Science.gov

Sample records for vibration fault diagnosis

  1. Vibration signal models for fault diagnosis of planet bearings

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2016-05-01

    Rolling element bearings are key components of planetary gearboxes. Among them, the motion of planet bearings is very complex, encompassing spinning and revolution. Therefore, planet bearing vibrations are highly intricate and their fault characteristics are completely different from those of fixed-axis case, making planet bearing fault diagnosis a difficult topic. In order to address this issue, we derive the explicit equations for calculating the characteristic frequency of outer race, rolling element and inner race fault, considering the complex motion of planet bearings. We also develop the planet bearing vibration signal model for each fault case, considering the modulation effects of load zone passing, time-varying angle between the gear pair mesh and fault induced impact force, as well as the time-varying vibration transfer path. Based on the developed signal models, we derive the explicit equations of Fourier spectrum in each fault case, and summarize the vibration spectral characteristics respectively. The theoretical derivations are illustrated by numerical simulation, and further validated experimentally and all the three fault cases (i.e. outer race, rolling element and inner race localized fault) are diagnosed.

  2. Vibration signal models for fault diagnosis of planetary gearboxes

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.

    2012-10-01

    A thorough understanding of the spectral structure of planetary gear system vibration signals is helpful to fault diagnosis of planetary gearboxes. Considering both the amplitude modulation and the frequency modulation effects due to gear damage and periodically time variant working condition, as well as the effect of vibration transfer path, signal models of gear damage for fault diagnosis of planetary gearboxes are given and the spectral characteristics are summarized in closed form. Meanwhile, explicit equations for calculating the characteristic frequency of local and distributed gear fault are deduced. The theoretical derivations are validated using both experimental and industrial signals. According to the theoretical basis derived, manually created local gear damage of different levels and naturally developed gear damage in a planetary gearbox can be detected and located.

  3. Fault diagnosis of planetary gearboxes via torsional vibration signal analysis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.

    2013-04-01

    Torsional vibration signals are theoretically free from the amplitude modulation effect caused by time variant vibration transfer paths due to the rotation of planet carrier and sun gear, and therefore their spectral structure are simpler than transverse vibration signals. Thus, it is potentially easy and effective to diagnose planetary gearbox faults via torsional vibration signal analysis. We give explicit equations to model torsional vibration signals, considering both distributed gear faults (like manufacturing or assembly errors) and local gear faults (like pitting, crack or breakage of one tooth), and derive the characteristics of both the traditional Fourier spectrum and the proposed demodulated spectra of amplitude envelope and instantaneous frequency. These derivations are not only effective to diagnose single gear fault of planetary gearboxes, but can also be generalized to detect and locate multiple gear faults. We validate experimentally the signal models, as well as the Fourier spectral analysis and demodulation analysis methods.

  4. Fault diagnosis of the rolling bearing with optical fiber Bragg grating vibration sensor

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Dai, Zejing; Zheng, Leilei; Li, Ming

    2016-10-01

    Fault diagnosis of the rolling bearing means a lot for property and life safety. In this paper the Fiber Bragg Grating (FBG) vibration sensor and resonance demodulation technology are used in the fault diagnosis of the rolling bearing. Traditionally, the vibration signals are measured by the resistance strain gauge, accelerometer, etc. But those traditional electronic sensors are usually influenced by the industry electromagnetic noise. But the FBG vibration sensor is totally different. It has a lot of advantages such as small volume, light weight, easy connection and so on. And the high industry electromagnetic noise means nothing to the FBG sensors. In this paper, we use the FBG vibration and temperature sensors to measure the fast strain and temperature signal of the rolling bearing. In order to extract the fault signals from strong background noise, the resonant demodulation technology is used to analyze and process the vibration signals collected by the FBG sensors. In order to verify the reliability of the FBG vibration sensor and resonance demodulation technology applied in the fault diagnosis of the rolling bearing, several experiments are done. Five FBG vibration sensors are attached on the different parts of the rolling bearing to verify its function and its influence on the fault diagnosis of the rolling bearing. The results of the experiments show that the FBG vibration sensor method could be used in fault diagnosis of the rolling bearing. The repetitive experiments show the reliability of the FBG vibration sensors method.

  5. Vibration Condition Monitoring Techniques for Fault Diagnosis of Electromotor with 1.5 Kw Power

    NASA Astrophysics Data System (ADS)

    Mohamadi Monavar, H.; Ahmadi, H.; Mohtasebi, S. S.; Hasani, S.

    Vibration analysis is the main conditions monitoring techniques for machinery maintenance and fault diagnosis. This technique has its unique advantages and disadvantages associated with the monitoring and fault diagnosis of machinery. When this technique is conducted independently, only a portion of machine faults are typically diagnosed. However, practical experience has shown that this technique in a machine condition monitoring program provides useful reliable information, bringing significant cost benefits to industry. The objective of this research is to investigate the correlation between vibration analysis and fault diagnosis. This was achieved by vibration analysis and investigating different operating conditions of an experimental electromotor. The electromotor was initially run under normal operating conditions as a comparative test. A series of tests were then conducted corresponding to different operating condition. Our varieties were speed of electromotor at three levels, respectively 500, 1000 and 1500 rpm. We did three faults in our electromotor; there were misalignment, looseness and bad bearing. We coupled our electromotor to the variable blade fan and applied several load on that by changing the number of blade of fan. We have chosen 2, 6 and 10 blades fan to apply three different loads on our electromotor. Vibration data was regularly collected. Numerical data produced by vibration analysis were compared with vibration spectra in normal condition of healthy machine, in order to quantify the effectiveness of the vibration condition monitoring technique. The results from this paper have given more understanding on the dependent roles of vibration analysis in predicting and diagnosing machine faults.

  6. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Lin, Jing; Lu, Fanbo

    2016-05-01

    Condition monitoring and fault diagnosis of epicyclic gearboxes using vibration signals are not as straightforward as that of fixed-axis gearboxes since epicyclic gearboxes behave quite differently from fixed-axis gearboxes in many aspects, like spectral structures. Aiming to present the spectral structures of vibration signals of epicyclic gearboxes, phenomenological models of vibration signals of epicyclic gearboxes are developed by algebraic equations and spectral structures of these models are deduced using Fourier series analysis. In the phenomenological models, all the possible vibration transfer paths from gear meshing points to a fixed transducer and the effects of angular shifts of planet gears on the spectral structures are considered. Accordingly, time-varying vibration transfer paths from sun-planet/ring-planet gear meshing points to the fixed transducer due to carrier rotation are given by window functions with different amplitudes. And an angular shift in one planet gear position is introduced in the process of modeling. After the theoretical derivations, three experiments are conducted on an epicyclic gearbox test rig and the spectral structures of collected vibration signals are analyzed. As a result, the effects of angular shifts of planet gears are verified, and the phenomenological models of vibration signals when a local fault occurs on the sun gear and the planet gear are validated, respectively. The experiment results demonstrate that the established phenomenological models in this paper are helpful to the condition monitoring and fault diagnosis of epicyclic gearboxes.

  7. Unsupervised Pattern Classifier for Abnormality-Scaling of Vibration Features for Helicopter Gearbox Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.

    1996-01-01

    A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.

  8. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    PubMed Central

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  9. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    PubMed

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  10. Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis

    PubMed Central

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2014-01-01

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods. PMID:24379045

  11. Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis.

    PubMed

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2013-12-27

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.

  12. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  13. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  14. Two Stage Helical Gearbox Fault Detection and Diagnosis based on Continuous Wavelet Transformation of Time Synchronous Averaged Vibration Signals

    NASA Astrophysics Data System (ADS)

    Elbarghathi, F.; Wang, T.; Zhen, D.; Gu, F.; Ball, A.

    2012-05-01

    Vibration signals from a gearbox are usually very noisy which makes it difficult to find reliable symptoms of a fault in a multistage gearbox. This paper explores the use of time synchronous average (TSA) to suppress the noise and Continue Wavelet Transformation (CWT) to enhance the non-stationary nature of fault signal for more accurate fault diagnosis. The results obtained in diagnosis an incipient gear breakage show that fault diagnosis results can be improved by using an appropriate wavelet. Moreover, a new scheme based on the level of wavelet coefficient amplitudes of baseline data alone, without faulty data samples, is suggested to select an optimal wavelet.

  15. Theoretical and experimental analysis of bispectrum of vibration signals for fault diagnosis of gears

    NASA Astrophysics Data System (ADS)

    Guoji, Shen; McLaughlin, Stephen; Yongcheng, Xu; White, Paul

    2014-02-01

    Condition monitoring and fault diagnosis is an important issue for gearbox maintenance and safety. The critical process involved in such activities is to extract reliable features representative of the condition of the gears or gearbox. In this paper a framework is presented for the application of bispectrum to the analysis of gearbox vibration. The bispectrum of a composite signal consisting of multiple periodic components has peaks at the bifrequencies that correspond to closely related components which can be produced by any nonlinearity. As a result, biphase verification is necessary to decrease false-alarming for any bispectrum-based method. A model based on modulated signals is adopted to reveal the bispectrum characteristics for the vibration of a faulty gear, and the corresponding amplitude and phase of the bispectrum expression are deduced. Therefore, a diagnostic approach based on the theoretical result is derived and verified by the analysis of a set of vibration signals from a helicopter gearbox.

  16. Vibration sensor-based bearing fault diagnosis using ellipsoid-ARTMAP and differential evolution algorithms.

    PubMed

    Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao

    2014-06-16

    Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately.

  17. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns.

    PubMed

    Khan, Sheraz Ali; Kim, Jong-Myon

    2016-04-01

    Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms.

  18. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    PubMed Central

    Cerrada, Mariela; Sánchez, René Vinicio; Cabrera, Diego; Zurita, Grover; Li, Chuan

    2015-01-01

    There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%. PMID:26393603

  19. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal.

    PubMed

    Cerrada, Mariela; Vinicio Sánchez, René; Cabrera, Diego; Zurita, Grover; Li, Chuan

    2015-09-18

    There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  20. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals.

    PubMed

    Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun

    2017-02-22

    Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions.

  1. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals

    PubMed Central

    Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun

    2017-01-01

    Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions. PMID:28241451

  2. Nonlinear Fault Diagnosis,

    DTIC Science & Technology

    1981-05-01

    Systems, New York, Marcel Dekker, (to appear). 3. Desoer , C.A. and S.E. Kuh, Basic Circuit Theory, McGraw-Hill, New York, 1969, pp. 423-425. 130 NONLINEAR...DIAGNOSIS A 7*ssior For 1 MU3 CRA&T IY’IC TAB Ju-st i.cat IC- P.U A: CONTENTS Fault Diagnosis in Electronic Circuits , R. Saeks and R.-w. Liu...Vincentelli and R. Saeks .............. 61 Multitest Diagnosibility of Nonlinear Circuits and Systems, A. Sangiovanni-Vincentelli and R. Saeks

  3. Fault diagnosis of analog circuits

    NASA Astrophysics Data System (ADS)

    Bandler, J. W.; Salama, A. E.

    1985-08-01

    Theory and algorithms associated with four main categories of modern techniques used to locate faults in analog circuits are presented. These four general approaches are: the fault dictionary (FDA), the parameter identification (PIA), the fault verification (FVA), and the approximation (AA) approaches. The preliminaries and problems associated with the FDA, such as fault dictionary construction, the methods of optimum measurement selection, fault isolation criteria, and efficient methods of fault simulation, are discussed. The PIA techniques that utilize either linear or nonlinear systems of equations for identification of network elements are examined. Description of the FVA includes node-fault diagnosis, branch-fault diagnosis, subnetwork testability conditions, as well as combinatorial techniques, the failure-bound technique, and the network decomposition technique. In the AA, probabilistic methods and optimization-based methods are considered. In addition, the artificial intelligence technique and the different measures of testability are presented. A series of block diagrams is included.

  4. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  5. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  6. Fault diagnosis of power systems

    SciTech Connect

    Sekine, Y. ); Akimoto, Y. ); Kunugi, M. )

    1992-05-01

    Fault diagnosis of power systems plays a crucial role in power system monitoring and control that ensures stable supply of electrical power to consumers. In the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires judgment of complex conditions at various levels. For this reason, research into application of knowledge-based systems go an early start and reports of such systems have appeared in may papers. In this paper, these systems are classified by the method of inference utilized in the knowledge-based systems for fault diagnosis of power systems. The characteristics of each class and corresponding issues as well as the state-of-the-art techniques for improving their performance are presented. Additional topics covered are user interfaces, interfaces with energy management systems (EMS's), and expert system development tools for fault diagnosis. Results and evaluation of actual operation in the field are also discussed. Knowledge-based fault diagnosis of power systems will continue to disseminate.

  7. Compound fault diagnosis of gearboxes based on GFT component extraction

    NASA Astrophysics Data System (ADS)

    Ou, Lu; Yu, Dejie

    2016-11-01

    Compound fault diagnosis of gearboxes is of great importance to the long-term safe operation of rotating machines, and the key is to separate different fault components. In this paper, the path graph is introduced into the vibration signal analysis and the graph Fourier transform (GFT) of vibration signals are investigated from the graph spectrum domain. To better extract the fault components in gearboxes, a new adjacency weight matrix is defined and then the GFT of simulation signals of the gear and the bearing with localized faults are analyzed. Further, since the GFT graph spectrum of the gear fault component and the bearing fault component are mainly distributed in the low-order region and the high-order region, respectively, a novel method for the compound fault diagnosis of gearboxes based on GFT component extraction is proposed. In this method, the nonzero ratios, which are introduced to analyze the eigenvectors auxiliary, and the GFT of a gearbox vibration signal, are firstly calculated. Then, the order thresholds for reconstructed fault components are determined and the fault components are extracted. Finally, the Hilbert demodulation analyses are conducted. According to the envelope spectra of the fault components, the faults of the gear and the bearing can be diagnosed respectively. The performance of the proposed method is validated by the simulation data and the experiment signals from a gearbox with compound faults.

  8. Energy operator demodulating of optimal resonance components for the compound faults diagnosis of gearboxes

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Yu, Dejie; Zhang, Wenyi

    2015-11-01

    Compound faults diagnosis is a challenge for rotating machinery fault diagnosis. The vibration signals measured from gearboxes are usually complex, non-stationary, and nonlinear. When compound faults occur in a gearbox, weak fault characteristic signals are always submerged by the strong ones. Therefore, it is difficult to detect a weak fault by using the demodulating analysis of vibration signals of gearboxes directly. The key to compound faults diagnosis of gearboxes is to separate different fault characteristic signals from the collected vibration signals. Aiming at that problem, a new method for the compound faults diagnosis of gearboxes is proposed based on the energy operator demodulating of optimal resonance components. In this method, the genetic algorithm is first used to obtain the optimal decomposition parameters. Then the compound faults vibration signals of a gearbox are subject to resonance-based signal sparse decomposition (RSSD) to separate the fault characteristic signals of the gear and the bearing by using the optimal decomposition parameters. Finally, the separated fault characteristic signals are analyzed by energy operator demodulating, and each one’s instantaneous amplitude can be calculated. According to the spectra of instantaneous amplitudes of fault characteristic signals, the faults of the gear and the bearing can be diagnosed, respectively. The performance of the proposed method is validated by using the simulation data and the experiment vibration signals from a gearbox with compound faults.

  9. Layered clustering multi-fault diagnosis for hydraulic piston pump

    NASA Astrophysics Data System (ADS)

    Du, Jun; Wang, Shaoping; Zhang, Haiyan

    2013-04-01

    Efficient diagnosis is very important for improving reliability and performance of aircraft hydraulic piston pump, and it is one of the key technologies in prognostic and health management system. In practice, due to harsh working environment and heavy working loads, multiple faults of an aircraft hydraulic pump may occur simultaneously after long time operations. However, most existing diagnosis methods can only distinguish pump faults that occur individually. Therefore, new method needs to be developed to realize effective diagnosis of simultaneous multiple faults on aircraft hydraulic pump. In this paper, a new method based on the layered clustering algorithm is proposed to diagnose multiple faults of an aircraft hydraulic pump that occur simultaneously. The intensive failure mechanism analyses of the five main types of faults are carried out, and based on these analyses the optimal combination and layout of diagnostic sensors is attained. The three layered diagnosis reasoning engine is designed according to the faults' risk priority number and the characteristics of different fault feature extraction methods. The most serious failures are first distinguished with the individual signal processing. To the desultory faults, i.e., swash plate eccentricity and incremental clearance increases between piston and slipper, the clustering diagnosis algorithm based on the statistical average relative power difference (ARPD) is proposed. By effectively enhancing the fault features of these two faults, the ARPDs calculated from vibration signals are employed to complete the hypothesis testing. The ARPDs of the different faults follow different probability distributions. Compared with the classical fast Fourier transform-based spectrum diagnosis method, the experimental results demonstrate that the proposed algorithm can diagnose the multiple faults, which occur synchronously, with higher precision and reliability.

  10. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding.

    PubMed

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-07-06

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches.

  11. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    PubMed Central

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  12. A new intelligent hierarchical fault diagnosis system

    SciTech Connect

    Huang, Y.C.; Huang, C.L.; Yang, H.T.

    1997-02-01

    As a part of a substation-level decision support system, a new intelligent Hierarchical Fault Diagnosis System for on-line fault diagnosis is presented in this paper. The proposed diagnosis system divides the fault diagnosis process into two phases. Using time-stamped information of relays and breakers, phase 1 identifies the possible fault sections through the Group Method of Data Handling (GMDH) networks, and phase 2 recognizes the types and detailed situations of the faults identified in phase 1 by using a fast bit-operation logical inference mechanism. The diagnosis system has been practically verified by testing on a typical Taiwan power secondary transmission system. Test results show that rapid and accurate diagnosis can be obtained with flexibility and portability for fault diagnosis purpose of diverse substations.

  13. Roller element bearing fault diagnosis using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Muruganatham, Bubathi; Sanjith, M. A.; Krishnakumar, B.; Satya Murty, S. A. V.

    2013-02-01

    Most of the existing time series methods of feature extraction involve complex algorithm and the extracted features are affected by sample size and noise. In this paper, a simple time series method for bearing fault feature extraction using singular spectrum analysis (SSA) of the vibration signal is proposed. The method is easy to implement and fault feature is noise immune. SSA is used for the decomposition of the acquired signals into an additive set of principal components. A new approach for the selection of the principal components is also presented. Two methods of feature extraction based on SSA are implemented. In first method, the singular values (SV) of the selected SV number are adopted as the fault features, and in second method, the energy of the principal components corresponding to the selected SV numbers are used as features. An artificial neural network (ANN) is used for fault diagnosis. The algorithms were evaluated using two experimental datasets—one from a motor bearing subjected to different fault severity levels at various loads, with and without noise, and the other with bearing vibration data obtained in the presence of a gearbox. The effect of sample size, fault size and load on the fault feature is studied. The advantages of the proposed method over the exiting time series method are discussed. The experimental results demonstrate that the proposed bearing fault diagnosis method is simple, noise tolerant and efficient.

  14. Fault diagnosis for magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; King, Yueh-Hsun; Lee, Rong-Mao

    2009-05-01

    A full fault diagnosis for active magnetic bearing (AMB) and rotor systems to monitor the closed-loop operation and analyze fault patterns on-line in case any malfunction occurs is proposed in this paper. Most traditional approaches for fault diagnosis are based on actuator or sensor diagnosis individually and can solely detect a single fault at a time. This research combines two diagnosis methodologies by using both state estimators and parameter estimators to detect, identify and analyze actuators and sensors faults in AMB/rotor systems. The proposed fault diagnosis algorithm not only enhances the diagnosis accuracy, but also illustrates the capability to detect multiple sensors faults which occur concurrently. The efficacy of the presented algorithm has been verified by computer simulations and intensive experiments. The test rig for experiments is equipped with AMB, interface module (dSPACE DS1104), data acquisition unit MATLAB/Simulink simulation environment. At last, the fault patterns, such as bias, multiplicative loop gain variation and noise addition, can be identified by the algorithm presented in this work. In other words, the proposed diagnosis algorithm is able to detect faults at the first moment, find which sensors or actuators under failure and identify which fault pattern the found faults belong to.

  15. Gearbox fault diagnosis using adaptive redundant Lifting Scheme

    NASA Astrophysics Data System (ADS)

    Hongkai, Jiang; Zhengjia, He; Chendong, Duan; Peng, Chen

    2006-11-01

    Vibration signals acquired from a gearbox usually are complex, and it is difficult to detect the symptoms of an inherent fault in a gearbox. In this paper, an adaptive redundant lifting scheme for the fault diagnosis of gearboxes is developed. It adopts data-based optimisation algorithm to lock on to the dominant structure of the signal, and well reveal the transient components of the vibration signal in time domain. Both lifting scheme and adaptive redundant lifting scheme are applied to analyse the experimental signal from a gearbox with wear fault and the practical vibration signal from a large air compressor. The results confirm that adaptive redundant lifting scheme is quite effective in extracting impulse and modulation feature components from the complex background.

  16. Rolling bearing fault diagnosis using an optimization deep belief network

    NASA Astrophysics Data System (ADS)

    Shao, Haidong; Jiang, Hongkai; Zhang, Xun; Niu, Maogui

    2015-11-01

    The vibration signals measured from a rolling bearing are usually affected by the variable operating conditions and background noise which lead to the diversity and complexity of the vibration signal characteristics, and it is a challenge to effectively identify the rolling bearing faults from such vibration signals with no further fault information. In this paper, a novel optimization deep belief network (DBN) is proposed for rolling bearing fault diagnosis. Stochastic gradient descent is used to efficiently fine-tune all the connection weights after the pre-training of restricted Boltzmann machines (RBMs) based on the energy functions, and the classification accuracy of the DBN is improved. Particle swarm is further used to decide the optimal structure of the trained DBN, and the optimization DBN is designed. The proposed method is applied to analyze the simulation signal and experimental signal of a rolling bearing. The results confirm that the proposed method is more accurate and robust than other intelligent methods.

  17. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum

    NASA Astrophysics Data System (ADS)

    Liu, B.; Riemenschneider, S.; Xu, Y.

    2006-04-01

    The empirical mode decomposition (EMD) and Hilbert spectrum are a new method for adaptive analysis of non-linear and non-stationary signals. This paper applies this method to vibration signal analysis for localised gearbox fault diagnosis. We first study the properties of the recently developed B-spline EMD as a filter bank, which is helpful in understanding the mechanisms behind EMD. Then we investigate the effectiveness of the original and the B-spline EMD as well as their corresponding Hilbert spectrum in the fault diagnosis. Vibration signals collected from an automobile gearbox with an incipient tooth crack are used in the investigation. The results show that the EMD algorithms and the Hilbert spectrum perform excellently. They are found to be more effective than the often used continuous wavelet transform in detection of the vibration signatures.

  18. Training for Skill in Fault Diagnosis

    ERIC Educational Resources Information Center

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  19. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology.

  20. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  1. Adaptive feature extraction using sparse coding for machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Liu, Chengliang; Huang, Yixiang

    2011-02-01

    In the signal processing domain, there has been growing interest in sparse coding with a learned dictionary instead of a predefined one, which is advocated as an effective mathematical description for the underlying principle of mammalian sensory systems in processing information. In this paper, sparse coding is introduced as a feature extraction technique for machinery fault diagnosis and an adaptive feature extraction scheme is proposed based on it. The two core problems of sparse coding, i.e., dictionary learning and coefficients solving, are discussed in detail. A natural extension of sparse coding, shift-invariant sparse coding, is also introduced. Then, the vibration signals of rolling element bearings are taken as the target signals to verify the proposed scheme, and shift-invariant sparse coding is used for vibration analysis. With the purpose of diagnosing the different fault conditions of bearings, features are extracted following the proposed scheme: basis functions are separately learned from each class of vibration signals trying to capture the defective impulses; a redundant dictionary is built by merging all the learned basis functions; based on the redundant dictionary, the diagnostic information is made explicit in the solved sparse representations of vibration signals; sparse features are formulated in terms of activations of atoms. The multiclass linear discriminant analysis (LDA) classifier is used to test the discriminability of the extracted sparse features and the adaptability of the learned atoms. The experiments show that sparse coding is an effective feature extraction technique for machinery fault diagnosis.

  2. Autoregressive modelling for rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Al-Bugharbee, H.; Trendafilova, I.

    2015-07-01

    In this study, time series analysis and pattern recognition analysis are used effectively for the purposes of rolling bearing fault diagnosis. The main part of the suggested methodology is the autoregressive (AR) modelling of the measured vibration signals. This study suggests the use of a linear AR model applied to the signals after they are stationarized. The obtained coefficients of the AR model are further used to form pattern vectors which are in turn subjected to pattern recognition for differentiating among different faults and different fault sizes. This study explores the behavior of the AR coefficients and their changes with the introduction and the growth of different faults. The idea is to gain more understanding about the process of AR modelling for roller element bearing signatures and the relation of the coefficients to the vibratory behavior of the bearings and their condition.

  3. Measurement selection for parametric IC fault diagnosis

    NASA Technical Reports Server (NTRS)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  4. Automated Recognition of Advanced Vibration Features for Machinery Fault Classification

    DTIC Science & Technology

    2001-04-05

    fault " using transitional failure data for commercial grade gearboxes . Features will be extracted from accelerometer data obtained on the Mechanical...Machinery Fault Classification DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: New...thru ADP013516 UNCLASSIFIED AUTOMATED RECOGNITION OF ADVANCED VIBRATION FEATURES FOR MACHINERY FAULT CLASSIFICATION Katherine McClintic, Robert Campbell

  5. On-line diagnosis of unrestricted faults

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.; Sundstrom, R. J.

    1974-01-01

    A formal model for the study of on-line diagnosis is introduced and used to investigate the diagnosis of unrestricted faults. A fault of a system S is considered to be a transformation of S into another system S' at some time tau. The resulting faulty system is taken to be the system which looks like S up to time tau, and like S' thereafter. Notions of fault tolerance error are defined in terms of the resulting system being able to mimic some desired behavior as specified by a system similar to S. A notion of on-line diagnosis is formulated which involves an external detector and a maximum time delay within which every error caused by a fault in a prescribed set must be detected. It is shown that if a system is on-line diagnosable for the unrestricted set of faults then the detector is at least as complex, in terms of state set size, as the specification. The use of inverse systems for the diagnosis of unrestricted faults is considered. A partial characterization of those inverses which can be used for unrestricted fault diagnosis is obtained.

  6. A survey of fault diagnosis technology

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel

    1989-01-01

    Existing techniques and methodologies for fault diagnosis are surveyed. The techniques run the gamut from theoretical artificial intelligence work to conventional software engineering applications. They are shown to define a spectrum of implementation alternatives where tradeoffs determine their position on the spectrum. Various tradeoffs include execution time limitations and memory requirements of the algorithms as well as their effectiveness in addressing the fault diagnosis problem.

  7. Efficient fault diagnosis of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, H.; Danai, K.; Lewicki, D. G.

    1993-01-01

    Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training.

  8. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  9. Cooperative Human-Machine Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Remington, Roger; Palmer, Everett

    1987-02-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  10. Diagnosis of fault gearbox with wavelet packet decomposition and vector statistics method

    NASA Astrophysics Data System (ADS)

    Ren, Xueping; Shao, Wei; Ma, Wensheng

    2008-12-01

    Vibration signals from fault gearbox are usually complex with many different frequencies. As a result, it is difficult to find early symptoms of a potential fault in a gearbox. WPD (Wavelet Packet Decomposition) have been established as the most wide spread tool to disclose transient information in signals and wavelet packet filter is found to be very effective in detection of symptoms from vibration signals of a gearbox with early fatigue tooth crack. The paper presents a method to decompose the fault vibration signals with WPD and analysis the decomposed vectors with statistic algorithm to diagnosis the gearbox fault. The method is considered to be effective with the aim of gearbox fault detection and diagnosis.

  11. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    PubMed

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  12. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  13. HVAC Fault Detection and Diagnosis Toolkit

    SciTech Connect

    Haves, Philip; Xu, Peng; Kim, Moosung

    2004-12-31

    This toolkit supports component-level model-based fault detection methods in commercial building HVAC systems. The toolbox consists of five basic modules: a parameter estimator for model calibration, a preprocessor, an AHU model simulator, a steady-state detector, and a comparator. Each of these modules and the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in C++ and also invokes the SPARK simulation program.

  14. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  15. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  16. Fault diagnosis in sparse multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Blough, Douglas M.; Sullivan, Gregory F.; Masson, Gerald M.

    1988-01-01

    The problem of fault diagnosis in multiprocessor systems is considered under a uniformly probabilistic model in which processors are faulty with probability p. This work focuses on minimizing the number of tests that must be conducted in order to correctly diagnose the state of every processor in the system with high probability. A diagnosis algorithm that can correctly diagnose the state of every processor with probability approaching one in a class of systems performing slightly greater than a linear number of tests is presented. A nearly matching lower bound on the number of tests required to achieve correct diagnosis in arbitrary systems is also proven. The number of tests required under this probabilistic model is shown to be significantly less than under a bounded-size fault set model. Because the number of tests that must be conducted is a measure of the diagnosis overhead, these results represent a dramatic improvement in the performance of system-level diagnosis technique.

  17. Completing fault models for abductive diagnosis

    SciTech Connect

    Knill, E.; Cox, P.T.; Pietrzykowski, T.

    1992-11-05

    In logic-based diagnosis, the consistency-based method is used to determine the possible sets of faulty devices. If the fault models of the devices are incomplete or nondeterministic, then this method does not necessarily yield abductive explanations of system behavior. Such explanations give additional information about faulty behavior and can be used for prediction. Unfortunately, system descriptions for the consistency-based method are often not suitable for abductive diagnosis. Methods for completing the fault models for abductive diagnosis have been suggested informally by Poole and by Cox et al. Here we formalize these methods by introducing a standard form for system descriptions. The properties of these methods are determined in relation to consistency-based diagnosis and compared to other ideas for integrating consistency-based and abductive diagnosis.

  18. Monitoring and fault diagnosis of hybrid systems.

    PubMed

    Zhao, Feng; Koutsoukos, Xenofon; Haussecker, Horst; Reich, Jim; Cheung, Patrick

    2005-12-01

    Many networked embedded sensing and control systems can be modeled as hybrid systems with interacting continuous and discrete dynamics. These systems present significant challenges for monitoring and diagnosis. Many existing model-based approaches focus on diagnostic reasoning assuming appropriate fault signatures have been generated. However, an important missing piece is the integration of model-based techniques with the acquisition and processing of sensor signals and the modeling of faults to support diagnostic reasoning. This paper addresses key modeling and computational problems at the interface between model-based diagnosis techniques and signature analysis to enable the efficient detection and isolation of incipient and abrupt faults in hybrid systems. A hybrid automata model that parameterizes abrupt and incipient faults is introduced. Based on this model, an approach for diagnoser design is presented. The paper also develops a novel mode estimation algorithm that uses model-based prediction to focus distributed processing signal algorithms. Finally, the paper describes a diagnostic system architecture that integrates the modeling, prediction, and diagnosis components. The implemented architecture is applied to fault diagnosis of a complex electro-mechanical machine, the Xerox DC265 printer, and the experimental results presented validate the approach. A number of design trade-offs that were made to support implementation of the algorithms for online applications are also described.

  19. A methodology for distributed fault diagnosis

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Puig, V.; Blesa, J.

    2017-01-01

    In this paper, a methodology for distributed fault diagnosis is proposed. The algorithm places the sensors in a system in such a manner that the partition of a system into various subsystems becomes easier facilitating the implementation of a distributed fault diagnosis system. This algorithm also reduces or minimized the number of sensors to be used or install thus reducing overall cost. Binary integer linear programming is used for optimization in this algorithm. Real case study of Barcelona water network has been used to demonstrate and validate the proposed algorithm.

  20. Use of autocorrelation of wavelet coefficients for fault diagnosis

    NASA Astrophysics Data System (ADS)

    Rafiee, J.; Tse, P. W.

    2009-07-01

    This paper presents a novel time-frequency-based feature recognition system for gear fault diagnosis using autocorrelation of continuous wavelet coefficients (CWC). Furthermore, it introduces an original mathematical approximation of gearbox vibration signals which approximates sinusoidal components of noisy vibration signals generated from gearboxes, including incipient and serious gear failures using autocorrelation of CWC. First, the drawbacks of the continuous wavelet transform (CWT) have been eliminated using autocorrelation function. Secondly, the autocorrelation of CWC is introduced as an original pattern for fault identification in machine condition monitoring. Thirdly, a sinusoidal summation function consisting of eight terms was used to approximate the periodic waveforms generated by autocorrelation of CWC for normal gearboxes (NGs) as well as occurrences of incipient and severe gear fault (e.g. slight-worn, medium-worn, and broken-tooth gears). In other words, the size of vibration signals can be reduced with minimal loss of significant frequency content by means of the sinusoidal approximation of generated autocorrelation waveforms of CWC as reported in this paper.

  1. Sequential Testing Algorithms for Multiple Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Shakeri, Mojdeh; Raghavan, Vijaya; Pattipati, Krishna R.; Patterson-Hine, Ann

    1997-01-01

    In this paper, we consider the problem of constructing optimal and near-optimal test sequencing algorithms for multiple fault diagnosis. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and AND/OR graph search, we present several test sequencing algorithms for the multiple fault isolation problem. These algorithms provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a diagnostic directed graph (digraph), instead of a diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. The algorithms developed herein have been successfully applied to several real-world systems. Computational results indicate that the size of a multiple fault strategy is strictly related to the structure of the system.

  2. Gearbox fault diagnosis based on time-frequency domain synchronous averaging and feature extraction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Tang, Jiong

    2016-04-01

    Gearbox is one of the most vulnerable subsystems in wind turbines. Its healthy status significantly affects the efficiency and function of the entire system. Vibration based fault diagnosis methods are prevalently applied nowadays. However, vibration signals are always contaminated by noise that comes from data acquisition errors, structure geometric errors, operation errors, etc. As a result, it is difficult to identify potential gear failures directly from vibration signals, especially for the early stage faults. This paper utilizes synchronous averaging technique in time-frequency domain to remove the non-synchronous noise and enhance the fault related time-frequency features. The enhanced time-frequency information is further employed in gear fault classification and identification through feature extraction algorithms including Kernel Principal Component Analysis (KPCA), Multilinear Principal Component Analysis (MPCA), and Locally Linear Embedding (LLE). Results show that the LLE approach is the most effective to classify and identify different gear faults.

  3. Machinery fault diagnosis using joint global and local/nonlocal discriminant analysis with selective ensemble learning

    NASA Astrophysics Data System (ADS)

    Yu, Jianbo

    2016-11-01

    The vibration signals of faulty machine are generally non-stationary and nonlinear under those complicated working conditions. Thus, it is a big challenge to extract and select the effective features from vibration signals for machinery fault diagnosis. This paper proposes a new manifold learning algorithm, joint global and local/nonlocal discriminant analysis (GLNDA), which aims to extract effective intrinsic geometrical information from the given vibration data. Comparisons with other regular methods, principal component analysis (PCA), local preserving projection (LPP), linear discriminant analysis (LDA) and local LDA (LLDA), illustrate the superiority of GLNDA in machinery fault diagnosis. Based on the extracted information by GLNDA, a GLNDA-based Fisher discriminant rule (FDR) is put forward and applied to machinery fault diagnosis without additional recognizer construction procedure. By importing Bagging into GLNDA score-based feature selection and FDR, a novel manifold ensemble method (selective GLNDA ensemble, SE-GLNDA) is investigated for machinery fault diagnosis. The motivation for developing ensemble of manifold learning components is that it can achieve higher accuracy and applicability than single component in machinery fault diagnosis. The effectiveness of the SE-GLNDA-based fault diagnosis method has been verified by experimental results from bearing full life testers.

