivation for this study is to develop a compact energy harvester / receiver that conserves physical volume, while providing multi-modal energy harvesting capabilities. As with most hybrid systems there are performance trade-offs that must be considered when capturing energy from different physical sources. As part of this paper, many of the issues related to power transmission, physical design, and potential applications are addressed for this device.

  14. Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters

    NASA Astrophysics Data System (ADS)

    Mrlík, M.; Leadenham, S.; AlMaadeed, M. A.; Erturk, A.

    2016-04-01

    The harvesting of mechanical strain and kinetic energy has received great attention over the past two decades in order to power wireless electronic components such as those used in passive and active monitoring applications. Piezoelectric ceramics, such as PZT (lead zirconate titanate), constitute the most commonly used electromechanical interface in vibration energy harvesters. However, there are applications in which piezoelectric ceramics cannot be used due to their low allowable curvature and brittle nature. Soft polymer PVDF (polyvinylidene fluoride) is arguably the most popular non-ceramic soft piezoelectric energy harvester material for such scenarios. Another type of polymer that has received less attention is PP (polypropylene) for electret-based energy harvesting using the thickness mode (33- mode). This work presents figure of merit comparison of PP versus PVDF for off-resonant energy harvesting in thickness mode operation, revealing substantial advantage of PP over PVDF. For thickness mode energy harvesting scenarios (e.g. dynamic compression) at reasonable ambient vibration frequencies, the figure of merit for the maximum power output is proportional to the square of the effective piezoelectric strain constant divided by the effective permittivity constant. Under optimal conditions and for the same volume, it is shown that PP can generate more than two orders of magnitude larger electrical power as compared to PVDF due to the larger effective piezoelectric strain constant and lower permittivity of the former.

  15. A piezoelectric energy-harvesting shoe system for podiatric sensing.

    PubMed

    Meier, Rich; Kelly, Nicholas; Almog, Omri; Chiang, Patrick

    2014-01-01

    This paper provides an energy-harvesting, shoe-mounted system for medical sensing using piezoelectric transducers for generating power. The electronics are integrated inside a conventional consumer shoe, measuring the pressure of the wearer's foot exerted on the sole at six locations. The electronics are completely powered by the harvested energy from walking or running, generating 10-20 μJ of energy per step that is then consumed by capturing and storing the force sensor data. The overall shoe system demonstrates that wearable sensor electronics can be adequately powered through piezoelectric energy-harvesting. PMID:25570036

  16. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  17. Energy harvesting using rattleback: Theoretical analysis and simulations of spin resonance

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Singla, Puneet; Karami, M. Amin

    2016-05-01

    This paper investigates the spin resonance of a rattleback subjected to base oscillations which is able to transduce vibrations into continuous rotary motion and, therefore, is ideal for applications in Energy harvesting and Vibration sensing. The rattleback is a toy with some curious properties. When placed on a surface with reasonable friction, the rattleback has a preferred direction of spin. If rotated anti to it, longitudinal vibrations are set up and spin direction is reversed. In this paper, the dynamics of a rattleback placed on a sinusoidally vibrating platform are simulated. We can expect base vibrations to excite the pitch motion of the rattleback, which, because of the coupling between pitch and spin motion, should cause the rattleback to spin. Results are presented which show that this indeed is the case-the rattleback has a mono-peak spin resonance with respect to base vibrations. The dynamic response of the rattleback was found to be composed of two principal frequencies that appeared in the pitch and rolling motions. One of the frequencies was found to have a large coupling with the spin of the rattleback. Spin resonance was found to occur when the base oscillatory frequency was twice the value of the coupled frequency. A linearized model is developed which can predict the values of the two frequencies accurately and analytical expressions for the same in terms of the parameters of the rattleback have been derived. The analysis, thus, forms an effective and easy method for obtaining the spin resonant frequency of a given rattleback. Novel ideas for applications utilizing the phenomenon of spin resonance, for example, an energy harvester composed of a magnetized rattleback surrounded by ferromagnetic walls and a small scale vibration sensor comprising an array of several magnetized rattlebacks, are included.

  18. Multiple piezo-patch energy harvesters integrated to a thin plate with AC-DC conversion: analytical modeling and numerical validation

    NASA Astrophysics Data System (ADS)

    Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper

    2016-04-01

    Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.

  19. Theoretical modeling and experimental realization of dynamically magnified thermoacoustic-piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Nouh, M.; Aldraihem, O.; Baz, A.