  4. Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Dong, Guangming; Chen, Jin

    2012-11-01

    Rolling element bearings are frequently used in rotary machinery, but they are also fragile mechanical parts. Hence, exact condition monitoring and fault diagnosis for them plays an important role in ensuring machinery's reliable running. Timely diagnosis of early bearing faults is desirable, but the early fault signatures are easily submerged in noise. In this paper, Wigner-Ville spectrum based on cyclic spectral density (CSWVS for a brief notation) is studied, which is able to represent the cyclostationary signals while reducing the masking effect of additive stationary noise. Both simulations and experiments show that CSWVS is a noise resistant time frequency analysis technique for extracting bearing fault patterns, when bearing signals are under influences of random noise and gear vibrations. The 3-D feature of the CSWVS is proved useful in extracting bearing fault pattern from gearbox vibration signals, where bearing signals are affected by gear meshing vibration and noise. Besides, CSWVS utilizes the second order cyclostationary property of the vibration signals produced by bearing distributed fault, and clearly extracts its fault features, which cannot be extracted by envelope analysis. To quantitatively describe the extent of bearing fault, Renyi information encoded in the time frequency diagram of CSWVS is studied. It is shown to be a more sensitive index to reflect bearing performance degradation, compared with the spectral entropy (SE), squared envelope spectrum entropy (SESE) and Renyi informations for WVD, PWVD, especially when SNR is low.

  5. Methodology for fault detection in induction motors via sound and vibration signals

    NASA Astrophysics Data System (ADS)

    Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus

    2017-01-01

    Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.

  6. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information. PMID:25938760

  7. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    PubMed

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  8. Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Zuo, Ming J.

    2017-02-01

    This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.

  9. Diagnosis of subharmonic faults of large rotating machinery based on EMD

    NASA Astrophysics Data System (ADS)

    Wu, Fangji; Qu, Liangsheng

    2009-02-01

    The vibration signals always carry the abundant dynamic information of a machine and are very useful for the feature extraction and fault diagnosis. In practice, most subharmonic signals have a close relationship to time variables and can manifest large amplitude fluctuation, transient vibration, or modulation signals in time domain. In view of this, this paper describes an effective method to search the features of subharmonic faults of large rotating machinery based on empirical mode decomposition (EMD). Case study on some actual vibration signals of machine parts shows that EMD is an adaptive and unsupervised method in feature extraction and it provides an attractive alternative to the traditional diagnostic methods.

  10. A dynamic integrated fault diagnosis method for power transformers.

    PubMed

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

  11. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    PubMed Central

    Gao, Wensheng; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  12. Studies on system-level fault diagnosis and related topics

    SciTech Connect

    Sen, A.

    1987-01-01

    This dissertation deals mainly with the diagnosis aspects of fault-tolerant computing. A number of system models are studied, and their diagnosability conditions established. Fault-diagnosis algorithms for some models are proposed and complexity of diagnosis problem analyzed for some other models. Finally, some fault-tolerant computer networks are studied, and efficient routing algorithms are proposed for these networks.

  13. Advanced fault diagnosis methods in molecular networks.

    PubMed

    Habibi, Iman; Emamian, Effat S; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally.

  14. A PC based fault diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Marsh, Christopher A.

    1990-01-01

    The Integrated Status Assessment (ISA) prototype expert system performs system level fault diagnosis using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C Language Integrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station Freedom's Operation Management System (OMS). This paper describes the development of the ISA prototype from early concepts to the current PC/workstation version used today and describes future areas of development for the prototype.

  15. Application of the fault diagnosis strategy based on hierarchical information fusion in motors fault diagnosis

    NASA Astrophysics Data System (ADS)

    Xia, Li; Fei, Qi

    2006-03-01

    This paper has analyzed merits and demerits of both neural network technique and of the information fusion methods based on the D-S (dempster-shafer evidence) Theory as well as their complementarity, proposed the hierarchical information fusion fault diagnosis strategy by combining the neural network technique and the fused decision diagnosis based on D-S Theory, and established a corresponding functional model. Thus, we can not only solve a series of problems caused by rapid growth in size and complexity of neural network structure with diagnosis parameters increasing, but also can provide effective method for basic probability assignment in D-S Theory. The application of the strategy to diagnosing faults of motor bearings has proved that this method is of fairly high accuracy and reliability in fault diagnosis.

  16. Statistical Fault Detection & Diagnosis Expert System

    SciTech Connect

    Wegerich, Stephan

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component has degraded.

  17. Human Problem Solving in Fault Diagnosis Tasks

    DTIC Science & Technology

    1986-04-01

    W - FPFag-kx~~ff~P~xNA F MMIP Research Note 86-33 cc HUMAN PROBLEM SOLVING IN FAULT DIAGNOSIS TASKS J U William B. Rouse and Ruston M. Hunt Center...V -m ... 1 Ira wli W - -. W .: m.4.. . W - r - j ; - R 7T._ W77 m- UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) REPORT...ii SECURITY CLASSIFICATION OF THIS PAGE( W "en Data Entered) ,.-... 2

  18. Condition Monitoring and Fault Diagnosis of Wet-Shift Clutch Transmission Based on Multi-technology

    NASA Astrophysics Data System (ADS)

    Chen, Man; Wang, Liyong; Ma, Biao

    Based on the construction feature and operating principle of the wet-shift clutch transmission, the condition monitoring and fault diagnosis for the transmission of the tracklayer with wet-shift clutch were implemented with using the oil analysis technology, function parameter test method and vibration analysis technology. The new fault diagnosis methods were proposed, which are to build the gray modeling with the oil analysis data, and to test the function parameter of the clutch press, the rotate speed of each gear, the oil press of the steer system and lubrication system and the hydraulic torque converter. It's validated that the representative function signals were chosen to execute the condition monitoring analysis, when the fault symptoms were found, and the oil analysis data were used to apply the gray modeling to forecast the fault occurs time can satisfy the demand of the condition monitoring and fault diagnosis for the transmission regular work.

  19. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Ruonan; Yang, Boyuan; Zhang, Xiaoli; Wang, Shibin; Chen, Xuefeng

    2016-06-01

    Bearing plays an essential role in the performance of mechanical system and fault diagnosis of mechanical system is inseparably related to the diagnosis of the bearings. However, it is a challenge to detect weak fault from the complex and non-stationary vibration signals with a large amount of noise, especially at the early stage. To improve the anti-noise ability and detect incipient fault, a novel fault detection method based on a short-time matching method and Support Vector Machine (SVM) is proposed. In this paper, the mechanism of roller bearing is discussed and the impact time frequency dictionary is constructed targeting the multi-component characteristics and fault feature of roller bearing fault vibration signals. Then, a short-time matching method is described and the simulation results show the excellent feature extraction effects in extremely low signal-to-noise ratio (SNR). After extracting the most relevance atoms as features, SVM was trained for fault recognition. Finally, the practical bearing experiments indicate that the proposed method is more effective and efficient than the traditional methods in weak impact signal oscillatory characters extraction and incipient fault diagnosis.

  20. Multiscale noise tuning of stochastic resonance for enhanced fault diagnosis in rotating machines

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Wang, Jun; Liu, Yongbin; Dai, Daoyi; Kong, Fanrang

    2012-04-01

    The interference from background noise makes it difficult to identify incipient faults of a rotating machine via vibration analysis. By the aid of stochastic resonance (SR), the unavoidable noise can, however, be applied to enhance the signal-to-noise ratio (SNR) of a system output. The classical SR phenomenon requires small parameters, which is not suited for rotating machine fault diagnosis as the defect-induced fault characteristic frequency is usually much higher than 1 Hz. This paper investigates an improved SR approach with parameter tuning for identifying the defect-induced rotating machine faults. A new method of multiscale noise tuning is developed to realize the SR at a fixed noise level by transforming the noise at multiple scales to be distributed in an approximate 1/f form. The proposed SR approach overcomes the limitation of small parameter requirement of the classical SR, and takes advantage of the multiscale noise for an improved SR performance. Thus the method is well-suited for enhancement of rotating machine fault identification when the noise is present at different scales. A new scheme of rotating machine fault diagnosis is hence proposed based on the SR with multiscale noise tuning and has been verified by means of practical vibration signals carrying fault information from bearings and a gearbox. An enhanced performance of the proposed fault diagnosis method is confirmed as compared to several traditional methods.

  1. Adaptive multiwavelets via two-scale similarity transforms for rotating machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; He, Zhengjia; Zi, Yanyang; Lei, Yaguo; Li, Zhen

    2009-07-01

    Fault diagnosis of rotating machinery is very important and critical to avoid serious accidents. However, the complex and non-stationary vibration signals with a large amount of noise make the fault detection to be challenging, especially at the early stage. Based on the inner product principle, fault detection using wavelet transforms is to match fault features most correlative to basis functions, and its effectiveness is determined by the construction and choice of wavelet basis function. In this paper, a new method based on adaptive multiwavelets via two-scale similarity transforms (TSTs) is proposed. Multiwavelets can offer multiple wavelet basis functions and so have the possibility of matching various fault features preferably. TSTs are simple and straightforward methods to design a series of new biorthogonal multiwavelets with some desirable properties. Using TSTs, a changeable and adaptive multiwavelet library is established so as to provide various ascendant multiple basis functions for inner product operation. By the rule of kurtosis maximization principle, optimal multiwavelets most similar to the fault features of a given signal are searched for. The applications to a rolling bearing of outer-race fault and a flue gas turbine unit of rub-impact fault show that the proposed method is an effective approach to detecting the impulse feature components hidden in vibration signals and performs well for rotating machinery fault diagnosis.

  2. A wavelet approach to fault diagnosis of a gearbox under varying load conditions

    NASA Astrophysics Data System (ADS)

    Wang, Xiyang; Makis, Viliam; Yang, Ming

    2010-04-01

    Varying load can cause changes in a measured gearbox vibration signal. However, conventional techniques for fault diagnosis are based on the assumption that changes in vibration signal are only caused by deterioration of the gearbox. There is a need to develop a technique to provide accurate state indicator of gearbox under fluctuating load conditions. This paper presents an approach to gear fault diagnosis based on complex Morlet continuous wavelet transform under this condition. Gear motion residual signal, which represents the departure of time synchronously averaged signal from the average tooth-meshing vibration, is analyzed as source data due to its lower sensitiveness to the alternating load condition. A fault growth parameter based on the amplitude of wavelet transform is proposed to evaluate gear fault advancement quantitatively. We found that this parameter is insensitive to varying load and can correctly indicate early gear fault. For a comparison, the advantages and disadvantages of other measures such as kurtosis, mean, variance, form factor and crest factor, both of residual signal and mean amplitude of continuous wavelet transform waveform, are also discussed. The effectiveness of the proposed fault indicator is demonstrated using a full lifetime vibration data history obtained under sinusoidal varying load.

  3. Understanding Vibration Spectra of Planetary Gear Systems for Fault Detection

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne

    2003-01-01

    An understanding of the vibration spectra is very useful for any gear fault detection scheme based upon vibration measurements. The vibration measured from planetary gears is complicated. Sternfeld noted the presence of sidebands about the gear mesh harmonics spaced at the planet passage frequency in spectra measured near the ring gear of a CH-47 helicopter. McFadden proposes a simple model of the vibration transmission that predicts high spectral amplitudes at multiples of the planet passage frequency, for planetary gears with evenly spaced planets. This model correctly predicts no strong signal at the meshing frequency when the number of teeth on the ring gear is not an integer multiple of the number of planets. This paper will describe a model for planetary gear vibration spectra developed from the ideas started in reference. This model predicts vibration to occur only at frequencies that are multiples of the planet repetition passage frequency and clustered around gear mesh harmonics. Vibration measurements will be shown from tri-axial accelerometers mounted on three different planetary gear systems and compared with the model. The model correctly predicts the frequencies with large components around the first several gear mesh harmonics in measurements for systems with uniformly and nonuniformly spaced planet gears. Measurements do not confirm some of the more detailed features predicted by the model. Discrepancies of the ideal model to the measurements are believed due to simplifications in the model and will be discussed. Fault detection will be discussed applying the understanding will be discussed.

  4. SSME fault monitoring and diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  5. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1996-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data were obtained from a spiral bevel gear fatigue test rig at NASA/Lewis. Time-synchronous-averaged vibration data were recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Wigner-Ville distribution was used to examine the time-averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques that include time-domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  6. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  7. Fault detection and diagnosis of HVAC systems

    SciTech Connect

    Han, C.Y.; Xiao, Y.; Ruther, C.J.

    1999-07-01

    This paper presents a model-based fault detection and diagnosis (FDD) system for building heating, ventilating, and air conditioning (HVAC). Model-based fault detection is based on the strategy of determining the difference or the residuals between the normal and the existing patterns. Their approach was to attack the problem on many levels of abstraction: from the signal level, controller programming level, and system component, all the way up to the information and knowledge processing level. The various issues of real implementation of the system and the processing of real-time on-line data in actual systems of campus buildings using the proven technology and off-the-shelf commercial tools are discussed. The research was based on input and output points and software control programs found in typical direct digital control systems used for variable-air-volume air handlers and VAV cooling and hot water reheat terminal units.

  8. Implementation of a model based fault detection and diagnosis technique for actuation faults of the SSME

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1991-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the Space Shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the Space Shuttle Main Engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  9. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Shibin; Huang, Weiguo; Zhu, Z. K.

    2011-05-01

    At constant rotating speed, localized faults in rotating machine tend to result in periodic shocks and thus arouse periodic transients in the vibration signal. The transient feature analysis has always been a crucial problem for localized fault detection, and the key aim for transient feature analysis is to identify the model and its parameters (frequency, damping ratio and time index) of the transient, and the time interval, i.e. period, between transients. Based on wavelet and correlation filtering, a technique incorporating transient modeling and parameter identification is proposed for rotating machine fault feature detection. With the proposed method, both parameters of a single transient and the period between transients can be identified from the vibration signal, and localized faults can be detected based on the parameters, especially the period. First, a simulation signal is used to test the performance of the proposed method. Then the method is applied to the vibration signals of different types of bearings with localized faults in the outer race, the inner race and the rolling element, respectively, and all the results show that the period between transients, representing the localized fault characteristic, is successfully detected. The method is also utilized in gearbox fault diagnosis and the effectiveness is verified through identifying the parameters of the transient model and the period. Moreover, it can be drawn that for bearing fault detection, the single-side wavelet model is more suitable than double-side one, while the double-side model for gearbox fault detection. This research proposed an effective method of localized fault detection for rotating machine fault diagnosis through transient modeling and parameter detection.

  10. A new rolling bearing fault diagnosis method based on GFT impulse component extraction

    NASA Astrophysics Data System (ADS)

    Ou, Lu; Yu, Dejie; Yang, Hanjian

    2016-12-01

    Periodic impulses are vital indicators of rolling bearing faults. The extraction of impulse components from rolling bearing vibration signals is of great importance for fault diagnosis. In this paper, vibration signals are taken as the path graph signals in a manifold perspective, and the Graph Fourier Transform (GFT) of vibration signals are investigated from the graph spectrum domain, which are both introduced into the vibration signal analysis. To extract the impulse components efficiently, a new adjacency weight matrix is defined, and then the GFT of the impulse component and harmonic component in the rolling bearing vibration signals are analyzed. Furthermore, as the GFT graph spectrum of the impulse component is mainly concentrated in the high-order region, a new rolling bearing fault diagnosis method based on GFT impulse component extraction is proposed. In the proposed method, the GFT of a vibration signal is firstly performed, and its graph spectrum coefficients in the high-order region are extracted to reconstruct different impulse components. Next, the Hilbert envelope spectra of these impulse components are calculated, and the envelope spectrum values at the fault characteristic frequency are arranged in order. Furthermore, the envelope spectrum with the maximum value at the fault characteristic frequency is selected as the final result, from which the rolling bearing fault can be diagnosed. Finally, an index KR, which is the product of the kurtosis and Hilbert envelope spectrum fault feature ratio of the extracted impulse component, is put forward to measure the performance of the proposed method. Simulations and experiments are utilized to demonstrate the feasibility and effectiveness of the proposed method.

  11. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.

    PubMed

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-11-10

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  12. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier

    PubMed Central

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-01-01

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902

  13. Automated fault location and diagnosis on electric power distribution feeders

    SciTech Connect

    Zhu, J.; Lubkeman, D.L.; Girgis, A.A.

    1997-04-01

    This paper presents new techniques for locating and diagnosing faults on electric power distribution feeders. The proposed fault location and diagnosis scheme is capable of accurately identifying the location of a fault upon its occurrence, based on the integration of information available from disturbance recording devices with knowledge contained in a distribution feeder database. The developed fault location and diagnosis system can also be applied to the investigation of temporary faults that may not result in a blown fuse. The proposed fault location algorithm is based on the steady-state analysis of the faulted distribution network. To deal with the uncertainties inherent in the system modeling and the phasor estimation, the fault location algorithm has been adapted to estimate fault regions based on probabilistic modeling and analysis. Since the distribution feeder is a radial network, multiple possibilities of fault locations could be computed with measurements available only at the substation. To identify the actual fault location, a fault diagnosis algorithm has been developed to prune down and rank the possible fault locations by integrating the available pieces of evidence. Testing of the developed fault location and diagnosis system using field data has demonstrated its potential for practical use.

  14. Fault degradation assessment of water hydraulic motor by impulse vibration signal with Wavelet Packet Analysis and Kolmogorov Smirnov Test

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Chua, Patrick S. K.; Lim, G. H.

    2008-10-01

    The machinery fault diagnosis is important for improving reliability and performance of systems. Many methods such as Time Synchronous Average (TSA), Fast Fourier Transform (FFT)-based spectrum analysis and short-time Fourier transform (STFT) have been applied in fault diagnosis and condition monitoring of mechanical system. The above methods analyze the signal in frequency domain with low resolution, which is not suitable for non-stationary vibration signal. The Kolmogorov-Smirnov (KS) test is a simple and precise technique in vibration signal analysis for machinery fault diagnosis. It has limited use and advantage to analyze the vibration signal with higher noise directly. In this paper, a new method for the fault degradation assessment of the water hydraulic motor is proposed based on Wavelet Packet Analysis (WPA) and KS test to analyze the impulsive energy of the vibration signal, which is used to detect the piston condition of water hydraulic motor. WPA is used to analyze the impulsive vibration signal from the casing of the water hydraulic motor to obtain the impulsive energy. The impulsive energy of the vibration signal can be obtained by the multi-decomposition based on Wavelet Packet Transform (WPT) and used as feature values to assess the fault degradation of the pistons. The kurtosis of the impulsive energy in the reconstructed signal from the Wavelet Packet coefficients is used to extract the feature values of the impulse energy by calculating the coefficients of the WPT multi-decomposition. The KS test is used to compare the kurtosis of the impulse energy of the vibration signal statistically under the different piston conditions. The results show the applicability and effectiveness of the proposed method to assess the fault degradation of the pistons in the water hydraulic motor.

  15. Transformer fault diagnosis using continuous sparse autoencoder.

    PubMed

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.

  16. Complex signal analysis for wind turbine planetary gearbox fault diagnosis via iterative atomic decomposition thresholding

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Liang, Ming

    2014-09-01

    The vibration signals from complex structures such as wind turbine (WT) planetary gearboxes are intricate. Reliable analysis of such signals is the key to success in fault detection and diagnosis for complex structures. The recently proposed iterative atomic decomposition thresholding (IADT) method has shown to be effective in extracting true constituent components of complicated signals and in suppressing background noise interferences. In this study, such properties of the IADT are exploited to analyze and extract the target signal components from complex signals with a focus on WT planetary gearboxes under constant running conditions. Fault diagnosis for WT planetary gearboxes has been a very important yet challenging issue due to their harsh working conditions and complex structures. Planetary gearbox fault diagnosis relies on detecting the presence of gear characteristic frequencies or monitoring their magnitude changes. However, a planetary gearbox vibration signal is a mixture of multiple complex components due to the unique structure, complex kinetics and background noise. As such, the IADT is applied to enhance the gear characteristic frequencies of interest, and thereby diagnose gear faults. Considering the spectral properties of planetary gearbox vibration signals, we propose to use Fourier dictionary in the IADT so as to match the harmonic waves in frequency domain and pinpoint the gear fault characteristic frequency. To reduce computing time and better target at more relevant signal components, we also suggest a criterion to estimate the number of sparse components to be used by the IADT. The performance of the proposed approach in planetary gearbox fault diagnosis has been evaluated through analyzing the numerically simulated, lab experimental and on-site collected signals. The results show that both localized and distributed gear faults, both the sun and planet gear faults, can be diagnosed successfully.

  17. Automated Diagnosis Of Faults In Antenna-Aiming Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Patrick J.; Mellstrom, Jeffrey A.

    1993-01-01

    Report discusses research directed toward automated diagnosis of faults in complicated electromechanical and hydraulic systems aiming 70-m and 34-m antennas of Deep Space Network communication system.

  18. Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cong, Feiyun; Zhong, Wei; Tong, Shuiguang; Tang, Ning; Chen, Jin

    2015-05-01

    Rolling element bearings are at the heart of most rotating machines and they bear the function of connectivity between the rotor and stator. It is important to distinguish the incipient fault before the bearing step into serious failure. The Slip Matrix (SM) construction method based on Singular Value Decomposition (SVD) is proposed in this paper. The SM based fault feature extraction and impulses intelligent detection methods are introduced as the key steps for rolling bearing fault diagnosis. The numerical simulation of rolling bearing fault signal is adopted which shows that the proposed method is good at fault impulses detection in strong background noise environment. The rolling element bearing accelerated life test is performed for the acquisition of experimental data of rolling bearing fault. With the rolling bearing running from normal state to failure, the initial fault signal part can be picked out from the whole life vibration data of the rolling bearing. The vibration signal is close to the nature fault signal which is acquired from a rolling bearing applied in industrial field. The analysis result shows that the proposed method has an excellent performance in rolling bearing fault detection.

  19. Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing

    NASA Astrophysics Data System (ADS)

    Lv, Yong; Yuan, Rui; Song, Gangbing

    2016-12-01

    Rolling bearings are widely used in rotary machinery systems. The measured vibration signal of any part linked to rolling bearings contains fault information when failure occurs, differing only by energy levels. Bearing failure will cause the vibration of other components, and therefore the collected bearing vibration signals are mixed with vibration signal of other parts and noise. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can avoid the loss of local information. Subsequently using the multivariate empirical mode decomposition (multivariate EMD) to simultaneously analyze the multivariate signal is beneficial to extract fault information, especially for weak fault characteristics during the period of early failure. This paper proposes a novel method for fault feature extraction of rolling bearing based on multivariate EMD. The nonlocal means (NL-means) denoising method is used to preprocess the multivariate signal and the correlation analysis is employed to calculate fault correlation factors to select effective intrinsic mode functions (IMFs). Finally characteristic frequencies are extracted from the selected IMFs by spectrum analysis. The numerical simulations and applications to bearing monitoring verify the effectiveness of the proposed method and indicate that this novel method is promising in the field of signal decomposition and fault diagnosis.

  20. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory

    PubMed Central

    Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying

    2016-01-01

    Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately. PMID:28036329

  1. A Rolling Element Bearing Fault Diagnosis Approach Based on Multifractal Theory and Gray Relation Theory.

    PubMed

    Li, Jingchao; Cao, Yunpeng; Ying, Yulong; Li, Shuying

    2016-01-01

    Bearing failure is one of the dominant causes of failure and breakdowns in rotating machinery, leading to huge economic loss. Aiming at the nonstationary and nonlinear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a novel rolling element bearing fault diagnosis method based on multifractal theory and gray relation theory was proposed in the paper. Firstly, a generalized multifractal dimension algorithm was developed to extract the characteristic vectors of fault features from the bearing vibration signals, which can offer more meaningful and distinguishing information reflecting different bearing health status in comparison with conventional single fractal dimension. After feature extraction by multifractal dimensions, an adaptive gray relation algorithm was applied to implement an automated bearing fault pattern recognition. The experimental results show that the proposed method can identify various bearing fault types as well as severities effectively and accurately.

  2. Experimental Evaluation of a Structure-Based Connectionist Network for Fault Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, V. B.; Danai, K.; Lewicki, D. G.

    1998-01-01

    This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.

  3. Amplitude and frequency demodulation analysis for fault diagnosis of planet bearings

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2016-11-01

    The vibration signals of planet bearings feature more complex amplitude modulation and frequency modulation (AM-FM) than those of fixed-axis bearings, due to the effects of time-varying vibration transfer path, load zone passing and time-varying angles between gear pair mesh lines of action and impact force vector, in addition to that of bearing fault. Their Fourier spectra have a complex sideband structure, leading to difficulty in feature extraction and fault diagnosis. In order to address this issue, a joint amplitude and frequency demodulation analysis method is proposed to reveal the fault features, by considering the modulation characteristics. To thoroughly understand planet bearing vibration characteristics, the explicit equations for amplitude and frequency demodulated spectra of outer race, rolling element and inner race fault cases are derived, and the fault symptoms are summarized respectively. The signal is firstly decomposed into intrinsic mode functions (IMFs) by empirical mode decomposition (EMD), thus meeting the mono-component requirement by instantaneous frequency calculation. Then a sensitive component with the instantaneous frequency fluctuating around the resonance frequency is chosen for further frequency demodulation analysis. Finally, planet bearing fault can be diagnosed by matching the peaks identified in amplitude and frequency demodulated spectra with the theoretical fault characteristic frequencies. The proposed method is validated with both numerical simulated and lab experimental signal analyses.

  4. Quantitative diagnosis of fault severity trend of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Cui, Lingli; Ma, Chunqing; Zhang, Feibin; Wang, Huaqing

    2015-11-01

    The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

  5. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  6. An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis

    NASA Astrophysics Data System (ADS)

    Qiao, Zijian; Lei, Yaguo; Lin, Jing; Jia, Feng

    2017-02-01

    In mechanical fault diagnosis, most traditional methods for signal processing attempt to suppress or cancel noise imbedded in vibration signals for extracting weak fault characteristics, whereas stochastic resonance (SR), as a potential tool for signal processing, is able to utilize the noise to enhance fault characteristics. The classical bistable SR (CBSR), as one of the most widely used SR methods, however, has the disadvantage of inherent output saturation. The output saturation not only reduces the output signal-to-noise ratio (SNR) but also limits the enhancement capability for fault characteristics. To overcome this shortcoming, a novel method is proposed to extract the fault characteristics, where a piecewise bistable potential model is established. Simulated signals are used to illustrate the effectiveness of the proposed method, and the results show that the method is able to extract weak fault characteristics and has good enhancement performance and anti-noise capability. Finally, the method is applied to fault diagnosis of bearings and planetary gearboxes, respectively. The diagnosis results demonstrate that the proposed method can obtain larger output SNR, higher spectrum peaks at fault characteristic frequencies and therefore larger recognizable degree than the CBSR method.

  7. Bayesian network based on a fault tree and its application in diesel engine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Qian, Gang; Zheng, Shengguo; Cao, Longhan

    2005-12-01

    This paper discusses the faults diagnosis of diesel engine systems. This research aims at the optimization of the diagnosis results. Inspired by Bayesian Network (BN) possessing good performance in solving uncertainty problems, a new method was proposed for establishing a BN of diesel engine faults quickly, and diagnosing faults exactly. This method consisted of two stages,namely the establishment of a BN model, and a faults diagnosis of the diesel engine system using that BN mode. For the purpose of establishing the BN, a new algorithm, which can establish a BN quickly and easily, is presented. The Fault Tree (FT) diagnosis model of the diesel engine system was established first. Then it was transformed it into a BN by using our algorithm. Finally, the BN was used to diagnose the faults of a diesel engine system. Experimental results show that the diagnosis speed is increased and the accuracy is improved.

  8. Diagnosis without repair for hybrid fault situations. [in computer systems

    NASA Technical Reports Server (NTRS)

    Mallela, S.; Masson, G. M.

    1980-01-01

    In the present paper, the concept of a hybrid fault situation is introduced, which specifies bounded combinations of permanently faulty and intermittently faulty units in a system. The general class of hybrid fault situations includes, as special cases, the all permanent fault case and the unrestricted intermittent fault case, which have been previously considered with PMC models. An approach compatible with the diagnosis of permanent fault situations is then applied to the diagnosis of hybrid fault situation. The motivation for doing so is the common practice of testing for the presence of intermittent faults in systems by means of repeated applications of tests that are designed for the detection of permanent faults. The testing assignment of PMC models of system is characterized, and interrelationships between the number of intermittently and permanently faulty units that can be diagnosed is established.

  9. Fault diagnosis for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Merrill, Walter

    1992-01-01

    A conceptual design of a model-based fault detection and diagnosis system is developed for the Space Shuttle main engine. The design approach consists of process modeling, residual generation, and fault detection and diagnosis. The engine is modeled using a discrete time, quasilinear state-space representation. Model parameters are determined by identification. Residuals generated from the model are used by a neural network to detect and diagnose engine component faults. Fault diagnosis is accomplished by training the neural network to recognize the pattern of the respective fault signatures. Preliminary results for a failed valve, generated using a full, nonlinear simulation of the engine, are presented. These results indicate that the developed approach can be used for fault detection and diagnosis. The results also show that the developed model is an accurate and reliable predictor of the highly nonlinear and very complex engine.

  10. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

    PubMed Central

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID

  11. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    PubMed

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  12. Multisensor fusion for induction motor aging analysis and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Erbay, Ali Seyfettin

    Induction motors are the most commonly used electrical drives, ranging in power from fractional horsepower to several thousand horsepowers. Several studies have been conducted to identify the cause of failure of induction motors in industrial applications. Recent activities indicate a focus towards building intelligence into the motors, so that a continuous on-line fault diagnosis and prognosis may be performed. The purpose of this research and development was to perform aging studies of three-phase, squirrel-cage induction motors; establish a database of mechanical, electrical and thermal measurements from load testing of the motors; develop a sensor-fusion method for on-line motor diagnosis; and use the accelerated aging models to extrapolate to the normal aging regimes. A new laboratory was established at The University of Tennessee to meet the goals of the project. The accelerated aging and motor performance tests constitute a unique database, containing information about the trend characteristics of measured signatures as a function of motor faults. The various measurements facilitate enhanced fault diagnosis of motors and may be effectively utilized to increase the reliability of decision making and for the development of life prediction techniques. One of these signatures is the use of Multi-Resolution Analysis (MRA) using wavelets. Using MRA in trending different frequency bands has revealed that higher frequencies show a characteristic increase when the condition of a bearing is in question. This study effectively showed that the use of MRA in vibration signatures can identify a thermal degradation or degradation via electrical charge of the bearing, whereas other failure mechanisms, such as winding insulation failure, do not exhibit such characteristics. A motor diagnostic system, called the Intelligent Motor Monitoring System (IMMS) was developed in this research. The IMMS integrated the various mechanical, electrical and thermal signatures, and

  13. New procedure for gear fault detection and diagnosis using instantaneous angular speed

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Xining; Wu, Jili

    2017-02-01

    Besides the extreme complexity of gear dynamics, the fault diagnosis results in terms of vibration signal are sometimes easily misled and even distorted by the interference of transmission channel or other components like bearings, bars. Recently, the research field of Instantaneous Angular Speed (IAS) has attracted significant attentions due to its own advantages over conventional vibration analysis. On the basis of IAS signal's advantages, this paper presents a new feature extraction method by combining the Empirical Mode Decomposition (EMD) and Autocorrelation Local Cepstrum (ALC) for fault diagnosis of sophisticated multistage gearbox. Firstly, as a pre-processing step, signal reconstruction is employed to address the oversampled issue caused by the high resolution of the angular sensor and the test speed. Then the adaptive EMD is used to acquire a number of Intrinsic Mode Functions (IMFs). Nevertheless, not all the IMFs are needed for the further analysis since different IMFs have different sensitivities to fault. Hence, the cosine similarity metric is introduced to select the most sensitive IMF. Even though, the sensitive IMF is still insufficient for the gear fault diagnosis due to the weakness of the fault component related to the gear fault. Therefore, as the final step, ALC is used for the purpose of signal de-noising and feature extraction. The effectiveness and robustness of the new approach has been validated experimentally on the basis of two gear test rigs with gears under different working conditions. Diagnosis results show that the new approach is capable of effectively handling the gear fault diagnosis i.e., the highlighted quefrency and its rahmonics corresponding to the rotary period and its multiple are displayed clearly in the cepstrum record of the proposed method.

  14. Detection of signal transients based on wavelet and statistics for machine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhu, Z. K.; Yan, Ruqiang; Luo, Liheng; Feng, Z. H.; Kong, F. R.

    2009-05-01

    This paper presents a transient detection method that combines continuous wavelet transform (CWT) and Kolmogorov-Smirnov (K-S) test for machine fault diagnosis. According to this method, the CWT represents the signal in the time-scale plane, and the proposed "step-by-step detection" based on K-S test identifies the transient coefficients. Simulation study shows that the transient feature can be effectively identified in the time-scale plane with the K-S test. Moreover, the transients can be further transformed back into the time domain through the inverse CWT. The proposed method is then utilized in the gearbox vibration transient detection for fault diagnosis, and the results show that the transient features both expressed in the time-scale plane and re-constructed in the time domain characterize the gearbox condition and fault severity development more clearly than the original time domain signal. The proposed method is also applied to the vibration signals of cone bearings with the localized fault in the inner race, outer race and the rolling elements, respectively. The detected transients indicate not only the existence of the bearing faults, but also the information about the fault severity to a certain degree.

  15. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    PubMed

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%.

  16. Fault diagnosis algorithm based on switching function for boost converters

    NASA Astrophysics Data System (ADS)

    Cho, H.-K.; Kwak, S.-S.; Lee, S.-H.

    2015-07-01

    A fault diagnosis algorithm, which is necessary for constructing a reliable power conversion system, should detect fault occurrences as soon as possible to protect the entire system from fatal damages resulting from system malfunction. In this paper, a fault diagnosis algorithm is proposed to detect open- and short-circuit faults that occur in a boost converter switch. The inductor voltage is abnormally kept at a positive DC value during a short-circuit fault in the switch or at a negative DC value during an open-circuit fault condition until the inductor current becomes zero. By employing these abnormal properties during faulty conditions, the inductor voltage is compared with the switching function to detect each fault type by generating fault alarms when a fault occurs. As a result, from the fault alarm, a decision is made in response to the fault occurrence and the fault type in less than two switching time periods using the proposed algorithm constructed in analogue circuits. In addition, the proposed algorithm has good resistivity to discontinuous current-mode operation. As a result, this algorithm features the advantages of low cost and simplicity because of its simple analogue circuit configuration.

  17. Solar Dynamic Power System Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  18. Adaptive PCA based fault diagnosis scheme in imperial smelting process.