    2014-07-01

    Conventional thermoacoustic-piezoelectric (TAP) harvesters convert thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The input thermal energy generates a steep temperature gradient along a porous medium. At a critical threshold of the temperature gradient, self-sustained acoustic waves are developed inside an acoustic resonator. The associated pressure fluctuations impinge on a piezoelectric diaphragm, placed at the end of the resonator. In this study, the TAP harvester is coupled with an auxiliary elastic structure in the form of a simple spring-mass system to amplify the strain experienced by the piezoelectric element. The auxiliary structure is referred to as a dynamic magnifier and has been shown in different areas to significantly amplify the deflection of vibrating structures. A comprehensive model of the dynamically magnified thermoacoustic-piezoelectric (DMTAP) harvester has been developed that includes equations of motions of the system's mechanical components, the harvested voltage, the mechanical impedance of the coupled structure at the resonator end and the equations necessary to compute the self-excited frequencies of oscillations inside the acoustic resonator. Theoretical results confirmed that significant amplification of the harvested power is feasible if the magnifier's parameters are properly chosen. The performance characteristics of experimental prototypes of a thermoacoustic-piezoelectric resonator with and without the magnifier are examined. The obtained experimental findings are validated against the theoretical results. Dynamic magnifiers serve as a novel approach to enhance the effectiveness of thermoacoustic energy harvested from waste heat by increasing the efficiency of their harvesting components.

  20. Piezo-magnetic energy harvesting from movement of the head

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2015-12-01

    This paper reports the design, modeling, optimization and testing of the piezomagnetic energy harvester that is capable of converting non-harmonic movement of the human head into electricity. The rolling magnet and doubly-clamped piezoelectric configuration of the device makes the energy harvesting from small-amplitude and low-frequency movements of the human head efficient. In addition, the device can inconspicuously be integrated with the glasses. the experimental results show that the energy harvester device could deliver the maximum instantaneous power of 0.5 μW to the impedance matched resistive load.

  1. Self-Excited Fluidic Energy Harvesters with Finite-Length Cylinders

    NASA Astrophysics Data System (ADS)

    Akaydin, Huseyin; Duquesnois, Chloe; Elvin, Niell; Andreopoulos, Yiannis

    2011-11-01

    In this experimental work, we explore the possibility of using piezoelectric materials for harvesting electrical energy from fluid flow. Such harvesters may be used for powering small sensors and obviate the need for batteries and/or power lines. Piezoelectric harvesters behave as AC-coupled devices and need oscillatory motion to generate an electrical output. The harvester should be designed to be ``self-excited,'' i.e. capable of initiating and sustaining the necessary oscillations in steady and uniform flows. The present configuration consists of a piezoelectric cantilever beam with a cylindrical tip body which promotes aeroelastic vibrations induced by vortex shedding. The harvester was tested in a wind tunnel and it produced 0.1 mW of electrical power at a flow speed of about 1.19 m/s. Using strain measurements and a distributed parameter model, the harvested electrical power was predicted, and a reasonable agreement is obtained with the measurements. The magnitude and frequency of the driving aerodynamic forces were also estimated. Results were comparable with literature data on flow past oscillating cylinders. Finally, the effect of using various shapes of tip body is presented. Sponsored by NSF Grant: CBET #1033117.

  2. Energy harvesting from pavements via PVDF: hybrid piezo-pyroelectric effects

    NASA Astrophysics Data System (ADS)

    Tao, Junliang; Hu, Jie; Wu, Guangxi

    2016-04-01

    In the U.S., there are over 4 million miles (6 million km) of roadways and more than 250 million registered vehicles. The energy lost in the pavement system due to traffic-induced vibration and deformation is enormous. If effectively harvested, such energy can serve as an alternative sustainable energy source that can be easily integrated to the transportation system. The potential of PVDF, which is a piezoelectric polymer material, is investigated as a potential energy harvester integrated in pavement systems. The uniqueness of this study lies in that the electrical response of PVDF under coupled mechanical and thermal stimulations are studied. It is well known that most piezoelectric materials are also pyroelectric materials, which convert temperature change into electricity. However, the potential of PVDF as a hybrid piezo-pyroelectric energy harvester has been seldom studied. Through series of well controlled experiments, it is found that there exists interesting coupling phenomenon between piezoelectric and pyroelectric effects of PVDF: the voltage generated by simultaneous mechanical and thermal stimulations is the sum of voltages generated by separate stimulations. In addition, an estimation of power generation through piezoelectric and pyroelectric effect is conducted. Finally, the overall effects of temperature on hybrid piezo-pyroelectric energy harvesting are discussed.

  3. Response analysis of a nonlinear magnetoelectric energy harvester under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Naifar, S.; Bradai, S.; Viehweger, C.; Kanoun, O.

    2015-11-01

    Magnetostrictive (MS) piezoelectric composites provide interesting possibilities to harvest energy from low amplitude and low frequency vibrations with a relative high energy outcome. In this paper a magnetoelectric (ME) vibration energy harvester has been designed, which consists of two ME transducers a magnetic circuit and a magnetic spring. The ME transducers consist of three layered Terfenol-D and Lead Zirconate Titanate (PZT) laminated composites. The outcoming energy is collected directly from the piezo layer to avoid electrical losses. In the system under consideration, the magnetic forces between the ME transducers and the magnetic circuit introduce additional stiffness on the magnetic spring. The one degree of freedom system is analysed analytically and the corresponding governing equation is solved with the Lindstedt-Poincaré method. The effects of the structure parameters, such as the nonlinear magnetic forces and the magnetic field distribution, are analysed based on finite element analysis for optimization of electric output performances. Investigations demonstrate that 1.56 mW output power across 8 MΩ load resistance can be harvested for an excitation amplitude of 1 mm at 21.84 Hz.