    PubMed

    Hu, Zhikun; Chen, Zhiwen; Gui, Weihua; Jiang, Bin

    2014-09-01

    In this paper, an adaptive fault detection scheme based on a recursive principal component analysis (PCA) is proposed to deal with the problem of false alarm due to normal process changes in real process. Our further study is also dedicated to develop a fault isolation approach based on Generalized Likelihood Ratio (GLR) test and Singular Value Decomposition (SVD) which is one of general techniques of PCA, on which the off-set and scaling fault can be easily isolated with explicit off-set fault direction and scaling fault classification. The identification of off-set and scaling fault is also applied. The complete scheme of PCA-based fault diagnosis procedure is proposed. The proposed scheme is first applied to Imperial Smelting Process, and the results show that the proposed strategies can be able to mitigate false alarms and isolate faults efficiently.

  19. Fault detection and diagnosis based on modeling and estimation methods.

    PubMed

    Huang, Sunan; Tan, Kok Kiong

    2009-05-01

    This paper investigates the problem of fault detection and diagnosis in a class of nonlinear systems with modeling uncertainties. A nonlinear observer is first designed for monitoring fault. Radial basis function (RBF) neural network is used in this observer to approximate the unknown nonlinear dynamics. When a fault occurs, another RBF is triggered to capture the nonlinear characteristics of the fault function. The fault model obtained by the second neural network (NN) can be used for identifying the failure mode by comparing it with any known failure modes. Finally, a simulation example is presented to illustrate the effectiveness of the proposed scheme.

  20. A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery.

    PubMed

    Xue, Xiaoming; Zhou, Jianzhong

    2017-01-01

    To make further improvement in the diagnosis accuracy and efficiency, a mixed-domain state features data based hybrid fault diagnosis approach, which systematically blends both the statistical analysis approach and the artificial intelligence technology, is proposed in this work for rolling element bearings. For simplifying the fault diagnosis problems, the execution of the proposed method is divided into three steps, i.e., fault preliminary detection, fault type recognition and fault degree identification. In the first step, a preliminary judgment about the health status of the equipment can be evaluated by the statistical analysis method based on the permutation entropy theory. If fault exists, the following two processes based on the artificial intelligence approach are performed to further recognize the fault type and then identify the fault degree. For the two subsequent steps, mixed-domain state features containing time-domain, frequency-domain and multi-scale features are extracted to represent the fault peculiarity under different working conditions. As a powerful time-frequency analysis method, the fast EEMD method was employed to obtain multi-scale features. Furthermore, due to the information redundancy and the submergence of original feature space, a novel manifold learning method (modified LGPCA) is introduced to realize the low-dimensional representations for high-dimensional feature space. Finally, two cases with 12 working conditions respectively have been employed to evaluate the performance of the proposed method, where vibration signals were measured from an experimental bench of rolling element bearing. The analysis results showed the effectiveness and the superiority of the proposed method of which the diagnosis thought is more suitable for practical application.

  1. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  2. Fault diagnosis based on continuous simulation models

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  3. A Fuzzy-Neuro Scheme for Fault Diagnosis and Life Consumption of Rotordynamic Systems

    DTIC Science & Technology

    1996-04-01

    O6B DTIC Information For The Defense CommunrtY 000MWPP A FUZZY-NEURO SCHEME FOR FAULT DIAGNOSIS AND LIFE CONSUMPTION OF ROTORDYNAMIC SYSTEMS Michael J... rotordynamic , finite-etement modeling. A rotor demonstration rig is used as a proof of concept tool. The approach integrates rotor shaft vibration...measurements with detailed, rotordynamic , finite-element models through a fuzzy-neuro scheme which is specifically developed to respond to the rotor system

  4. Fuzzy classifier for fault diagnosis in analog electronic circuits.

    PubMed

    Kumar, Ashwani; Singh, A P

    2013-11-01

    Many studies have presented different approaches for the fault diagnosis with fault models having ± 50% variation in the component values in analog electronic circuits. There is still a need of the approaches which provide the fault diagnosis with the variation in the component value below ± 50%. A new single and multiple fault diagnosis technique for soft faults in analog electronic circuit using fuzzy classifier has been proposed in this paper. This technique uses the simulation before test (SBT) approach by analyzing the frequency response of the analog circuit under faulty and fault free conditions. Three signature parameters peak gain, frequency and phase associated with peak gain, of the frequency response of the analog circuit are observed and extracted such that they give unique values for faulty and fault free configuration of the circuit. The single and double fault models with the component variations from ± 10% to ± 50% are considered. The fuzzy classifier along the classification of faults gives the estimated component value under faulty and faultfree conditions. The proposed method is validated using simulated data and the real time data for a benchmark analog circuit. The comparative analysis is also presented for both the validations.

  5. Catastrophic fault diagnosis in dynamic systems using bond graph methods

    SciTech Connect

    Yarom, Tamar.

    1990-01-01

    Detection and diagnosis of faults has become a critical issue in high performance engineering systems as well as in mass-produced equipment. It is particularly helpful when the diagnosis can be made at the initial design level with respect to a prospective fault list. A number of powerful methods have been developed for aiding in the general fault analysis of designs. Catastrophic faults represent the limit case of complete local failure of connections or components. They result in the interruption of energy transfer between corresponding points in the system. In this work the conventional approach to fault detection and diagnosis is extended by means of bond-graph methods to a wide variety of engineering systems. Attention is focused on catastrophic fault diagnosis. A catastrophic fault dictionary is generated from the system model based on topological properties of the bond graph. The dictionary is processed by existing methods to extract a catastrophic fault report to aid the engineer in performing a design analysis.

  6. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  7. Pattern-based fault diagnosis using neural networks

    NASA Technical Reports Server (NTRS)

    Dietz, W. E.; Kiech, E. L.; Ali, M.

    1988-01-01

    An architecture for a real-time pattern-based diagnostic expert system capable of accommodating noisy, incomplete, and possibly erroneous input data is outlined. Results from prototype systems applied to jet and rocket engine fault diagnosis are presented. The ability of a neural network-based system to be trained via the presentation of behavioral patterns associated with fault conditions is demonstrated.

  8. GNAR-GARCH model and its application in feature extraction for rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Ma, Jiaxin; Xu, Feiyun; Huang, Kai; Huang, Ren

    2017-09-01

    Given its simplicity of modeling and sensitivity to condition variations, time series model is widely used in feature extraction to realize fault classification and diagnosis. However, nonlinear and nonstationary characteristics common in fault signals of rolling bearing bring challenges to the diagnosis. In this paper, a hybrid model, the combination of a general expression for linear and nonlinear autoregressive (GNAR) model and a generalized autoregressive conditional heteroscedasticity (GARCH) model, (i.e., GNAR-GARCH), is proposed and applied to rolling bearing fault diagnosis. An exact expression of GNAR-GARCH model is given. Maximum likelihood method is used for parameter estimation and modified Akaike Information Criterion is adopted for structure identification of GNAR-GARCH model. The main advantage of this novel model over other models is that the combination makes the model suitable for nonlinear and nonstationary signals. It is verified with statistical tests that contain comparisons among the different time series models. Finally, GNAR-GARCH model is applied to fault diagnosis by modeling mechanical vibration signals including simulation and real data. With the parameters estimated and taken as feature vectors, k-nearest neighbor algorithm is utilized to realize the classification of fault status. The results show that GNAR-GARCH model exhibits higher accuracy and better performance than do other models.

  9. Application of the Teager-Kaiser energy operator in bearing fault diagnosis.

    PubMed

    Henríquez Rodríguez, Patricia; Alonso, Jesús B; Ferrer, Miguel A; Travieso, Carlos M

    2013-03-01

    Condition monitoring of rotating machines is important in the prevention of failures. As most machine malfunctions are related to bearing failures, several bearing diagnosis techniques have been developed. Some of them feature the bearing vibration signal with statistical measures and others extract the bearing fault characteristic frequency from the AM component of the vibration signal. In this paper, we propose to transform the vibration signal to the Teager-Kaiser domain and feature it with statistical and energy-based measures. A bearing database with normal and faulty bearings is used. The diagnosis is performed with two classifiers: a neural network classifier and a LS-SVM classifier. Experiments show that the Teager domain features outperform those based on the temporal or AM signal.

  10. Intelligent fault isolation and diagnosis for communication satellite systems

    NASA Technical Reports Server (NTRS)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  11. Compound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrum

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoan; Jia, Minping; Xiang, Ling

    2016-07-01

    Owing to the character of diversity and complexity, the compound fault diagnosis of rotating machinery under non-stationary operation has turned into a challenging task. In this paper, a novel method based on the optimal variational mode decomposition (OVMD) and 1.5-dimension envelope spectrum is proposed for detecting the compound faults of rotating machinery. In this method, compound fault signals are first decomposed by using OVMD containing optimal decomposition parameters, and several intrinsic mode components are obtained. Then, an adaptive selection method based on the weight factor (WF) is presented to choose two intrinsic mode components that contain the principal fault characteristic information. Finally, the 1.5-dimension envelope spectrum of the selected intrinsic mode components is utilized to extract the compound fault characteristic information of vibration signals. The performance of the proposed method is demonstrated by using the simulation signal and the experimental vibration signals collected from a rolling bearing and a gearbox with compound faults. The analysis results suggest that the proposed method is not only capable of detecting compound faults of a bearing and a gearbox, but can separate the characteristic signatures of compound faults. The research offers a new means for the compound fault diagnosis of rotating machinery.

  12. Application of instantaneous angular acceleration to diesel engine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Ren, Yunpeng; Hu, Tianyou; Liu, Xin

    2005-12-01

    Diesel engine is a kind of important power generating machine, of which the running state monitoring and fault diagnosis attracts increasing attention. The theory and the method of diesel engine fault diagnosis based on angular acceleration measurement were studied, since angular acceleration contains a lot of information for diesel engine fault diagnosing and its power balance evaluating. USB data acquisition system was designed for the angular acceleration measurement, and it was composed with AVRAT09S8515 micro-processor and PDIUSBD12 USB interface IC. At the same time, the high speed micro-processor AVRAT09S8515 with unique function of automatically capturing the rising or falling edge of square wave was studied, and it was utilized in the diesel engine's crankshaft angular acceleration measuring system. The software and hardware of the whole system was designed, which supplied a whole solution to diesel engine fault diagnosis and power balance evaluation between each cylinder.

  13. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  14. Applications of detrended-fluctuation analysis to gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    de Moura, E. P.; Vieira, A. P.; Irmão, M. A. S.; Silva, A. A.

    2009-04-01

    Aiming at fault diagnosis, we study vibration signals obtained from gearboxes under various conditions. We consider normal gearboxes, gearboxes containing scratched gears, and gearboxes containing toothless gears, both unloaded and under load, with several rotation frequencies. By applying detrended-fluctuation analysis (DFA), a mathematical tool introduced to study fractal properties of time series, we are able to distinguish the signals with respect to their working conditions. For each signal, DFA involves performing a linear fit to the data inside intervals of a certain size, and evaluating the corresponding fluctuations detrended by the local fit. Repeating this procedure for many interval sizes yields a curve of the average fluctuation as a function of size. From the curves, we define vectors whose components correspond to the average fluctuation associated with suitably chosen interval sizes. We finally apply principal component analysis to the set of all vectors, obtaining very good clustering of the transformed vectors according to the different working conditions, with a performance comparable to that obtained from Fourier analysis, especially for gears working under load.

  15. Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification

    NASA Astrophysics Data System (ADS)

    Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong; Li, Chuan

    2015-10-01

    The interfering vibration signals of a gearbox often represent a challenging issue in rolling bearing fault detection and diagnosis, particularly under unknown variable rotational speed conditions. Though some methods have been proposed to remove the gearbox interfering signals based on their discrete frequency nature, such methods may not work well under unknown variable speed conditions. As such, we propose a new approach to address this issue. The new approach consists of three main steps: (a) adaptive gear interference removal, (b) fault characteristic order (FCO) based fault detection, and (c) rotational-order-sideband (ROS) based fault type identification. For gear interference removal, an enhanced adaptive noise cancellation (ANC) algorithm has been developed in this study. The new ANC algorithm does not require an additional accelerometer to provide reference input. Instead, the reference signal is adaptively constructed from signal maxima and instantaneous dominant meshing multiple (IDMM) trend. Key ANC parameters such as filter length and step size have also been tailored to suit the variable speed conditions, The main advantage of using ROS for fault type diagnosis is that it is insusceptible to confusion caused by the co-existence of bearing and gear rotational frequency peaks in the identification of the bearing fault characteristic frequency in the FCO sub-order region. The effectiveness of the proposed method has been demonstrated using both simulation and experimental data. Our experimental study also indicates that the proposed method is applicable regardless whether the bearing and gear rotational speeds are proportional to each other or not.

  16. Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2013-10-01

    This paper explores the improved time-scale representation by considering the non-linear property for effectively identifying rotating machine faults in the time-scale domain. A new time-scale signature, called time-scale manifold (TSM), is proposed in this study through combining phase space reconstruction (PSR), continuous wavelet transform (CWT), and manifold learning. For the TSM generation, an optimal scale band is selected to eliminate the influence of unconcerned scale components, and the noise in the selected band is suppressed by manifold learning to highlight the inherent non-linear structure of faulty impacts. The TSM reserves the non-stationary information and reveals the non-linear structure of the fault pattern, with the merits of noise suppression and resolution improvement. The TSM ridge is further extracted by seeking the ridge with energy concentration lying on the TSM signature. It inherits the advantages of both the TSM and ridge analysis, and hence is beneficial to demodulation of the fault information. Through analyzing the instantaneous amplitude (IA) of the TSM ridge, in which the noise is nearly not contained, the fault characteristic frequency can be exactly identified. The whole process of the proposed fault diagnosis scheme is automatic, and its effectiveness has been verified by means of typical faulty vibration/acoustic signals from a gearbox and bearings. A reliable performance of the new method is validated in comparison with traditional enveloping methods for rotating machine fault diagnosis.

  17. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings

    NASA Astrophysics Data System (ADS)

    Chen, Guohua; Qie, Longfei; Zhang, Aijun; Han, Jin

    2016-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.

  18. A survey of an introduction to fault diagnosis algorithms

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included.

  19. A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings

    PubMed Central

    Wang, Huaqing; Ke, Yanliang; Song, Liuyang; Tang, Gang; Chen, Peng

    2016-01-01

    The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS) theory provides a new solution to the big-data problem. However, the vibration signals are insufficiently sparse and it is difficult to achieve sparsity using the conventional techniques, which impedes the application of CS theory. Therefore, it is of great significance to promote the sparsity when applying the CS theory to fault diagnosis of roller bearings. To increase the sparsity of vibration signals, a sparsity-promoted method called the tunable Q-factor wavelet transform based on decomposing the analyzed signals into transient impact components and high oscillation components is utilized in this work. The former become sparser than the raw signals with noise eliminated, whereas the latter include noise. Thus, the decomposed transient impact components replace the original signals for analysis. The CS theory is applied to extract the fault features without complete reconstruction, which means that the reconstruction can be completed when the components with interested frequencies are detected and the fault diagnosis can be achieved during the reconstruction procedure. The application cases prove that the CS theory assisted by the tunable Q-factor wavelet transform can successfully extract the fault features from the compressed samples. PMID:27657063

  20. A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings.

    PubMed

    Wang, Huaqing; Ke, Yanliang; Song, Liuyang; Tang, Gang; Chen, Peng

    2016-09-19

    The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS) theory provides a new solution to the big-data problem. However, the vibration signals are insufficiently sparse and it is difficult to achieve sparsity using the conventional techniques, which impedes the application of CS theory. Therefore, it is of great significance to promote the sparsity when applying the CS theory to fault diagnosis of roller bearings. To increase the sparsity of vibration signals, a sparsity-promoted method called the tunable Q-factor wavelet transform based on decomposing the analyzed signals into transient impact components and high oscillation components is utilized in this work. The former become sparser than the raw signals with noise eliminated, whereas the latter include noise. Thus, the decomposed transient impact components replace the original signals for analysis. The CS theory is applied to extract the fault features without complete reconstruction, which means that the reconstruction can be completed when the components with interested frequencies are detected and the fault diagnosis can be achieved during the reconstruction procedure. The application cases prove that the CS theory assisted by the tunable Q-factor wavelet transform can successfully extract the fault features from the compressed samples.

  1. Fault diagnosis in spur gears based on genetic algorithm and random forest

    NASA Astrophysics Data System (ADS)

    Cerrada, Mariela; Zurita, Grover; Cabrera, Diego; Sánchez, René-Vinicio; Artés, Mariano; Li, Chuan

    2016-03-01

    There are growing demands for condition-based monitoring of gearboxes, and therefore new methods to improve the reliability, effectiveness, accuracy of the gear fault detection ought to be evaluated. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance of the diagnostic models. On the other hand, random forest classifiers are suitable models in industrial environments where large data-samples are not usually available for training such diagnostic models. The main aim of this research is to build up a robust system for the multi-class fault diagnosis in spur gears, by selecting the best set of condition parameters on time, frequency and time-frequency domains, which are extracted from vibration signals. The diagnostic system is performed by using genetic algorithms and a classifier based on random forest, in a supervised environment. The original set of condition parameters is reduced around 66% regarding the initial size by using genetic algorithms, and still get an acceptable classification precision over 97%. The approach is tested on real vibration signals by considering several fault classes, one of them being an incipient fault, under different running conditions of load and velocity.

  2. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; Xiang, Jiawei; Markert, Richard; Liang, Ming

    2016-01-01

    Condition-based maintenance via vibration signal processing plays an important role to reduce unscheduled machine downtime and avoid catastrophic accidents in industrial enterprises. Many machine faults, such as local defects in rotating machines, manifest themselves in the acquired vibration signals as a series of impulsive events. The spectral kurtosis (SK) technique extends the concept of kurtosis to that of a function of frequency that indicates how the impulsiveness of a signal. This work intends to review and summarize the recent research developments on the SK theories, for instance, short-time Fourier transform-based SK, kurtogram, adaptive SK and protrugram, as well as the corresponding applications in fault detection and diagnosis of the rotating machines. The potential prospects of prognostics using SK technique are also designated. Some examples have been presented to illustrate their performances. The expectation is that further research and applications of the SK technique will flourish in the future, especially in the fields of the prognostics.

  3. Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-09-01

    Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.

  4. Fault diagnosis and prognostic of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, XiaoJuan; Ye, Qianwen

    2016-07-01

    One of the major hurdles for solid oxide fuel cell (SOFC) commercialization is poor long-term performance and durability. Accurate fault diagnostic and prognostic technologies are two important tools to improve SOFC durability. In literature, plenty of diagnosis techniques for SOFC systems have been successfully designed. However, no literature studies SOFC fault prognosis approaches. In this paper a unified fault diagnosis and prognosis strategy is presented to identify faults (anode poisoning, cathode humidification or normal) and predict the remaining useful life for SOFC systems. Using a squares support vector machine (LS-SVM) classifier, a diagnosis model is built to identify SOFC different types of faults. After fault detection, two hidden semi-Mark models (HSMMs) are respectively employed to estimate SOFC remaining useful life in the case of anode poisoning and cathode humidification. The simulation results show that the fault recognition rates with the LS-SVM model are at best 97%, and the predicted error of the remaining useful life is within ±20%.

  5. Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Zhao, Jiangbin; Peng, Zhongxiao

    2011-03-01

    A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox. The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum, and the ANN classification method has achieved high detection accuracy. Hence, the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases, and thus have application importance.

  6. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    PubMed Central

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  7. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  8. Distributed adaptive diagnosis of sensor faults using structural response data

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  9. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    PubMed Central

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-01

    Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods. PMID:26797611

  10. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory.

    PubMed

    Yuan, Kaijuan; Xiao, Fuyuan; Fei, Liguo; Kang, Bingyi; Deng, Yong

    2016-01-18

    Sensor data fusion plays an important role in fault diagnosis. Dempster-Shafer (D-R) evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  11. Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2017-02-01

    This paper presents a methodology for sensor fault diagnosis in nonlinear systems using a Mixture of Probabilistic Principal Component Analysis (MPPCA) models. This methodology separates the measurement space into several locally linear regions, each of which is associated with a Probabilistic PCA (PPCA) model. Using the transformation associated with each PPCA model, a parity relation scheme is used to construct a residual vector. Bayesian analysis of the residuals forms the basis for detection and isolation of sensor faults across the entire range of operation of the system. The resulting method is demonstrated in its application to sensor fault diagnosis of a fully instrumented HVAC system. The results show accurate detection of sensor faults under the assumption that a single sensor is faulty.

  12. Safety region estimation and fault diagnosis of wheels based on LSSVM and PNN

    NASA Astrophysics Data System (ADS)

    Cao, Kang; Sun, Fei; Xing, Zongyi

    2017-03-01

    A method based on Least Squares Support Vector Machine (LSSVM) and Probabilistic Neural Networks (PNN) was proposed to monitor wheels state of urban rail vehicle real-time and discover the wheels fault in time, which is used in safety region estimation and fault diagnosis of wheels. Firstly, the Intrinsic Mode Functions (IMF) can be obtained by using EMD on the track vibration signals generated by the SIMPACK, and features of each IMFs were extracted. Afterwards, LSSVM was adopted to estimate safety region of wheels service status. Finally, PNN was used to recognize the three states of wheel including normal wheel, wheel flat, out of round wheel. Experimental results show that the proposed method can identify wheel working state and fault type accurately and effectively.

  13. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Lu, Na; Xiao, Zhihuai; Malik, O. P.

    2015-02-01

    State identification to diagnose the condition of rotating machinery is often converted to a classification problem of values of non-dimensional symptom parameters (NSPs). To improve the sensitivity of the NSPs to the changes in machine condition, a novel feature extraction method based on adaptive multiwavelets and the synthetic detection index (SDI) is proposed in this paper. Based on the SDI maximization principle, optimal multiwavelets are searched by genetic algorithms (GAs) from an adaptive multiwavelets library and used for extracting fault features from vibration signals. By the optimal multiwavelets, more sensitive NSPs can be extracted. To examine the effectiveness of the optimal multiwavelets, conventional methods are used for comparison study. The obtained NSPs are fed into K-means classifier to diagnose rotor faults. The results show that the proposed method can effectively improve the sensitivity of the NSPs and achieve a higher discrimination rate for rotor fault diagnosis than the conventional methods.

  14. A gearbox fault diagnosis scheme based on near-field acoustic holography and spatial distribution features of sound field

    NASA Astrophysics Data System (ADS)

    Lu, Wenbo; Jiang, Weikang; Yuan, Guoqing; Yan, Li

    2013-05-01

    Vibration signal analysis is the main technique in machine condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for gearbox based on near-field acoustic holography (NAH) and spatial distribution features of sound field is presented in this paper. It focuses on applying distribution information of sound field to gearbox fault diagnosis. A two-stage industrial helical gearbox is experimentally studied in a semi-anechoic chamber and a lab workshop, respectively. Firstly, multi-class faults (mild pitting, moderate pitting, severe pitting and tooth breakage) are simulated, respectively. Secondly, sound fields and corresponding acoustic images in different gearbox running conditions are obtained by fast Fourier transform (FFT) based NAH. Thirdly, by introducing texture analysis to fault diagnosis, spatial distribution features are extracted from acoustic images for capturing fault patterns underlying the sound field. Finally, the features are fed into multi-class support vector machine for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with traditional ABD method. Even with strong noise interference, spatial distribution features of sound field can reliably reveal the fault patterns of gearbox, and thus the satisfactory accuracy can be obtained. The combination of histogram features and gray level gradient co-occurrence matrix features is suggested for good diagnosis accuracy and low time cost.

  15. Optimal sinusoidal modelling of gear mesh vibration signals for gear diagnosis and prognosis

    NASA Astrophysics Data System (ADS)

    Man, Zhihong; Wang, Wenyi; Khoo, Suiyang; Yin, Juliang

    2012-11-01

    In this paper, the synchronous signal average of gear mesh vibration signals is modelled with the multiple modulated sinusoidal representations. The signal model parameters are optimised against the measured signal averages by using the batch learning of the least squares technique. With the optimal signal model, all components of a gear mesh vibration signal, including the amplitude modulations, the phase modulations and the impulse vibration component induced by gear tooth cracking, are identified and analysed with insight of the gear tooth crack development and propagation. In particular, the energy distribution of the impulse vibration signal, extracted from the optimal signal model, provides sufficient information for monitoring and diagnosing the evolution of the tooth cracking process, leading to the prognosis of gear tooth cracking. The new methodologies for gear mesh signal modelling and the diagnosis of the gear tooth fault development and propagation are validated with a set of rig test data, which has shown excellent performance.

  16. Fault diagnosis for a class of nonlinear systems via ESO.

    PubMed

    Yan, Bingyong; Tian, Zuohua; Shi, Songjiao; Weng, Zhengxin

    2008-10-01

    In this paper, a novel fault detection and identification (FDI) scheme for a class of nonlinear systems is presented. First of all, an augment system is constructed by making the unknown system faults as an extended system state. Then based on the ESO theory, a novel fault diagnosis filter is constructed to diagnose the nonlinear system faults. An extension to a class of nonlinear uncertain systems is then made. An outstanding feature of this scheme is that it can simultaneously detect and identify the shape and magnitude of the system faults in real time without training the network compared with the neural network-based FDI schemes. Finally, simulation examples are given to illustrate the feasibility and effectiveness of the proposed approach.

  17. A data structure and algorithm for fault diagnosis

    NASA Technical Reports Server (NTRS)

    Bosworth, Edward L., Jr.

    1987-01-01

    Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given.

  18. Fault diagnosis viewed as a left invertibility problem.

    PubMed

    Martínez-Guerra, R; Mata-Machuca, J L; Rincón-Pasaye, J J

    2013-09-01

    This work deals with the fault diagnosis problem, some new properties are found using the left invertibility condition through the concept of differential output rank. Two schemes of nonlinear observers are used to estimate the fault signals for comparison purposes, one of these is a proportional reduced order observer and the other is a sliding mode observer. The methodology is tested in a real time implementation of a three-tank system.

  19. Application of optimized multiscale mathematical morphology for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Gong, Tingkai; Yuan, Yanbin; Yuan, Xiaohui; Wu, Xiaotao

    2017-04-01

    In order to suppress noise effectively and extract the impulsive features in the vibration signals of faulty rolling element bearings, an optimized multiscale morphology (OMM) based on conventional multiscale morphology (CMM) and iterative morphology (IM) is presented in this paper. Firstly, the operator used in the IM method must be non-idempotent; therefore, an optimized difference (ODIF) operator has been designed. Furthermore, in the iterative process the current operation is performed on the basis of the previous one. This means that if a larger scale is employed, more fault features are inhibited. Thereby, a unit scale is proposed as the structuring element (SE) scale in IM. According to the above definitions, the IM method is implemented on the results over different scales obtained by CMM. The validity of the proposed method is first evaluated by a simulated signal. Subsequently, aimed at an outer race fault two vibration signals sampled by different accelerometers are analyzed by OMM and CMM, respectively. The same is done for an inner race fault. The results show that the optimized method is effective in diagnosing the two bearing faults. Compared with the CMM method, the OMM method can extract much more fault features under strong noise background.

  20. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Miao, Yonghao; Zhao, Ming; Lin, Jing; Lei, Yaguo

    2017-08-01

    The extraction of periodic impulses, which are the important indicators of rolling bearing faults, from vibration signals is considerably significance for fault diagnosis. Maximum correlated kurtosis deconvolution (MCKD) developed from minimum entropy deconvolution (MED) has been proven as an efficient tool for enhancing the periodic impulses in the diagnosis of rolling element bearings and gearboxes. However, challenges still exist when MCKD is applied to the bearings operating under harsh working conditions. The difficulties mainly come from the rigorous requires for the multi-input parameters and the complicated resampling process. To overcome these limitations, an improved MCKD (IMCKD) is presented in this paper. The new method estimates the iterative period by calculating the autocorrelation of the envelope signal rather than relies on the provided prior period. Moreover, the iterative period will gradually approach to the true fault period through updating the iterative period after every iterative step. Since IMCKD is unaffected by the impulse signals with the high kurtosis value, the new method selects the maximum kurtosis filtered signal as the final choice from all candidates in the assigned iterative counts. Compared with MCKD, IMCKD has three advantages. First, without considering prior period and the choice of the order of shift, IMCKD is more efficient and has higher robustness. Second, the resampling process is not necessary for IMCKD, which is greatly convenient for the subsequent frequency spectrum analysis and envelope spectrum analysis without resetting the sampling rate. Third, IMCKD has a significant performance advantage in diagnosing the bearing compound-fault which expands the application range. Finally, the effectiveness and superiority of IMCKD are validated by a number of simulated bearing fault signals and applying to compound faults and single fault diagnosis of a locomotive bearing.

  1. Software For Fault-Tree Diagnosis Of A System

    NASA Technical Reports Server (NTRS)

    Iverson, Dave; Patterson-Hine, Ann; Liao, Jack

    1993-01-01

    Fault Tree Diagnosis System (FTDS) computer program is automated-diagnostic-system program identifying likely causes of specified failure on basis of information represented in system-reliability mathematical models known as fault trees. Is modified implementation of failure-cause-identification phase of Narayanan's and Viswanadham's methodology for acquisition of knowledge and reasoning in analyzing failures of systems. Knowledge base of if/then rules replaced with object-oriented fault-tree representation. Enhancement yields more-efficient identification of causes of failures and enables dynamic updating of knowledge base. Written in C language, C++, and Common LISP.

  2. Sensor Placement for Fault Diagnosis Using Graph of a Process

    NASA Astrophysics Data System (ADS)

    Sztyber, Anna

    2017-01-01

    The quality of a diagnostic system strongly depends on the availability of appropriate measurements. In this work sensor placement method using Graph of a Process is introduced. Graph of a Process is a formalization of a causal graph useful in fault diagnosis. Faults are directly incorporated into the model. The necessary and sufficient conditions for fault detectability and isolability are formulated. The analysis is divided into acyclic graph search and calculations within strongly connected components. This method is applicable to the design of the instrumentation of diagnostic systems, when the analytical process model is unavailable.

  3. Automated misfire diagnosis in engines using torsional vibration and block rotation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Randall, R. B.; Peeters, B.; Van der Auweraer, H.; Desmet, W.

    2012-05-01

    Even though a lot of research has gone into diagnosing misfire in IC engines, most approaches use torsional vibration of the crankshaft, and only a few use the rocking motion (roll) of the engine block. Additionally, misfire diagnosis normally requires an expert to interpret the analysis results from measured vibration signals. Artificial Neural Networks (ANNs) are potential tools for the automated misfire diagnosis of IC engines, as they can learn the patterns corresponding to various faults. This paper proposes an ANN-based automated diagnostic system which combines torsional vibration and rotation of the block for more robust misfire diagnosis. A critical issue with ANN applications is the network training, and it is improbable and/or uneconomical to expect to experience a sufficient number of different faults, or generate them in seeded tests, to obtain sufficient experimental results for the network training. Therefore, new simulation models, which can simulate combustion faults in engines, were developed. The simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore the proposed misfire diagnostic system can in principle be adapted for any engine. During the building process of the models, based on a particular engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and parameters of engine mounts, were first measured and calculated. A series of experiments were then carried out to capture the vibration signals for both normal condition and with a range of faults. The simulation models were updated and evaluated by the experimental results. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The automated diagnostic system comprises three stages: misfire detection, misfire localization and severity identification. Multi-layer Perceptron (MLP) and Probabilistic Neural Networks were

  4. The role of knowledge structures in fault diagnosis

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Giffin, W. C.; Rockwell, T. H.; Thomas, M. E.

    1984-01-01

    The use of human memory and knowledge structures to direct fault diagnosis performance was investigated. The performances of 20 pilots with instrument flight ratings were studied in a fault diagnosis task. The pilots were read a scenario which described flight conditions under which the symptoms which are indicative of a problem were detected. They were asked to think out loud as they requested and interpreted various pieces of information to diagnose the cause of the problem. Only 11 of the 20 pilots successfully diagnosed the problem. Pilot performance on this fault diagnosis task was modeled in the use of domain specific knowledge organized in a frame system. Eighteen frames, with a common structure, were necessary to account for the data from all twenty subjects.

  5. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  6. Object-oriented fault tree models applied to system diagnosis

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    When a diagnosis system is used in a dynamic environment, such as the distributed computer system planned for use on Space Station Freedom, it must execute quickly and its knowledge base must be easily updated. Representing system knowledge as object-oriented augmented fault trees provides both features. The diagnosis system described here is based on the failure cause identification process of the diagnostic system described by Narayanan and Viswanadham. Their system has been enhanced in this implementation by replacing the knowledge base of if-then rules with an object-oriented fault tree representation. This allows the system to perform its task much faster and facilitates dynamic updating of the knowledge base in a changing diagnosis environment. Accessing the information contained in the objects is more efficient than performing a lookup operation on an indexed rule base. Additionally, the object-oriented fault trees can be easily updated to represent current system status. This paper describes the fault tree representation, the diagnosis algorithm extensions, and an example application of this system. Comparisons are made between the object-oriented fault tree knowledge structure solution and one implementation of a rule-based solution. Plans for future work on this system are also discussed.

  7. An integrated approach to planetary gearbox fault diagnosis using deep belief networks

    NASA Astrophysics Data System (ADS)

    Chen, Haizhou; Wang, Jiaxu; Tang, Baoping; Xiao, Ke; Li, Junyang

    2017-02-01

    Aiming at improving the accuracy of planetary gearbox fault diagnosis, an integrated scheme based on dimensionality reduction method and deep belief networks (DBNs) is presented in this paper. Firstly, the acquired vibration signals are decomposed into mono-component called intrinsic mode functions (IMFs) through ensemble empirical mode decomposition (EEMD), and then Teager-Kaiser energy operator (TKEO) is used to track the instantaneous amplitude (IA) and instantaneous frequency (IF) of a mono-component amplitude modulation (AM) and frequency modulation (FM) signal. Secondly, a high dimensional feature set is constructed through extracting statistical features from six different signal groups. Then, an integrated dimensionality reduction method combining feature selection and feature extraction techniques is proposed to yield a more sensitive and lower dimensional feature set, which not only reduces the computation burden for fault diagnosis but also improves the separability of the samples by integrating the label information. Further, the low dimensional feature set is fed into DBNs classifier to identify the fault types using the optimal parameters selected by particle swarm optimization algorithm (PSO). Finally, two independent cases study of planetary gearbox fault diagnosis are carried out on test rig, and the results show that the proposed method provides higher accuracy in comparison with the existing methods.

  8. Display interface concepts for automated fault diagnosis

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.

    1989-01-01

    An effort which investigated concepts for displaying dynamic system status and fault history (propagation) information to the flight crew is described. This investigation was performed by developing several candidate display formats and then conducting comprehension tests to determine those characteristics that made one format preferable to another for presenting this type of information. Twelve subjects participated. Flash tests, or limited time exposure tests, were used to determine the subjects' comprehension of the information presented in the display formats. It was concluded from the results of the comprehension tests that pictographs were more comprehensible than both block diagrams and text for presenting dynamic system status and fault history information, and that pictographs were preferred over both block diagrams and text. It was also concluded that the addition of this type of information in the cockpit would help the crew remain aware of the status of their aircraft.

  9. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    PubMed

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements.

  10. Application of classification functions to chiller fault detection and diagnosis

    SciTech Connect

    Stylianou, M.

    1997-12-31

    This paper describes the application of a statistical pattern recognition algorithm (SPRA) to fault detection and diagnosis of commercial reciprocating chillers. The developed fault detection and diagnosis module has been trained to recognize five distinct conditions, namely, normal operation, refrigerant leak, restriction in the liquid refrigerant line, and restrictions in the water circuits of the evaporator and condenser. The algorithm used in the development is described, and the results of its application to an experimental test bench are discussed. Experimental results show that the SPRA provides an effective way of classifying patterns in multivariable, multiclass problems without having to explicitly use a rule-based system.

  11. Model-based fault detection and diagnosis in ALMA subsystems

    NASA Astrophysics Data System (ADS)

    Ortiz, José; Carrasco, Rodrigo A.

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) observatory, with its 66 individual telescopes and other central equipment, generates a massive set of monitoring data every day, collecting information on the performance of a variety of critical and complex electrical, electronic and mechanical components. This data is crucial for most troubleshooting efforts performed by engineering teams. More than 5 years of accumulated data and expertise allow for a more systematic approach to fault detection and diagnosis. This paper presents model-based fault detection and diagnosis techniques to support corrective and predictive maintenance in a 24/7 minimum-downtime observatory.

  12. Iterative generalized time-frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowang; Feng, Zhipeng

    2016-12-01

    Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to

  13. Comparative investigation of diagnosis media for induction machine mechanical unbalance fault.

    PubMed

    Salah, Mohamed; Bacha, Khmais; Chaari, Abdelkader

    2013-11-01

    For an induction machine, we suggest a theoretical development of the mechanical unbalance effect on the analytical expressions of radial vibration and stator current. Related spectra are described and characteristic defect frequencies are determined. Moreover, the stray flux expressions are developed for both axial and radial sensor coil positions and a substitute diagnosis technique is proposed. In addition, the load torque effect on the detection efficiency of these diagnosis media is discussed and a comparative investigation is performed. The decisive factor of comparison is the fault sensitivity. Experimental results show that spectral analysis of the axial stray flux can be an alternative solution to cover effectiveness limitation of the traditional stator current technique and to substitute the classical vibration practice.

  14. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors

    NASA Astrophysics Data System (ADS)

    Chen, Binqiang; Zhang, Zhousuo; Sun, Chuang; Li, Bing; Zi, Yanyang; He, Zhengjia

    2012-11-01

    Gearbox fault diagnosis is very important for preventing catastrophic accidents. Vibration signals of gearboxes measured by sensors are useful and dependable as they carry key information related to the mechanical faults in gearboxes. Effective signal processing techniques are in necessary demands to extract the fault features contained in the collected gearbox vibration signals. Overcomplete rational dilation discrete wavelet transform (ORDWT) enjoys attractive properties such as better shift-invariance, adjustable time-frequency distributions and flexible wavelet atoms of tunable oscillation in comparison with classical dyadic wavelet transform (DWT). Due to these advantages, ORDWT is presented as a versatile tool that can be adapted to analysis of gearbox fault features of different types, especially in analyzing the non-stationary and transient characteristics of the signals. Aiming to extract the various types of fault features confronted in gearbox fault diagnosis, a fault feature extraction technique based on ORDWT is proposed in this paper. In the routine of the proposed technique, ORDWT is used as the pre-processing decomposition tool, and a corresponding post-processing method is combined with ORDWT to extract the fault feature of a specific type. For extracting periodical impulses in the signal, an impulse matching algorithm is presented. In this algorithm, ORDWT bases of varied time-frequency distributions and varied oscillatory natures are adopted, moreover an improved signal impulsiveness measure derived from kurtosis is developed for choosing optimal ORDWT bases that perfectly match the hidden periodical impulses. For demodulation purpose, an improved instantaneous time-frequency spectrum (ITFS), based on the combination of ORDWT and Hilbert transform, is presented. For signal denoising applications, ORDWT is enhanced by neighboring coefficient shrinkage strategy as well as subband selection step to reveal the buried transient vibration contents. The

  15. Research into a distributed fault diagnosis system and its application

    NASA Astrophysics Data System (ADS)

    Qian, Suxiang; Jiao, Weidong; Lou, Yongjian; Shen, Xiaomei

    2005-12-01

    CORBA (Common Object Request Broker Architecture) is a solution to distributed computing methods over heterogeneity systems, which establishes a communication protocol between distributed objects. It takes great emphasis on realizing the interoperation between distributed objects. However, only after developing some application approaches and some practical technology in monitoring and diagnosis, can the customers share the monitoring and diagnosis information, so that the purpose of realizing remote multi-expert cooperation diagnosis online can be achieved. This paper aims at building an open fault monitoring and diagnosis platform combining CORBA, Web and agent. Heterogeneity diagnosis object interoperate in independent thread through the CORBA (soft-bus), realizing sharing resource and multi-expert cooperation diagnosis online, solving the disadvantage such as lack of diagnosis knowledge, oneness of diagnosis technique and imperfectness of analysis function, so that more complicated and further diagnosis can be carried on. Take high-speed centrifugal air compressor set for example, we demonstrate a distributed diagnosis based on CORBA. It proves that we can find out more efficient approaches to settle the problems such as real-time monitoring and diagnosis on the net and the break-up of complicated tasks, inosculating CORBA, Web technique and agent frame model to carry on complemental research. In this system, Multi-diagnosis Intelligent Agent helps improve diagnosis efficiency. Besides, this system offers an open circumstances, which is easy for the diagnosis objects to upgrade and for new diagnosis server objects to join in.

  16. Gearbox Fault Diagnosis Using Adaptive Wavelet Filter

    NASA Astrophysics Data System (ADS)

    LIN, J.; ZUO, M. J.

    2003-11-01

    Vibration signals from a gearbox are usually noisy. As a result, it is difficult to find early symptoms of a potential failure in a gearbox. Wavelet transform is a powerful tool to disclose transient information in signals. An adaptive wavelet filter based on Morlet wavelet is introduced in this paper. The parameters in the Morlet wavelet function are optimised based on the kurtosis maximisation principle. The wavelet used is adaptive because the parameters are not fixed. The adaptive wavelet filter is found to be very effective in detection of symptoms from vibration signals of a gearbox with early fatigue tooth crack. Two types of discrete wavelet transform (DWT), the decimated with DB4 wavelet and the undecimated with harmonic wavelet, are also used to analyse the same signals for comparison. No periodic impulses appear on any scale in either DWT decomposition.

  17. A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection

    NASA Astrophysics Data System (ADS)

    Yang, Mao

    A coupled rotor-fuselage vibration analysis for helicopter rotor system fault detection is developed. The coupled rotor/fuselage/vibration absorbers (bifilar type) system incorporates consistent structural, aerodynamic and inertial couplings. The aeroelastic analysis is based on finite element methods in space and time. The coupled rotor, absorbers and fuselage equations are transformed into the modal space and solved in the fixed coordinate system. A coupled trim procedure is used to solve the responses of rotor, fuselage and vibration absorber, rotor trim control and vehicle orientation simultaneously. Rotor system faults are modeled by changing blade structural, inertial and aerodynamic properties. Both adjustable and component faults, such as misadjusted trim-tab, misadjusted pitch-control rod (PCR), imbalanced mass and pitch-control bearing freeplay, are investigated. Detailed SH-60 helicopter fuselage NASTRAN model is integrated into the analysis. Validation study was performed using SH-60 helicopter flight test data. The prediction of fuselage natural frequencies show fairly large error compared to shake test data. Analytical predictions of fuselage baseline (without fault) 4/rev vibration and fault-induced 1/rev vibration and blade displacement deviations are compared with SH-60 flight test (with prescribed fault) data. The fault-induced 1/rev fuselage vibration (magnitude and phase) predicted by present analysis generally capture the trend of the flight test data, although prediction under-predicts. The large discrepancy of fault-induced 1/rev vibration magnitude at hover between prediction and flight test data partially comes from the variation of flight condition (not perfect hover) and partially due to the effect of the rotor-fuselage aerodynamic interaction (wake effect) at low speed which is not considered in the analysis. Also the differences in the phase prediction is not clear since only the magnitude and phase information were given instead of the

  18. Bearing fault diagnosis based on variational mode decomposition and total variation denoising

    NASA Astrophysics Data System (ADS)

    Zhang, Suofeng; Wang, Yanxue; He, Shuilong; Jiang, Zhansi

    2016-07-01

    Feature extraction plays an essential role in bearing fault detection. However, the measured vibration signals are complex and non-stationary in nature, and meanwhile impulsive signatures of rolling bearing are usually immersed in stochastic noise. Hence, a novel hybrid fault diagnosis approach is developed for the denoising and non-stationary feature extraction in this work, which combines well with the variational mode decomposition (VMD) and majoriation-minization based total variation denoising (TV-MM). The TV-MM approach is utilized to remove stochastic noise in the raw signal and to enhance the corresponding characteristics. Since the parameter λ is very important in TV-MM, the weighted kurtosis index is also proposed in this work to determine an appropriate λ used in TV-MM. The performance of the proposed hybrid approach is conducted through the analysis of the simulated and practical bearing vibration signals. Results demonstrate that the proposed approach has superior capability to detect roller bearing faults from vibration signals.

  19. Research on fault diagnosis technique on aerocamera communication based on fault tree analysis

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; He, Binggao; Tian, Chengjun; Yang, Chengyu; Duan, Jie

    2008-12-01

    ARINC429 is the standard of digital transmission of avionic device. This paper used fault tree analysis to diagnosis failures of aerocamera 429 communication, built up fault tree of aerocamera 429 communication, analyzed and diagnosed the failures, and designed the detecting flaw, finished aerocamera 429 communication detecting system finally. This detecting system can detect aerocamera 429 communication board fast and effectively, and cut down period of clearing of fault. In addition, it can increase the direction of maintenance and repair, improve the overall function of aerocamera.

  20. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Multi-conditions

    NASA Astrophysics Data System (ADS)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Wang, Xiaochen; Zhu, Ma

    2017-03-01

    Intelligent diagnosis system is applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing conditional functional events into ordinary DUCG to deal with spacecraft multi-conditions. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  1. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine

    PubMed Central

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-01-01

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665

  2. Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine.

    PubMed

    Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin

    2016-02-02

    This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox.

  3. Expert network development environment for automating machine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Adair, Kristin L.; Levis, Alan P.; Hruska, Susan I.

    1996-03-01

    Automation of machine fault diagnosis is approached using an expert network which captures human expertise in symbolic form and is refined using historical performance data. A development environment for expert networks which draws from knowledge implicit in historical data to build and refine the expert network dynamically is presented. The testbed for the design of this development environment is fault diagnosis for gas chromatographs used in detecting contaminants in soil samples. The expert knowledge capture procedure for this testbed problem and its implementation in the G2 commercial expert system package were presented at AeroSense '95. The development environment for the fault diagnosis system includes several data-assisted methods which complement the expert knowledge embedded in the expert network. The first module presented, NetMaker, automatically constructs the network in G2 from an ASCH knowledge table file. NetMedic, the second module, is a data- assisted method which is used to confirm, refine, and augment expert knowledge in order to make the knowledge table more accurate. These tools form the foundation of the expert network development environment. The basis of the expert networks developed for machine fault diagnosis is the knowledge table, a matrix of signature symptoms and machine faults related by linguistic qualifiers. The knowledge table undergoes frequent revision due to refinements from the experts, data-enhanced knowledge from NetMedic, and improved symptom extraction algorithms. NetMaker satisfies the need to easily revise the knowledge tables and incorporate them seamlessly into the G2 expert network environment. NetMedic is used to improve machine fault diagnosis by suggesting alterations to the physical architecture of the knowledge table and the associated expert network, including several non-trainable parameters. This utility discovers relationships in the sample data using statistics from historical data. The experts may then

  4. Multiscale envelope manifold for enhanced fault diagnosis of rotating machines

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2015-02-01

    The wavelet transform has been widely used in the field of machinery fault diagnosis for its good property of band-pass filtering. However, the filtered signal still faces the contamination of in-band noise. This paper focuses on wavelet enveloping, and proposes a new method, called multiscale envelope manifold (MEM), to extract the envelope information of fault impacts with in-band noise suppression. The MEM addresses manifold learning on the wavelet envelopes at multiple scales. Specifically, the proposed method is conducted by three following steps. First, the continuous wavelet transform (CWT) with complex Morlet wavelet base is introduced to obtain the wavelet envelopes at all scales. Second, the wavelet envelopes are restricted in one or more narrow scale bands to simply include the envelope information of fault impacts. The scale band is determined through a smoothness index-based (SI-based) selection method by considering the impulsiveness inside the power spectrum. Third, the manifold learning algorithm is conducted on the wavelet envelopes at selected scales to extract the intrinsic envelope manifold of fault-related impulses. The MEM combines the envelope information at multiple scales in a nonlinear approach, and may thus preserve the factual envelope structure of machinery fault. Simulation studies and experimental verifications confirm that the new method is effective for enhanced fault diagnosis of rotating machines.

  5. Model-based fault diagnosis in continuous dynamic systems.

    PubMed

    Lo, C H; Wong, Y K; Rad, A B

    2004-07-01

    Traditional fault detection and isolation methods are based on quantitative models which are sometimes difficult and costly to obtain. In this paper, qualitative bond graph (QBG) reasoning is adopted as the modeling scheme to generate a set of qualitative equations. The QBG method provides a unified approach for modeling engineering systems, in particular, mechatronic systems. An input-output qualitative equation derived from QBG formalism performs continuous system monitoring. Fault diagnosis is activated when a discrepancy is observed between measured abnormal behavior and predicted system behavior. Genetic algorithms (GA's) are then used to search for possible faulty components among a system of qualitative equations. In order to demonstrate the performance of the proposed algorithm, we have tested it on a laboratory scale servo-tank liquid process rig. Results of the proposed model-based fault detection and diagnosis algorithm for the process rig are presented and discussed.

  6. Algorithms for Multiple Fault Diagnosis With Unreliable Tests

    NASA Technical Reports Server (NTRS)

    Shakeri, Mojdeh; Raghavan, Vijaya; Pattipati, Krishna R.; Patterson-Hine, Ann

    1997-01-01

    In this paper, we consider the problem of constructing optimal and near-optimal multiple fault diagnosis (MFD) in bipartite systems with unreliable (imperfect) tests. It is known that exact computation of conditional probabilities for multiple fault diagnosis is NP-hard. The novel feature of our diagnostic algorithms is the use of Lagrangian relaxation and subgradient optimization methods to provide: (1) near optimal solutions for the MFD problem, and (2) upper bounds for an optimal branch-and-bound algorithm. The proposed method is illustrated using several examples. Computational results indicate that: (1) our algorithm has superior computational performance to the existing algorithms (approximately three orders of magnitude improvement), (2) the near optimal algorithm generates the most likely candidates with a very high accuracy, and (3) our algorithm can find the most likely candidates in systems with as many as 1000 faults.

  7. Experimental investigation for fault diagnosis based on a hybrid approach using wavelet packet and support vector classification.

    PubMed

    Li, Pengfei; Jiang, Yongying; Xiang, Jiawei

    2014-01-01

    To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples.

  8. Experimental Investigation for Fault Diagnosis Based on a Hybrid Approach Using Wavelet Packet and Support Vector Classification

    PubMed Central

    Li, Pengfei; Jiang, Yongying; Xiang, Jiawei

    2014-01-01

    To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples. PMID:24688361

  9. Multi-agent decision fusion for motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Han, Tian; Yang, Bo-Suk; Tan, Andy Chit Chiow

    2007-04-01

    Improvement of recognition rate is ultimate aim for fault diagnosis researchers using pattern recognition techniques. However, the unique recognition method can only recognise a limited classification capability which is insufficient for real-life application. An ongoing strategy is the decision fusion techniques. In order to avoid the shortage of single information source coupled with unique decision method, a new approach is required to obtain better results. This paper proposes a decision fusion system for fault diagnosis, which integrates data sources from different types of sensors and decisions of multiple classifiers. First, non-commensurate sensor data sets are combined using an improved sensor fusion method at a decision level by using relativity theory. The generated decision vectors are then selected based on correlation measure of classifiers in order to find an optimal sequence of classifiers fusion, which can lead to the best fusion performance. Finally, multi-agent classifiers fusion algorithm is employed as the core of the whole fault diagnosis system. The efficiency of the proposed system was demonstrated through fault diagnosis of induction motors. The experimental results show that this system can lead to super performance when compared with the best individual classifier with single-source data.

  10. Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zhang, Jichang; Cheng, Yujie; Lu, Chen

    2016-12-01

    A gearbox vibration signal is non-stationary and non-linear and has multiple components and multi-fractal properties, which make it difficult to effectively extract gearbox fault features. This paper proposes a method for gearbox fault feature extraction based on empirical mode decomposition (EMD) and multi-fractal detrended cross-correlation analysis (MFDCCA). First, EMD, a time-frequency analysis method, was employed to decompose the gearbox vibration signal into a number of intrinsic mode functions (IMFs). Second, the multi-fractal features hidden in the non-linear vibration signal were extracted by applying the MFDCCA to the selected major IMFs, thus highlighting the multi-fractality information which can be used to characterize different fault modes and severities of the gearbox. Third, for each IMF, three multi-fractal feature parameters sensitive to gearbox faults were selected from the multi-fractal features, further constructing the multi-fractal fault feature vector. Then, the principal component analysis (PCA) was introduced to reduce the dimensions of the extracted multi-fractal fault feature vectors and to enhance the accuracy of diagnosis. Finally, a radial basis function neural network was utilized to classify gearbox faults. Several commonly occurring faults were used to validate the proposed method in this study. Experimental results provide evidence that the extracted multi-fractal fault features can effectively distinguish different fault modes, even under slight variation in working conditions. Simultaneously, the results of comparison show that the performance of the proposed EMD-MFDCCA-PCA method outperforms that of EMD-MFDFA (multi-fractal detrended fluctuation analysis) combined with the traditional PCA.

  11. Detection And Diagnosis Of Ball Bearing Imperfections In Reaction Wheels By Micro-Vibration Test

    NASA Astrophysics Data System (ADS)

    Le, M. P.; van der Heide, E.; Seiler, R.; Cottaar, E. J. E.

    2012-07-01

    The results of micro-vibration test contain information on unbalance level, torque ripples, and most importantly the bearing health status. In this paper, the envelop analysis technique is proposed for localizing imperfections in the bearing. The envelop analysis, which is a powerful method used in ball bearing fault diagnosis, is adapted to the micro-vibration data. This method analyzes the data around the structural resonance: through the amplification of the vibration smaller faults can be detected. The procedure of envelope analysis, its practical issues and robustness are validated with simulated signals. Finally, the envelope analysis is applied to diagnose and evaluate the change in bearing status throughout two environmental tests: sine vibration and full ECSS shock. The result of envelope analysis shows its high sensitivity in revealing the development of small imperfections, makes an initial step in reaction wheel condition monitoring (on-ground and in-flight) and provides insights in design improvement to further lower micro vibration levels of reaction wheels.

  12. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Yan, Xinping; Yuan, Chengqing; Peng, Zhongxiao; Li, Li

    2011-10-01

    Gear systems are an essential element widely used in a variety of industrial applications. Since approximately 80% of the breakdowns in transmission machinery are caused by gear failure, the efficiency of early fault detection and accurate fault diagnosis are therefore critical to normal machinery operations. Reviewed literature indicates that only limited research has considered the gear multi-fault diagnosis, especially for single, coupled distributed and localized faults. Through virtual prototype simulation analysis and experimental study, a novel method for gear multi-fault diagnosis has been presented in this paper. This new method was developed based on the integration of Wavelet transform (WT) technique, Autoregressive (AR) model and Principal Component Analysis (PCA) for fault detection. The WT method was used in the study as the de-noising technique for processing raw vibration signals. Compared with the noise removing method based on the time synchronous average (TSA), the WT technique can be performed directly on the raw vibration signals without the need to calculate any ensemble average of the tested gear vibration signals. More importantly, the WT can deal with coupled faults of a gear pair in one operation while the TSA must be carried out several times for multiple fault detection. The analysis results of the virtual prototype simulation prove that the proposed method is a more time efficient and effective way to detect coupled fault than TSA, and the fault classification rate is superior to the TSA based approaches. In the experimental tests, the proposed method was compared with the Mahalanobis distance approach. However, the latter turns out to be inefficient for the gear multi-fault diagnosis. Its defect detection rate is below 60%, which is much less than that of the proposed method. Furthermore, the ability of the AR model to cope with localized as well as distributed gear faults is verified by both the virtual prototype simulation and

  13. A feature extraction method based on information theory for fault diagnosis of reciprocating machinery.

    PubMed

    Wang, Huaqing; Chen, Peng

    2009-01-01

    This paper proposes a feature extraction method based on information theory for fault diagnosis of reciprocating machinery. A method to obtain symptom parameter waves is defined in the time domain using the vibration signals, and an information wave is presented based on information theory, using the symptom parameter waves. A new way to determine the difference spectrum of envelope information waves is also derived, by which the feature spectrum can be extracted clearly and machine faults can be effectively differentiated. This paper also compares the proposed method with the conventional Hilbert-transform-based envelope detection and with a wavelet analysis technique. Practical examples of diagnosis for a rolling element bearing used in a diesel engine are provided to verify the effectiveness of the proposed method. The verification results show that the bearing faults that typically occur in rolling element bearings, such as outer-race, inner-race, and roller defects, can be effectively identified by the proposed method, while these bearing faults are difficult to detect using either of the other techniques it was compared to.

  14. A Feature Extraction Method Based on Information Theory for Fault Diagnosis of Reciprocating Machinery

    PubMed Central

    Wang, Huaqing; Chen, Peng

    2009-01-01

    This paper proposes a feature extraction method based on information theory for fault diagnosis of reciprocating machinery. A method to obtain symptom parameter waves is defined in the time domain using the vibration signals, and an information wave is presented based on information theory, using the symptom parameter waves. A new way to determine the difference spectrum of envelope information waves is also derived, by which the feature spectrum can be extracted clearly and machine faults can be effectively differentiated. This paper also compares the proposed method with the conventional Hilbert-transform-based envelope detection and with a wavelet analysis technique. Practical examples of diagnosis for a rolling element bearing used in a diesel engine are provided to verify the effectiveness of the proposed method. The verification results show that the bearing faults that typically occur in rolling element bearings, such as outer-race, inner-race, and roller defects, can be effectively identified by the proposed method, while these bearing faults are difficult to detect using either of the other techniques it was compared to. PMID:22574021

  15. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  16. On fault-tolerant structure, distributed fault-diagnosis, reconfiguration, and recovery of the array processors

    SciTech Connect

    Hosseini, S.H.

    1989-07-01

    The increasing need for the design of high-performance computers has led to the design of special purpose computers such as array processors. This paper studies the design of fault-tolerant array processors. First, it is shown how hardware redundancy can be employed in the existing structures in order to make them capable of withstanding the failure of some of the array links and processors. Then distributed fault-tolerance schemes are introduced for the diagnosis of the faulty elements, reconfiguration, and recovery of the array. Fault tolerance is maintained by the cooperation of processors in a decentralized form of control without the participation of any type of hardcore or fault-free central controller such as a host computer.

  17. Learning in the model space for cognitive fault diagnosis.

    PubMed

    Chen, Huanhuan; Tino, Peter; Rodan, Ali; Yao, Xin

    2014-01-01

    The emergence of large sensor networks has facilitated the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or unformulated. In this paper, we develop an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a sliding window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using a one-class learning algorithm. The framework enables us to construct a fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network confirm the effectiveness of the proposed framework.

  18. A distributed expert system for fault diagnosis

    SciTech Connect

    Cardozo, E.; Talukdar, S.N.

    1988-05-01

    This paper describes a hybrid approach to synthesizing solutions for diagnosis and set covering problems from the area of power system operations. The approach combines expert systems written in a rule-based language (OPS5) with algorithmic programs written in C and Lisp. An environment called DPSK has been developed to allow these programs to be run in parallel in a network of computers. Speeds sufficient for real-time applications can thereby be obtained.

  19. A diagnosis system using object-oriented fault tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    Spaceborne computing systems must provide reliable, continuous operation for extended periods. Due to weight, power, and volume constraints, these systems must manage resources very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses in the dynamic distributed computing environments planned for future space missions. The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. Augmented fault trees represented in an object-oriented form provide deep system knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of failure events that have occurred, and a set of failure events that have not occurred, this diagnosis system uses forward and backward chaining to propagate causal and temporal information about other failure events in the system being diagnosed. Once the system has established temporal and causal constraints, it reasons backward from heuristically selected failure events to find a set of basic failure events which are a likely cause of the occurrence of the top failure event in the fault tree. The diagnosis system has been implemented in common LISP using Flavors.

  20. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.

    PubMed

    Deng, Xiaogang; Tian, Xuemin; Chen, Sheng; Harris, Chris J

    2016-12-22

    Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.

  1. Fault Diagnosis of Power Systems Using Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated

  2. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng

    2017-02-01

    To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.

  3. Fault diagnosis in orbital refueling operations

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.

    1988-01-01

    Usually, operation manuals are provided for helping astronauts during space operations. These manuals include normal and malfunction procedures. Transferring operation manual knowledge into a computerized form is not a trivial task. This knowledge is generally written by designers or operation engineers and is often quite different from the user logic. The latter is usually a compiled version of the former. Experiments are in progress to assess the user logic. HORSES (Human - Orbital Refueling System - Expert System) is an attempt to include both of these logics in the same tool. It is designed to assist astronauts during monitoring and diagnosis tasks. Basically, HORSES includes a situation recognition level coupled to an analytical diagnoser, and a meta-level working on both of the previous levels. HORSES is a good tool for modeling task models and is also more broadly useful for knowledge design. The presentation is represented by abstract and overhead visuals only.

  4. Quantitative evaluation on the performance and feature enhancement of stochastic resonance for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Guoying; Li, Jimeng; Wang, Shibin; Chen, Xuefeng

    2016-12-01

    Stochastic resonance (SR) has been widely applied in the field of weak signal detection by virtue of its characteristic of utilizing noise to amplify useful signal instead of eliminating noise in nonlinear dynamical systems. How to quantitatively evaluate the performance of SR, including the enhancement effect and the degree of waveform distortion, and how to accurately extract signal amplitude have become two important issues in the research on SR. In this paper, the signal-to-noise ratio (SNR) of the main component to the residual in the SR output is constructed to quantitatively measure the enhancement effect of the SR method. And two indices are constructed to quantitatively measure the degree of waveform distortion of the SR output, including the correlation coefficient between the main component in the SR output and the original signal, and the zero-crossing ratio. These quantitative indices are combined to provide a comprehensive quantitative index for adaptive parameter selection of the SR method, and eventually the adaptive SR method can be effective in enhancing the weak component hidden in the original signal. Fast Fourier Transform and Fourier Transform (FFT+FT) spectrum correction technology can extract the signal amplitude from the original signal and effectively reduce the difficulty of extracting signal amplitude from the distorted resonance output. The application in vibration analysis for bearing fault diagnosis verifies that the proposed quantitative evaluation method for adaptive SR can effectively detect weak fault feature of the vibration signal during the incipient stage of bearing fault.

  5. A cognitive fault diagnosis system for distributed sensor networks.

    PubMed

    Alippi, Cesare; Ntalampiras, Stavros; Roveri, Manuel

    2013-08-01

    This paper introduces a novel cognitive fault diagnosis system (FDS) for distributed sensor networks that takes advantage of spatial and temporal relationships among sensors. The proposed FDS relies on a suitable functional graph representation of the network and a two-layer hierarchical architecture designed to promptly detect and isolate faults. The lower processing layer exploits a novel change detection test (CDT) based on hidden Markov models (HMMs) configured to detect variations in the relationships between couples of sensors. HMMs work in the parameter space of linear time-invariant dynamic systems, approximating, over time, the relationship between two sensors; changes in the approximating model are detected by inspecting the HMM likelihood. Information provided by the CDT layer is then passed to the cognitive one, which, by exploiting the graph representation of the network, aggregates information to discriminate among faults, changes in the environment, and false positives induced by the model bias of the HMMs.

  6. Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yan, Ruqiang

    2016-12-01

    The bearing failure, generating harmful vibrations, is one of the most frequent reasons for machine breakdowns. Thus, performing bearing fault diagnosis is an essential procedure to improve the reliability of the mechanical system and reduce its operating expenses. Most of the previous studies focused on rolling bearing fault diagnosis could be categorized into two main families, kurtosis-based filter method and wavelet-based shrinkage method. Although tremendous progresses have been made, their effectiveness suffers from three potential drawbacks: firstly, fault information is often decomposed into proximal frequency bands and results in impulsive feature frequency band splitting (IFFBS) phenomenon, which significantly degrades the performance of capturing the optimal information band; secondly, noise energy spreads throughout all frequency bins and contaminates fault information in the information band, especially under the heavy noisy circumstance; thirdly, wavelet coefficients are shrunk equally to satisfy the sparsity constraints and most of the feature information energy are thus eliminated unreasonably. Therefore, exploiting two pieces of prior information (i.e., one is that the coefficient sequences of fault information in the wavelet basis is sparse, and the other is that the kurtosis of the envelope spectrum could evaluate accurately the information capacity of rolling bearing faults), a novel weighted sparse model and its corresponding framework for bearing fault diagnosis is proposed in this paper, coined KurWSD. KurWSD formulates the prior information into weighted sparse regularization terms and then obtains a nonsmooth convex optimization problem. The alternating direction method of multipliers (ADMM) is sequentially employed to solve this problem and the fault information is extracted through the estimated wavelet coefficients. Compared with state-of-the-art methods, KurWSD overcomes the three drawbacks and utilizes the advantages of both family

  7. The envelope order spectrum based on generalized demodulation time-frequency analysis and its application to gear fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Junsheng; Yang, Yu; Yu, Dejie

    2010-02-01

    The generalized demodulation time-frequency analysis is a novel signal processing method, which is particularly suitable for the processing of multi-component amplitude-modulated and frequency-modulated (AM-FM) signals as it can decompose a multi-component signal into a set of single-component signals whose instantaneous frequencies own physical meaning. While fault occurs in gear, the vibration signals measured from gearbox would exactly display AM-FM characteristics. Therefore, targeting the modulation feature of gear vibration signal in run-ups and run-downs, a fault diagnosis method in which generalized demodulation time-frequency analysis and envelope order spectrum technique are combined is put forward and applied to the transient analysis of gear vibration signal. Firstly the multi-component vibration signal of gear is decomposed into some mono-component signals using the generalized demodulation time-frequency analysis approach; secondly the envelope analysis is performed to each single-component signal; thirdly each envelope signal is re-sampled in angle domain; finally the spectrum analysis is applied to each re-sampled signal and the corresponding envelope order spectrum can be obtained. Furthermore, the gear working condition can be identified according to the envelope order spectrum. The analysis results from the simulation and experimental signals show that the proposed algorithm was effective in gear fault diagnosis.

  8. Sensor-based fault diagnosis in a flight expert system

    NASA Technical Reports Server (NTRS)

    Ali, M.; Scharnhorst, D. A.

    1985-01-01

    A prototype of a knowledge-based flight expert system (FLES) has been developed to assist airplane pilots in monitoring, analyzing, and diagnosing faults and to provide support in reducing the pilot's own mistakes. A sensor simulation model has been developed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Advanced Concept System (ACS), a future-generation airplane, and partly on the Boeing 737, an existing airplane. The architecture of FLES contains several subsystems. One of the major subsystems performs fault diagnosis in the electrical system of the ACS. This paper describes the mechanism and functionality of the automatic diagnosis performed in this expert system.

  9. Partitioning of large multicomputer systems for efficient fault diagnosis

    SciTech Connect

    Malek, M.; Maeng, J.

    1982-01-01

    Fault diagnosis for large VLSI multicomputer systems is considered. The multicomputer system is assumed to employ a lattice structure and it is partitoned into m subsystems. Each subystem has at least k units which can achieve one-step t-diagnosability where t is less than or equal to the diagnosability of the system without partitioning. The partitioning of a system with centralized control and a system with distributed control are considered in the PMC model as well as in the comparison model. The result shows that the partitioning allows efficient fault diagnosis in a system with a large number of units and may increase overall system diagnosability to m*t in an ideal case. 18 references.

  10. Multiple Band-Pass Autoregressive Demodulation for Rolling-Element Bearing Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Altmann, J.; Mathew, J.

    2001-09-01

    This paper presents a novel method to enhance the detection and diagnosis of low-speed rolling-element bearing faults based on discrete wavelet packet analysis (DWPA). The method involves the automatic extraction of wavelet packets containing bearing fault-related features from the discrete wavelet packet analysis representation of machine vibrations. Automated selection of the wavelet packets of interest is achieved via an adaptive network-based fuzzy inference system (ANFIS), which can be implemented on-line. The resultant signal extracted by this technique is essentially an optimal multiple band-pass filter of the high-frequency bearing impact transients. Used in conjunction with the autoregressive (AR) spectrum of the envelope signal, a sensitive diagnosis of the bearing condition can be made. The discrete wavelet packet analysis multiple band-pass filtering of the signal results in a significantly improved signal-to-noise ratio compared to its high-pass counterpart, with an exceptional capacity to exclude contaminating sources of vibration. A more modest increase in the signal-to-noise ratio is achieved when compared to digital band-pass filtering, with the filter range adjusted to obtain the best possible isolation of the bearing transients.

  11. Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Minghang; Tang, Baoping; Tan, Qian

    2015-08-01

    Time-frequency analysis is an effective tool to extract machinery health information contained in non-stationary vibration signals. Various time-frequency analysis methods have been proposed and successfully applied to machinery fault diagnosis. However, little research has been done on bearing fault diagnosis using texture features extracted from time-frequency representations (TFRs), although they may contain plenty of sensitive information highly related to fault pattern. Therefore, to make full use of the textural information contained in the TFRs, this paper proposes a novel fault diagnosis method based on S transform, gray level co-occurrence matrix (GLCM) and multi-class support vector machine (Multi-SVM). Firstly, S transform is chosen to generate the TFRs due to its advantages of providing frequency-dependent resolution while keeping a direct relationship with the Fourier spectrum. Secondly, the famous GLCM-based texture features are extracted for capturing fault pattern information. Finally, as a classifier which has good discrimination and generalization abilities, Multi-SVM is used for the classification. Experimental results indicate that the GLCM-based texture features extracted from TFRs can identify bearing fault patterns accurately, and provide higher accuracies than the traditional time-domain and frequency-domain features, wavelet packet node energy or two-direction 2D linear discriminant analysis based features of the same TFRs in most cases.