  4. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    NASA Astrophysics Data System (ADS)

    Zhang, Guangyi; Gao, Shiqiao; Liu, Haipeng

    2016-09-01

    In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester's three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz) with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation) is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.

  5. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  6. Microbial fuel cell energy harvesting using synchronous flyback converter

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Ren, Zhiyong Jason; Park, Jae-Do

    2014-02-01

    Microbial Fuel Cells (MFCs) use biodegradable substrates, such as wastewater and marine sediments to generate electrical energy. To harvest more energy from an MFC, power electronic converters have recently been used to replace resistors or charge pumps, because they have superior controllability on MFC's operating point and higher efficiency in energy storage for different applications. Conventional diode-based energy harvesters suffer from low efficiency because of the energy losses through the diode. Replacing the diode with a MOSFET can reduce the conduction loss, but it requires an isolated gate signal to control the floating secondary MOSFET, which makes the control circuitry complex. This study presents a new MFC energy harvesting regime using a synchronous flyback converter, which implements a transformer-based harvester with much simpler configuration and improves harvesting efficiency by 37.6% compared to a diode based boost converter, from 33.5% to 46.1%. The proposed harvester was able to store 2.27 J in the output capacitor out of 4.91 J generated energy from the MFC, while the boost converter can capture 1.67 J from 4.95 J.

  7. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.

    PubMed

    Bhavanasi, Venkateswarlu; Kumar, Vipin; Parida, Kaushik; Wang, Jiangxin; Lee, Pooi See

    2016-01-13

    Ferroelectric materials have attracted interest in recent years due to their application in energy harvesting owing to its piezoelectric nature. Ferroelectric polymers are flexible and can sustain larger strains compared to inorganic counterparts, making them attractive for harvesting energy from mechanical vibrations. Herein, we report, for the first time, the enhanced piezoelectric energy harvesting performance of the bilayer films of poled poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] and graphene oxide (GO). The bilayer film exhibits superior energy harvesting performance with a voltage output of 4 V and power output of 4.41 μWcm(-2) compared to poled PVDF-TrFE films alone (voltage output of 1.9 V and power output of 1.77 μWcm(-2)). The enhanced voltage and power output in the presence of GO film is due to the combined effect of electrostatic contribution from graphene oxide, residual tensile stress, enhanced Young's modulus of the bilayer films, and the presence of space charge at the interface of the PVDF-TrFE and GO films, arising from the uncompensated polarization of PVDF-TrFE. Higher Young's modulus and dielectric constant of GO led to the efficient transfer of mechanical and electrical energy.

  8. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.

    PubMed

    Bhavanasi, Venkateswarlu; Kumar, Vipin; Parida, Kaushik; Wang, Jiangxin; Lee, Pooi See

    2016-01-13

    Ferroelectric materials have attracted interest in recent years due to their application in energy harvesting owing to its piezoelectric nature. Ferroelectric polymers are flexible and can sustain larger strains compared to inorganic counterparts, making them attractive for harvesting energy from mechanical vibrations. Herein, we report, for the first time, the enhanced piezoelectric energy harvesting performance of the bilayer films of poled poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] and graphene oxide (GO). The bilayer film exhibits superior energy harvesting performance with a voltage output of 4 V and power output of 4.41 μWcm(-2) compared to poled PVDF-TrFE films alone (voltage output of 1.9 V and power output of 1.77 μWcm(-2)). The enhanced voltage and power output in the presence of GO film is due to the combined effect of electrostatic contribution from graphene oxide, residual tensile stress, enhanced Young's modulus of the bilayer films, and the presence of space charge at the interface of the PVDF-TrFE and GO films, arising from the uncompensated polarization of PVDF-TrFE. Higher Young's modulus and dielectric constant of GO led to the efficient transfer of mechanical and electrical energy. PMID:26693844

  9. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion

    NASA Astrophysics Data System (ADS)

    Tang, Q. C.; Yang, Y. L.; Li, Xinxin

    2011-12-01

    This paper presents miniaturized energy harvesters, where the frequency up-conversion technique is used to improve the bandwidth of vibration energy harvesters. The proposed and developed miniature piezoelectric energy harvester utilizes magnetic repulsion forces to achieve non-contact frequency up-conversion, thereby avoiding mechanical collision and wear for long-term working durability. A pair of piezoelectric resonant cantilevers is micro-fabricated to generate electric power. A simplified model involving linear oscillators and magnetic interaction is deployed to demonstrate the feasibility of the device design. A bench-top harvester has been fabricated and characterized, resulting in average power generation of over 10 µW within a broad frequency range of 10-22 Hz under 1g acceleration.

  10. Experimental study of energy harvesting in UHF band

    NASA Astrophysics Data System (ADS)

    Bernacki, Ł.; Gozdur, R.; Salamon, N.

    2016-04-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments.

  11. Development of MEMS based pyroelectric thermal energy harvesters

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  12. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    NASA Astrophysics Data System (ADS)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.