  12. Fault Detection and Localization Using Laser-Measured Surface Vibration

    DTIC Science & Technology

    2005-01-01

    details of the struc- tural acoustic approach to fault monitoring, describe various “inversion” algorithms for extracting the fault information...Without detail - ing the mathematics here, in locations away from the applied force, a variational form of the above equation is constructed through...the details of the derived force could be used to further characterize the fault, although we have not yet exploited this possibility. ω-k Mapping

  13. LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information

    PubMed Central

    Liu, Zhiwen; Chen, Xuefeng; He, Zhengjia; Shen, Zhongjie

    2013-01-01

    Timely and accurate condition monitoring and fault diagnosis of rotating machinery are very important to maintain a high degree of availability, reliability and operational safety. This paper presents a novel intelligent method based on local mean decomposition (LMD) and multi-class reproducing wavelet support vector machines (RWSVM), which is applied to diagnose rotating machinery faults. First, the sensor-based vibration signals measured from the rotating machinery are preprocessed by the LMD method and product functions (PFs) are produced. Second, statistic features are extracted to acquire more fault characteristic information from the sensitive PF. Finally, these features are fed into a multi-class RWSVM to identify the rotating machinery health conditions. The experimental results validate the effectiveness of the proposed RWSVM method in identifying rotating machinery fault patterns accurately and effectively and its superiority over that based on the general SVM. PMID:23881133

  14. LMD method and multi-class RWSVM of fault diagnosis for rotating machinery using condition monitoring information.

    PubMed

    Liu, Zhiwen; Chen, Xuefeng; He, Zhengjia; Shen, Zhongjie

    2013-07-05

    Timely and accurate condition monitoring and fault diagnosis of rotating machinery are very important to maintain a high degree of availability, reliability and operational safety. This paper presents a novel intelligent method based on local mean decomposition (LMD) and multi-class reproducing wavelet support vector machines (RWSVM), which is applied to diagnose rotating machinery faults. First, the sensor-based vibration signals measured from the rotating machinery are preprocessed by the LMD method and product functions (PFs) are produced. Second, statistic features are extracted to acquire more fault characteristic information from the sensitive PF. Finally, these features are fed into a multi-class RWSVM to identify the rotating machinery health conditions. The experimental results validate the effectiveness of the proposed RWSVM method in identifying rotating machinery fault patterns accurately and effectively and its superiority over that based on the general SVM.

  15. The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings.

    PubMed

    Sun, Peng; Liao, Yuhe; Lin, Jin

    2017-03-08

    The properties of the time domain parameters of vibration signals have been extensively studied for the fault diagnosis of rolling element bearings (REBs). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are the most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters, problems still exist in practice when the signals collected are of complicated structure and/or contaminated by strong background noises. A new parameter, named Shock Pulse Index (SPI), is proposed in this paper. It integrates the mutual advantages of both the parameters mentioned above and can help effectively identify fault-related impulse components under conditions of interference of strong background noises, unrelated harmonic components and random impulses. The SPI optimizes the parameters of Maximum Correlated Kurtosis Deconvolution (MCKD), which is used to filter the signals under consideration. Finally, the transient information of interest contained in the filtered signal can be highlighted through demodulation with the Teager Energy Operator (TEO). Fault-related impulse components can therefore be extracted accurately. Simulations show the SPI can correctly indicate the fault impulses under the influence of strong background noises, other harmonic components and aperiodic impulse and experiment analyses verify the effectiveness and correctness of the proposed method.

  16. The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings

    PubMed Central

    Sun, Peng; Liao, Yuhe; Lin, Jin

    2017-01-01

    The properties of the time domain parameters of vibration signals have been extensively studied for the fault diagnosis of rolling element bearings (REBs). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are the most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters, problems still exist in practice when the signals collected are of complicated structure and/or contaminated by strong background noises. A new parameter, named Shock Pulse Index (SPI), is proposed in this paper. It integrates the mutual advantages of both the parameters mentioned above and can help effectively identify fault-related impulse components under conditions of interference of strong background noises, unrelated harmonic components and random impulses. The SPI optimizes the parameters of Maximum Correlated Kurtosis Deconvolution (MCKD), which is used to filter the signals under consideration. Finally, the transient information of interest contained in the filtered signal can be highlighted through demodulation with the Teager Energy Operator (TEO). Fault-related impulse components can therefore be extracted accurately. Simulations show the SPI can correctly indicate the fault impulses under the influence of strong background noises, other harmonic components and aperiodic impulse and experiment analyses verify the effectiveness and correctness of the proposed method. PMID:28282883

  17. Study on nature of crossover phenomena with application to gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Jiang, Xingxing; Li, Shunming; Wang, Yong

    2017-01-01

    Detrended Fluctuation Analysis (DFA) is a robust tool for uncovering long-range correlations hidden in the non-stationary data. Recently, crossover properties of the scaling-law curve obtained by DFA have been applied to diagnose gearbox faults. However, the nature of the crossover phenomena has not been well- explained. In this paper, an explanation for the nature of crossover phenomena is specifically given, which is conducive to discovering novel features for gearbox fault diagnosis. Firstly, an explicit exposition of the crossover phenomena is provided by analyzing the gearbox vibration signal. Secondly, the nature of crossover phenomena is specifically disclosed. Thirdly, the features with clear physical meaning are proposed to describe operating conditions of a gearbox. Then, to overcome the deficiency of feature extraction through visual observation, a piecewise-linear regression model is utilized to extract the features automatically. Lastly, several combinations of these features are used to classify the fault types. As a consequence, the proposed novel features are verified that they can well- distinguish the gearbox operating conditions with different fault types and severities, and deliver a better performance than the existing method depending on the sensitive index (SI).

  18. A new multiscale noise tuning stochastic resonance for enhanced fault diagnosis in wind turbine drivetrains

    NASA Astrophysics Data System (ADS)

    Hu, Bingbing; Li, Bing

    2016-02-01

    It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.

  19. Design of a fault diagnosis system for next generation nuclear power plants

    SciTech Connect

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-07-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  20. Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

    PubMed Central

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-01-01

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021

  1. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    PubMed

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  2. Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.

  3. Gas Turbine Fault Diagnosis Using Probabilistic Neural Networks

    NASA Astrophysics Data System (ADS)

    Loboda, Igor; Olivares Robles, Miguel Angel

    2015-05-01

    Efficiency of gas turbine monitoring systems primarily depends on the accuracy of employed algorithms, in particular, pattern classification techniques for diagnosing gas path faults. In recent investigations many techniques have been applied to classify gas path faults, but recommendations for selecting the best technique for real monitoring systems are still insufficient and often contradictory. In our previous work, three classification techniques were compared under different conditions of gas turbine diagnosis. The comparative analysis has shown that all these techniques yield practically the same accuracy for each comparison case. The present contribution considers a new classification technique, Probabilistic Neural Network (PNN), and we compare it with the techniques previously examined. The results for all comparison cases show that the PNN is not inferior to the other techniques. We recommend choosing the PNN for real monitoring systems because it has an important advantage of providing confidence estimation for every diagnostic decision made.

  4. An implementation of a hybrid intelligent tool for distribution system fault diagnosis

    SciTech Connect

    Momoh, J.A.; Dias, L.G.; Laird, D.N.

    1997-04-01

    The common fault in distribution systems due to line outages consists of single-line-to-ground (SLG) faults, with low or high fault impedance. The presence of arcing is commonplace in high impedance SLG faults. Recently, artificial intelligence (AI) based techniques have been introduced for low/high impedance fault diagnosis in ungrounded distribution systems and high impedance fault diagnosis in grounded distribution systems. So far no tool has been developed to identify, locate and classify faults on grounded and ungrounded systems. This paper describes an integrated package for fault diagnosis in either grounded or ungrounded distribution systems. It utilizes rule based schemes as well as artificial neural networks (ANN) to detect, classify and locate faults. Its application on sample test data as well as field test data are reported in the paper.

  5. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  6. Optimal Resonant Band Demodulation Based on an Improved Correlated Kurtosis and Its Application in Bearing Fault Diagnosis.

    PubMed

    Chen, Xianglong; Zhang, Bingzhi; Feng, Fuzhou; Jiang, Pengcheng

    2017-02-13

    The kurtosis-based indexes are usually used to identify the optimal resonant frequency band. However, kurtosis can only describe the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals. Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can adaptively determine the optimal resonant frequency band and accurately demodulate transient fault features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization algorithm. Analysis of both simulation data and experimental data reveal that the improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the proposed optimal resonant band demodulation is more accurate in identifying the optimal central frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified the validity and advantage of the proposed method over the traditional kurtosis-based indexes.

  7. Optimal Resonant Band Demodulation Based on an Improved Correlated Kurtosis and Its Application in Bearing Fault Diagnosis

    PubMed Central

    Chen, Xianglong; Zhang, Bingzhi; Feng, Fuzhou; Jiang, Pengcheng

    2017-01-01

    The kurtosis-based indexes are usually used to identify the optimal resonant frequency band. However, kurtosis can only describe the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals. Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can adaptively determine the optimal resonant frequency band and accurately demodulate transient fault features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization algorithm. Analysis of both simulation data and experimental data reveal that the improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the proposed optimal resonant band demodulation is more accurate in identifying the optimal central frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified the validity and advantage of the proposed method over the traditional kurtosis-based indexes. PMID:28208820

  8. Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.; Qu, Jian; Tian, Tao; Liu, Zhiliang

    2013-10-01

    The vibration signals of faulty planetary gearboxes have complicated spectral structures due to the amplitude modulation and frequency modulation (AMFM) nature of gear damage induced vibration and the additional multiplicative amplitude modulation (AM) effect caused by the time-varying vibration transfer paths (for local gear damage case) and the passing planets (for distributed gear damage case). The spectral complexity leads to the difficulty in fault diagnosis of planetary gearboxes. Observing that both the amplitude envelope and the instantaneous frequency of planetary gearbox vibration signals are associated with the characteristic frequency of the faulty gear, a joint amplitude and frequency demodulation method is proposed for fault diagnosis of planetary gearboxes. In order to satisfy the mono-component requirement by instantaneous frequency estimation, a signal is firstly decomposed into product functions (PF) using the local mean decomposition (LMD) method. Then, the earliest extracted PF that has an instantaneous frequency fluctuating around the gear meshing frequency or its harmonics is chosen for further analysis, because it contains most of the information about the gear fault. The amplitude demodulation analysis can be accomplished through Fourier transforming the amplitude envelope of the chosen PF. For the frequency demodulation analysis, Fourier transform is applied to the estimated instantaneous frequency of the chosen PF to reveal its fluctuating frequency, thus obtaining the spectrum of the instantaneous frequency. By joint application of the amplitude and frequency demodulation methods, planetary gearbox faults can be diagnosed by matching the dominant peaks in the envelope spectrum and the spectrum of instantaneous frequency with the theoretical characteristic frequencies of faulty gears. The performance of the proposed method is illustrated by simulated signal analysis, and is validated by experimental signal analysis of a lab planetary

  9. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-03-01

    As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.

  10. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants

    NASA Astrophysics Data System (ADS)

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and

  11. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants.

    PubMed

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and

  12. Fusion of qualitative bond graph and genetic algorithms: a fault diagnosis application.

    PubMed

    Lo, C H; Wong, Y K; Rad, A B; Chow, K M

    2002-10-01

    In this paper, the problem of fault diagnosis via integration of genetic algorithms (GA's) and qualitative bond graphs (QBG's) is addressed. We suggest that GA's can be used to search for possible fault components among a system of qualitative equations. The QBG is adopted as the modeling scheme to generate a set of qualitative equations. The qualitative bond graph provides a unified approach for modeling engineering systems, in particular, mechatronic systems. In order to demonstrate the performance of the proposed algorithm, we have tested the proposed algorithm on an in-house designed and built floating disc experimental setup. Results from fault diagnosis in the floating disc system are presented and discussed. Additional measurements will be required to localize the fault when more than one fault candidate is inferred. Fault diagnosis is activated by a fault detection mechanism when a discrepancy between measured abnormal behavior and predicted system behavior is observed. The fault detection mechanism is not presented here.

  13. Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism

    PubMed Central

    Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang

    2014-01-01

    The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved. PMID:25215324

  14. Satellite fault diagnosis using support vector machines based on a hybrid voting mechanism.

    PubMed

    Yin, Hong; Yang, Shuqiang; Zhu, Xiaoqian; Jin, Songchang; Wang, Xiang

    2014-01-01

    The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved.

  15. Online Fault Diagnosis for Biochemical Process Based on FCM and SVM.

    PubMed

    Wang, Xianfang; Du, Haoze; Tan, Jinglu

    2016-12-01

    Fault diagnosis is becoming an important issue in biochemical process, and a novel online fault detection and diagnosis approach is designed by combining fuzzy c-means (FCM) and support vector machine (SVM). The samples are preprocessed via FCM algorithm to enhance the ability of classification firstly. Then, those samples are input to the SVM classifier to realize the biochemical process fault diagnosis. In this study, a glutamic acid fermentation process is chosen as an example to diagnose the fault by this method, the result shows that the diagnosis time is largely shortened, and the accuracy is extremely improved by comparing to a single SVM method.

  16. A time domain approach to diagnose gearbox fault based on measured vibration signals

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Dhupia, Jaspreet Singh

    2014-03-01

    Spectral analysis techniques to process vibration measurements have been widely studied to characterize the state of gearboxes. However, in practice, the modulated sidebands resulting from the local gear fault are often difficult to extract accurately from an ambiguous/blurred measured vibration spectrum due to the limited frequency resolution and small fluctuations in the operating speed of the machine that often occurs in an industrial environment. To address this issue, a new time-domain diagnostic algorithm is developed and presented herein for monitoring of gear faults, which shows an improved fault extraction capability from such measured vibration signals. This new time-domain fault detection method combines the fast dynamic time warping (Fast DTW) as well as the correlated kurtosis (CK) techniques to characterize the local gear fault, and identify the corresponding faulty gear and its position. Fast DTW is employed to extract the periodic impulse excitations caused from the faulty gear tooth using an estimated reference signal that has the same frequency as the nominal gear mesh harmonic and is built using vibration characteristics of the gearbox operation under presumed healthy conditions. This technique is beneficial in practical analysis to highlight sideband patterns in situations where data is often contaminated by process/measurement noises and small fluctuations in operating speeds that occur even at otherwise presumed steady-state conditions. The extracted signal is then resampled for subsequent diagnostic analysis using CK technique. CK takes advantages of the periodicity of the geared faults; it is used to identify the position of the local gear fault in the gearbox. Based on simulated gear vibration signals, the Fast DTW and CK based approach is shown to be useful for condition monitoring in both fixed axis as well as epicyclic gearboxes. Finally the effectiveness of the proposed method in fault detection of gears is validated using experimental

  17. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  18. SOM Neural Network Fault Diagnosis Method of Polymerization Kettle Equipment Optimized by Improved PSO Algorithm

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929

  19. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    DOE PAGES

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; ...

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less

  20. Fault Detection and Diagnosis System for the Air-conditioning

    NASA Astrophysics Data System (ADS)

    Nakahara, Nobuo

    The fault detection and diagnosis system, the FDD system, for the HVAC was initiated around the middle of 1970s in Japan but it still remains at the elementary stage. The HVAC is really one of the most complicated and large scaled system for the FDD system. Besides, the maintenance engineering was never focussed as the target of the academic study since after the war, but the FDD system for some kinds of the components and subsystems has been developed for the sake of the practical industrial needs. Recently, international cooperative study in the IEA Annex 25 on the energy conservation for the building and community targetted on the BOFD, the building optimization, fault detection and diagnosis. Not a few academic peaple from various engineering field got interested and, moreover, some national projects seem to start in the European countries. The author has reviewed the state of the art of the FDD and BO as well based on the references and the experience at the IEA study.

  1. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    SciTech Connect

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; Sheng, Shuangwen

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issue is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.

  2. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform

    PubMed Central

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-01-01

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy

  3. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.

    PubMed

    Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li

    2015-11-03

    Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a

  4. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  5. Complexity of system-level fault diagnosis and diagnosability

    SciTech Connect

    Sullivan, G.F.

    1986-01-01

    It is now possible to design and build systems that incorporate a large number of processing elements. For this reason, fault-diagnosis at the system level, a research area pioneered by the work of Preparata, Metze, and Chien, is of increasing importance. The formalization of their model utilizes directed graphs together with labelings on edges and vertices. The two central problems introduced by the model are called the diagnosis and diagnosability problems. In the diagnosis problem, an algorithm must identify the faulty units of a system based on test results. In the diagnosability problem, an algorithm must determine the maximum number of faulty units a system can contain and still be guaranteed capable of successfully testing itself. One of the main open questions is resolved for this model by presenting the first polynomial time algorithm for the diagnosability problem. The solution uses network-flow techniques and runs in O(absolute value E absolute value V/sup 3/2/) time. Also presented is a new time-complexity bound of O(min(t absolute value E, t/sup 3/ + absolute value E)) for the diagnosis problem, where t is the maximum number of faulty units.

  6. Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

    NASA Astrophysics Data System (ADS)

    Cabrera, Diego; Sancho, Fernando; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Li, Chuan; Vásquez, Rafael E.

    2015-09-01

    This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal's condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients' energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters' space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models.

  7. Weak-signal detection based on the stochastic resonance of bistable Duffing oscillator and its application in incipient fault diagnosis

    NASA Astrophysics Data System (ADS)

    Lai, Zhi-hui; Leng, Yong-gang

    2016-12-01

    Stochastic resonance (SR) is an important approach to detect weak vibration signals from heavy background noise and further realize mechanical incipient fault diagnosis. The stochastic resonance of a bistable Duffing oscillator is limited by strict small-parameter conditions, i.e., SR can only take place under small values of signal parameters (signal amplitude, frequency, and noise intensity). We propose a method to treat the large-parameter SR for this oscillator. The linear amplitude-transformed, time/frequency scale-transformed, and parameter-adjusted methods are presented and used to produce SR for signals with large-amplitude, large-frequency and/or large-intensity noise. Furthermore, we propose the weak-signal detection approach based on large-parameter SR in the oscillator. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in incipient fault diagnosis.

  8. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    PubMed Central

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  9. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    PubMed

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  10. Multi-stable stochastic resonance and its application research on mechanical fault diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jimeng; Chen, Xuefeng; He, Zhengjia

    2013-10-01

    It is difficult to extract the fault features of a rotating machine via vibration analysis due to interference from background noise. Stochastic resonance (SR), used as a method of utilising noise to amplify weak signals in nonlinear dynamical systems, can detect weak signals overwhelmed in the noise. However, the detection effect of current SR methods is still unsatisfactory. To further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR, the present study proposes an improved SR method with a multi-stable model for identifying the defect-induced rotating machine faults by analysing the influence relationship between the resonance model and the resonance effect. Due to the structural characteristics of three potential wells and two barriers, the proposed resonance model can not only further amplify weak signals, but also convert into a monostable model, a bistable model or a tristable model. This result is achieved by adjusting system parameters and thus obtaining a better matching of the input signals and resonance models. Therefore, the multi-stable SR method, combined with the characteristics of the multi-stable model, can both increase the output SNR and improve the detection effect and also detect the low SNR signals and enhance the processing capability of SR for weak signals. Finally, the proposed method is applied to a gearbox fault diagnosis in a rolling mill in which two local faults located in the big gear and the pinion, respectively, are found successfully. It can be concluded that multi-stable SR method has practical value in engineering. The influence relationship between a resonance model and SR is analysed. An improved SR method with a multi-stable model is presented. The signal processing performance of multi-stable SR is analysed comparatively. Simulation and application show the validity and superiority of multi-stable SR.

  11. Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals

    NASA Astrophysics Data System (ADS)

    Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin

    2016-12-01

    Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.

  12. A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks

    NASA Astrophysics Data System (ADS)

    Cai, Baoping; Liu, Hanlin; Xie, Min

    2016-12-01

    Bayesian network (BN) is a commonly used tool in probabilistic reasoning of uncertainty in industrial processes, but it requires modeling of large and complex systems, in situations such as fault diagnosis and reliability evaluation. Motivated by reduction of the overall complexities of BNs for fault diagnosis, and the reporting of faults that immediately occur, a real-time fault diagnosis methodology of complex systems with repetitive structures is proposed using object-oriented Bayesian networks (OOBNs). The modeling methodology consists of two main phases: an off-line OOBN construction phase and an on-line fault diagnosis phase. In the off-line phase, sensor historical data and expert knowledge are collected and processed to determine the faults and symptoms, and OOBN-based fault diagnosis models are developed subsequently. In the on-line phase, operator experience and sensor real-time data are placed in the OOBNs to perform the fault diagnosis. According to engineering experience, the judgment rules are defined to obtain the fault diagnosis results.

  13. Automated fault diagnosis in nonlinear multivariable systems using a learning methodology.

    PubMed

    Trunov, A B; Polycarpou, M M

    2000-01-01

    The paper presents a robust fault diagnosis scheme for detecting and approximating state and output faults occurring in a class of nonlinear multiinput-multioutput dynamical systems. Changes in the system dynamics due to a fault are modeled as nonlinear functions of the control input and measured output variables. Both state and output faults can be modeled as slowly developing (incipient) or abrupt, with each component of the state/output fault vector being represented by a separate time profile. The robust fault diagnosis scheme utilizes on-line approximators and adaptive nonlinear filtering techniques to obtain estimates of the fault functions. Robustness with respect to modeling uncertainties, fault sensitivity and stability properties of the learning scheme are rigorously derived and the theoretical results are illustrated by a simulation example of a fourth-order satellite model.

  14. Development of rules for single-line fault diagnosis in delta-delta connected distribution systems

    SciTech Connect

    Momoh, J.A.; Dias, L.G.; Thor, T.; Laird, D.N.

    1994-12-31

    Single-line fault diagnosis in delta-delta connected distribution systems suffers due to the low fault currents associated with such faults. Simulation tests on this type of system reveals that rule based decision support can be used of such diagnosis. This paper describes the development of rules for single-line fault diagnosis utilizing simulation test results. The key parameters used are the voltage magnitude of each phase at the bus bar and the currents on the feeders including their sequence components.

  15. Sparse signal decomposition method based on multi-scale chirplet and its application to the fault diagnosis of gearboxes

    NASA Astrophysics Data System (ADS)

    Peng, Fuqiang; Yu, Dejie; Luo, Jiesi

    2011-02-01

    Based on the chirplet path pursuit and the sparse signal decomposition method, a new sparse signal decomposition method based on multi-scale chirplet is proposed and applied to the decomposition of vibration signals from gearboxes in fault diagnosis. An over-complete dictionary with multi-scale chirplets as its atoms is constructed using the method. Because of the multi-scale character, this method is superior to the traditional sparse signal decomposition method wherein only a single scale is adopted, and is more applicable to the decomposition of non-stationary signals with multi-components whose frequencies are time-varying. When there are faults in a gearbox, the vibration signals collected are usually AM-FM signals with multiple components whose frequencies vary with the rotational speed of the shaft. The meshing frequency and modulating frequency, which vary with time, can be derived by the proposed method and can be used in gearbox fault diagnosis under time-varying shaft-rotation speed conditions, where the traditional signal processing methods are always blocked. Both simulations and experiments validate the effectiveness of the proposed method.

  16. Human problem solving performance in a fault diagnosis task

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1978-01-01

    It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.

  17. Knowledge-based fault diagnosis system for refuse collection vehicle

    NASA Astrophysics Data System (ADS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-05-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  18. Real-time antenna fault diagnosis experiments at DSS 13

    NASA Technical Reports Server (NTRS)

    Mellstrom, J.; Pierson, C.; Smyth, P.

    1992-01-01

    Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.

  19. Knowledge-based fault diagnosis system for refuse collection vehicle

    SciTech Connect

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  20. Fault Detection, Diagnosis, and Mitigation for Long-Duration AUV Missions with Minimal Human Intervention

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fault Detection, Diagnosis , and Mitigation for Long...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Fault Detection, Diagnosis , and Mitigation for Long-Duration AUV Missions with...description which is both intuitive to the operator and can be used to automate fault detection and recovery. The base platforms for this effort are the

  1. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong

    2013-07-01

    When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.

  2. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    PubMed

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  3. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture

    PubMed Central

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-01

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822

  4. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis.

    PubMed

    Li, Chaoshun; Zhou, Jianzhong

    2014-09-01

    Supervised learning method, like support vector machine (SVM), has been widely applied in diagnosing known faults, however this kind of method fails to work correctly when new or unknown fault occurs. Traditional unsupervised kernel clustering can be used for unknown fault diagnosis, but it could not make use of the historical classification information to improve diagnosis accuracy. In this paper, a semi-supervised kernel clustering model is designed to diagnose known and unknown faults. At first, a novel semi-supervised weighted kernel clustering algorithm based on gravitational search (SWKC-GS) is proposed for clustering of dataset composed of labeled and unlabeled fault samples. The clustering model of SWKC-GS is defined based on wrong classification rate of labeled samples and fuzzy clustering index on the whole dataset. Gravitational search algorithm (GSA) is used to solve the clustering model, while centers of clusters, feature weights and parameter of kernel function are selected as optimization variables. And then, new fault samples are identified and diagnosed by calculating the weighted kernel distance between them and the fault cluster centers. If the fault samples are unknown, they will be added in historical dataset and the SWKC-GS is used to partition the mixed dataset and update the clustering results for diagnosing new fault. In experiments, the proposed method has been applied in fault diagnosis for rotatory bearing, while SWKC-GS has been compared not only with traditional clustering methods, but also with SVM and neural network, for known fault diagnosis. In addition, the proposed method has also been applied in unknown fault diagnosis. The results have shown effectiveness of the proposed method in achieving expected diagnosis accuracy for both known and unknown faults of rotatory bearing.

  5. Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence.

    PubMed

    Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong

    2017-03-09

    Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults.

  6. Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence

    PubMed Central

    Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong

    2017-01-01

    Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults. PMID:28282936

  7. Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Yang, Yu; Zheng, Jinde; Cheng, Junsheng

    2016-01-01

    A maximum margin classification based on flexible convex hulls (MMC-FCH) is proposed and applied to fault diagnosis of roller bearings. In this method, the class region of each sample set is approximated by a flexible convex hull of its training samples, and then an optimal separating hyper-plane that maximizes the geometric margin between flexible convex hulls is constructed by solving a closest pair of points problem. By using the kernel trick, MMC-FCH can be extended to nonlinear cases. In addition, multi-class classification problems can be processed by constructing binary pairwise classifiers as in support vector machine (SVM). Actually, the classical SVM also can be regarded as a maximum margin classification based on convex hulls (MMC-CH), which approximates each class region with a convex hull. The convex hull is a special case of the flexible convex hull. To train a MMC-FCH classifier, time-domain and frequency-domain statistical parameters are extracted not only from raw vibration signals but also from the resulting intrinsic mode functions (IMFs) by performing empirical mode decomposition (EMD) on the raw signals, and then the distance evaluation technique (DET) is used to select salient features from the whole statistical features. The experiments on bearing datasets show that the proposed method can reliably recognize different bearing faults.

  8. Research on vibration response of a multi-faulted rotor system using LMD-based time-frequency representation

    NASA Astrophysics Data System (ADS)

    Jiao, Weidong; Qian, Suxiang; Chang, Yongping; Yang, Shixi

    2012-12-01

    Unbalance, fatigue crack and rotor-stator rub are the three common and important faults in a rotor-bearing system. They are originally interconnected each other, and their vibration behaviors do often show strong nonlinear and transient characteristic, especially when more than one of them coexist in the system. This article is aimed to study the vibration response of the rotor system in presence of multiple rotor faults such as unbalance, crack, and rotor-stator rub, using local mean decomposition-based time-frequency representation. Equations of motion of the multi-faulted Jeffcott rotor, including unbalance, crack, and rub, are presented. By solving the motion equations, steady-state vibration response is obtained in presence of multiple rotor faults. As a comparison, Hilbert-Huang transformation, based on empirical mode decomposition, is also applied to analyze the multi-faults data. By the study some diagnostic recommendations are derived.

  9. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine

    NASA Astrophysics Data System (ADS)

    Mao, Wentao; He, Ling; Yan, Yunju; Wang, Jinwan

    2017-01-01

    Diagnosis of bearings generally plays an important role in fault diagnosis of mechanical system, and machine learning has been a promising tool in this field. In many real applications of bearings fault diagnosis, the data tend to be online imbalanced, which means, the number of fault data is much less than the normal data while they are all collected in online sequential way. Suffering from this problem, many traditional diagnosis methods will get low accuracy of fault data which acts as the minority class in the collected bearing data. To address this problem, an online sequential prediction method for imbalanced fault diagnosis problem is proposed based on extreme learning machine. This method introduces the principal curve and granulation division to simulate the flow distribution and overall distribution characteristics of fault data, respectively. Then a confident over-sampling and under-sampling process is proposed to establish the initial offline diagnosis model. In online stage, the obtained granules and principal curves are rebuilt on the bearing data which are arrived in sequence, and after the over-sampling and under-sampling process, the balanced sample set is formed to update the diagnosis model dynamically. A theoretical analysis is provided and proves that, even existing information loss, the proposed method has lower bound of the model reliability. Simulation experiments are conducted on IMS bearing data and CWRU bearing data. The comparative results demonstrate that the proposed method can improve the fault diagnosis accuracy with better effectiveness and robustness than other algorithms.

  10. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Lin, Xuefeng; Zuo, Ming J.

    2016-05-01

    Planetary gearbox vibration signals feature complex modulations, thus leading to intricate sideband structure and resulting in difficulty in fault characteristic frequency identification. Intrinsic time-scale decomposition has unique merits, such as high adaptability to changes in signals, low computational complexity, good capability to suppress mode mixing and to preserve temporal information of transients, and excellent suitability for mono-component decomposition of complex multi-component signals. In order to address the issue with planetary gearbox fault diagnosis due to the multiple modulation sources, a joint amplitude and frequency demodulation analysis method is proposed, by exploiting the merits of intrinsic time-scale decomposition. The signal is firstly decomposed into a series of mono-component proper rotational components. Then the one with its instantaneous frequency fluctuating around the gear meshing frequency or its harmonics is selected as the sensitive component. Next, Fourier transformation is applied to the instantaneous amplitude and instantaneous frequency of the sensitive component to obtain the amplitude and frequency demodulated spectra respectively. Finally, a planetary gearbox fault is diagnosed by matching the peaks in the amplitude and frequency demodulated spectra with the theoretical gear fault characteristic frequencies. The proposed method is illustrated by a numerical simulated signal, and further validated by lab experimental signals of a planetary gearbox. The localized faults of sun, planet and ring gears are diagnosed, showing the effectiveness of the method.

  11. Nondestructive diagnosis of flip chips based on vibration analysis using PCA-RBF

    NASA Astrophysics Data System (ADS)

    Su, Lei; Shi, Tielin; Liu, Zhiping; Zhou, Hongdi; Du, Li; Liao, Guanglan

    2017-02-01

    Flip chip technology combined with solder bump interconnection has been widely applied in IC package. The solder bumps are sandwiched between dies and substrates, leading to conventional techniques being difficult to diagnose the flip chips. Meanwhile, these conventional diagnosis methods are usually performed by human visual judgment. The human eye-fatigue can easily cause fault detection. Thus, it is difficult and crucial to detect the defects of flip chips automatically. In this paper, a nondestructive diagnosis system based on vibration analysis is proposed. The flip chip is excited by air-coupled ultrasounds and raw vibration signals are measured by a laser scanning vibrometer. Forty-two features are extracted for analysis, including ten time domain features, sixteen frequency domain features and sixteen wavelet packet energy features. Principal component analysis is used for feature reduction. Radial basis function neural network is adopted for classification and recognition. Flip chips in three states (good flip chips, flip chips with missing solder bumps and flip chips with open solder bumps) are utilized to validate the proposed method. The results demonstrate that this method is effective for defect inspection in flip chip package.

  12. Dynamic friction in sheared fault gouge: Implications of acoustic vibration on triggering and slow slip

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2016-03-01

    Friction and deformation in granular fault gouge are among various dynamic interactions associated with seismic phenomena that have important implications for slip mechanisms on earthquake faults. To this end, we propose a mechanistic model of granular fault gouge subject to acoustic vibrations and shear deformation. The grain-scale dynamics is described by the Shear-Transformation-Zone theory of granular flow, which accounts for irreversible plastic deformation in terms of flow defects whose density is governed by an effective temperature. Our model accounts for stick-slip instabilities observed at seismic slip rates. In addition, as the vibration intensity increases, we observe an increase in the temporal advancement of large slip events, followed by a plateau and gradual decrease. Furthermore, slip becomes progressively slower upon increasing the vibration intensity. The results shed important light on the physical mechanisms of earthquake triggering and slow slip and provide essential elements for the multiscale modeling of earthquake ruptures. In particular, the results suggest that slow slip may be triggered by tremors.

  13. Experimental studies on intelligent fault detection and diagnosis using sensor networks on mechanical pneumatic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Kunbo; Kao, Imin; Kambli, Sachin; Boehm, Christian

    2008-03-01

    Fault is a undesirable factor in any mechanical/pneumatic system. It affects the efficiency of system operation and reduces economic benefit in industry. The early detection and diagnosis of faults in a mechanical system becomes important for preventing failure of equipment and loss of productivity and profits. In this paper, we present our ongoing research results on intelligent fault detections and diagnosis (FDD) on mechanical/ pneumatic systems. Using data from sensors and sensor network in an integrated industrial system, our proposed FDD methodology provides the analysis of necessary sensory information (for example, flow rates and pressure, as well as other digital sensor data) for the detection and diagnosis of system fault. In this experimental study, the leakage of pneumatic cylinder was the "fault." It was shown that the FDD analysis was able to make diagnosis of leakage both in location and size of the fault. In addition, the systematic fault and localized faults can be detected separately. The proposed wavelet method gives rise to the fingerprint analysis to recognize the patterns of the flow rate and pressure data - a very useful tool in intelligent fault detection and diagnosis.

  14. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  15. Fault diagnosis engineering in molecular signaling networks: an overview and applications in target discovery.

    PubMed

    Abdi, Ali; Emamian, Effat S

    2010-05-01

    Fault diagnosis engineering is a key component of modern industrial facilities and complex systems, and has gone through considerable developments in the past few decades. In this paper, the principles and concepts of molecular fault diagnosis engineering are reviewed. In this area, molecular intracellular networks are considered as complex systems that may fail to function, due to the presence of some faulty molecules. Dysfunction of the system due to the presence of a single or multiple molecules can ultimately lead to the transition from the normal state to the disease state. It is the goal of molecular fault diagnosis engineering to identify the critical components of molecular networks, i.e., those whose dysfunction can interrupt the function of the entire network. The results of the fault analysis of several signaling networks are discussed, and possible connections of the findings with some complex human diseases are examined. Implications of molecular fault diagnosis engineering for target discovery and drug development are outlined as well.

  16. An expert system for fault diagnosis in a Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    The detection and diagnosis of SSME faults in an early stage is important in order to allow enough time for fault preventive or corrective measurements. Since most of the faults in a complex system like SSME develop rapidly, early detection and diagnosis of faults is critical for the survival of space vehicles. An expert system has been designed for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations. This paper describes an innovative machine learning approach which is employed for the automatic training of this expert system.

  17. On the application of a machine learning technique to fault diagnosis of power distribution lines

    SciTech Connect

    Togami, Masato; Abe, Norihiro; Kitahashi, T.; Ogawa, Harunao

    1995-10-01

    This paper presents one method for fault diagnosis of power distribution lines by using a decision tree. The conventional method, using a decision tree, applies only to discrete attribute values. To apply it to fault diagnosis of power distribution lines, in practice it must be revised in order to treat attributes whose values range over certain widths. This is because the sensor value or attribute value varies owing to the resistance of the fault point or is influenced by noise. The proposed method is useful when the attribute value has such a property, and it takes into consideration the cost of acquiring the information and the probability of the occurrence of a fault.

  18. Vibration mechanisms of spur gear pair in healthy and fault states

    NASA Astrophysics Data System (ADS)

    Li, Yongzhuo; Ding, Kang; He, Guolin; Lin, Huibin

    2016-12-01

    The vibration frequency components of gear system are complicated and changeful, some of those are even hard to explain. Based on the dynamic equations of a single-stage gear pair and some reasonable simplifications, frequency responses of the gear pair in healthy state and those suffering from different faults are analyzed, respectively. The excitation sources of vibration frequency components such as rotational frequency harmonics, mesh frequency harmonics, modulation sidebands and resonance frequency bands are investigated accordingly. The causes of the asymmetrical modulation sidebands around the mesh frequency harmonics, which are commonly appeared in the vibration spectrum of gear system, are explained. The effectiveness of the theoretical deductions is confirmed by dynamic simulations and experimental results.

  19. Low-cost coding techniques for digital fault diagnosis

    NASA Technical Reports Server (NTRS)

    Avizienis, A. A.

    1973-01-01

    Published report discusses fault location properties of arithmetic codes. Criterion for effectiveness of given code is detection probability of local fault by application of checking algorithm to results of entire set of algorithms of processor. Report also presents analysis of arithmetic codes with low-cost check algorithm which possesses partial fault-location properties.

  20. Fault detection and diagnosis of power converters using artificial neural networks

    SciTech Connect

    Swarup, K.S.; Chandrasekharaiah, H.S.

    1995-12-31

    Fault detection and diagnosis in real-time are areas of research interest in knowledge-based expert systems. Rule-based and model-based approaches have been successfully applied to some domains, but are too slow to be effectively applied in a real-time environment. This paper explores the suitability of using artificial neural networks for fault detection and diagnosis of power converter systems. The paper describes a neural network design and simulation environment for real-time fault diagnosis of thyristor converters used in HVDC power transmission systems.

  1. Using Vibration Monitoring for Local Fault Detection on Gears Operating Under Fluctuating Load Conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.; Schoombie, W.

    2002-11-01

    Gearboxes often operate under fluctuating load conditions during service. Conventional techniques for monitoring vibration are based on the assumption that changes in the measured structural response are caused by deterioration in the condition of the gearbox. However, this assumption is not valid for fluctuating load conditions. To find a methodology that could deal with such conditions, experiments were conducted on a gearbox test rig with different levels of tooth damage severity and the capability of applying fluctuating loads to the gear system. Different levels of fluctuation in constant loads as well as in sinusoidal, step and chirp loads were considered. The test data were order tracked and time synchronously averaged with the rotation of the shaft in order to compensate for the variation in rotational speed induced by the fluctuating loads. A pseudo-Wigner-Ville distribution was then applied to the test data, in order to identify the influence of the fluctuating load conditions. In this work, a vibration waveform normalisation approach is presented, which enables the use of the pseudo-Wigner-Ville distribution to indicate deteriorating fault conditions under fluctuating load conditions. Statistical parameters and various other features were extracted from the distribution in order to indicate the linear separation of the values for various fault conditions, after applying the vibration waveform normalisation approach. Feature vectors were compiled for the various fault and load conditions. Mahalanobis distances were calculated between the various feature vectors and an average feature vector was compiled from data measured on the undamaged gearbox. It was proved that the Mahalanobis distance could be used as a single parameter, which can readily be monotonically trended to indicate the progression of a fault condition under fluctuating load conditions. It was shown that a single layer perceptron network could be trained with the perceptron learning rule

  2. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  3. Observer based on-line fault diagnosis of continuous systems modeled as Petri nets.

    PubMed

    Renganathan, K; Bhaskar, Vidhyacharan

    2010-10-01

    This paper describes a technique for achieving on-line fault diagnosis in continuous systems that are modeled using Petri nets. The effect of place markings and transition markings are considered and based on the computed error between the initial marking and subsequent markings evolved in time, the faults are categorized assuming that the markings are both observable and unobservable. An algorithm has been suitably proposed for achieving detection of faults for a typical continuous three tank system along with suitable results.

  4. Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration

    NASA Astrophysics Data System (ADS)

    Teng, Wei; Ding, Xian; Zhang, Yangyang; Liu, Yibing; Ma, Zhiyong; Kusiak, Andrew

    2017-03-01

    In a wind turbine generator, there is an intrinsic electromagnetic vibration originated from an alternating magnetic field acting on a low stiffness stator, which modulates vibration signals of the generator and impedes fault feature extraction of bearings. When defects arise in a bearing, the statistics of the vibration signal are periodic and this phenomenon is described as cyclostationarity. Correspondingly, cyclostationary analysis enables finding the degree of cyclostationarity representing potential fault modulation information. In this paper, the electromagnetic vibration acting as a disturbance source for fault feature extraction is deduced. Additionally, the spectral correlation density and cyclic coherence function used for vibration analysis are estimated. A real 2 MW wind turbine generator with a faulty bearing was tested and the vibration signals were analyzed separately using conventional demodulation analysis, cyclic coherence function, complex wavelet transform and spectral kurtosis. The analysis results have demonstrated that the cyclic coherence function can detect the fault feature of inner race successfully, while the feature is concealed by intensive electromagnetic vibration in the other three methods. The disassembled bearing of the wind turbine generator illustrates the effectiveness of the analysis result, and precautionary measures for protecting bearings in generators are suggested.

  5. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals.

    PubMed

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-18

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox.

  6. Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals

    PubMed Central

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-01

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox. PMID:23334609

  7. Actuator fault tolerant multi-controller scheme using set separation based diagnosis

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.

    2010-11-01

    We present a fault tolerant control strategy based on a new principle for actuator fault diagnosis. The scheme employs a standard bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with distinctive dynamics when an estimator matches the current fault situation of the plant. Based on the information from each observer, a fault detection and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate control law from a bank of controllers, each of them designed to stabilise and achieve reference tracking for one of the given fault models. The main contribution of this article is to propose a new FDI principle which exploits the separation of sets that characterise healthy system operation from sets that characterise transitions from healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-controller scheme.

  8. On-line early fault detection and diagnosis of municipal solid waste incinerators

    SciTech Connect

    Zhao Jinsong Huang Jianchao; Sun Wei

    2008-11-15

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  9. On-line early fault detection and diagnosis of municipal solid waste incinerators.

    PubMed

    Zhao, Jinsong; Huang, Jianchao; Sun, Wei

    2008-11-01

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  10. Time-frequency demodulation analysis based on iterative generalized demodulation for fault diagnosis of planetary gearbox under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming; Ma, Fei

    2015-10-01

    The vibration signal of planetary gearboxes exhibits the characteristics of both amplitude modulation (AM) and frequency modulation (FM), and thus has a complex sideband structure. Time-varying speed and/or load will result in time variant characteristic frequency components. Since the modulating frequency is related to the gear fault characteristic frequency, the AM and FM parts each alone contains the information of the gear fault. We propose a time-frequency amplitude and frequency demodulation analysis metbhod to avoid the complex time-variant sideband analysis, and thereby identify the time-variant gear fault characteristic frequency. We enhance the time-frequency analysis via iterative generalized demodulation (IGD). The time-varying amplitude and frequency demodulated spectra have fine time-frequency resolution and are free of cross term interferences. They do not involve complex time-variant sidebands, thus considerably facilitating fault diagnosis of planetary gearboxes under nonstationary conditions. The method is validated using both numerically simulated data and experimental signals.

  11. Fault Diagnosis of Steam Generator Using Signed Directed Graph and Artificial Neural Networks

    SciTech Connect

    Aly, Mohamed N.; Hegazy, Hesham N.

    2006-07-01

    Diagnosis is a very complex and important task for finding the root cause of faults in nuclear power plants. The objective of this paper is to investigate the feasibility of using the combination of signed directed graph (SDG) and artificial neural networks for fault diagnosis in nuclear power plants especially in U-Tube steam generator. Signed directed graph has been the most widely used form of qualitative based model methods for process fault diagnosis. It is constructed to represent the cause-effect relations among the dynamic process variables. Signed directed graph consists of nodes represent the process variables and branches. The branch represents the qualitative influence of a process variable on the related variable. The main problem in fault diagnosis using the signed directed graph is the unmeasured variables. Therefore, neural networks are used to estimate the values of unmeasured nodes. In this work, different four cases of faults in the steam generator ( SG) have been diagnosed, three of them are single fault and the fourth is multiple fault. The first three faults are by pass valve leakage (Vbp(+)), main feed water valve opening increase (Vfw(+)), main feed water valve opening decrease (Vfw (-)). The fourth fault is a multiple fault where by-pass valve leakage and main feed water valve opening decrease (Vbp(+) and Vfw (-)) in the same time. The used data are collected from a basic principle simulator of pressurized water reactor 925 Mwe. The signed directed graph of the steam generator is constructed to represent the cause-effect relations among SG variables. It consists of 26 nodes represent the SG variables, and 48 branches represent the cause effect relations among this variables. For each fault the values of measured nodes are coming from sensors and the values of unmeasured nodes are coming from the trained neural networks. These values of the nodes are compared by normal values to get the sign of the nodes. The cause-effect graph for each

  12. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  13. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  14. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  15. Optimum Testing Procedures for System Diagnosis and Fault Isolation.

    DTIC Science & Technology

    1981-03-31

    fault detection and isolation procedures are directed...Conference, Vol. 32 (1968), pp. 529-534. 4. Cohn, H. Y. and Ott, G., "Design of Adaptive Procedures for Fault Detection and Isolation ," IEEE... detection and isolation Built-in-test Optimum sequenceof testing Branch-and Bound 20. ABSTRACT (Contin... on revera. .ide f nwcider’ and identify

  16. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    SciTech Connect

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H. . Dept. of Electrical Engineering)

    1994-08-01

    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner.

  17. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution

    PubMed Central

    Jia, Feng; Lei, Yaguo; Shan, Hongkai; Lin, Jing

    2015-01-01

    The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability of MCKD in indicating the periodic fault transients and the ability of SK in locating these transients in the frequency domain. A simulation signal overwhelmed by heavy noise is used to demonstrate the effectiveness of the proposed method. The results show that MCKD is beneficial to clarify the periodic impulse components of the bearing signals, and the method is able to detect the resonant frequency band of the signal and extract its fault characteristic frequency. Through analyzing actual vibration signals collected from wind turbines and hot strip rolling mills, we confirm that by using the proposed method, it is possible to extract fault characteristics and diagnose early faults of rolling element bearings. Based on the comparisons with the SK method, it is verified that the proposed method is more suitable to diagnose early faults of rolling element bearings. PMID:26610501

  18. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.

    PubMed

    Jia, Feng; Lei, Yaguo; Shan, Hongkai; Lin, Jing

    2015-11-20

    The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability of MCKD in indicating the periodic fault transients and the ability of SK in locating these transients in the frequency domain. A simulation signal overwhelmed by heavy noise is used to demonstrate the effectiveness of the proposed method. The results show that MCKD is beneficial to clarify the periodic impulse components of the bearing signals, and the method is able to detect the resonant frequency band of the signal and extract its fault characteristic frequency. Through analyzing actual vibration signals collected from wind turbines and hot strip rolling mills, we confirm that by using the proposed method, it is possible to extract fault characteristics and diagnose early faults of rolling element bearings. Based on the comparisons with the SK method, it is verified that the proposed method is more suitable to diagnose early faults of rolling element bearings.

  19. Fault detection and diagnosis for refrigerator from compressor sensor

    DOEpatents

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    2016-12-06

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.

  20. Engine Fault Diagnosis using DTW, MFCC and FFT

    NASA Astrophysics Data System (ADS)

    Singh, Vrijendra; Meena, Narendra

    . In this paper we have used a combination of three algorithms: Dynamic time warping (DTW) and the coefficients of Mel frequency Cepstrum (MFC) and Fast Fourier Transformation (FFT) for classifying various engine faults. Dynamic time warping and MFCC (Mel Frequency Cepstral Coefficients), FFT are used usually for automatic speech recognition purposes. This paper introduces DTW algorithm and the coefficients extracted from Mel Frequency Cepstrum, FFT for automatic fault detection and identification (FDI) of internal combustion engines for the first time. The objective of the current work was to develop a new intelligent system that should be able to predict the possible fault in a running engine at different-different workshops. We are doing this first time. Basically we took different-different samples of Engine fault and applied these algorithms, extracted features from it and used Fuzzy Rule Base approach for fault Classification.

  1. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.

    PubMed

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang

    2017-03-01

    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach.

  2. Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach

    NASA Astrophysics Data System (ADS)

    Asr, Mahsa Yazdanian; Ettefagh, Mir Mohammad; Hassannejad, Reza; Razavi, Seyed Naser

    2017-02-01

    When combined faults happen in different parts of the rotating machines, their features are profoundly dependent. Experts are completely familiar with individuals faults characteristics and enough data are available from single faults but the problem arises, when the faults combined and the separation of characteristics becomes complex. Therefore, the experts cannot declare exact information about the symptoms of combined fault and its quality. In this paper to overcome this drawback, a novel method is proposed. The core idea of the method is about declaring combined fault without using combined fault features as training data set and just individual fault features are applied in training step. For this purpose, after data acquisition and resampling the obtained vibration signals, Empirical Mode Decomposition (EMD) is utilized to decompose multi component signals to Intrinsic Mode Functions (IMFs). With the use of correlation coefficient, proper IMFs for feature extraction are selected. In feature extraction step, Shannon energy entropy of IMFs was extracted as well as statistical features. It is obvious that most of extracted features are strongly dependent. To consider this matter, Non-Naive Bayesian Classifier (NNBC) is appointed, which release the fundamental assumption of Naive Bayesian, i.e., the independence among features. To demonstrate the superiority of NNBC, other counterpart methods, include Normal Naive Bayesian classifier, Kernel Naive Bayesian classifier and Back Propagation Neural Networks were applied and the classification results are compared. An experimental vibration signals, collected from automobile gearbox, were used to verify the effectiveness of the proposed method. During the classification process, only the features, related individually to healthy state, bearing failure and gear failures, were assigned for training the classifier. But, combined fault features (combined gear and bearing failures) were examined as test data. The achieved

  3. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  4. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  5. Remote Fault Information Acquisition and Diagnosis System of the Combine Harvester Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Wu, Pei; Xu, Kai

    Most combine harvesters have not be equipped with online fault diagnosis system. A fault information acquisition and diagnosis system of the Combine Harvester based on LabVIEW is designed, researched and developed. Using ARM development board, by collecting many sensors' signals, this system can achieve real-time measurement, collection, displaying and analysis of different parts of combine harvesters. It can also realize detection online of forward velocity, roller speed, engine temperature, etc. Meanwhile the system can judge the fault location. A new database function is added so that we can search the remedial measures to solve the faults and also we can add new faults to the database. So it is easy to take precautions against before the combine harvester breaking down then take measures to service the harvester.

  6. Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-09-01

    For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.

  7. Nuclear power plant fault-diagnosis using neural networks with error estimation

    SciTech Connect

    Kim, K.; Bartlett, E.B.

    1994-12-31

    The assurance of the diagnosis obtained from a nuclear power plant (NPP) fault-diagnostic advisor based on artificial neural networks (ANNs) is essential for the practical implementation of the advisor to fault detection and identification. The objectives of this study are to develop an error estimation technique (EET) for diagnosis validation and apply it to the NPP fault-diagnostic advisor. Diagnosis validation is realized by estimating error bounds on the advisor`s diagnoses. The 22 transients obtained from the Duane Arnold Energy Center (DAEC) training simulator are used for this research. The results show that the NPP fault-diagnostic advisor are effective at producing proper diagnoses on which errors are assessed for validation and verification purposes.

  8. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  9. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  10. Neural network approach to fault diagnosis in CMOS opamps with gate oxide short faults

    NASA Astrophysics Data System (ADS)

    Yu, S.; Jervis, B. W.; Eckersall, K. R.; Bell, I. M.; Hall, A. G.; Taylor, G. E.

    1994-04-01

    Faults owing to gate oxide shorts in a CMOS opamp have been diagnosed in simulations using artificial neural networks to identify corresponding variations in supply current. Ramp and sinusoidal signals gave fault diagnostic accuracy of 67 and 83 percent, respectively. Using both test signals 100 percent diagnostic accuracy was achieved.

  11. An expert system for fault section diagnosis of power systems using fuzzy relations

    SciTech Connect

    Cho, H.J.; Park, J.K.

    1997-02-01

    This paper proposes an expert system using fuzzy relations to deal with uncertainties imposed on fault section diagnosis of power systems. The authors build sagittal diagrams which represent the fuzzy relations for power systems, and diagnose fault sections using the sagittal diagrams. Next, they examine the malfunction or wrong alarm of relays and circuit breakers based on the alarm information and the estimated fault section. The proposed system provides the fault section candidates in terms of the degree of membership and the malfunction or wrong alarm. An operator monitors these candidates and is able to diagnose the fault section, coping with uncertainties. Experimental studies for real power systems reveal usefulness of the proposed technique to diagnose faults that have uncertainty.

  12. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive

    NASA Astrophysics Data System (ADS)

    Li, Zipeng; Chen, Jinglong; Zi, Yanyang; Pan, Jun

    2017-02-01

    As one of most critical component of high-speed locomotive, wheel set bearing fault identification has attracted an increasing attention in recent years. However, non-stationary vibration signal with modulation phenomenon and heavy background noise make it difficult to excavate the hidden weak fault feature. Variational Mode Decomposition (VMD), which can decompose the non-stationary signal into couple Intrinsic Mode Functions adaptively and non-recursively, brings a feasible tool. However, heavy background noise seriously affects setting of mode number, which may lead to information loss or over decomposition problem. In this paper, an independence-oriented VMD method via correlation analysis is proposed to adaptively extract weak and compound fault feature of wheel set bearing. To overcome the information loss problem, the appropriate mode number is determined by the criterion of approximate complete reconstruction. Then the similar modes are combined according to the similarity of their envelopes to solve the over decomposition problem. Finally, three applications to wheel set bearing fault of high speed locomotive verify the effectiveness of the proposed method compared with original VMD, EMD and EEMD methods.

  13. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method.

  14. Simplified interval observer scheme: a new approach for fault diagnosis in instruments.

    PubMed

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors.

  15. Simplified Interval Observer Scheme: A New Approach for Fault Diagnosis in Instruments

    PubMed Central

    Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M.; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P.; Adam-Medina, Manuel

    2011-01-01

    There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593

  16. Multipoint Optimal Minimum Entropy Deconvolution and Convolution Fix: Application to vibration fault detection

    NASA Astrophysics Data System (ADS)

    McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    Minimum Entropy Deconvolution (MED) has been applied successfully to rotating machine fault detection from vibration data, however this method has limitations. A convolution adjustment to the MED definition and solution is proposed in this paper to address the discontinuity at the start of the signal - in some cases causing spurious impulses to be erroneously deconvolved. A problem with the MED solution is that it is an iterative selection process, and will not necessarily design an optimal filter for the posed problem. Additionally, the problem goal in MED prefers to deconvolve a single-impulse, while in rotating machine faults we expect one impulse-like vibration source per rotational period of the faulty element. Maximum Correlated Kurtosis Deconvolution was proposed to address some of these problems, and although it solves the target goal of multiple periodic impulses, it is still an iterative non-optimal solution to the posed problem and only solves for a limited set of impulses in a row. Ideally, the problem goal should target an impulse train as the output goal, and should directly solve for the optimal filter in a non-iterative manner. To meet these goals, we propose a non-iterative deconvolution approach called Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA). MOMEDA proposes a deconvolution problem with an infinite impulse train as the goal and the optimal filter solution can be solved for directly. From experimental data on a gearbox with and without a gear tooth chip, we show that MOMEDA and its deconvolution spectrums according to the period between the impulses can be used to detect faults and study the health of rotating machine elements effectively.

  17. Multiwavelet transform and its applications in mechanical fault diagnosis - A review

    NASA Astrophysics Data System (ADS)

    Sun, Hailiang; He, Zhengjia; Zi, Yanyang; Yuan, Jing; Wang, Xiaodong; Chen, Jinglong; He, Shuilong

    2014-02-01

    Mechanical fault diagnosis is important to reduce unscheduled machine downtime and avoid catastrophic accidents. It is significant to extract incipient fault and compound fault features as early as possible, which is a complex and challenging task that requests advanced analytical methods with high reliability, high accuracy and high efficiency. Compound fault features are mutually coupled in dynamic signals from the complex system. Weak features of incipient faults are always submersed in background noises. Multiwavelet transform is a remarkable development of wavelet transform, which uses vector scaling functions and wavelet functions. Multiwavelets possess the property of orthogonality, symmetry, compact support and high vanishing moments simultaneously. These advantages promote the development of multiwavelets and their applications in mechanical fault diagnosis in the past decades. This paper attempts to summarize the recent development of multiwavelet transform and its applications in mechanical fault diagnosis. First, the history of wavelets and multiwavelets is introduced. Second, the necessity and the overview of preprocessing methods for multiwavelets are summarized. Third, the advantages of multiwavelets and improvements of different generation multiwavelets are addressed. Fourth, different algorithms of these multiwavelet transforms and their flow charts are presented. Fifth, engineering applications of multiwavelets in mechanical fault diagnosis are investigated. This review also describes a simulation experiment and three application examples which provide a better understanding of different generation multiwavelets for compound fault detection. Finally, existent problems and prospects of further researches are discussed. It is expected that this review will construct an image of the contributions of different generation multiwavelets and link the current frontiers with engineering applications for readers interested in this field.

  18. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.

    PubMed

    Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju

    2016-01-01

    Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method.

  19. Neural networks and fault probability evaluation for diagnosis issues.

    PubMed

    Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.

  20. Neural Networks and Fault Probability Evaluation for Diagnosis Issues

    PubMed Central

    Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method. PMID:25132845

  1. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  2. Model-Based Fault Diagnosis for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Green, Michael D.; Duyar, Ahmet; Litt, Jonathan S.

    1998-01-01

    Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice. These test signals can be used to expose and differentiate between faults in various components by comparing the responses of particular engine variables to the expected. The responses can be processed on-line in a variety of ways which have been shown to reveal and identify faults. The combination of specific test signals and on-line processing methods provides an ad hoc approach to the isolation of faults which might not otherwise be detected during pre-flight checkout.

  3. Data-driven mono-component feature identification via modified nonlocal means and MEWT for mechanical drivetrain fault diagnosis

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Chen, Jinglong; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-12-01

    It is significant to perform condition monitoring and fault diagnosis on rolling mills in steel-making plant to ensure economic benefit. However, timely fault identification of key parts in a complicated industrial system under operating condition is still a challenging task since acquired condition signals are usually multi-modulated and inevitably mixed with strong noise. Therefore, a new data-driven mono-component identification method is proposed in this paper for diagnostic purpose. First, the modified nonlocal means algorithm (NLmeans) is proposed to reduce noise in vibration signals without destroying its original Fourier spectrum structure. During the modified NLmeans, two modifications are investigated and performed to improve denoising effect. Then, the modified empirical wavelet transform (MEWT) is applied on the de-noised signal to adaptively extract empirical mono-component modes. Finally, the modes are analyzed for mechanical fault identification based on Hilbert transform. The results show that the proposed data-driven method owns superior performance during system operation compared with the MEWT method.

  4. Fault diagnosis and accommodation of a three-tank system based on analytical redundancy.

    PubMed

    Theilliol, Didier; Noura, Hassan; Ponsart, Jean-Christophe

    2002-07-01

    This paper investigates the application of a fault diagnosis and accommodation method to a real system composed of three tanks. The performance of a closed-loop system can be altered by the occurrence of faults which can, in some circumstances, cause serious damage on the system. The research goal is to prevent the system deterioration by developing a controller that has some capabilities to compensate for faults, that is, the fault accommodation or fault-tolerant control. In this paper, a two-step scheme composed of a fault detection, isolation and estimation module, and a control compensation module is presented. The main contribution is to develop a unique structured residual generator able to isolate and estimate both sensor and actuator faults. This estimation is of paramount importance to compensate for these faults and to preserve the system performances. The application of this method to the three-tank system gives encouraging results which are presented and commented on in case of various kinds of faults.

  5. An Integrated Learning and Filtering Approach for Fault Diagnosis of a Class of Nonlinear Dynamical Systems.

    PubMed

    Keliris, Christodoulos; Polycarpou, Marios M; Parisini, Thomas

    2017-04-01

    This paper develops an integrated filtering and adaptive approximation-based approach for fault diagnosis of process and sensor faults in a class of continuous-time nonlinear systems with modeling uncertainties and measurement noise. The proposed approach integrates learning with filtering techniques to derive tight detection thresholds, which is accomplished in two ways: 1) by learning the modeling uncertainty through adaptive approximation methods and 2) by using filtering for dampening measurement noise. Upon the detection of a fault, two estimation models, one for process and the other for sensor faults, are initiated in order to identify the type of fault. Each estimation model utilizes learning to estimate the potential fault that has occurred, and adaptive isolation thresholds for each estimation model are designed. The fault type is deduced based on an exclusion-based logic, and fault detectability and identification conditions are rigorously derived, characterizing quantitatively the class of faults that can be detected and identified by the proposed scheme. Finally, simulation results are used to demonstrate the effectiveness of the proposed approach.

  6. Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liang, Ming

    2012-01-01

    The vibration data, especially those collected during the system run-up and run-down periods, contain rich information for gearbox condition monitoring. Time-frequency (TF) signal analysis is an effective tool to detect gearbox faults under varying shaft speed. However, the feature of the amplitude modulated-frequency modulated (AM-FM) gearbox fault signal usually cannot be directly extracted from the blurred time-frequency representation (TFR) caused by the time-varying frequency and noisy multicomponent measurement. As such, we propose to use a generalized synchrosqueezing transform (GST)-based TF method to detect and diagnose gearbox faults. With this method, the original vibration signal is first mapped into another analytical signal to facilitate synchrosqueezing of the TF picture. A time-scale domain restoration process is then applied to recover the instantaneous frequency profile with concentrated TFR. The gearbox fault, if any, can then be detected by observing the presence of the meshing frequency and sideband components in the TFR. The faulty gear can be identified via frequency relation analysis of AM-FM components. The proposed method is evaluated using both simulated and experimental gearbox vibration signals. The results show that the proposed approach is effective for gearbox condition monitoring.

  7. Reasoning about fault diagnosis for the space station common module thermal control system

    NASA Technical Reports Server (NTRS)

    Vachtsevanos, G.; Hexmoor, H.; Purves, B.

    1988-01-01

    The proposed common module thermal control system for the Space Station is designed to integrate thermal distribution and thermal control functions in order to transport heat and provide environmental temperature control through the common module. When the thermal system is operating in an off-normal state, due to component faults, an intelligent controller is called upon to diagnose the fault type, identify the fault location and determine the appropriate control action required to isolate the faulty component. A methodology is introduced for fault diagnosis based upon a combination of signal redundancy techniques and fuzzy logic. An expert system utilizes parity space representation and analytic redundancy to derive fault symptoms, the aggregate of which is assessed by a multivalued rule based system. A subscale laboratory model of the thermal control system designed is used as the testbed for the study.

  8. Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks.

    PubMed

    de Bruin, Tim; Verbert, Kim; Babuska, Robert

    2017-03-01

    Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available measurement signals. By considering the signals from multiple track circuits in a geographic area, faults are diagnosed from their spatial and temporal dependences. A generative model is used to show that the LSTM network can learn these dependences directly from the data. The network correctly classifies 99.7% of the test input sequences, with no false positive fault detections. In addition, the t-Distributed Stochastic Neighbor Embedding (t-SNE) method is used to examine the resulting network, further showing that it has learned the relevant dependences in the data. Finally, we compare our LSTM network with a convolutional network trained on the same task. From this comparison, we conclude that the LSTM network architecture is better suited for the railway track circuit fault detection and identification tasks than the convolutional network.

  9. Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.

    PubMed

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.

  10. Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears

    PubMed Central

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592

  11. Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing

    NASA Astrophysics Data System (ADS)

    Sugumaran, V.; Ramachandran, K. I.

    2007-07-01

    Roller bearing is one of the most widely used elements in rotary machines. Condition monitoring of such elements is conceived as pattern recognition problem. Pattern recognition has two main phases: feature extraction and feature classification. Statistical features like minimum value, standard error and kurtosis, etc. are widely used as features in fault diagnostics. These features are extracted from vibration signals. A rule set is formed from the extracted features and input to a fuzzy classifier. The rule set necessary for building the fuzzy classifier is obtained largely by intuition and domain knowledge. This paper presents the use of decision tree to generate the rules automatically from the feature set. The vibration signal from a piezo-electric transducer is captured for the following conditions—good bearing, bearing with inner race fault, bearing with outer race fault, and inner and outer race fault. The statistical features are extracted and good features that discriminate the different fault conditions of the bearing are selected using decision tree. The rule set for fuzzy classifier is obtained once again by using the decision tree. A fuzzy classifier is built and tested with representative data. The results are found to be encouraging.

  12. Fault detection and diagnosis for singular stochastic systems via B-spline expansions.

    PubMed

    Hu, Zhuohuan; Han, Zhengzhi; Tian, Zuohua

    2009-10-01

    This paper deals with the problem of fault detection and diagnosis (FDD) for singular stochastic systems. The outputs of singular stochastic systems are described by probability density functions (PDFs) based on square root B-spline expansions. Then, two non-linear observers are designed for the FDD. The conditions of stability of the correlative error estimation systems are given by using linear matrix inequalities (LMIs). Finally, the simulation results are presented to indicate that the approach can detect faults and estimate the size of faults.

  13. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors

    NASA Astrophysics Data System (ADS)

    Yang, Jing-li; Chen, Yin-sheng; Zhang, Li-li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  14. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  15. Fan fault diagnosis based on symmetrized dot pattern analysis and image matching

    NASA Astrophysics Data System (ADS)

    Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling

    2016-07-01

    To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.

  16. An evaluation of a real-time fault diagnosis expert system for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Abbott, Kathy H.; Palmer, Michael T.; Ricks, Wendell R.

    1987-01-01

    A fault monitoring and diagnosis expert system called Faultfinder was conceived and developed to detect and diagnose in-flight failures in an aircraft. Faultfinder is an automated intelligent aid whose purpose is to assist the flight crew in fault monitoring, fault diagnosis, and recovery planning. The present implementation of this concept performs monitoring and diagnosis for a generic aircraft's propulsion and hydraulic subsystems. This implementation is capable of detecting and diagnosing failures of known and unknown (i.e., unforseeable) type in a real-time environment. Faultfinder uses both rule-based and model-based reasoning strategies which operate on causal, temporal, and qualitative information. A preliminary evaluation is made of the diagnostic concepts implemented in Faultfinder. The evaluation used actual aircraft accident and incident cases which were simulated to assess the effectiveness of Faultfinder in detecting and diagnosing failures. Results of this evaluation, together with the description of the current Faultfinder implementation, are presented.

  17. Developing a new transformer fault diagnosis system through evolutionary fuzzy logic

    SciTech Connect

    Huang, Y.C.; Huang, C.L.; Yang, H.T.

    1997-04-01

    To improve the diagnosis accuracy of the conventional dissolved gas analysis (DGA) approaches, this paper proposes an evolutionary programming (EP) based fuzzy system development technique to identify the incipient faults of the power transformers. Using the IEC/IEEE DGA criteria as references, a preliminary framework of the fuzzy diagnosis system is first built. Based on previous dissolved gas test records and their actual fault types, the proposed EP-based development technique is then employed to automatically modify the fuzzy if-then rules and simultaneously adjust the corresponding membership functions. In comparison to results of the conventional DGA and the artificial neural networks (ANN) classification methods, the proposed method has been verified to possess superior performance both in developing the diagnosis system and in identifying the practical transformer fault cases.

  18. Fault Diagnosis for Analog Circuits by Using EEMD, Relative Entropy, and ELM.

    PubMed

    Xiong, Jian; Tian, Shulin; Yang, Chenglin

    2016-01-01

    This paper presents a novel fault diagnosis method for analog circuits using ensemble empirical mode decomposition (EEMD), relative entropy, and extreme learning machine (ELM). First, nominal and faulty response waveforms of a circuit are measured, respectively, and then are decomposed into intrinsic mode functions (IMFs) with the EEMD method. Second, through comparing the nominal IMFs with the faulty IMFs, kurtosis and relative entropy are calculated for each IMF. Next, a feature vector is obtained for each faulty circuit. Finally, an ELM classifier is trained with these feature vectors for fault diagnosis. Via validating with two benchmark circuits, results show that the proposed method is applicable for analog fault diagnosis with acceptable levels of accuracy and time cost.

  19. Fault Diagnosis for Analog Circuits by Using EEMD, Relative Entropy, and ELM

    PubMed Central

    Tian, Shulin

    2016-01-01

    This paper presents a novel fault diagnosis method for analog circuits using ensemble empirical mode decomposition (EEMD), relative entropy, and extreme learning machine (ELM). First, nominal and faulty response waveforms of a circuit are measured, respectively, and then are decomposed into intrinsic mode functions (IMFs) with the EEMD method. Second, through comparing the nominal IMFs with the faulty IMFs, kurtosis and relative entropy are calculated for each IMF. Next, a feature vector is obtained for each faulty circuit. Finally, an ELM classifier is trained with these feature vectors for fault diagnosis. Via validating with two benchmark circuits, results show that the proposed method is applicable for analog fault diagnosis with acceptable levels of accuracy and time cost. PMID:27698663

  20. Distributed model-based nonlinear sensor fault diagnosis in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lo, Chun; Lynch, Jerome P.; Liu, Mingyan

    2016-01-01

    Wireless sensors operating in harsh environments have the potential to be error-prone. This paper presents a distributive model-based diagnosis algorithm that identifies nonlinear sensor faults. The diagnosis algorithm has advantages over existing fault diagnosis methods such as centralized model-based and distributive model-free methods. An algorithm is presented for detecting common non-linearity faults without using reference sensors. The study introduces a model-based fault diagnosis framework that is implemented within a pair of wireless sensors. The detection of sensor nonlinearities is shown to be equivalent to solving the largest empty rectangle (LER) problem, given a set of features extracted from an analysis of sensor outputs. A low-complexity algorithm that gives an approximate solution to the LER problem is proposed for embedment in resource constrained wireless sensors. By solving the LER problem, sensors corrupted by non-linearity faults can be isolated and identified. Extensive analysis evaluates the performance of the proposed algorithm through simulation.

  1. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  2. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    NASA Astrophysics Data System (ADS)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  3. Investigation of candidate data structures and search algorithms to support a knowledge based fault diagnosis system

    NASA Technical Reports Server (NTRS)

    Bosworth, Edward L., Jr.

    1987-01-01

    The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.

  4. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    PubMed

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  5. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    PubMed Central

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  6. Rolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum

    NASA Astrophysics Data System (ADS)

    Al-Raheem, Khalid F.; Roy, Asok; Ramachandran, K. P.; Harrison, D. K.; Grainger, Steven

    2007-12-01

    The bearing characteristic frequencies (BCF) contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT). Therefore, Envelope Detection (ED) has always been used with FFT to identify faults occurring at the BCF. However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative approach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.

  7. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  8. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  9. Effectiveness and Sensitivity of Vibration Processing Techniques for Local Fault Detection in Gears

    NASA Astrophysics Data System (ADS)

    Dalpiaz, G.; Rivola, A.; Rubini, R.

    2000-05-01

    This paper deals with gear condition monitoring based on vibration analysis techniques. The detection and diagnostic capability of some of the most effective techniques are discussed and compared on the basis of experimental results, concerning a gear pair affected by a fatigue crack. In particular, the results of new approaches based on time-frequency and cyclostationarity analysis are compared against those obtained by means of the well-accepted cepstrum analysis and time-synchronous average analysis. Moreover, the sensitivity to fault severity is assessed by considering two different depths of the crack. The effect of transducer location and processing options are also shown. In the case of the experimental results considered in this paper, the power cepstrum is practically insensitive to the crack evolution. Conversely, the spectral correlation density function is able to monitor the fault development and does not seem to be significantly influenced by the transducer position. Analysis techniques of the time-synchronous average, such as the 'residual' signal and the demodulation technique, are able to localise the damaged tooth; however, the sensitivity of the demodulation technique is strongly dependent on the proper choice of the filtering band and affected by the transducer location. The wavelet transform seems to be a good tool for crack detection; it is particularly effective if the residual part of the time-synchronous averaged signal is processed.

  10. Physically-based modeling of speed sensors for fault diagnosis and fault tolerant control in wind turbines

    NASA Astrophysics Data System (ADS)

    Weber, Wolfgang; Jungjohann, Jonas; Schulte, Horst

    2014-12-01

    In this paper, a generic physically-based modeling framework for encoder type speed sensors is derived. The consideration takes into account the nominal fault-free and two most relevant fault cases. The advantage of this approach is a reconstruction of the output waveforms in dependence of the internal physical parameter changes which enables a more accurate diagnosis and identification of faulty incremental encoders i.a. in wind turbines. The objectives are to describe the effect of the tilt and eccentric of the encoder disk on the digital output signals and the influence of the accuracy of the speed measurement in wind turbines. Simulation results show the applicability and effectiveness of the proposed approach.

  11. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  12. A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis

    NASA Astrophysics Data System (ADS)

    Grasso, M.; Chatterton, S.; Pennacchi, P.; Colosimo, B. M.

    2016-12-01

    Health condition analysis and diagnostics of rotating machinery requires the capability of properly characterizing the information content of sensor signals in order to detect and identify possible fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the existence and the causes of a fault. The separation of components belonging to different time-frequency scales, either associated to healthy or faulty conditions, represents a challenge that motivates the development of effective methodologies for multi-scale signal decomposition. In this framework, the Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. However, the EMD usually yields an over-decomposition of the original signals into a large number of intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the reference literature lacks automated methods to achieve a synthetic decomposition into few physically meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced characterization of the signal content without any information loss. A novel criterion to assess the dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data is presented to demonstrate the performances of the method and the provided benefits.

  13. A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Alwodai, A.; Gu, F.; Ball, A. D.

    2012-05-01

    The problem of failures in induction motors is a large concern due to its significant influence over industrial production. Therefore a large number of detection techniques were presented to avoid this problem. This paper presents the comparison results of induction motor rotor fault detection using three methods: motor current signature analysis (MCSA), surface vibration (SV), and instantaneous angular speed (IAS). These three measurements were performed under different loads with three rotor conditions: baseline, one rotor bar broken and two rotor bar broken. The faults can be detected and diagnosed based on the amplitude difference of the characteristic frequency components of power spectrum. However IAS may be the best technique because it gives the clearest spectrum representation in which the largest amplitude change is observed due to the faults.

  14. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  15. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis

    NASA Astrophysics Data System (ADS)

    He, Shuilong; Chen, Jinglong; Zhou, Zitong; Zi, Yanyang; Wang, Yanxue; Wang, Xiaodong

    2016-08-01

    Compound-fault diagnosis of mechanical equipment is still challenging at present because of its complexity, multiplicity and non-stationarity. In this work, an adaptive redundant multiwavelet packet (ARMP) method is proposed for the compound-fault diagnosis. Multiwavelet transform has two or more base functions and many excellent properties, making it suitable for detecting all the features of compound-fault simultaneously. However, on the other hand, the fixed basis function used in multiwavelet transform may decrease the accuracy of fault extraction; what's more, the multi-resolution analysis of multiwavelet transform in low frequency band may also leave out the useful features. Thus, the minimum sum of normalized multifractal entropy is adopted as the optimization criteria for the proposed ARMP method, while the relative energy ratio of the characteristic frequency is utilized as an effective way in automatically selecting the sensitive frequency bands. Then, The ARMP technique combined with Hilbert transform demodulation analysis is then applied to detect the compound-fault of bevel gearbox and planetary gearbox. The results verify that the proposed method can effectively identify and detect the compound-fault of mechanical equipment.

  16. A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection

    NASA Astrophysics Data System (ADS)

    Peeters, Cédric; Guillaume, Patrick; Helsen, Jan

    2017-07-01

    The detection and diagnosis of incipient rolling element bearing faults is not an undemanding task and signal analysis of vibration measurements therefore often incorporates the use of various complex processing techniques. One of the key steps in the processing procedure is the proper separation of the bearing signal from other influencing sources like shafts or gears. The latter sources produce deterministic signal components showing up as discrete frequencies in the amplitude spectrum, while bearing signals are assumed to be (quasi-) cyclostationary resulting in a smearing of the bearing frequencies in the spectrum. This property gave rise to the idea of using the cepstrum for the purpose of separating the deterministic signal content from the second-order cyclostationary bearing signal. The cepstrum essentially groups the deterministic multi-harmonic signal content in a cepstral peak at the corresponding quefrency, making it more suitable for easy removal of the discrete frequency peaks. Even though initially there was a tendency to only remove or 'lifter' the selected cepstral peaks, nowadays the full real cepstrum is set to zero instead of only certain quefrency bands. This technique, called cepstrum pre-whitening, is easy to implement, can be performed quickly without the need for additional input parameters or fine-tuning and would be well-suited for practical applications. However, these advantages do come at the cost of some control and insight over the editing procedure of the signal. In order to assess the performance of this cepstrum pre-whitening technique, it is compared to an automated cepstrum editing procedure. It automatically selects certain peaks in the real cepstrum and only sets them to zero instead of the full real cepstrum. Both methods perform quite well in separating deterministic signal content from more random content, but there are some differences to observe when using them for diagnosis purposes. An analysis of the methods is made

  17. Development and implementation of a power system fault diagnosis expert system

    SciTech Connect

    Minakawa, T.; Ichikawa, Y.; Kunugi, M.; Wada, N.; Shimada, K.; Utsunomiya, M.

    1995-05-01

    This paper describes a fault diagnosis expert system installed at the tohoku Electric Power Company. The main features of this system are careful selection of the inferencing input data, rapid inferencing, integration of the expert system with other systems in a practical structure, and the adoption of a domain shell. This system aims for improved practicability by using time-tagged data from circuit breakers, protective relays, and automatic reclosing relays in addition to the input data used in earlier systems. Furthermore, this system also uses data from fault detection systems that locate fault points within electric stations. This system uses an AI-specific back-end processor to perform inferencing rapidly. Additionally, this fault diagnosis expert system is interfaced and integrated with a restorative operations expert system, an intelligent alarm processing system, and a protective relay setting and management system. Authors developed and adopted a power system fault diagnosis domain shell to ease system development, and used the protective relay operation simulation function of a protective relay setting and management system for system verification.

  18. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  19. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    NASA Astrophysics Data System (ADS)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  20. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Qiao, Zijian; Xu, Xuefang; Lin, Jing; Niu, Shantao

    2017-09-01

    Most traditional overdamped monostable, bistable and even tristable stochastic resonance (SR) methods have three shortcomings in weak characteristic extraction: (1) their potential structures characterized by single stable-state type are insufficient to match with the complicated and diverse mechanical vibration signals; (2) they vulnerably suffer the interference from multiscale noise and largely depend on the help of highpass filters whose parameters are selected subjectively, probably resulting in false detection; and (3) their rescaling factors are fixed as constants generally, thereby ignoring the synergistic effect among vibration signals, potential structures and rescaling factors. These three shortcomings have limited the enhancement ability of SR. To explore the SR potential, this paper initially investigates the SR in a multistable system by calculating its output spectral amplification, further analyzes its output frequency response numerically, then examines the effect of both damping and rescaling factors on output responses and finally presents a promising underdamped SR method with stable-state matching for incipient bearing fault diagnosis. This method has three advantages: (1) the diversity of stable-state types in a multistable potential makes it easy to match with various vibration signals; (2) the underdamped multistable SR, equivalent to a moving nonlinear bandpass filter that is dependent on the rescaling factors, is able to suppress the multiscale noise; and (3) the synergistic effect among vibration signals, potential structures and rescaling and damping factors is achieved using quantum genetic algorithms whose fitness functions are new weighted signal-to-noise ratio (WSNR) instead of SNR. Therefore, the proposed method is expected to possess good enhancement ability. Simulated and experimental data of rolling element bearings demonstrate its effectiveness. The comparison results show that the proposed method is able to obtain higher

  1. Blockage fault diagnosis method of combine harvester based on BPNN and DS evidence theory

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Xu, Kai; Wang, Yifan; Wang, Kun; Wang, Shuqing

    2017-01-01

    According to the complexity and the lack of intelligent analysis method of combine harvester blockage fault , this paper puts forward a method , based on the combination of BP neural network (BPNN)and DS evidence theory , for combine harvester blockage fault diagnosis. Choosing cutting table auger, conveyer trough, threshing cylinder and grain conveying auger as the study, this paper divides the condition of combine harvester into four categories, namely, normal, slightly blocking, blockage, severe blockage, which being as an identification framework for DS evidence theory. BP neural network is used for analysing speed information of monitoring points and distributing basic probability for each proposition in the identification framework. Dempster combination rule converged information at different time to obtain diagnostic results.Test results show that this method can timely and accurately judge the work state of combine harvester, the blocking fault warning time will be increased to 2 seconds and the success probability of blocking fault warning reach more than 90%.

  2. Robust fault diagnosis for reaction flywheel based on reduced-order observer

    NASA Astrophysics Data System (ADS)

    Wang, Min; Qin, Shiyin

    2008-10-01

    In this paper, a reduced-order observer is applied to fault diagnosis for reaction flywheels in satellite attitude control system. The benefit of this approach is able to estimate the fault signal of reaction flywheel in the presence of unknown inputs. Through ingenious state transformation, the original system is decomposed into two subsystems, one of which is driven by known inputs only. Thus, after a reduced-order observer being designed, the subsystem's accurate state estimation can be obtained without the effect of unknown inputs, consequently, the unknown inputs can be estimated. In this case the fault signals of reaction flywheels may come down to a part of unknown inputs, then the faults can be detected according to the estimated unknown inputs.

  3. Sensor and actuator fault diagnosis of systems with discrete inputs and outputs.

    PubMed

    Lunze, J; Schröder, J

    2004-04-01

    The paper describes a method for detecting and identifying faults that occur in the sensors or in the actuators of dynamical systems with discrete-valued inputs and outputs. The model used in the diagnosis is a stochastic automaton. The generalized observer scheme (GOS), which has been proposed for systems with continuous-variable inputs and outputs some years ago, are developed for discrete systems. This scheme solves the diagnostic problem as an observation problem, which is set up here for discrete-event systems. As the system under consideration is described by a stochastic automaton rather than a differential equation, the mathematical background and the diagnostic algorithms obtained are completely different from the well-known observers developed for continuous-variable systems. The GOS is extended here by a fault detection module to cope with plant faults that are different from actuator or sensor faults. The diagnostic algorithm consists of two steps, the first detecting the existence of a fault and the second isolating possible sensor or actuator faults or identifying plant faults. The results are applied to quantized systems whose discrete inputs and outputs result from a quantization of the continuous-variable input and output signals. Experimental results illustrate the proposed diagnostic method.

  4. Online motor fault detection and diagnosis using a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng

    2014-04-01

    In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks.

  5. Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette

    2010-01-01

    Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.

  6. Fault diagnosis in an expert system for health services management in the tropics.

    PubMed

    Kwankam, S Y; Asoh, D A; Boyom, S F

    1997-02-01

    An integrated large-scale expert system called Health-2000, for the management of health services in regions where tropical diseases are endemic, has been designed. This system combines knowledge and databases, the contents of which are operated upon by an inference engine, to produce usable information. The system allows a host of applications, ranging from medical diagnosis to fault detection and preventive maintenance of biomedical equipment. The theoretical background and approach used in the development of the fault diagnosis and equipment maintenance sub-system of Health-2000 is presented. Model-based knowledge acquisition, and an extension of the Failure Modes, Effects and Criticality Analysis are two methodologies applied to build its knowledge bases. The inference engine which supports backward and forward chaining, operates on numerical and non-numerical facts, and uses fuzzy logic to handle vague and uncertain knowledge. Fault isolation proceeds in a top-down fashion, from equipment sub-system, to modules and components.

  7. Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Shengfa; Chu, Fulei

    2007-04-01

    Support vector machines (SVM) is a new general machine-learning tool based on the structural risk minimisation principle that exhibits good generalisation when fault samples are few, it is especially fit for classification, forecasting and estimation in small-sample cases such as fault diagnosis, but some parameters in SVM are selected by man's experience, this has hampered its efficiency in practical application. Artificial immunisation algorithm (AIA) is used to optimise the parameters in SVM in this paper. The AIA is a new optimisation method based on the biologic immune principle of human being and other living beings. It can effectively avoid the premature convergence and guarantees the variety of solution. With the parameters optimised by AIA, the total capability of the SVM classifier is improved. The fault diagnosis of turbo pump rotor shows that the SVM optimised by AIA can give higher recognition accuracy than the normal SVM.

  8. Rolling element bearing faults diagnosis based on kurtogram and frequency domain correlated kurtosis

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohui; Yang, Shaopu; Liu, Yongqiang; Hao, Rujiang

    2016-12-01

    Envelope analysis is one of the most useful methods in localized fault diagnosis of rolling element bearings. However, there is a challenge in selecting the optimal resonance band. In this paper, a novel method based on kurtogram and frequency domain correlated kurtosis is proposed. To obtain the correct relationship between the node and frequency band in wavelet packet transform, a vital process named frequency ordering is conducted to solve the frequency folding problem due to down sampling. Correlated kurtosis of envelope spectrum instead of correlated kurtosis of envelope signal or kurtosis of envelope spectrum is utilized to generate the kurtogram, in which the maximum value can indicate the optimal band for envelope analysis. Several cases of experimental bearing fault signals are used to evaluate the immunity of the proposed method to strong noise interference. The improved performance has also been compared with two previous developed methods. The results demonstrate the effectiveness and robustness of the method in fault diagnosis of rolling element bearings.

  9. Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings.

    PubMed

    Luo, Meng; Li, Chaoshun; Zhang, Xiaoyuan; Li, Ruhai; An, Xueli

    2016-11-01

    This paper proposes a hybrid system named as HGSA-ELM for fault diagnosis of rolling element bearings, in which real-valued gravitational search algorithm (RGSA) is employed to optimize the input weights and bias of ELM, and the binary-valued of GSA (BGSA) is used to select important features from a compound feature set. Three types fault features, namely time and frequency features, energy features and singular value features, are extracted to compose the compound feature set by applying ensemble empirical mode decomposition (EEMD). For fault diagnosis of a typical rolling element bearing system with 56 working condition, comparative experiments were designed to evaluate the proposed method. And results show that HGSA-ELM achieves significant high classification accuracy compared with its original version and methods in literatures.

  10. Fault diagnosis using noise modeling and a new artificial immune system based algorithm

    NASA Astrophysics Data System (ADS)

    Abbasi, Farshid; Mojtahedi, Alireza; Ettefagh, Mir Mohammad

    2015-12-01

    A new fault classification/diagnosis method based on artificial immune system (AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms (GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.

  11. Data Mining in Multi-Dimensional Functional Data for Manufacturing Fault Diagnosis

    SciTech Connect

    Jeong, Myong K; Kong, Seong G; Omitaomu, Olufemi A

    2008-09-01

    Multi-dimensional functional data, such as time series data and images from manufacturing processes, have been used for fault detection and quality improvement in many engineering applications such as automobile manufacturing, semiconductor manufacturing, and nano-machining systems. Extracting interesting and useful features from multi-dimensional functional data for manufacturing fault diagnosis is more difficult than extracting the corresponding patterns from traditional numeric and categorical data due to the complexity of functional data types, high correlation, and nonstationary nature of the data. This chapter discusses accomplishments and research issues of multi-dimensional functional data mining in the following areas: dimensionality reduction for functional data, multi-scale fault diagnosis, misalignment prediction of rotating machinery, and agricultural product inspection based on hyperspectral image analysis.

  12. An integrated approach to performance monitoring and fault diagnosis of nuclear power systems

    NASA Astrophysics Data System (ADS)

    Zhao, Ke

    2005-07-01

    An integrated approach to performance monitoring and fault diagnosis was developed in this dissertation for nuclear power plants using robust data driven model based methods, which comprises thermal hydraulic simulation, data driven modeling, identification of model uncertainty, and robust residual generator design for fault diagnosis. In the applications to nuclear power plants, on the one hand, routine operation data may not be able to characterize the relationships among process variables because operating setpoints may change and thermal fluid components may experience degradation. On the other hand, physical models always have uncertainty and are often too complicated in terms of model structure to design residual generators for fault diagnosis. Therefore, a realistic fault diagnosis method needs to combine the strength of physical models in modeling a wide range of anticipated operation conditions and the strength of statistical data driven modeling in feature extraction. In the developed robust data driven model-based approach, the changes in operation conditions are simulated using physical models and model uncertainty is extracted from plant operation data such that the fault effects on process variables can be decoupled from model uncertainty and normal operation changes. It was found that the developed method could eliminate false alarms due to model uncertainty and deal with operating condition changes of nuclear power plants. The developed algorithms were demonstrated using the International Reactor Innovative and Secure (IRIS) Helical Coil Steam Generator (HCSG) systems. A thermal hydraulic model was developed for this system. It was revealed through steady state simulation that the primary coolant temperature profile could be used to indicate the water inventory inside the HCSG tubes. The performance monitoring and fault diagnosis module was developed to monitor sensor faults, flow distribution abnormality, and heat performance degradation for both

  13. Theory of reliable systems. [reliability analysis and on-line fault diagnosis

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1974-01-01

    Research is reported in the program to refine the current notion of system reliability by identifying and investigating attributes of a system which are important to reliability considerations, and to develop techniques which facilitate analysis of system reliability. Reliability analysis, and on-line fault diagnosis are discussed.

  14. An Annotated Selective Bibliography on Human Performance in Fault Diagnosis Tasks. Technical Report 435. Final Report.

    ERIC Educational Resources Information Center

    Johnson, William B.; And Others

    This annotated bibliography developed in connection with an ongoing investigation of the use of computer simulations for fault diagnosis training cites 61 published works taken predominantly from the disciplines of engineering, psychology, and education. A review of the existing literature included computer searches of the past ten years of…

  15. Deep-reasoning fault diagnosis - An aid and a model

    NASA Technical Reports Server (NTRS)

    Yoon, Wan Chul; Hammer, John M.

    1988-01-01

    The design and evaluation are presented for the knowledge-based assistance of a human operator who must diagnose a novel fault in a dynamic, physical system. A computer aid based on a qualitative model of the system was built to help the operators overcome some of their cognitive limitations. This aid differs from most expert systems in that it operates at several levels of interaction that are believed to be more suitable for deep reasoning. Four aiding approaches, each of which provided unique information to the operator, were evaluated. The aiding features were designed to help the human's casual reasoning about the system in predicting normal system behavior (N aiding), integrating observations into actual system behavior (O aiding), finding discrepancies between the two (O-N aiding), or finding discrepancies between observed behavior and hypothetical behavior (O-HN aiding). Human diagnostic performance was found to improve by almost a factor of two with O aiding and O-N aiding.

  16. Distributed fault diagnosis for process and sensor faults in a class of interconnected input-output nonlinear discrete-time systems

    NASA Astrophysics Data System (ADS)

    Keliris, Christodoulos; Polycarpou, Marios M.; Parisini, Thomas

    2015-08-01

    This paper presents a distributed fault diagnosis scheme able to deal with process and sensor faults in an integrated way for a class of interconnected input-output nonlinear uncertain discrete-time systems. A robust distributed fault detection scheme is designed, where each interconnected subsystem is monitored by its respective fault detection agent, and according to the decisions of these agents, further information regarding the type of the fault can be deduced. As it is shown, a process fault occurring in one subsystem can only be detected by its corresponding detection agent whereas a sensor fault in a subsystem can be detected by either its corresponding detection agent or the detection agent of another subsystem that is affected by the subsystem where the sensor fault occurred. This discriminating factor is exploited for the derivation of a high-level isolation scheme. Moreover, process and sensor fault detectability conditions characterising quantitatively the class of detectable faults are derived. Finally, a simulation example is used to illustrate the effectiveness of the proposed distributed fault detection scheme.

  17. Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan

    2017-09-01

    It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus

  18. Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chen, Xiaowang; Liang, Ming

    2016-08-01

    Planetary gearbox vibration signals under nonstationary conditions are characterized by time-varying nature and complex multi-components, making it very difficult to extract features for fault diagnosis. Order spectrum analysis is one of the effective approaches for nonstationary signal analysis of rotating machinery. The main idea of order analysis is to map the time-varying frequency components into constant ones. Inspired by this idea, we propose a new order spectrum analysis method to exploit the unique property of iterative generalized demodulation in converting arbitrary instantaneous frequency trajectories of multi-component signals into constant frequency lines on the time-frequency plane. This new method is completely algorithm-based and tachometer/encoder-free, thus easy to implement. It does not involve equi-angular resampling commonly required by most order tracking methods and is hence free from the decimation and/or interpolation error. The proposed order analysis method can eliminate the time-variation effect of frequency and thus can effectively reveal the harmonic order constituents of nonstationary multi-component signals. However, the planetary gearbox vibration signals also lead to complex sideband orders. As such, we further propose to analyze the order spectrum of amplitude envelope. This will eliminate the complex sideband orders in the order spectrum of original signals, leading to a substantially simplified and more reliable gear characteristic frequency identification process. Nevertheless, the gear and/or planet carrier rotating frequency orders, which are irrelevant to gear fault, may still exist. To avoid possible misleading results due to such frequency orders, we also propose to analyze the order spectrum of instantaneous frequency. Theoretically, the peaks present in frequency order spectrum directly correspond to the gear characteristic frequency orders, which can be used to extract gear fault signature more explicitly. The proposed

  19. Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS.

    PubMed

    Lau, C K; Heng, Y S; Hussain, M A; Mohamad Nor, M I

    2010-10-01

    The performance of a chemical process plant can gradually degrade due to deterioration of the process equipment and unpermitted deviation of the characteristic variables of the system. Hence, advanced supervision is required for early detection, isolation and correction of abnormal conditions. This work presents the use of an adaptive neuro-fuzzy inference system (ANFIS) for online fault diagnosis of a gas-phase polypropylene production process with emphasis on fast and accurate diagnosis, multiple fault identification and adaptability. The most influential inputs are selected from the raw measured data sets and fed to multiple ANFIS classifiers to identify faults occurring in the process, eliminating the requirement of a detailed process model. Simulation results illustrated that the proposed method effectively diagnosed different fault types and severities, and that it has a better performance compared to a conventional multivariate statistical approach based on principal component analysis (PCA). The proposed method is shown to be simple to apply, robust to measurement noise and able to rapidly discriminate between multiple faults occurring simultaneously. This method is applicable for plant-wide monitoring and can serve as an early warning system to identify process upsets that could threaten the process operation ahead of time.

  20. Fault detection, diagnosis, and data-driven modeling in HVAC chillers

    NASA Astrophysics Data System (ADS)

    Namburu, Setu M.; Luo, Jianhui; Azam, Mohammad; Choi, Kihoon; Pattipati, Krishna R.

    2005-05-01

    Heating, Ventilation and Air Conditioning (HVAC) systems constitute the largest portion of energy consumption equipment in residential and commercial facilities. Real-time health monitoring and fault diagnosis is essential for reliable and uninterrupted operation of these systems. Existing fault detection and diagnosis (FDD) schemes for HVAC systems are only suitable for a single operating mode with small numbers of faults, and most of the schemes are systemspecific. A generic real-time FDD scheme, applicable to all possible operating conditions, can significantly reduce HVAC equipment downtime, thus improving the efficiency of building energy management systems. This paper presents a FDD methodology for faults in centrifugal chillers. The FDD scheme compares the diagnostic performance of three data-driven techniques, namely support vector machines (SVM), principal component analysis (PCA), and partial least squares (PLS). In addition, a nominal model of a chiller that can predict system response under new operating conditions is developed using PLS. We used the benchmark data on a 90-ton real centrifugal chiller test equipment, provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), to demonstrate and validate our proposed diagnostic procedure. The database consists of data from sixty four monitored variables under nominal and eight fault conditions of different severities at twenty seven operating modes.

  1. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a

  2. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    PubMed

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  3. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    PubMed Central

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-01-01

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. PMID:27754386

  4. Study on fault diagnosis and load feedback control system of combine harvester

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Kun

    2017-01-01

    In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.

  5. A novel identification method of Volterra series in rotor-bearing system for fault diagnosis

    NASA Astrophysics Data System (ADS)

    Xia, Xin; Zhou, Jianzhong; Xiao, Jian; Xiao, Han

    2016-01-01

    Volterra series is widely employed in the fault diagnosis of rotor-bearing system to prevent dangerous accidents and improve economic efficiency. The identification of the Volterra series involves the infinite-solution problems which is caused by the periodic characteristic of the excitation signal of rotor-bearing system. But this problem has not been considered in the current identification methods of the Volterra series. In this paper, a key kernels-PSO (KK-PSO) method is proposed for Volterra series identification. Instead of identifying the Volterra series directly, the key kernels of Volterra are found out to simply the Volterra model firstly. Then, the Volterra series with the simplest formation is identified by the PSO method. Next, simulation verification is utilized to verify the feasibility and effectiveness of the KK-PSO method by comparison to the least square (LS) method and traditional PSO method. Finally, experimental tests have been done to get the Volterra series of a rotor-bearing test rig in different states, and a fault diagnosis system is built with a neural network to classify different fault conditions by the kernels of the Volterra series. The analysis results indicate that the KK-PSO method performs good capability on the identification of Volterra series of rotor-bearing system, and the proposed method can further improve the accuracy of fault diagnosis.

  6. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  7. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  8. The Marshall Space Flight Center Fault Detection Diagnosis and Recovery Laboratory

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.; Gamble, Jonathan; Rabban, Michael

    2008-01-01

    The Fault Detection Diagnosis and Recovery Lab (FDDR) has been developed to support development of,fault detection algorithms for the flight computer aboard the Ares I and follow-on vehicles. It consists of several workstations using Ethernet and TCP/IP to simulate communications between vehicle sensors, flight computers, and ground based support computers. Isolation of tasks between workstations was set up intentionally to limit information flow and provide a realistic simulation of communication channels within the vehicle and between the vehicle and ground station.

  9. Fault detection and diagnosis in an industrial fed-batch cell culture process.

    PubMed

    Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E

    2007-01-01

    A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.

  10. A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

    NASA Astrophysics Data System (ADS)

    Al-Bugharbee, Hussein; Trendafilova, Irina

    2016-05-01

    This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pretreatment allows the use of a linear time invariant autoregressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasises the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process.

  11. Robust fault diagnosis of physical systems in operation. Ph.D. Thesis - Rutgers - The State Univ.

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy Hamilton

    1991-01-01

    Ideas are presented and demonstrated for improved robustness in diagnostic problem solving of complex physical systems in operation, or operative diagnosis. The first idea is that graceful degradation can be viewed as reasoning at higher levels of abstraction whenever the more detailed levels proved to be incomplete or inadequate. A form of abstraction is defined that applies this view to the problem of diagnosis. In this form of abstraction, named status abstraction, two levels are defined. The lower level of abstraction corresponds to the level of detail at which most current knowledge-based diagnosis systems reason. At the higher level, a graph representation is presented that describes the real-world physical system. An incremental, constructive approach to manipulating this graph representation is demonstrated that supports certain characteristics of operative diagnosis. The suitability of this constructive approach is shown for diagnosing fault propagation behavior over time, and for sometimes diagnosing systems with feedback. A way is shown to represent different semantics in the same type of graph representation to characterize different types of fault propagation behavior. An approach is demonstrated that threats these different behaviors as different fault classes, and the approach moves to other classes when previous classes fail to generate suitable hypotheses. These ideas are implemented in a computer program named Draphys (Diagnostic Reasoning About Physical Systems) and demonstrated for the domain of inflight aircraft subsystems, specifically a propulsion system (containing two turbofan systems and a fuel system) and hydraulic subsystem.

  12. An observer based approach for achieving fault diagnosis and fault tolerant control of systems modeled as hybrid Petri nets.

    PubMed

    Renganathan, K; Bhaskar, VidhyaCharan

    2011-07-01

    In this paper, we propose an approach for achieving detection and identification of faults, and provide fault tolerant control for systems that are modeled using timed hybrid Petri nets. For this purpose, an observer based technique is adopted which is useful in detection of faults, such as sensor faults, actuator faults, signal conditioning faults, etc. The concepts of estimation, reachability and diagnosability have been considered for analyzing faulty behaviors, and based on the detected faults, different schemes are proposed for achieving fault tolerant control using optimization techniques. These concepts are applied to a typical three tank system and numerical results are obtained.

  13. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  14. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  15. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor

  16. A novel method for feature extraction using crossover characteristics of nonlinear data and its application to fault diagnosis of rotary machinery

    NASA Astrophysics Data System (ADS)

    Lin, Jinshan; Chen, Qian

    2014-10-01

    Defective rotary machinery typically exhibits a complex dynamical behavior, which is hard to analyze. Detrended Fluctuation Analysis (DFA) is a robust tool for uncovering long-range correlations hidden in nonstationary data. By DFA, an original series can be compressed into a fluctuation series, which can well preserve the dynamical characteristics of the original series. Lately, the fluctuation series has been separately analyzed by principal component analysis (PCA) and neural network (NN) for fault diagnosis of rotary machinery. However, the feature parameters extracted by PCA or NN normally lack clear physical meaning. In addition, the execution of PCA or NN usually consumes extra time. Interestingly, the scaling-law curve, by which the relation between the fluctuation function and the time scale can be illustrated graphically in a log-log plot, usually exhibits crossover properties. As a result, this study exploited the interesting crossover properties for fault diagnosis of rotary machinery and proposed a novel method for feature extraction of nonlinear data. The proposed method consists of three parts. Firstly, the vibration data from defective rotary machinery are analyzed by DFA and the resultant scaling-law curve is obtained. Secondly, the crossover points in the scaling-law curve are located and then employed to segment the entire scaling-law curve into several different scaling regions, in each of which a single Hurst exponent can be estimated. Thirdly, the whole or a part of the Hurst exponents are used as feature parameters for describing the conditions of defective rotary machinery. Next, the performance of the proposed method was measured using both real gearbox and rolling bearing vibration data with different fault types and severity. The results indicate that the proposed method can ease the problems mentioned previously and performs well in identifying fault types and severity of rotary machinery.

  17. Graphical enhancement to support PCA-based process monitoring and fault diagnosis.

    PubMed

    Ralston, Patricia; DePuy, Gail; Graham, James H

    2004-10-01

    Principal component analysis (PCA) for process modeling and multivariate statistical techniques for monitoring, fault detection, and diagnosis are becoming more common in published research, but are still underutilized in practice. This paper summarizes an in-depth case study on a chemical process with 20 monitored process variables, one of which reflects product quality. The analysis is performed using the PLS_Toolbox 2.01 with MATLAB, augmented with software which automates the analysis and implements a statistical enhancement that uses confidence limits on the residuals of each variable for fault detection rather than just confidence limits on an overall residual. The newly developed graphical interface identifies and displays each variable's contribution to the faulty behavior of the process; and it aids greatly in analyzing results. The case study analyzed within shows that using the statistical enhancement can reduce the fault detection time, and the automated graphical interface implements the enhancement easily.

  18. A multi-fault diagnosis method for sensor systems based on principle component analysis.

    PubMed

    Zhu, Daqi; Bai, Jie; Yang, Simon X

    2010-01-01

    A model based on PCA (principal component analysis) and a neural network is proposed for the multi-fault diagnosis of sensor systems. Firstly, predicted values of sensors are computed by using historical data measured under fault-free conditions and a PCA model. Secondly, the squared prediction error (SPE) of the sensor system is calculated. A fault can then be detected when the SPE suddenly increases. If more than one sensor in the system is out of order, after combining different sensors and reconstructing the signals of combined sensors, the SPE is calculated to locate the faulty sensors. Finally, the feasibility and effectiveness of the proposed method is demonstrated by simulation and comparison studies, in which two sensors in the system are out of order at the same time.

  19. A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis

    PubMed Central

    Zhu, Daqi; Bai, Jie; Yang, Simon X.

    2010-01-01

    A model based on PCA (principal component analysis) and a neural network is proposed for the multi-fault diagnosis of sensor systems. Firstly, predicted values of sensors are computed by using historical data measured under fault-free conditions and a PCA model. Secondly, the squared prediction error (SPE) of the sensor system is calculated. A fault can then be detected when the SPE suddenly increases. If more than one sensor in the system is out of order, after combining different sensors and reconstructing the signals of combined sensors, the SPE is calculated to locate the faulty sensors. Finally, the feasibility and effectiveness of the proposed method is demonstrated by simulation and comparison studies, in which two sensors in the system are out of order at the same time. PMID:22315537

  20. A data-driven multiplicative fault diagnosis approach for automation processes.

    PubMed

    Hao, Haiyang; Zhang, Kai; Ding, Steven X; Chen, Zhiwen; Lei, Yaguo

    2014-09-01

    This paper presents a new data-driven method for diagnosing multiplicative key performance degradation in automation processes. Different from the well-established additive fault diagnosis approaches, the proposed method aims at identifying those low-level components which increase the variability of process variables and cause performance degradation. Based on process data, features of multiplicative fault are extracted. To identify the root cause, the impact of fault on each process variable is evaluated in the sense of contribution to performance degradation. Then, a numerical example is used to illustrate the functionalities of the method and Monte-Carlo simulation is performed to demonstrate the effectiveness from the statistical viewpoint. Finally, to show the practical applicability, a case study on the Tennessee Eastman process is presented.

  1. Optimizing the Adaptive Stochastic Resonance and Its Application in Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Xiaole; Yang, Jianhua; Liu, Houguang; Cheng, Gang; Chen, Xihui; Xu, Dan

    2015-10-01

    This paper presents an adaptive stochastic resonance method based on the improved artificial fish swarm algorithm. By this method, we can enhance the weak characteristic signal which is submerged in a heavy noise. We can also adaptively lead the stochastic resonance to be optimized to the greatest extent. The effectiveness of the proposed method is verified by both numerical simulation and lab experimental vibration signals including normal, a chipped tooth and a missing tooth of planetary gearboxes under the loaded condition. Both theoretical and experimental results show that this method can effectively extract weak characteristics in a heavy noise. In the experiment, each weak fault feature is extracted successfully from the fault planetary gear. When compared with the ensemble empirical mode decomposition (EEMD) method, the method proposed in this paper has been found to give remarkable performance.

  2. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  3. Classification techniques for fault detection and diagnosis of an air-handling unit

    SciTech Connect

    House, J.M.; Lee, W.Y.; Shin, D.R.

    1999-07-01

    The objective of this study is to demonstrate the application of several classification techniques to the problem of detecting and diagnosing faults in data generated by a variable-air-volume air-handling unit simulation model and to describe the strengths and weaknesses of the techniques considered. Artificial neural network classifiers, nearest neighbor classifiers, nearest prototype classifiers, a rule-based classifier, and a Bayes classifier are considered for both fault detection and diagnostics. Based on the performance of the classification techniques, the Bayes classifier appears to be a good choice for fault detection. It is a straightforward method that requires limited memory and computational effort, and it consistently yielded the lowest percentage of incorrect diagnosis. For fault diagnosis, the rule-based method is favored for classification problems such as the one considered here, where the various classes of faulty operation are well separated and can be distinguished by a single dominant symptom or feature. Results also indicate that the success or failure of classification techniques hinges to a large degree on an ability to separate different classes of operation in some feature (temperature, pressure, etc.) space. Hence, preprocessing of data to extract dominant features is as important as the selection of the classifier.

  4. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.

    PubMed

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-11-05

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.

  5. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph

    PubMed Central

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-01-01

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft. PMID:26556358

  6. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  7. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine

    NASA Astrophysics Data System (ADS)

    Li, Yujun; Tse, Peter W.; Yang, Xin; Yang, Jianguo

    2010-01-01

    The accuracy of fault diagnostic systems for diesel engine-type generators relies on a comparison of the currently extracted sensory features with those captured during normal operation or the so-called "baseline." However, the baseline is not easily obtained without the required expertise. Even worse, in an attempt to save costs, many of the diesel engine generators in manufacturing plants are second hand or have been purchased from unknown suppliers, meaning that the baseline is unknown. In this paper, a novel vibration-based fault diagnostic method is developed to identify the vital components of a diesel engine that have abnormal clearance. The advantage of this method is that it does not require the comparison of current operating parameters to those collected as the baseline. First, the nominal baseline is obtained via theoretical modeling rather than being actually captured from the sensory signals in a healthy condition. The abnormal clearance is then determined by inspecting the timing of impacts created by the components that had abnormal clearance during operation. To detect the timing of these impacts from vibration signals accurately, soft-re-sampling and empirical mode decomposition (EMD) techniques are employed. These techniques have integrated with our proposed ranged angle (RA) analysis to form a new ranged angle-empirical mode decomposition method (RA-EMD). To verify the effectiveness of the RA-EMD in detecting the impacts and their times of occurrence, their induced vibrations are collected from a series of generators under normal and faulty engine conditions. The results show that this method is capable of extracting the impacts induced by vibrations and is able to determine their times of occurrence accurately even when the impacts have been overwhelmed by other unrelated vibration signals. With the help of the RA-EMD, clearance-related faults, such as incorrect open and closed valve events, worn piston rings and liners, etc., become detectable

  8. Equipment fault diagnosis system of sequencing batch reactors using rule-based fuzzy inference and on-line sensing data.

    PubMed

    Kim, Y J; Bae, H; Poo, K M; Ko, J H; Kim, B G; Park, T J; Kim, C W

    2006-01-01

    The importance of a detection technique to prevent process deterioration is increasing. For the fast detection of this disturbance, a diagnostic algorithm was developed to determine types of equipment faults by using on-line ORP and DO profile in sequencing batch reactors (SBRs). To develop the rule base for fault diagnosis, the sensor profiles were obtained from a pilot-scale SBR when blower, influent pump and mixer were broken. The rules were generated based on the calculated error between an abnormal profile and a normal profile, e(ORP)(t) and e(DO)(t). To provide intermediate diagnostic results between "normal" and "fault", a fuzzy inference algorithm was incorporated to the rules. Fuzzified rules could present the diagnosis result "need to be checked". The diagnosis showed good performance in detecting and diagnosing various faults. The developed algorithm showed its applicability to detect faults and make possible fast action to correct them.

  9. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    PubMed

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained.

  10. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  11. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    PubMed

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  12. Fault Diagnosis System of Wind Turbine Generator Based on Petri Net

    NASA Astrophysics Data System (ADS)

    Zhang, Han

    Petri net is an important tool for discrete event dynamic systems modeling and analysis. And it has great ability to handle concurrent phenomena and non-deterministic phenomena. Currently Petri nets used in wind turbine fault diagnosis have not participated in the actual system. This article will combine the existing fuzzy Petri net algorithms; build wind turbine control system simulation based on Siemens S7-1200 PLC, while making matlab gui interface for migration of the system to different platforms.

  13. An architecture for automated fault diagnosis. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1989-01-01

    A description is given of the SSM/PMAD power system automation testbed, which was developed using a systems engineering approach. The architecture includes a knowledge-based system and has been successfully used in power system management and fault diagnosis. Architectural issues which effect overall system activities and performance are examined. The knowledge-based system is discussed along with its associated automation implications, and interfaces throughout the system are presented.

  14. Decision tree and PCA-based fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Sun, Weixiang; Chen, Jin; Li, Jiaqing

    2007-04-01

    After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.

  15. Mono-component feature extraction for mechanical fault diagnosis using modified empirical wavelet transform via data-driven adaptive Fourier spectrum segment

    NASA Astrophysics Data System (ADS)

    Pan, Jun; Chen, Jinglong; Zi, Yanyang; Li, Yueming; He, Zhengjia

    2016-05-01

    Due to the multi-modulation feature in most of the vibration signals, the extraction of embedded fault information from condition monitoring data for mechanical fault diagnosis still is not a relaxed task. Despite the reported achievements, Wavelet transform follows the dyadic partition scheme and would not allow a data-driven frequency partition. And then Empirical Wavelet Transform (EWT) is used to extract inherent modulation information by decomposing signal into mono-components under an orthogonal basis and non-dyadic partition scheme. However, the pre-defined segment way of Fourier spectrum without dependence on analyzed signals may result in inaccurate mono-component identification. In this paper, the modified EWT (MEWT) method via data-driven adaptive Fourier spectrum segment is proposed for mechanical fault identification. First, inner product is calculated between the Fourier spectrum of analyzed signal and Gaussian function for scale representation. Then, adaptive spectrum segment is achieved by detecting local minima of the scale representation. Finally, empirical modes can be obtained by adaptively merging mono-components based on their envelope spectrum similarity. The adaptively extracted empirical modes are analyzed for mechanical fault identification. A simulation experiment and two application cases are used to verify the effectiveness of the proposed method and the results show its outstanding performance.

  16. Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov-Smirnov test

    NASA Astrophysics Data System (ADS)

    Wang, Xiyang; Makis, Viliam

    2009-11-01

    Vibration behavior induced by gear shaft crack is different from that induced by gear tooth crack. Hence, a fault indicator used to detect tooth damage may not be effective for monitoring shaft condition. This paper proposes an autoregressive model-based technique to detect the occurrence and advancement of gear shaft cracks. An autoregressive model is fitted to the time synchronously averaged signal of the gear shaft in its healthy state. The order of the autoregressive model is selected using Akaike information criterion and the coefficient estimates are obtained by solving the Yule-Walker equations with the Levinson-Durbin recursion algorithm. The established autoregressive model is then used as a linear prediction filter to process the future signal. The Kolmogorov-Smirnov test is applied on line for the prediction of error signals. The calculated distance is used as a fault indicator and its capability to diagnose shaft crack effectively is demonstrated using a full lifetime gear shaft vibration data history. The other frequently used statistical measures such as kurtosis and variance are also calculated and the results are compared with the Kolmogorov-Smirnov test.

  17. Feature extraction of kernel regress reconstruction for fault diagnosis based on self-organizing manifold learning

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Liang, Lin; Xu, Guanghua; Liu, Dan

    2013-09-01

    The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension. Currently, nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings, such as manifold learning. However, these methods are all based on manual intervention, which have some shortages in stability, and suppressing the disturbance noise. To extract features automatically, a manifold learning method with self-organization mapping is introduced for the first time. Under the non-uniform sample distribution reconstructed by the phase space, the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention. After that, the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation. Finally, the signal is reconstructed by the kernel regression. Several typical states include the Lorenz system, engine fault with piston pin defect, and bearing fault with outer-race defect are analyzed. Compared with the LTSA and continuous wavelet transform, the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified. A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed.

  18. A New On-Line Diagnosis Protocol for the SPIDER Family of Byzantine Fault Tolerant Architectures

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Miner, Paul S.

    2004-01-01

    This paper presents the formal verification of a new protocol for online distributed diagnosis for the SPIDER family of architectures. An instance of the Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) architecture consists of a collection of processing elements communicating over a Reliable Optical Bus (ROBUS). The ROBUS is a specialized fault-tolerant device that guarantees Interactive Consistency, Distributed Diagnosis (Group Membership), and Synchronization in the presence of a bounded number of physical faults. Formal verification of the original SPIDER diagnosis protocol provided a detailed understanding that led to the discovery of a significantly more efficient protocol. The original protocol was adapted from the formally verified protocol used in the MAFT architecture. It required O(N) message exchanges per defendant to correctly diagnose failures in a system with N nodes. The new protocol achieves the same diagnostic fidelity, but only requires O(1) exchanges per defendant. This paper presents this new diagnosis protocol and a formal proof of its correctness using PVS.

  19. Fault Diagnosis in Discrete-Event Systems with Incomplete Models: Learnability and Diagnosability.

    PubMed

    Kwong, Raymond H; Yonge-Mallo, David L

    2015-07-01

    Most model-based approaches to fault diagnosis of discrete-event systems require a complete and accurate model of the system to be diagnosed. However, the discrete-event model may have arisen from abstraction and simplification of a continuous time system, or through model building from input-output data. As such, it may not capture the dynamic behavior of the system completely. In a previous paper, we addressed the problem of diagnosing faults given an incomplete model of the discrete-event system. We presented the learning diagnoser which not only diagnoses faults, but also attempts to learn missing model information through parsimonious hypothesis generation. In this paper, we study the properties of learnability and diagnosability. Learnability deals with the issue of whether the missing model information can be learned, while diagnosability corresponds to the ability to detect and isolate a fault after it has occurred. We provide conditions under which the learning diagnoser can learn missing model information. We define the notions of weak and strong diagnosability and also give conditions under which they hold.

  20. A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.

    PubMed

    Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar

    2016-06-30

    High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.

  1. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection.

    PubMed

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-07-17

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes' status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors' detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability.

  2. From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication

    NASA Astrophysics Data System (ADS)

    Hsu, Wen-Teng; Tsai, Jason Sheng-Hong; Guo, Fang-Cheng; Guo, Shu-Mei; Shieh, Leang-San

    Chaotic systems are often applied to encryption on secure communication, but they may not provide high-degree security. In order to improve the security of communication, chaotic systems may need to add other secure signals, but this may cause the system to diverge. In this paper, we redesign a communication scheme that could create secure communication with additional secure signals, and the proposed scheme could keep system convergence. First, we introduce the universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time-varying system with unanticipated decay factors in actuators/system states. Besides, robustness, convergence in the mean, and tracking ability are given in this paper. A residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield a high tracking performance recovery. The evolutionary programming-based adaptive observer is then applied to the problem of secure communication. Whenever the tracker induces a large control input which might not conform to the input constraint of some physical systems, the proposed modified linear quadratic optimal tracker (LQT) can effectively restrict the control input within the specified constraint interval, under the acceptable tracking performance. The effectiveness of the proposed design methodology is illustrated through tracking control simulation examples.

  3. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    SciTech Connect

    Zappala, D.; Tavner, P.; Crabtree, C.; Sheng, S.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data represent one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.

  4. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    PubMed Central

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  5. Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions.

  6. A flight expert system (FLES) for on-board fault monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Ali, M.; Scharnhorst, D. A.; Ai, C. S.; Ferber, H. J.

    1986-01-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher work loads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing and recovering from in-flight faults has been developed. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Lockheed Advanced Concept System (ACS), a future generation airplane, and partly on the Boeing 737, an existing airplane. A distinction between two types of faults, maladjustments and malfunctions, has led us to take two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to assess abnormal situations during airplane flight. This paper describes the reasons for handling malfunctions and maladjustments separately and the use of domain knowledge in the diagnosis of each.

  7. A modular neural network scheme applied to fault diagnosis in electric power systems.

    PubMed

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  8. Rotating machine fault diagnosis through enhanced stochastic resonance by full-wave signal construction

    NASA Astrophysics Data System (ADS)

    Lu, Siliang; He, Qingbo; Zhang, Haibin; Kong, Fanrang

    2017-02-01

    This study proposes a full-wave signal construction (FSC) strategy for enhancing rotating machine fault diagnosis by exploiting stochastic resonance (SR). The FSC strategy is utilized to transform a half-wave signal (e.g., an envelope signal) into a full-wave one by conducting a Mirror-Cycle-Add (MCA) operation. The constructed full-wave signal evenly modulates the bistable potential and makes the potential tilt back and forth smoothly. This effect provides the equivalent transition probabilities of particle bounce between the two potential wells. A stable SR output signal with better periodicity, which is beneficial to periodic signal detection, can be obtained. In addition, the MCA operation can improve the input signal-to-noise ratio by enhancing the periodic component while attenuating the noise components. These two advantages make the proposed FSCSR method surpass the traditional SR method in fault signal processing. Performance evaluation is conducted by numerical analysis and experimental verification. The proposed MCA-based FSC strategy has the potential to be a universal signal pre-processing technique. Moreover, the proposed FSCSR method can be used in rotating machine fault diagnosis and other areas related to weak signal detection.

  9. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  10. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    SciTech Connect

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    2009-03-05

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  11. Use of fuzzy cause-effect digraph for resolution fault diagnosis for process plants. 2: Diagnostic algorithm and applications

    SciTech Connect

    Shih, R.F.; Lee, L.S.

    1995-05-01

    A new model graph called the fuzzy cause-effect digraph (FCDG) model was already proposed in part 1, and its capability to eliminate spurious interpretations attributed to system compensation and inverse responses from backward loops and forward paths is to be demonstrated. In this paper the authors attempt to develop a new fault diagnosis algorithm based on the fuzzy cause-effect digraph model. This method applies fuzzy reasoning to estimate the states of unmeasured variables, to explain fault propagation paths, and to locate fault origins. In particular, it can obtain the fault origin occurring in the process with single and multiple loops at the early stage of fault. This study uses a CSTR as an example to explicate this diagnosis method and compares the results with those of other methods.

  12. Vibrations on the Roll - MANA, a Roll Along Array Experiment to map Local Site Effects Across a Fault System

    NASA Astrophysics Data System (ADS)

    Ohrnberger, M.; Scherbaum, F.; Hinzen, K. G.; Reamer, S. K.; Weber, B.

    2001-12-01

    The effects of surficial geology on seismic motion (site effects) are considered one of the major controlling factors to the damage distribution during earthquakes. Qualitative and quantitative estimates of local site amplifications provide important information for the identification of potential high risk areas. In this context, the analysis of ambient vibrations is an attractive tool for the mapping of site conditions. It is a low-cost alternative to expensive active seismic experiments or geophysical well-logging and especially well suited for the use within urban areas. Within the MANA experiment we conducted ambient vibration measurements at roughly 100 sites in the Lower Rhine Embayment (NW-Germany) to test various aspects of site effect determination, especially the feasibility of a roll along technique. A total of 13 three-component seismometers (5s corner period) have been used in a linear array configuration (station distance ~100 m). At all times during the roll-along experiment at least 8 stations (mostly 10) were operating simultaneously, meanwhilst the other stations were moved from the rear to the front of the line and re-installed. Thus, a total progress of almost 10 km could be obtained within two days. The line stretched across the NW-SE striking Erft fault system, one of the major faults in the eastern part of the Lower Rhine Embayment. The thickness of cenozoic soft-sediments overlying the basement of paleozoic age increases at the individual branches of the fault in abrupt steps of uncertain magnitude from around 200 m in the east to almost 1000 m in the west. The results of single station horizontal to vertical spectral ratios (HVSR) along the line are presented as well as the spatial evolution of local dispersion curves obtained from a slantstack analysis (SSA). The spatial variation of features along the line in both the HVSR and SSA are discussed in terms of sedimentary thickness and modifications of the wavefield properties of the ambient

  13. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    SciTech Connect

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  14. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    PubMed Central

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  15. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis

    PubMed Central

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  16. FAULT DIAGNOSIS WITH MULTI-STATE ALARMS IN A NUCLEAR POWER CONTROL SIMULATOR

    SciTech Connect

    Austin Ragsdale; Roger Lew; Brian P. Dyre; Ronald L. Boring

    2012-10-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effect of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. We used sensitivity and criterion based on Signal Detection Theory to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed better and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.

  17. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  18. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis.

    PubMed

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-04-16

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods.

  19. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  20. A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.

    PubMed

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system.

  1. Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be

  2. Reliable bearing fault diagnosis using Bayesian inference-based multi-class support vector machines.

    PubMed

    Islam, M M Manjurul; Kim, Jaeyoung; Khan, Sheraz A; Kim, Jong-Myon

    2017-02-01

    This letter presents a multi-fault diagnosis scheme for bearings using hybrid features extracted from their acoustic emissions and a Bayesian inference-based one-against-all support vector machine (Bayesian OAASVM) for multi-class classification. The Bayesian OAASVM, which is a standard multi-class extension of the binary support vector machine, results in ambiguously labeled regions in the input space that degrade its classification performance. The proposed Bayesian OAASVM formulates the feature space as an appropriate Gaussian process prior, interprets the decision value of the Bayesian OAASVM as a maximum a posteriori evidence function, and uses Bayesian inference to label unknown samples.

  3. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

    NASA Astrophysics Data System (ADS)

    Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na

    2016-05-01

    Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

  4. Max-product algorithms for the generalized multiple-fault diagnosis problem.

    PubMed

    Le, Tung; Hadjicostis, Christoforos N

    2007-12-01

    In this paper, we study the application of the max-product algorithm (MPA) to the generalized multiple-fault diagnosis (GMFD) problem, which consists of components (to be diagnosed) and alarms/connections that can be unreliable. The MPA and the improved sequential MPA (SMPA) that we develop in this paper are local-message-passing algorithms that operate on the bipartite diagnosis graph (BDG) associated with the GMFD problem and converge to the maximum a posteriori probability (MAP) solution if this graph is acyclic (in addition, the MPA requires the MAP solution to be unique). Our simulations suggest that both the MPA and the SMPA perform well in more general systems that may exhibit cycles in the associated BDGs (the SMPA also appears to outperform the MPA in these more general systems). In this paper, we provide analytical results for acyclic BDGs and also assess the performance of both algorithms under particular patterns of alarm observations in general graphs; this allows us to obtain analytical bounds on the probability of making erroneous diagnosis with respect to the MAP solution. We also evaluate the performance of the MPA and the SMPA algorithms via simulations, and provide comparisons with previously developed heuristics for this type of diagnosis problems. We conclude that the MPA and the SMPA perform well under reasonable computational complexity when the underlying diagnosis graph is sparse.

  5. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis.

    PubMed

    Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan

    2016-09-15

    Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster-Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection.

  6. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients

    NASA Astrophysics Data System (ADS)

    Baraldi, Piero; Di Maio, Francesco; Rigamonti, Marco; Zio, Enrico; Seraoui, Redouane

    2015-06-01

    Empirical methods for fault diagnosis usually entail a process of supervised training based on a set of examples of signal evolutions "labeled" with the corresponding, known classes of fault. However, in practice, the signals collected during plant operation may be, very often, "unlabeled", i.e., the information on the corresponding type of occurred fault is not available. To cope with this practical situation, in this paper we develop a methodology for the identification of transient signals showing similar characteristics, under the conjecture that operational/faulty transient conditions of the same type lead to similar behavior in the measured signals evolution. The methodology is founded on a feature extraction procedure, which feeds a spectral clustering technique, embedding the unsupervised fuzzy C-means (FCM) algorithm, which evaluates the functional similarity among the different operational/faulty transients. A procedure for validating the plausibility of the obtained clusters is also propounded based on physical considerations. The methodology is applied to a real industrial case, on the basis of 148 shut-down transients of a Nuclear Power Plant (NPP) steam turbine.

  7. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.

    PubMed

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

  8. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis

    PubMed Central

    Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan

    2016-01-01

    Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster–Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection. PMID:27649193

  9. A flight expert system (FLES) for on-board fault monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Scharnhorst, D. A.; Ai, C. S.; Feber, H. J.

    1987-01-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher workloads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) is developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with airplane status information during the diagnostic process. The simulator is based on the Lockheed Advanced Concept System (ACS), a future generation airplane, and on the Boeing 737. A distinction between two types of faults, maladjustments and malfunctions, has led to two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to access abnormal situations during airplane flight. Malfunctions and maladjustments are handled separately, diagnosed using domain knowledge.

  10. Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model

    PubMed Central

    Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei

    2014-01-01

    Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726

  11. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor.

  12. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition

    PubMed Central

    Lei, Yaguo; Li, Naipeng; Lin, Jing; Wang, Sizhe

    2013-01-01

    The vibration based signal processing technique is one of the principal tools for diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been widely used to process vibration signals of rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was proposed accordingly. EEMD is able to reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithms. In most of the studies on EEMD, the parameters were selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed in this paper. In the method, the sifting number is adaptively selected, and the amplitude of the added noise changes with the signal frequency components during the decomposition process. The simulation, the experimental and the application results demonstrate that the adaptive EEMD provides the improved results compared with the original EEMD in diagnosing rotating machinery. PMID:24351666

  13. Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition.

    PubMed

    Lei, Yaguo; Li, Naipeng; Lin, Jing; Wang, Sizhe

    2013-12-09

    The vibration based signal processing technique is one of the principal tools for diagnosing faults of rotating machinery. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been widely used to process vibration signals of rotating machinery. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was proposed accordingly. EEMD is able to reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithms. In most of the studies on EEMD, the parameters were selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed in this paper. In the method, the sifting number is adaptively selected, and the amplitude of the added noise changes with the signal frequency components during the decomposition process. The simulation, the experimental and the application results demonstrate that the adaptive EEMD provides the improved results compared with the original EEMD in diagnosing rotating machinery.

  14. Model-based monitoring and fault diagnosis of fossil power plant process units using Group Method of Data Handling.

    PubMed

    Li, Fan; Upadhyaya, Belle R; Coffey, Lonnie A

    2009-04-01

    This paper presents an incipient fault diagnosis approach based on the Group Method of Data Handling (GMDH) technique. The GMDH algorithm provides a generic framework for characterizing the interrelationships among a set of process variables of fossil power plant sub-systems and is employed to generate estimates of important variables in a data-driven fashion. In this paper, ridge regression techniques are incorporated into the ordinary least squares (OLS) estimator to solve regression coefficients at each layer of the GMDH network. The fault diagnosis method is applied to feedwater heater leak detection with data from an operating coal-fired plant. The results demonstrate the proposed method is capable of providing an early warning to operators when a process fault or an equipment fault occurs in a fossil power plant.

  15. DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS

    SciTech Connect

    Grelle, Austin L.; Park, Young S.; Vilim, Richard B.

    2016-06-26

    Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator must process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation

  16. Fault diagnosis of nonlinear and large-scale processes using novel modified kernel Fisher discriminant analysis approach

    NASA Astrophysics Data System (ADS)

    Shi, Huaitao; Liu, Jianchang; Wu, Yuhou; Zhang, Ke; Zhang, Lixiu; Xue, Peng

    2016-04-01

    It is pretty significant for fault diagnosis timely and accurately to improve the dependability of industrial processes. In this study, fault diagnosis of nonlinear and large-scale processes by variable-weighted kernel Fisher discriminant analysis (KFDA) based on improved biogeography-based optimisation (IBBO) is proposed, referred to as IBBO-KFDA, where IBBO is used to determine the parameters of variable-weighted KFDA, and variable-weighted KFDA is used to solve the multi-classification overlapping problem. The main contributions of this work are four-fold to further improve the performance of KFDA for fault diagnosis. First, a nonlinear fault diagnosis approach with variable-weighted KFDA is developed for maximising separation between the overlapping fault samples. Second, kernel parameters and features selection of variable-weighted KFDA are simultaneously optimised using IBBO. Finally, a single fitness function that combines erroneous diagnosis rate with feature cost is created, a novel mixed kernel function is introduced to improve the classification capability in the feature space and diagnosis accuracy of the IBBO-KFDA, and serves as the target function in the optimisation problem. Moreover, an IBBO approach is developed to obtain the better quality of solution and faster convergence speed. On the one hand, the proposed IBBO-KFDA method is first used on Tennessee Eastman process benchmark data sets to validate the feasibility and efficiency. On the other hand, IBBO-KFDA is applied to diagnose faults of automation gauge control system. Simulation results demonstrate that IBBO-KFDA can obtain better kernel parameters and feature vectors with a lower computing cost, higher diagnosis accuracy and a better real-time capacity.

  17. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  18. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  19. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  20. Novel synthetic index-based adaptive stochastic resonance method and its application in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Lu, Siliang; Liu, Fang; Liu, Yongbin; Li, Guihua; Zhao, Jiwen

    2017-03-01

    Stochastic resonance (SR), which is characterized by the fact that proper noise can be utilized to enhance weak periodic signals, has been widely applied in weak signal detection. SR is a nonlinear parameterized filter, and the output signal relies on the system parameters for the deterministic input signal. The most commonly used index for parameter tuning in the SR procedure is the signal-to-noise ratio (SNR). However, using the SNR index to evaluate the denoising effect of SR quantitatively is insufficient when the target signal frequency cannot be estimated accurately. To address this issue, six different indexes, namely, power spectral kurtosis of the SR output signal, correlation coefficient between the SR output and the original signal, peak SNR, structural similarity, root mean square error, and smoothness, are constructed in this study to measure the SR output quantitatively. These six quantitative indexes are fused into a new synthetic quantitative index (SQI) via a back propagation neural network to guide the adaptive parameter selection of the SR procedure. The index fusion procedure reduces the instability of each index and thus improves the robustness of parameter tuning. In addition, genetic algorithm is utilized to quickly select the optimal SR parameters. The efficiency of bearing fault diagnosis is thus further improved. The effectiveness and efficiency of the proposed SQI-based adaptive SR method for bearing fault diagnosis are verified through numerical and experiment analyses.

  1. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  2. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  3. A novel fault diagnosis method of PV based-on power loss and I-V characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Liang, R.; Tian, Y.; Wang, F.

    2016-08-01

    The power loss and the changes of internal I-V output characteristics of photovoltaic (PV) module in the typical fault condition were analyzed. We proposed an on-line real time fault diagnosis method for PV module, which takes into account the power loss and the internal I-V characteristics. Taking into account the changes of temperature and irradiation, the running status of the PV module were simulated in real time. Firstly, by comparing the simulated power with the measured power, it could determine whether the abnormal power loss has occurred. Then based on the change of output voltage, it could decide if short-circuit fault has occurred and estimate the number of short circuited cells roughly. Further, the value of fill factor (FF) can be utilized to determine whether aging fault has occurred and to acquire the remaining service life of the module. The results of simulation and experiment show that this method can effectively detect the partial shadow short-circuit fault and aging fault. It proves the feasibility and accuracy of the fault diagnosis method.

  4. Design and implementation of virtual fault diagnosis system for photoelectric tracking devices based on OpenGL

    NASA Astrophysics Data System (ADS)

    Hou, MingLiang; Li, Cunhua; Zhang, Yong; Su, Liyun

    2009-10-01

    In view of the crucial deficiency of the traditional diagnosis approaches for photoelectric tracking devices and the output of more sufficient diagnosis information, in this paper, an virtual fault diagnosis system based on open graphic library(OpenGL) is proposed. Firstly, some interrelated key principles and technology of virtual reality, visualization and intelligent fault diagnosis technology are put forward. Then, the demand analysis and architecture of the system are elaborated. Next, details of interrelated essential implementation issues are also discussed, including the the 3D modeling of the related diagnosis equipments, key development process and design via OpenGL. Practical applications and experiments illuminate that the proposed approach is feasible and effective.

  5. Usefulness of high-resolution thermography in fault diagnosis of fluid power components and systems

    NASA Astrophysics Data System (ADS)

    Pietola, Matti; Varrio, Jukka P.

    1996-03-01

    Infrared thermography has been used routinely in industrial applications for quite a long time. For example, the condition of electric power lines, district heating networks, electric circuits and components, heat exchangers, pipes and its insulations, cooling towers, and various machines and motors is monitored using infrared imaging techniques. Also the usage of this technology in predictive maintenance has proved successful, mainly because of effective computers and tailored softwares available. However, the usage of thermal sensing technique in fluid power systems and components (or other automation systems in fact) is not as common. One apparent reason is that a fluid power circuit is not (and nor is a hydraulic component) an easy object of making thermal image analyses. Especially the high flow speed, fast pressure changes and fast movements make the diagnosis complex and difficult. Also the number of people whose knowledge is good both in thermography and fluid power systems is not significant. In this paper a preliminary study of how thermography could be used in the condition monitoring, fault diagnosis and predictive maintenance of fluid power components and systems is presented. The shortages and limitations of thermal imaging in the condition monitoring of fluid power are also discussed. Among many other cases the following is discussed: (1) pressure valves (leakage, wrong settings), (2) check valves (leakage); (3) cylinders (leakage and other damages); (4) directional valves and valve assemblies; (5) pumps and motors (leakage in piston or control plate, bearings). The biggest advantage of using thermography in the predictive maintenance and fault diagnosis of fluid power components and systems could be achieved in the process industry and perhaps in the commissioning of fluid power systems in the industry. In the industry the predictive maintenance of fluid power with the aid of an infrared camera could be done as part of a condition monitoring of

  6. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

    PubMed Central

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-01-01

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767

  7. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox.

    PubMed

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-02-21

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment.

  8. A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems

    NASA Astrophysics Data System (ADS)

    Propes, Nicholas C.; Vachtsevanos, George

    2003-08-01

    Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

  9. Incipient interturn fault diagnosis in induction machines using an analytic wavelet-based optimized Bayesian inference.

    PubMed

    Seshadrinath, Jeevanand; Singh, Bhim; Panigrahi, Bijaya Ketan

    2014-05-01

    Interturn fault diagnosis of induction machines has been discussed using various neural network-based techniques. The main challenge in such methods is the computational complexity due to the huge size of the network, and in pruning a large number of parameters. In this paper, a nearly shift insensitive complex wavelet-based probabilistic neural network (PNN) model, which has only a single parameter to be optimized, is proposed for interturn fault detection. The algorithm constitutes two parts and runs in an iterative way. In the first part, the PNN structure determination has been discussed, which finds out the optimum size of the network using an orthogonal least squares regression algorithm, thereby reducing its size. In the second part, a Bayesian classifier fusion has been recommended as an effective solution for deciding the machine condition. The testing accuracy, sensitivity, and specificity values are highest for the product rule-based fusion scheme, which is obtained under load, supply, and frequency variations. The point of overfitting of PNN is determined, which reduces the size, without compromising the performance. Moreover, a comparative evaluation with traditional discrete wavelet transform-based method is demonstrated for performance evaluation and to appreciate the obtained results.

  10. Roller bearing fault diagnosis based on nonlinear redundant lifting wavelet packet analysis.

    PubMed

    Gao, Lixin; Yang, Zijing; Cai, Ligang; Wang, Huaqing; Chen, Peng

    2011-01-01

    A nonlinear redundant lifting wavelet packet algorithm was put forward in this study. For the node signals to be decomposed in different layers, predicting operators and updating operators with different orders of vanishing moments were chosen to take norm l(p) of the scale coefficient and wavelet coefficient acquired from decomposition, the predicting operator and updating operator corresponding to the minimal norm value were used as the optimal operators to match the information characteristics of a node. With the problems of frequency alias and band interlacing in the analysis of redundant lifting wavelet packet being investigated, an improved algorithm for decomposition and node single-branch reconstruction was put forward. The normalized energy of the bottommost decomposition node coefficient was calculated, and the node signals with the maximal energy were extracted for demodulation. The roller bearing faults were detected successfully with the improved analysis on nonlinear redundant lifting wavelet packet being applied to the fault diagnosis of the roller bearings of the finishing mills in a plant. This application proved the validity and practicality of this method.

  11. Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Bashir Mahdi; Faiz, Jawad; Lotfi-fard, S.; Pillay, P.

    2012-07-01

    This paper introduces novel indices for broken rotor bars diagnosis in three-phase induction motors based on wavelet coefficients of stator current in a specific frequency band. These indices enable to diagnose occurrence and determine number of broken bars in different loads precisely. Besides thanks to the suitability of wavelet transform in transient conditions, it is possible to detect the fault during the start-up of the motor. This is important in the case of start-up of large induction motors with long starting time and also motors with frequent start-up. Furthermore, broken rotor bars in induction motor are detected using spectra analysis of the stator current. It is also shown that rise of number of broken bars and load levels increases amplitude of the particular side-band components of the stator currents in the faulty case. An induction motor with 1, 2, 3 and 4 broken bars at the rated load and the motor with 4 broken bars at no-load, 33%, 66%, 100% and 133% rated load are investigated. Time stepping finite element method is used for modeling broken rotor bars faults in induction motors. In this modeling, effects of the stator winding distribution, stator and rotor slots, geometrical and physical characteristics of different parts of the motor and non-linearity of the core materials are taken into account. The simulation results are are verified by the experimental results.

  12. Roller Bearing Fault Diagnosis Based on Nonlinear Redundant Lifting Wavelet Packet Analysis

    PubMed Central

    Gao, Lixin; Yang, Zijing; Cai, Ligang; Wang, Huaqing; Chen, Peng

    2011-01-01

    A nonlinear redundant lifting wavelet packet algorithm was put forward in this study. For the node signals to be decomposed in different layers, predicting operators and updating operators with different orders of vanishing moments were chosen to take norm lp of the scale coefficient and wavelet coefficient acquired from decomposition, the predicting operator and updating operator corresponding to the minimal norm value were used as the optimal operators to match the information characteristics of a node. With the problems of frequency alias and band interlacing in the analysis of redundant lifting wavelet packet being investigated, an improved algorithm for decomposition and node single-branch reconstruction was put forward. The normalized energy of the bottommost decomposition node coefficient was calculated, and the node signals with the maximal energy were extracted for demodulation. The roller bearing faults were detected successfully with the improved analysis on nonlinear redundant lifting wavelet packet being applied to the fault diagnosis of the roller bearings of the finishing mills in a plant. This application proved the validity and practicality of this method. PMID:22346576

  13. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.

  14. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  15. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis.

    PubMed

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-05-05

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing def