Shen, Jing; Hu, Yanyun; Liu, Fang; Zeng, Hui; Li, Lianxi; Zhao, Jun; Zhao, Jungong; Zheng, Taishan; Lu, Huijuan; Lu, Fengdi; Bao, Yuqian; Jia, Weiping
2013-10-01
We investigated the relationship between vibration perception threshold and diabetic retinopathy and verified the screening value of vibration perception threshold for severe diabetic retinopathy. A total of 955 patients with type 2 diabetes were recruited and divided into three groups according to their fundus oculi photography results: no diabetic retinopathy (n = 654, 68.48%), non-sight-threatening diabetic retinopathy (n = 189, 19.79%) and sight-threatening diabetic retinopathy (n = 112, 11.73%). Their clinical and biochemical characteristics, vibration perception threshold and the diabetic retinopathy grades were detected and compared. There were significant differences in diabetes duration and blood glucose levels among three groups (all p < 0.05). The values of vibration perception threshold increased with the rising severity of retinopathy, and the vibration perception threshold level of sight-threatening diabetic retinopathy group was significantly higher than both non-sight-threatening diabetic retinopathy and no diabetic retinopathy groups (both p < 0.01). The prevalence of sight-threatening diabetic retinopathy in vibration perception threshold >25 V group was significantly higher than those in 16-24 V group (p < 0.01). The severity of diabetic retinopathy was positively associated with diabetes duration, blood glucose indexes and vibration perception threshold (all p < 0.01). Multiple stepwise regression analysis proved that glycosylated haemoglobin (β = 0.385, p = 0.000), diabetes duration (β = 0.275, p = 0.000) and vibration perception threshold (β = 0.180, p = 0.015) were independent risk factors for diabetic retinopathy. Receiver operating characteristic analysis further revealed that vibration perception threshold higher than 18 V was the optimal cut point for reflecting high risk of sight-threatening diabetic retinopathy (odds ratio = 4.20, 95% confidence interval = 2.67-6.59). There was a close association between vibration perception threshold and the severity of diabetic retinopathy. vibration perception threshold was a potential screening method for diabetic retinopathy, and its optimal cut-off for prompting high risk of sight-threatening retinopathy was 18 V. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Matsumoto, Y.; Maeda, S.; Iwane, Y.; Iwata, Y.
2011-04-01
Some factors that may affect human perception thresholds of the vertical whole-body vibrations were investigated in two laboratory experiments with recumbent subjects. In the first experiment, the effects of gender and age of subjects on perception were investigated with three groups of 12 subjects, i.e., young males, young females and old males. For continuous sinusoidal vibrations at 2, 4, 8, 16, 31.5 and 63 Hz, there were no significant differences in the perception thresholds between male and female subjects, while the thresholds of young subjects tended to be significantly lower than the thresholds of old subjects. In the second experiment, the effect of vibration duration was investigated by using sinusoidal vibrations, at the same frequencies as above, modulated by the Hanning windows with different lengths (i.e., 0.5, 1.0, 2.0 and 4.0 s) for 12 subjects. It was found that the peak acceleration at the threshold tended to decrease with increasing duration of vibration. The perception thresholds were also evaluated by the running root-mean-square (rms) acceleration and the fourth power acceleration method defined in the current standards. The differences in the threshold of the transient vibrations for different durations were less with the fourth power acceleration method. Additionally, the effect of the integration time on the threshold was investigated for the running rms acceleration and the fourth power acceleration. It was found that the integration time that yielded less differences in the threshold of vibrations for different durations depended on the frequency of vibration.
Vibrotactile perception and effects of short-term exposure to hand-arm vibration.
Burström, Lage; Lundström, Ronnie; Hagberg, Mats; Nilsson, Tohr
2009-07-01
This study clarifies whether the established frequency weighting procedure for evaluating exposure to hand-transmitted vibration can effectively evaluate the temporary changes in vibrotactile perception thresholds due to pre-exposure to vibration. In addition, this study investigates the relationship between changes of the vibrotactile perception thresholds and the normalized energy-equivalent frequency-weighted acceleration. The fingers of 10 healthy subjects, five male and five female, were exposed to vibration under 16 conditions with a combination of different frequencies, intensities, and exposure times. The vibration frequencies were 31.5 and 125 Hz and exposure lasted between 2 and 16 min. According to International Organization for Standardization (ISO) 5349-1, the energy-equivalent frequency-weighted acceleration for the experimental time of 16 min is 2.5 or 5.0 m s(-2) root-mean-square, corresponding to a 8-h equivalent acceleration, A(8), of approximately 0.5 and 0.9 m s(-2), respectively. A measure of the vibrotactile perception thresholds was conducted before the different exposures to vibration. Immediately after the vibration exposure, the acute effect was measured continuously on the exposed index finger for the first 75 s, followed by 30 s of measures every minute for a maximum of 10 min. If the subject's thresholds had not recovered, the measures continued for a maximum of 30 min with measurements taken every 5 min. Pre-exposure to vibration significantly influenced vibrotactile thresholds. This study concludes that the influence on the thresholds depends on the frequency of the vibration stimuli. Increased equivalent frequency-weighted acceleration resulted in a significant change in threshold, but the thresholds were unaffected when changes in the vibration magnitude were expressed as the frequency-weighted acceleration or the unweighted acceleration. Moreover, the frequency of the pre-vibration exposure significantly influenced (up to 25 min after exposure) recovery time of the vibrotactile thresholds. This study shows that the frequency weighting procedure in ISO 5349-1 is unable to predict the produced acute changes in the vibrotactile perception. Moreover, the results imply that the calculation of the 'energy-equivalent' frequency-weighted acceleration does not reflect the acute changes of the vibration perception thresholds due to pre-exposure to vibration. Furthermore, when testing for the vibrotactile thresholds, exposure to vibration on the day of a test might influence the results. Until further knowledge is obtained, the previous practice of 3 h avoidance of vibration exposure before assessment is recommended.
Hernandez-Mocholi, M A; Dominguez-Muñoz, F J; Corzo, H; Silva, S Cs; Adsuar, J C; Gusi, N
2016-03-01
Loss of foot sensitivity is a relevant parameter to assess and prevent in several diseases. It is crucial to determine the vibro-tactile sensitivity threshold response to acute conditions to explore innovative monitor tools and interventions to prevent and treat this challenge. The aims were: 1) to analyze the acute effects of a single whole body vibration session (4min-18Hz-4mm) on vibro-tactile perception threshold in healthy young adults. 2) to analyze the 48 hours effects of 3 whole body vibration sessions on vibro-tactile perception threshold in healthy young adults. A randomized controlled clinical trial over 3 sessions of whole body vibration intervention or 3 sessions of placebo intervention. Twenty-eight healthy young adults were included: 11 experimental group and 12 placebo group. The experimental group performed 3 sessions of WBV while the placebo group performed 3 sessions of placebo intervention. The vibro-tactile threshold increased right after a single WBV session in comparison with placebo. Nevertheless, after 3 whole body vibration sessions and 48 hours, the threshold decreased to values lower than the initial. The acute response of the vibro-tactile threshold to one whole body vibration session increased, but the 48 hours short-term response of this threshold decreased in healthy young adults.
Goldberg, J M; Lindblom, U
1979-01-01
Vibration threshold determinations were made by means of an electromagnetic vibrator at three sites (carpal, tibial, and tarsal), which were primarily selected for examining patients with polyneuropathy. Because of the vast variation demonstrated for both vibrator output and tissue damping, the thresholds were expressed in terms of amplitude of stimulator movement measured by means of an accelerometer, instead of applied voltage which is commonly used. Statistical analysis revealed a higher power of discimination for amplitude measurements at all three stimulus sites. Digital read-out gave the best statistical result and was also most practical. Reference values obtained from 110 healthy males, 10 to 74 years of age, were highly correlated with age for both upper and lower extremities. The variance of the vibration perception threshold was less than that of the disappearance threshold, and determination of the perception threshold alone may be sufficient in most cases. PMID:501379
Hernandez-Mocholi, M.A.; Dominguez-Muñoz, F.J.; Corzo, H.; Silva, S.C.S.; Adsuar, J.C.; Gusi, N.
2016-01-01
Objectives: Loss of foot sensitivity is a relevant parameter to assess and prevent in several diseases. It is crucial to determine the vibro-tactile sensitivity threshold response to acute conditions to explore innovative monitor tools and interventions to prevent and treat this challenge. The aims were: 1) to analyze the acute effects of a single whole body vibration session (4min-18Hz-4mm) on vibro-tactile perception threshold in healthy young adults. 2) to analyze the 48 hours effects of 3 whole body vibration sessions on vibro-tactile perception threshold in healthy young adults. Methods: A randomized controlled clinical trial over 3 sessions of whole body vibration intervention or 3 sessions of placebo intervention. Twenty-eight healthy young adults were included: 11 experimental group and 12 placebo group. The experimental group performed 3 sessions of WBV while the placebo group performed 3 sessions of placebo intervention. Results: The vibro-tactile threshold increased right after a single WBV session in comparison with placebo. Nevertheless, after 3 whole body vibration sessions and 48 hours, the threshold decreased to values lower than the initial. Conclusions: The acute response of the vibro-tactile threshold to one whole body vibration session increased, but the 48 hours short-term response of this threshold decreased in healthy young adults. PMID:26944818
Gerhardsson, Lars; Gillström, Lennart; Hagberg, Mats
2014-01-01
Exposure to hand-held vibrating tools may cause the hand-arm vibration syndrome (HAVS). The aim was to study the test-retest reliability of hand and muscle strength tests, and tests for the determination of thermal and vibration perception thresholds, which are used when investigating signs of neuropathy in vibration exposed workers. In this study, 47 vibration exposed workers who had been investigated at the department of Occupational and Environmental Medicine in Gothenburg were compared with a randomized sample of 18 unexposed subjects from the general population of the city of Gothenburg. All participants passed a structured interview, answered several questionnaires and had a physical examination including hand and finger muscle strength tests, determination of vibrotactile (VPT) and thermal perception thresholds (TPT). Two weeks later, 23 workers and referents, selected in a randomized manner, were called back for the same test-procedures for the evaluation of test-retest reliability. The test-retest reliability after a two week interval expressed as limits of agreement (LOA; Bland-Altman), intra-class correlation coefficients (ICC) and Pearson correlation coefficients was excellent for tests with the Baseline hand grip, Pinch-grip and 3-Chuck grip among the exposed workers and referents (N = 23: percentage of differences within LOA 91 - 100%; ICC-values ≥0.93; Pearson r ≥0.93). The test-retest reliability was also excellent (percentage of differences within LOA 96-100 %) for the determination of vibration perception thresholds in digits 2 and 5 bilaterally as well as for temperature perception thresholds in digits 2 and 5, bilaterally (percentage of differences within LOA 91 - 96%). For ICC and Pearson r the results for vibration perception thresholds were good for digit 2, left hand and for digit 5, bilaterally (ICC ≥ 0.84; r ≥0.85), and lower (ICC = 0.59; r = 0.59) for digit 2, right hand. For the latter two indices the test-retest reliability for the determination of temperature thresholds was lower and showed more varying results. The strong test-retest reliability for hand and muscle strength tests as well as for the determination of VPTs makes these procedures useful for diagnostic purposes and follow-up studies in vibration exposed workers.
Effect of skin-transmitted vibration enhancement on vibrotactile perception.
Tanaka, Yoshihiro; Ueda, Yuichiro; Sano, Akihito
2015-06-01
Vibration on skin elicited by the mechanical interaction of touch between the skin and an object propagates to skin far from the point of contact. This paper investigates the effect of skin-transmitted vibration on vibrotactile perception. To enhance the transmission of high-frequency vibration on the skin, stiff tape was attached to the skin so that the tape covered the bottom surface of the index finger from the periphery of the distal interphalangeal joint to the metacarpophalangeal joint. Two psychophysical experiments with high-frequency vibrotactile stimuli of 250 Hz were conducted. In the psychophysical experiments, discrimination and detection thresholds were estimated and compared between conditions of the presence or the absence of the tape (normal bare finger). A method of limits was applied for the detection threshold estimation, and the discrimination task using a reference stimulus and six test stimuli with different amplitudes was applied for the discrimination threshold estimation. The stimulation was given to bare fingertips of participants. Result showed that the detection threshold was enhanced by attaching the tape, and the discrimination threshold enhancement by attaching the tape was confirmed for participants who have relatively large discrimination threshold under normal bare finger. Then, skin-transmitted vibration was measured with an accelerometer with the psychophysical experiments. Result showed that the skin-transmitted vibration when the tape was attached to the skin was larger than that when normal bare skin. There is a correlation between the increase in skin-transmitted vibration and the enhancement of the discrimination threshold.
2013-01-01
Background Non-pharmacological options for symptomatic management of cough are desired. Although chest wall mechanical vibration is known to ameliorate cough reflex sensitivity, the effect of mechanical vibrations on perceptions of urge-to-cough has not been studied. Therefore, we investigated the effect of mechanical vibration of cervical trachea, chest wall and femoral muscle on cough reflex sensitivity, perceptions of urge-to-cough as well as dyspnea. Methods Twenty-four healthy male never-smokers were investigated for cough reflex sensitivity, perceptions of the urge-to-cough and dyspnea with or without mechanical vibration. Cough reflex sensitivity and urge-to-cough were evaluated by the inhalation of citric acid. The perception of dyspnea was evaluated by Borg scores during applications of external inspiratory resistive loads. Mechanical vibration was applied by placing a vibrating tuning fork on the skin surface of cervical trachea, chest wall and femoral muscle. Results Cervical trachea vibration significantly increased cough reflex threshold, as expressed by the lowest concentration of citric acid that elicited five or more coughs (C5), and urge-to-cough threshold, as expressed by the lowest concentration of citric acid that elicited urge-to-cough (Cu), but did not significantly affect dypnea sensation during inspiratory resistive loading. On the other hand, the chest wall vibration not only significantly increased C5 and Cu but also significantly ameliorated the load-response curve of dyspnea sensation. Conclusions Both cervical and trachea vibrations significantly inhibited cough reflex sensitivity and perception of urge-to-cough. These vibration techniques might be options for symptomatic cough management. PMID:24088411
Work ability in vibration-exposed workers.
Gerhardsson, L; Hagberg, M
2014-12-01
Hand-arm vibration exposure may cause hand-arm vibration syndrome (HAVS) including sensorineural disturbances. To investigate which factors had the strongest impact on work ability in vibration-exposed workers. A cross-sectional study in which vibration-exposed workers referred to a department of occupational and environmental medicine were compared with a randomized sample of unexposed subjects from the general population of the city of Gothenburg. All participants underwent a structured interview, answered several questionnaires and had a physical examination including measurements of hand and finger muscle strength and vibrotactile and thermal perception thresholds. The vibration-exposed group (47 subjects) showed significantly reduced sensitivity to cold and warmth in digit 2 bilaterally (P < 0.01) and in digit 5 in the left hand (P < 0.05) and to warmth in digit 5 in the right hand (P < 0.01), compared with the 18 referents. Similarly, tactilometry showed significantly raised vibration perception thresholds among the workers (P < 0.05). A strong relationship was found for the following multiple regression model: estimated work ability = 11.4 - 0.1 × age - 2.3 × current stress level - 2.5 × current pain in hands/arms (multiple r = 0.68; P < 0.001). Vibration-exposed workers showed raised vibrotactile and thermal perception thresholds, compared with unexposed referents. Multiple regression analysis indicated that stress disorders and muscle pain in hands/arms must also be considered when evaluating work ability among subjects with HAVS. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine.
Masking of thresholds for the perception of fore-and-aft vibration of seat backrests.
Morioka, Miyuki; Griffin, Michael J
2015-09-01
The detection of a vibration may be reduced by the presence of another vibration: a phenomenon known as 'masking'. This study investigated how the detection of one frequency of vibration is influenced by vibration at another frequency. With nine subjects, thresholds for detecting fore-and-aft backrest vibration were determined (for 4, 8, 16, and 31.5-Hz sinusoidal vibration) in the presence of a masker vibration (4-Hz random vibration, 1/3-octave bandwidth at six intensities). The masker vibration increased thresholds for perceiving vibration at each frequency by an amount that reduced with increasing difference between the frequency of the sinusoidal vibration and the frequency of the masker vibration. The 4-Hz random vibration almost completely masked 4-Hz sinusoidal vibration, partially masked 8- and 16-Hz vibration, and only slightly masked 31.5-Hz vibration. The findings might be explained by the involvement of different sensory systems and different body locations in the detection of different frequencies of vibration. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary; Ginsborg, Jane
2016-01-01
Presentation of music as vibration to the skin has the potential to facilitate interaction between musicians with hearing impairments and other musicians during group performance. Vibrotactile thresholds have been determined to assess the potential for vibrotactile presentation of music to the glabrous skin of the fingertip, forefoot and heel. No significant differences were found between the thresholds for sinusoids representing notes between C1 and C6 when presented to the fingertip of participants with normal hearing and with a severe or profound hearing loss. For participants with normal hearing, thresholds for notes between C1 and C6 showed the characteristic U-shape curve for the fingertip, but not for the forefoot and heel. Compared to the fingertip, the forefoot had lower thresholds between C1 and C3, and the heel had lower thresholds between C1 and G2; this is attributed to spatial summation from the Pacinian receptors over the larger contactor area used for the forefoot and heel. Participants with normal hearing assessed the perception of high-frequency vibration using 1s sinusoids presented to the fingertip and were found to be more aware of transient vibration at the beginning and/or end of notes between G4 and C6 when stimuli were presented 10dB above threshold, rather than at threshold. An average of 94% of these participants reported feeling continuous vibration between G4 and G5 with stimuli presented 10dB above threshold. Based on the experimental findings and consideration of health effects relating to vibration exposure, a suitable range of notes for vibrotactile presentation of music is identified as being from C1 to G5. This is more limited than for human hearing but the fundamental frequencies of the human voice, and the notes played by many instruments, lie within it. However, the dynamic range might require compression to avoid the negative effects of amplitude on pitch perception. PMID:27191400
Lundström, R; Strömberg, T; Lundborg, G
1992-01-01
Recognition of the fact that impairment of the tactile sense may occur independently of other disturbances in the vibration syndrome has rekindled an interest in developing a diagnostic method for early detection of vibration-induced neuropathy. There is also evidence suggesting that vibrotactile measurements represent a valuable diagnostic tool in compressive neuropathies, such as the carpal tunnel syndrome. The method may also become useful for diagnosing sensory neuropathies caused by other factors, such as solvents, pesticides, heavy metals, alcoholism, and diabetes. However, before vibrotactile measurement can be accepted and established as a tool for clinical diagnostic purposes, for screening, and in research, the level and the shape of the normal threshold curve have to be specified. With the purpose of assembling normative data, the vibrotactile perception thresholds (8-500 Hz) of the right index fingertip were measured in 171 healthy males (19-75 years) not exposed to vibration. A Békésy audiometer was modified to operate in combination with a vibration exciter, instead of headphones, at frequencies lower than usual (8-500 Hz). The results showed that the perception thresholds increased from about 100 dB to about 140 dB (rel. 10(-6) m/s2rms) as a function of frequency and age. The frequency-dependent changes were not linear, however, but displayed a peak in sensitivity at 125 Hz. Threshold changes due to aging were most pronounced at the highest frequencies. It is of the utmost importance that these natural changes are taken into account when making comparisons between groups or individuals.
The impact of perilaryngeal vibration on the self-perception of loudness and the Lombard effect.
Brajot, François-Xavier; Nguyen, Don; DiGiovanni, Jeffrey; Gracco, Vincent L
2018-04-05
The role of somatosensory feedback in speech and the perception of loudness was assessed in adults without speech or hearing disorders. Participants completed two tasks: loudness magnitude estimation of a short vowel and oral reading of a standard passage. Both tasks were carried out in each of three conditions: no-masking, auditory masking alone, and mixed auditory masking plus vibration of the perilaryngeal area. A Lombard effect was elicited in both masking conditions: speakers unconsciously increased vocal intensity. Perilaryngeal vibration further increased vocal intensity above what was observed for auditory masking alone. Both masking conditions affected fundamental frequency and the first formant frequency as well, but only vibration was associated with a significant change in the second formant frequency. An additional analysis of pure-tone thresholds found no difference in auditory thresholds between masking conditions. Taken together, these findings indicate that perilaryngeal vibration effectively masked somatosensory feedback, resulting in an enhanced Lombard effect (increased vocal intensity) that did not alter speakers' self-perception of loudness. This implies that the Lombard effect results from a general sensorimotor process, rather than from a specific audio-vocal mechanism, and that the conscious self-monitoring of speech intensity is not directly based on either auditory or somatosensory feedback.
Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system.
Kihlberg, S; Attebrant, M; Gemne, G; Kjellberg, A
1995-01-01
OBJECTIVES--The purpose of this study was to compare various effects on the hand-arm system of vibration exposure from a chipping hammer and a grinder with the same frequency weighted acceleration. Grip and push forces were measured and monitored during the exposure. The various effects were: muscle activity (measured with surface electrodes), discomfort ratings for different parts of the hand-arm system (made during and after exposure), and vibration perception threshold (for 10 minutes before and 10 minutes after the exposure). RESULTS--No increase in muscle activity due to exposure to vibration was found in the hand muscle studied. In the forearm, conversely, there was an increase in both muscle studied. For the upper arm the muscle activity only increased when exposed to impact vibration. Subjective ratings in the hand and shift in vibration perception threshold were effected more by the grinder than the hammer exposure. CONCLUSION--These results show that the reaction of the hand-arm system to vibration varies with frequency quantitatively as well as qualitatively. They do not support the notion that one single frequency weighted curve would be valid for the different health effects of hand-arm vibration (vascular, musculoskeletal, neurological, and psychophysiological). PMID:8535492
Tamrin, Shamsul Bahri Mohd; Jamalohdin, Mohd Nazri; Ng, Yee Guan; Maeda, Setsuo; Ali, Nurul Asyiqin Mohd
2012-01-01
The objectives of this study are to determine the prevalence of hand-arm vibration syndrome (HAVS) and the characteristics of the vibrotactile perception threshold (VPT) among users of hand-held vibrating tools working in a tropical environment. A cross sectional study was done among 47 shipyard workers using instruments and a questionnaire to determine HAVS related symptoms. The vibration acceleration magnitude was determined using a Human Vibration Meter (Maestro). A P8 Pallesthesiometer (EMSON-MAT, Poland) was used to determine the VPT of index and little finger at frequencies of 31.5 Hz and 125 Hz. The mean reference threshold shift was determined from the reference threshold shift derived from the VPT value. The results show a moderate prevalence of HAVS (49%) among the shipyard workers. They were exposed to the same high intensity level of HAVS (mean = 4.19 ± 1.94 m/s(2)) from the use of vibrating hand-held tools. The VPT values were found to be higher for both fingers and both frequencies (index, 31.5 Hz = 110.91 ± 7.36 dB, 125 Hz = 117.0 ± 10.25 dB; little, 31.5 Hz = 110.70 ± 6.75 dB, 125 Hz = 117.71 ± 10.25 dB) compared to the normal healthy population with a mean threshold shift of between 9.20 to 10.61 decibels. The frequency of 31.5 Hz had a higher percentage of positive mean reference threshold shift (index finger=93.6%, little finger=100%) compared to 125 Hz (index finger=85.1%, little finger=78.7%). In conclusion, the prevalence of HAVS was lower than those working in a cold environment; however, all workers had a higher mean VPT value compared to the normal population with all those reported as having HAVS showing a positive mean reference threshold shift of VPT value.
Gu, Cheng; Griffin, Michael J
2012-05-01
When using vibrotactile thresholds to investigate neuropathy in the fingers, the indentation of a vibrating probe, and the force applied to a static surround around a vibrating probe, affect thresholds. This study was designed to investigate the effects on vibrotactile perception thresholds at the sole of the foot of probe indentation (i.e. height of a vibrating probe relative to a static surround) and the force applied to the static surround. Thresholds at 20 Hz (expected to be mediated by the NP I channel) and at 160 Hz (expected to be mediated by the Pacinian channel) were obtained at the hallux (i.e. greater toe) and the ball of the foot on 14 healthy subjects. In one condition, the height of the vibrating probe was varied to 0, 1, 2, 3, and 4 mm above a static surround with 4-N force applied to the surround. In a second condition, the force applied to the surround was varied to 1, 2, 3, 4, 5, and 6 N while using a probe height of 1mm. Thresholds at 20 Hz decreased with increasing probe height from 0 to 1 mm but showed no significant variation between 2, 3, and 4mm at either the hallux or the ball of the foot. Thresholds at 160 Hz decreased with increasing probe height from 0 to 4 mm at both the hallux and the ball of the foot. Thresholds at 20 Hz obtained with 1-N surround force were higher than thresholds obtained with 2 N, but there was no significant difference with surround forces from 2 to 6 N at either the hallux or the ball of the foot. Thresholds at 160 Hz were unaffected by variations in surround force at the ball of the foot but tended to decrease with increasing force at the hallux. It is concluded that a vibrating probe flush with a static surround, and a surround force in the range 2-4 N, are appropriate when measuring vibrotactile thresholds at the hallux and the ball of the foot with a 6-mm diameter contactor and a 2-mm gap to the static surround. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Oosterhuis, H J; Bouwsma, C; van Halsema, B; Hollander, R A; Kros, C J; Tombroek, I
1992-10-03
Quantification of vibration perception and fingertip sensation in routine neurological examination. Neurological Clinic, University Hospital, Groningen, the Netherlands. Prospective, controlled investigation. Vibration perception and fingertip sensation were quantified in a large group of normal control persons of various ages and in neurological patients and compared with the usual sensory tests at routine neurological examination. The vibration perception limit was measured with a biothesiometer without accelerometer, the fingertip sensation with a device for two-point discrimination slightly modified according to Renfrew ('Renfrew meter'). Concordance of the tests was studied by calculating kappa values. The normal values of both sensory qualities had a log-normal distribution and increased with age. The values obtained with the Renfrew meter correlated well with those of the two-point discrimination and stereognosis but were systematically higher than those indicated by Renfrew. Both methods appear useful at routine neurological examination if certain measuring precautions are taken.
Kurozawa, Youichi; Hosoda, Takenobu; Nasu, Yoshiro
2010-01-01
Current perception threshold (CPT) has been proposed as a quantitative method for assessment of peripheral sensory nerve function. The aim of this review of selected reports is to provide an overview of CPT measurement for the assessment of the neurological component of hand-arm vibration syndrome (HAVS). The CPT values at 2000 Hz significantly increased for patients with HAVS. This result supports the previous histological findings that demyelination is found predominantly in the peripheral nerves in the hands of men exposed to hand-arm vibration. Diagnostic sensitivity and specificity were high for severe cases of Stockholm sensorineural (SSN) stage 3 compared with non-exposed controls, but not high for mild cases of SSN stage 1 or 2 and for carpal tunnel syndrome associated with HAVS. However, there are only a few studies on the diagnostic validity of the CPT test for the neurological components of HAVS. Further research is needed and should include diagnostic validity and standardizing of measurement conditions such as skin temperature. PMID:24031119
Vibration Influences Haptic Perception of Surface Compliance During Walking
Visell, Yon; Giordano, Bruno L.; Millet, Guillaume; Cooperstock, Jeremy R.
2011-01-01
Background The haptic perception of ground compliance is used for stable regulation of dynamic posture and the control of locomotion in diverse natural environments. Although rarely investigated in relation to walking, vibrotactile sensory channels are known to be active in the discrimination of material properties of objects and surfaces through touch. This study investigated how the perception of ground surface compliance is altered by plantar vibration feedback. Methodology/Principal Findings Subjects walked in shoes over a rigid floor plate that provided plantar vibration feedback, and responded indicating how compliant it felt, either in subjective magnitude or via pairwise comparisons. In one experiment, the compliance of the floor plate was also varied. Results showed that perceived compliance of the plate increased monotonically with vibration feedback intensity, and depended to a lesser extent on the temporal or frequency distribution of the feedback. When both plate stiffness (inverse compliance) and vibration amplitude were manipulated, the effect persisted, with both factors contributing to compliance perception. A significant influence of vibration was observed even for amplitudes close to psychophysical detection thresholds. Conclusions/Significance These findings reveal that vibrotactile sensory channels are highly salient to the perception of surface compliance, and suggest that correlations between vibrotactile sensory information and motor activity may be of broader significance for the control of human locomotion than has been previously acknowledged. PMID:21464979
Beinert, K; Preiss, S; Huber, M; Taube, W
2015-12-01
Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all P<0.05), but revealed no time*group effect. Pressure pain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain thresholds. This implies different underlying mechanisms after vibration and mental training. Mental interventions were effective in improving cervical joint position sense and are easy to integrate in rehabilitation regimes. Neck muscle vibration is effective in improving cervical joint position sense and pressure pain thresholds within 5 minutes of application.
Strzalkowski, Nicholas D J; Lowrey, Catherine R; Perry, Stephen D; Williams, David R; Wood, Scott J; Bent, Leah R
2015-04-10
The present study investigated the perception of low frequency (3 Hz) vibration on the foot sole and its relationship to standing balance following short duration space flight in nine astronauts. Both 3 Hz vibration perception threshold (VPT) and standing balance measures increased on landing day compared to pre-flight. Contrary to our hypothesis, a positive linear relationship between these measures was not observed; however astronauts with the most sensitive skin (lowest 3 Hz VPT) were found to have the largest sway on landing day. While the change in foot sole sensitivity does not appear to directly relate to standing balance control, an exploratory strategy may be employed by astronauts whose threshold to pressure information is lower. Understanding sensory adaptations and balance control has implications to improve balance control strategies following space flight and in sensory impaired populations on earth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Rådman, Lisa; Gunnarsson, Lars-Gunnar; Nilsagård, Ylva; Nilsson, Tohr
2016-12-01
Symptoms described in previous studies indicate that electrical injury can cause longstanding injuries to the neurosensory nerves. The aim of the present case series was to objectively assess the profile of neurosensory dysfunction in electricians in relation to high voltage or low voltage electrical injury and the "no-let-go phenomenon". Twenty-three Swedish male electricians exposed to electrical injury were studied by using a battery of clinical instruments, including quantitative sensory testing (QST). The clinical test followed a predetermined order of assessments: thermal perceptions thresholds, vibration perception thresholds, tactile gnosis (the Shape and Texture Identification test), manual dexterity (Purdue Pegboard Test), and grip strength. In addition, pain was studied by means of a questionnaire, and a colour chart was used for estimation of white fingers. The main findings in the present case series were reduced thermal perceptions thresholds, where half of the group showed abnormal values for warm thermal perception and/or cold thermal perception. Also, the tactile gnosis and manual dexterity were reduced. High voltage injury was associated with more reduced sensibility compared to those with low voltage. Neurosensory injury can be objectively assessed after an electrical injury by using QST with thermal perception thresholds. The findings are consistent with injuries to small nerve fibres. In the clinical setting thermal perception threshold is therefore recommended, in addition to tests of tactile gnosis and manual dexterity (Purdue Pegboard). Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Gerhardsson, Lars; Balogh, Istvan; Hambert, Per-Arne; Hjortsberg, Ulf; Karlsson, Jan-Erik
2005-01-01
The aim of the present study was to compare the development of vibration white fingers (VWF) in workers in relation to different ways of exposure estimation, and their relationship to the standard ISO 5349, annex A. Nineteen vibration exposed (grinding machines) male workers completed a questionnaire followed by a structured interview including questions regarding their estimated hand-held vibration exposure. Neurophysiological tests such as fractionated nerve conduction velocity in hands and arms, vibrotactile perception thresholds and temperature thresholds were determined. The subjective estimation of the mean daily exposure-time to vibrating tools was 192 min (range 18-480 min) among the workers. The estimated mean exposure time calculated from the consumption of grinding wheels was 42 min (range 18-60 min), approximately a four-fold overestimation (Wilcoxon's signed ranks test, p<0.001). Thus, objective measurements of the exposure time, related to the standard ISO 5349, which in this case were based on the consumption of grinding wheels, will in most cases give a better basis for adequate risk assessment than self-exposure assessment.
Research on simultaneous impact of hand-arm and whole-body vibration.
Kowalski, Piotr; Zając, Jacek
2012-01-01
This article presents the results of laboratory tests on the combined effect of whole-body vibration (WBV) and hand-arm vibration (HAV). The reactions of subjects exposed to various combinations of vibration were recorded. The vibrotactile perception threshold (VPT) test identified changes caused by exposure to vibration. Ten male subjects met the criteria of the study. There were 4 series of tests: a reference test and tests after exposure to HAV, WBV, and after simultaneous exposure to HAV and WBV. An analysis of the results (6000 ascending and descending VPTs) showed that the changes in VPTs were greatest after simultaneous exposure to both kinds of vibration. The increase in VPT, for all stimulus frequencies, was then higher than after exposure to HAV or WBV only.
Virokannas, H
1995-05-01
31 railway workers and 32 lumberjacks were examined to compare the dose-response relation between the exposure to two types of hand-arm vibration and the sensory disturbances in peripheral nerves as evaluated by the vibration perception thresholds (VPTs). Clinical examinations were carried out that included measurements of the VPTs, and electroneuromyography (ENMG), and an inquiry to confirm the use of vibrating tools. Diseases of the central nervous system and neuropathies were checked by inquiry and a clinical examination, diabetes was excluded by a blood sample analysis, and the subjects with carpal tunnel syndrome confirmed with ENMG were excluded from the study. Lifetime use of hand held tamping machines (railway workers) and chain saws (lumberjacks) had a significant correlation with the VPTs at frequencies from 32 to 500 Hz. The increase of the VPTs (250 Hz) in relation to use of vibrating tools was 1.8-fold higher on average in the whole group and 2.3-fold higher in the young (< 45) railway workers who had used hand held tamping machines, than in the corresponding groups of lumberjacks, who had used chain saws, whereas the frequency weighted acceleration of vibration in tamping machines was fourfold. There was a significant dose-response relation between the exposure to hand-arm vibration and the VPTs. The VPTs as a function of the frequency weighted acceleration of vibration and the exposure to vibration gave promising results for assessment of the risk of damage to sensory nerves induced by vibration.
[The health condition of forest workers exposed to noise and vibration produced by chain saws].
Malinowska-Borowska, Jolanta; Socholik, Violetta; Harazin, Barbara
2012-01-01
Lumberjacks' working conditions are difficult due to the presence of numerous occupational hazards. Physical factors that pose a health risk are noise and vibration produced by chain saws. Excessive exposure of lumberjacks to noise and vibration can lead to the development of hand-arm vibration syndrome and hearing loss. The aim of the work was to analyze the health condition of forestry workers exposed to occupational physical hazards. A preliminary, questionnaire-based assessment of health status was conducted in 22 chain saw operators. In a group of 15 forestry workers audiometry, vibrotactile perception thresholds and cold provocation test were performed. X-ray diagnostic imaging of upper limbs was also done. At the same time noise and vibration produced by chain saws used in forestry was measured. Vascular or neurological disorders were found in nearly half of tested workers with seniority from 2 to 20 years; 40% of the surveyed was diagnosed with hearing impairment. An 8-hour energy equivalent vibration level measured on chain saws was 4.6 m/s2. An 8-hour equivalent sound pressure level was 99.1 dB(A). The threshold limit values for noise and vibration are exceeded at woodcutters' posts. There are changes in lumberjacks' health resulting from exposure to harmful physical agents. Preventive actions are urgently needed to be addressed, especially to people employed in single-handed forestry companies.
Prolonged mechanical noise restores tactile sense in diabetic neuropathic patients.
Cloutier, Rachel; Horr, Samuel; Niemi, James B; D'Andrea, Susan; Lima, Christina; Harry, Jason D; Veves, Aristidis
2009-03-01
Acute application of stochastic resonance (SR), defined as a subsensory level of mechanical noise presented directly to sensory neurons, improves the vibration and tactile perception in diabetic patients with mild to moderate neuropathy. This study examined the effect of 1 hour of continuous SR stimulation on sensory nerve function. Twenty diabetic patients were studied. The effect of stimulation was measured at 2 time points, at the beginning and after 60 minutes of continual SR stimulation. This effect was measured using the vibration perception threshold (VPT) at the big toe under 2 conditions: a null (no SR) condition and active SR, defined as mechanical noise below the subject's own threshold of perception. The measurements under null and active conditions were done randomly and the examiner was blinded regarding the type of condition. Immediately after SR application, the VPT with SR in null condition was similar to baseline (32.2 +/- 13.1, P = nonsignificant) but was significantly lower during active SR (27.4 +/- 11.9) compared with both baseline (P = .018) and off position (P = .045). The 60 minutes VPT with active SR (28.7 +/- 11.1) reached significance comparing the baseline when one outlier was removed from the analysis (P = .031). It may be concluded that SR for a continuous 60-minute period can sustain the VPT improvement in diabetic patients with moderate to severe neuropathy. These results permit the conclusion that there is no short-term adaptation to the stimulation signal. Long-term application of this technique, perhaps in the form of a continually vibrating shoe insert, or insole, may result in sustained improvement of nerve function.
Morley, J W; Rowe, M J
1990-12-01
1. The effect of changes in amplitude on the perceived pitch of cutaneous vibratory stimuli was studied in psychophysical experiments designed to test whether the coding of information about the frequency of the vibration might be based on the ratio of recruitment of the PC (Pacinian corpuscle-associated) and RA (rapidly adapting) classes of tactile sensory fibres. The study was based on previous data which show that at certain vibration frequencies (e.g. 150 Hz) the ratio of recruitment of the PC and RA classes should vary as a function of vibration amplitude. 2. Sinusoidal vibration at either 30 Hz or 150 Hz, and at an amplitude 10 dB above subjective detection thresholds was delivered in a 1 s train to the distal phalangeal pad of the index finger in eight human subjects. This standard vibration was followed after 0.5 s by a 1 s comparison train of vibration which (unknown to the subject) was at the same frequency as the standard but at a range of amplitudes from 2 to 50 dB above the detection threshold. A two-alternative forced-choice procedure was used in which the subject had to indicate whether the comparison stimulus was higher or lower in pitch (frequency) than the standard. 3. Marked differences were seen from subject to subject in the effect of amplitude on perceived pitch at both 30 Hz and 150 Hz. At 150 Hz, five out of the eight subjects reported an increase in pitch as the amplitude of the comparison vibration increased, one experienced no change, and only two experienced the fall in perceived pitch that is predicted if the proposed ratio code contributes to vibrotactile pitch judgements. At 30 Hz similar intersubject variability was seen in the pitch-amplitude functions. 4. The results do not support the hypothesis that a ratio code contributes to vibrotactile pitch perception. We conclude that temporal patterning of impulse activity remains the major candidate code for pitch perception, at least over a substantial part of the vibrotactile frequency bandwidth.
Virokannas, H
1995-01-01
OBJECTIVES--31 railway workers and 32 lumberjacks were examined to compare the dose-response relation between the exposure to two types of hand-arm vibration and the sensory disturbances in peripheral nerves as evaluated by the vibration perception thresholds (VPTs). METHODS--Clinical examinations were carried out that included measurements of the VPTs, and electroneuromyography (ENMG), and an inquiry to confirm the use of vibrating tools. Diseases of the central nervous system and neuropathies were checked by inquiry and a clinical examination, diabetes was excluded by a blood sample analysis, and the subjects with carpal tunnel syndrome confirmed with ENMG were excluded from the study. RESULTS--Lifetime use of hand held tamping machines (railway workers) and chain saws (lumberjacks) had a significant correlation with the VPTs at frequencies from 32 to 500 Hz. The increase of the VPTs (250 Hz) in relation to use of vibrating tools was 1.8-fold higher on average in the whole group and 2.3-fold higher in the young (< 45) railway workers who had used hand held tamping machines, than in the corresponding groups of lumberjacks, who had used chain saws, whereas the frequency weighted acceleration of vibration in tamping machines was fourfold. CONCLUSION--There was a significant dose-response relation between the exposure to hand-arm vibration and the VPTs. The VPTs as a function of the frequency weighted acceleration of vibration and the exposure to vibration gave promising results for assessment of the risk of damage to sensory nerves induced by vibration. PMID:7795756
Age effects on pain thresholds, temporal summation and spatial summation of heat and pressure pain.
Lautenbacher, Stefan; Kunz, Miriam; Strate, Peter; Nielsen, Jesper; Arendt-Nielsen, Lars
2005-06-01
Experimental data on age-related changes in pain perception have so far been contradictory. It has appeared that the type of pain induction method is critical in this context, with sensitivity to heat pain being decreased whereas sensitivity to pressure pain may be even enhanced in the elderly. Furthermore, it has been shown that temporal summation of heat pain is more pronounced in the elderly but it has remained unclear whether age differences in temporal summation are also evident when using other pain induction methods. No studies on age-related changes in spatial summation of pain have so far been conducted. The aim of the present study was to provide a comprehensive survey on age-related changes in pain perception, i.e. in somatosensory thresholds (warmth, cold, vibration), pain thresholds (heat, pressure) and spatial and temporal summation of heat and pressure pain. We investigated 20 young (mean age 27.1 years) and 20 elderly (mean age 71.6 years) subjects. Our results confirmed and extended previous findings by showing that somatosensory thresholds for non-noxious stimuli increase with age whereas pressure pain thresholds decrease and heat pain thresholds show no age-related changes. Apart from an enhanced temporal summation of heat pain, pain summation was not found to be critically affected by age. The results of the present study provide evidence for stimulus-specific changes in pain perception in the elderly, with deep tissue (muscle) nociception being affected differently by age than superficial tissue (skin) nociception. Summation mechanisms contribute only moderately to age changes in pain perception.
Takemura, Shigeki; Yoshimasu, Kouichi; Tsuno, Kanami; Fukumoto, Jin; Kuroda, Mototsugu; Miyashita, Kazuhisa
2016-05-25
The effect of anthropometric factors on the fingertip vibrotactile perception threshold (VPT) of industrial vibrating tool operators (IVTOs) is not well known. The purpose of this study was to investigate the associations between anthropometric factors and fingertip VPT. We included for analysis two groups of IVTOs: Group 1, predominantly forestry workers (n=325); and Group 2, public servants (n=68). These IVTOs regularly received medical examinations to evaluate hand-arm vibration syndrome. In the examination, measurements of their fingertip VPTs were taken before and after cold-water immersion (10 minutes at 10°C for Group 1 and 5 minutes at 12°C for Group 2). Their body height and weight were measured to calculate the body mass index (BMI). The presence of peripheral neuropathy (PN) was defined as a VPT ≥17.5 dB at 10 minutes after finishing immersion. In the univariate analysis, weight and BMI were associated with a decreased risk of PN in both Groups 1 and 2. The negative association between BMI and PN remained in the multivariate analysis consistently, but weight reached marginal significance only in the multivariate analysis without BMI in both the groups. Age was positively associated with PN consistently in Group 1 but not in Group 2. Years exposed to vibration showed positive association with PN only in the univariate analysis of Group 1. Among IVTOs, factors reflecting body heat production, such as weight and BMI, were associated with a decreased risk of VPT-defined PN, regardless of the task engaged.
Vibration sensibility testing in the workplace. Day-to-day reliability.
Rosecrance, J C; Cook, T M; Satre, D L; Goode, J D; Schroder, M J
1994-09-01
Loss of vibration sensibility has been suggested as an early indicator of peripheral compression neuropathy, including carpal tunnel syndrome. Although vibration sensibility has been used frequently to evaluate carpal tunnel syndrome, the day-to-day reliability of vibration measurements in an industrial population measured at the workplace has not been assessed. Vibration sensibility testing was performed at the university ergonomics laboratory on 50 volunteers (100 hands) and at a newspaper company on 50 workers (100 hands). Vibration perception and disappearance thresholds were measured on two occasions separated by 3 to 5 days. Student's t tests indicated no significant differences between the first and second tests or between the two groups. Pearson product-moment correlations for test-retest reliability were lower in the industry group but were relatively high despite the less than optimal testing conditions. Our findings suggest that vibration sensibility measurements are reliable from day to day not only in the laboratory but also in the workplace.
Quantitative somatosensory testing of the penis: optimizing the clinical neurological examination.
Bleustein, Clifford B; Eckholdt, Haftan; Arezzo, Joseph C; Melman, Arnold
2003-06-01
Quantitative somatosensory testing, including vibration, pressure, spatial perception and thermal thresholds of the penis, has demonstrated neuropathy in patients with a history of erectile dysfunction of all etiologies. We evaluated which measurement of neurological function of the penis was best at predicting erectile dysfunction and examined the impact of location on the penis for quantitative somatosensory testing measurements. A total of 107 patients were evaluated. All patients were required to complete the erectile function domain of the International Index of Erectile Function (IIEF) questionnaire, of whom 24 had no complaints of erectile dysfunction and scored within the "normal" range on the IIEF. Patients were subsequently tested on ventral middle penile shaft, proximal dorsal midline penile shaft and glans penis (with foreskin retracted) for vibration, pressure, spatial perception, and warm and cold thermal thresholds. Mixed models repeated measures analysis of variance controlling for age, diabetes and hypertension revealed that method of measurement (quantitative somatosensory testing) was predictive of IIEF score (F = 209, df = 4,1315, p <0.001), while site of measurement on the penis was not. To determine the best method of measurement, we used hierarchical regression, which revealed that warm temperature was the best predictor of erectile dysfunction with pseudo R(2) = 0.19, p <0.0007. There was no significant improvement in predicting erectile dysfunction when another test was added. Using 37C and greater as the warm thermal threshold yielded a sensitivity of 88.5%, specificity 70.0% and positive predictive value 85.5%. Quantitative somatosensory testing using warm thermal threshold measurements taken at the glans penis can be used alone to assess the neurological status of the penis. Warm thermal thresholds alone offer a quick, noninvasive accurate method of evaluating penile neuropathy in an office setting.
The Sound and Feel of Titrations: A Smartphone Aid for Color-Blind and Visually Impaired Students
ERIC Educational Resources Information Center
Bandyopadhyay, Subhajit; Rathod, Balraj B.
2017-01-01
An Android-based application has been developed to provide color-blind and visually impaired students a multisensory perception of color change observed in a titration. The application records and converts the color information into beep sounds and vibration pulses, which are generated by the smartphone. It uses a range threshold of hue and…
Courtney, Carol A; Steffen, Alana D; Fernández-de-Las-Peñas, César; Kim, John; Chmell, Samuel J
2016-03-01
An experimental laboratory study with a repeated-measures crossover design. Treatment effects of joint mobilization may occur in part by decreasing excitability of central nociceptive pathways. Impaired conditioned pain modulation (CPM) has been found experimentally in persons with knee and hip osteoarthritis, indicating impaired inhibition of central nociceptive pathways. We hypothesized increased effectiveness of CPM following application of joint mobilization, determined via measures of deep tissue hyperalgesia. To examine the effect of joint mobilization on impaired CPM. An examination of 40 individuals with moderate/severe knee osteoarthritis identified 29 (73%) with impaired CPM. The subjects were randomized to receive 6 minutes of knee joint mobilization (intervention) or manual cutaneous input only, 1 week apart. Deep tissue hyperalgesia was examined via pressure pain thresholds bilaterally at the knee medial joint line and the hand at baseline, postintervention, and post-CPM testing. Further, vibration perception threshold was measured at the medial knee epicondyle at baseline and post-CPM testing. Joint mobilization, but not cutaneous input intervention, resulted in a global increase in pressure pain threshold, indicated by diminished hyperalgesic responses to pressure stimulus. Further, CPM was significantly enhanced following joint mobilization. Diminished baseline vibration perception threshold acuity was enhanced following joint mobilization at the knee that received intervention, but not at the contralateral knee. Resting pain was also significantly lower following the joint intervention. Conditioned pain modulation was enhanced following joint mobilization, demonstrated by a global decrease in deep tissue pressure sensitivity. Joint mobilization may act via enhancement of descending pain mechanisms in patients with painful knee osteoarthritis.
Breen, Paul P; Serrador, Jorge M; O'Tuathail, Claire; Quinlan, Leo R; McIntosh, Caroline; ÓLaighin, Gearóid
2016-08-01
Loss of tactile sensory function is common with aging and can lead to numbness and difficulty with balance and gait. In previous work we found that subsensory electrical noise stimulation (SENS) applied to the tibial nerve improved tactile perception in the soles of the feet of healthy adults. In this work we aimed to determine if SENS remained effective in an older adult population with significant levels of sensory loss. Older adult subjects (N=8, female = 4, aged 65-80) had SENS applied via surface electrodes placed proximally to the medial and lateral malleoli. Vibration perception thresholds (VPTs) were assessed in six conditions, two control conditions (no SENS) and four SENS conditions (zero mean ±15µA, 30µA, 45µA and 60µA SD). VPT was assessed at three sites on the plantar aspect of the foot. Vibration perception was significantly improved in the presence of ±30µA SENS and by 16.2±2.4% (mean ± s.e.m.) when optimised for each subject. The improvement in perception was similar across all VPT test sites. Copyright © 2016 IPEM. All rights reserved.
Ye, Ying; Griffin, Michael J
2016-04-01
This study investigated whether the reductions in finger blood flow induced by 125-Hz vibration applied to different locations on the hand depend on thresholds for perceiving vibration at these locations. Subjects attended three sessions during which vibration was applied to the right index finger, the right thenar eminence, or the left thenar eminence. Absolute thresholds for perceiving vibration at these locations were determined. Finger blood flow in the middle finger of both hands was then measured at 30-s intervals during five successive 5-min periods: (i) pre-exposure, (ii) pre-exposure with 2-N force, (iii) 2-N force with vibration, (iv) post-exposure with 2-N force, (v) recovery. During period (iii), vibration was applied at 15 dB above the absolute threshold for perceiving vibration at the right thenar eminence. Vibration at all three locations reduced finger blood flow on the exposed and unexposed hand, with greater reductions when vibrating the finger. Vibration-induced vasoconstriction was greatest for individuals with low thresholds and locations of excitation with low thresholds. Differences in vasoconstriction between subjects and between locations are consistent with the Pacinian channel mediating both absolute thresholds and vibration-induced vasoconstriction.
Lange-Maia, Brittney S.; Newman, Anne B.; Cauley, Jane A.; Boudreau, Robert M.; Jakicic, John M.; Caserotti, Paolo; Glynn, Nancy W.; Harris, Tamara B.; Kritchevsky, Stephen B.; Schwartz, Ann V.; Satterfield, Suzanne; Simonsick, Eleanor M.; Vinik, Aaron I.; Zivkovic, Sasa; Strotmeyer, Elsa S.
2015-01-01
Objectives To determine whether lower extremity sensorimotor peripheral nerve deficits are associated with reduced walking endurance in older adults. Design Prospective cohort study with six years of follow-up. Setting Two U.S. clinical sites in (Pittsburgh, PA and Memphis, TN). Participants Community-dwelling older adults enrolled in Health, Aging and Body Composition study from the 2000/01 annual clinical examination (n=2393; age 76.5 ± 2.9 years; 48.2% male; 38.2% black) and subset with longitudinal data (n=1,178). Interventions Not applicable Main Outcome Measures Participants underwent peripheral nerve function examination in 2000/01, including peroneal motor nerve conduction amplitude and velocity, vibration perception threshold, and monofilament testing. Symptoms of lower-extremity peripheral neuropathy included numbness or tingling and sudden stabbing, burning, pain, or aches in the feet or legs. The long distance corridor walk (LDCW; 400m) was administered in 2000/01 and every two years afterwards for 6 years to assess endurance walking performance over time. Results In separate fully adjusted linear mixed models poor vibration threshold (>130 microns), 10-g and 1.4-g monofilament insensitivity were each associated with slower LDCW completion time (16.0, 14.1, and 6.7, seconds slower, respectively, P<.05 for each). Poor motor amplitude (<1mV), poor vibration perception threshold, and 10-g monofilament insensitivity were related to greater slowing/year (4.7, 4.3, and 4.3 additional seconds/year, respectively, P<.05), though poor motor amplitude was not associated with initial completion time. Conclusions Poorer sensorimotor peripheral nerve function is related to slower endurance walking and greater slowing longitudinally. Interventions to reduce the burden of sensorimotor peripheral nerve function impairments should be considered in order to help older adults to maintain walking endurance—a critical component for remaining independent in the community. PMID:26343170
Daud, Roshada; Maeda, Setsuo; Kameel, Nur Nazmin Mustafa; Ripin, Muhamad Yunus; Bakrun, Norazman; Md Zein, Raemy; Kido, Masaharu; Higuchi, Kiyotaka
2004-04-01
The purpose of this paper is to clarify the reference vibrotactile perception thresholds (VPT) for healthy people in Malaysia. The measurement equipment standard, ISO 13091-1, of the vibrotactile perception thresholds for the assessment of nerve dysfunction and the analysis and interpretation of measurements at the fingertips standard, ISO 13091-2, were published in ISO/TC108/SC4/WG8 on 2001 and 2003 individually. In the ISO 13091-2 standard, the reference VPT data were obtained from few research papers. Malaysian people's VPT data don't include to this standard. In Malaysia, when the VPT is using to diagnose of the hand-arm vibration syndrome, the reference VPT data need to compare with the worker's ones. But, Malaysia does not have the reference VPT data yet. So, in this paper, the VPT was measured by using ISO 13091-1 standard equipment to obtain the reference data for Malaysian people. And these data were compared with the ISO reference data on the ISO 13091-2 standard. From the comparison of these data, it was clear that the Malaysian healthy people's VPT data were consistent with the reference data of the ISO 13091-2 standard.
Guide to the evaluation of human exposure to noise from large wind turbines
NASA Technical Reports Server (NTRS)
Stephens, D. G.; Shepherd, K. P.; Hubbard, H. H.; Grosveld, F.
1982-01-01
Guidance for evaluating human exposure to wind turbine noise is provided and includes consideration of the source characteristics, the propagation to the receiver location, and the exposure of the receiver to the noise. The criteria for evaluation of human exposure are based on comparisons of the noise at the receiver location with the human perception thresholds for wind turbine noise and noise-induced building vibrations in the presence of background noise.
Azzopardi, Kurt; Gatt, Alfred; Chockalingam, Nachiappan; Formosa, Cynthia
2018-04-01
Diabetic peripheral neuropathy is an important complication and contributes to the morbidity of diabetes mellitus. Evidence indicates early detection of diabetic peripheral neuropathy results in fewer foot ulcers and amputations. The aim of this study was to compare different screening modalities in the detection of diabetic peripheral neuropathy in a primary care setting. A prospective non-experimental comparative multi-centre cross sectional study was conducted in various Primary Health Centres. One hundred participants living with Type 2 diabetes for at least 10 years were recruited using a convenience sampling method. The Vibratip, 128Hz tuning fork and neurothesiometer were compared in the detection of vibration perception. This study showed different results of diabetic peripheral neuropathy screening tests, even in the same group of participants. This study has shown that the percentage of participants who did not perceive vibrations was highest when using the VibraTip (28.5%). This was followed by the neurothesiometer (21%) and the 128Hz tuning fork (12%) (p<0.001). Correct diagnosis and treatment of neuropathy in patients with diabetes is crucial. This study demonstrates that some instruments are more sensitive to vibration perception than others. We recommend that different modalities should be used in patients with diabetes and when results do not concur, further neurological evaluation should be performed. This would significantly reduce the proportion of patients with diabetes who would be falsely identified as having no peripheral neuropathy and subsequently denied the benefit of beneficial and effective secondary risk factor control. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria.
Christensen-Dalsgaard, J; Jørgensen, M B
1996-10-01
We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from 42 dB at 100 Hz to 25 dB at 400 Hz. Since sound thresholds decrease from 72 dB SPL at 100 Hz to 50 dB SPL at 400 Hz the decrease in relative vibration sensitivity reflects an increase in sound sensitivity with frequency, probably due to enhanced tympanic sensitivity at higher frequencies. In contrast, absolute vibration sensitivity is constant in most of the frequency range studied. Only small effects result from the cancellation of sound-induced vibrations. The reason for this probably is that the maximal induced vibrations in the present setup are 6-10 dB below the fibers' vibration threshold at the threshold for sound. However, these results are only valid for the present physical configuration of the setup and the high vibration-sensitivities of the fibers warrant caution whenever the auditory fibers are stimulated with free-field sound. Thus, the experiments suggest that the low-frequency sound sensitivity is not caused by sound-induced vertical vibrations. Instead, the low-frequency sound sensitivity is either tympanic or mediated through bone conduction or sound-induced pulsations of the lungs.
Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat
2018-04-03
Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft-tissue conduction could share the same underlying mechanism, namely the induction of bone vibrations. Studies with the present methodology should be continued in future work in order to obtain further insight into the underlying mechanism of activation of the hearing system. Copyright © 2018 Elsevier B.V. All rights reserved.
Measured Rattle Threshold of Residential House Windows
NASA Technical Reports Server (NTRS)
Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob
2008-01-01
Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.
An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception
Li, Lux; Chan, Arielle; Iqbal, Shah M.; Goldreich, Daniel
2017-01-01
Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference) and varied on the other arm (the comparison). In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding. PMID:28701936
Gyo, K; Yanagihara, N
1986-01-01
Ossicular mobility was assessed by direct coupling of a piezoelectric ceramic vibrator to the ossicles during middle ear surgery. The sites excited were body of the incus, head of the stapes, and footplate of the stapes through a hydroxyapatite ceramic strut. The threshold of the vibratory hearing was determined by the patient's response as a minimum audition, and the vibration threshold was obtained by subtracting the preoperative bone conduction threshold from the vibratory hearing threshold. The results were analyzed by the state of hearing after the operation, which revealed that a patient with a good vibration threshold during the operation had a tendency to get good postoperative hearing. This may mean that postoperative hearing can be predicted to some extent during the operation by the measurement of ossicular mobility.
Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.
2003-01-01
A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.
Comparative studies of perceived vibration strength for commercial mobile phones.
Lee, Heow Pueh; Lim, Siak Piang
2014-05-01
A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Shibata, Eriko; Kaneko, Fuminari; Katayose, Masaki
2017-11-01
The afferent inputs from peripheral sensory receptors and efferent signals from the central nervous system that underlie intentional movement can contribute to kinesthetic perception. Previous studies have revealed that tendon vibration to wrist muscles elicits an excitatory response-known as the antagonist vibratory response-in muscles antagonistic to the vibrated muscles. Therefore, the present study aimed to further investigate the effect of tendon vibration combined with motor imagery on kinesthetic perception and muscular activation. Two vibrators were applied to the tendons of the left flexor carpi radialis and extensor carpi radialis. When the vibration frequency was the same between flexors and extensors, no participant perceived movement and no muscle activity was induced. When participants imagined flexing their wrists during tendon vibration, the velocity of perceptual flexion movement increased. Furthermore, muscle activity of the flexor increased only during motor imagery. These results demonstrate that kinesthetic perception can be induced during the combination of motor imagery and co-vibration, even with no experience of kinesthetic perception from an afferent input with co-vibration at the same frequency. Although motor responses were observed during combined co-vibration and motor imagery, no such motor responses were recorded during either co-vibration alone or motor imagery alone, suggesting that muscular responses during the combined condition are associated with kinesthetic perception. Thus, the present findings indicate that kinesthetic perception is influenced by the interaction between afferent input from muscle spindles and the efferent signals that underlie intentional movement. We propose that the physiological behavior resulting from kinesthetic perception affects the process of modifying agonist muscle activity, which will be investigated in a future study.
Allodynia mediated by C-tactile afferents in human hairy skin.
Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A
2011-08-15
We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s(−1))--known to excite CT fibres--was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected. Furthermore, allodynia was preserved in the adjacent non-anaesthetized skin. Conformingly, gentle brushing produced allodynia (at both brushing speeds) that persisted during the blockade of myelinated afferents. Prior to the induction and following cessation of muscle pain, all subjects reported vibration and brushing as non-painful (VAS = 0). These results demonstrate that CT fibres in hairy skin mediate allodynia, and that CT-mediated inputs have a pluripotent central effect.
Exercise with vibration dumb-bell enhances neuromuscular excitability measured using TMS.
Fowler, D E; Tok, M I; Colakoğlu, M; Bademkiran, F; Colakoğlu, Z
2010-09-01
The purpose of the study was to examine the effects of exercise without vibration and exercise with vibration (27 Hz) on the cortical silent period (CSP) and cortical motor threshold (CMT) measured using transcranial magnetic stimulation (TMS). In 22 university athletes, a circular coil attached to a TMS stimulator was applied over the contralateral motor cortex of the target forearm. Resting cortical motor thresholds for dominant and non-dominant extremities were measured for each participant. Then, 15 biceps curls (15 flexion and 15 extension movements) were performed with the dominant arm using a single vibration dumbbell with the vibration turned off. On a different day, the same biceps curl protocol was performed with the dumbbell vibrating at 27 Hz (2 mm amplitude). A supra-threshold TMS stimulus (1.5x CMT) was delivered while participants were voluntarily contracting the flexor digitorum sublimus muscle (30% MVC grip strength) to determine cortical silent periods before and after each upper extremity exercise protocol. Cortical motor thresholds were measured at rest and after the vibration exercise protocol. All subjects completed the study protocol as designed. After TMS, the CSP in the dominant (exercised) extremities increased after exercise without vibration from a resting (pre-exercise) mean of 57.3 ms to 70.4 ms (P<0.05) and after exercise with vibration, the CSP decreased to a mean of 49.4 ms (P<0.02). The CSP in the non-dominant (unexercised) extremities decreased from resting values of 75.6 ms to 69.3 ms (P=0.935) after the exercise-only protocol and decreased to 49.4 ms (P<0.01) after the vibration exercise protocol. The cortical motor threshold in exercised extremities decreased from a resting mean of 41.4 μV to a postvibration exercise mean of 38.6 μV (P<0.01). In non-exercised extremities, the CMT also decreased, from mean of 43.5 μV to 39.9 μV after the vibration-exercise (P<0.01). Vibration exercise enhances bilateral corticospinal excitability, as demonstrated by a shortened cortical silent period and lower cortical motor threshold in both exercised and non-exercised extremities.
Su, Anselm Ting; Maeda, Setsuo; Fukumoto, Jin; Darus, Azlan; Hoe, Victor C W; Miyai, Nobuyuki; Isahak, Marzuki; Takemura, Shigeki; Bulgiba, Awang; Yoshimasu, Kouichi; Miyashita, Kazuhisa
2013-07-01
The dose-response relationship for hand-transmitted vibration has been investigated extensively in temperate environments. Since the clinical features of hand-arm vibration syndrome (HAVS) differ between the temperate and tropical environment, we conducted this study to investigate the dose-response relationship of HAVS in a tropical environment. A total of 173 male construction, forestry and automobile manufacturing plant workers in Malaysia were recruited into this study between August 2011 and 2012. The participants were interviewed for history of vibration exposure and HAVS symptoms, followed by hand functions evaluation and vibration measurement. Three types of vibration doses-lifetime vibration dose (LVD), total operating time (TOT) and cumulative exposure index (CEI)-were calculated and its log values were regressed against the symptoms of HAVS. The correlation between each vibration exposure dose and the hand function evaluation results was obtained. The adjusted prevalence ratio for finger tingling and numbness was 3.34 (95% CI 1.27 to 8.98) for subjects with lnLVD≥20 ln m(2) s(-4) against those <16 ln m(2) s(-4). Similar dose-response pattern was found for CEI but not for TOT. No subject reported white finger. The prevalence of finger coldness did not increase with any of the vibration doses. Vibrotactile perception thresholds correlated moderately with lnLVD and lnCEI. The dose-response relationship of HAVS in a tropical environment is valid for finger tingling and numbness. The LVD and CEI are more useful than TOT when evaluating the dose-response pattern of a heterogeneous group of vibratory tools workers.
Strzalkowski, Nicholas D J; Triano, John J; Lam, Chris K; Templeton, Cale A; Bent, Leah R
2015-01-01
Across the foot sole, there are vibration and monofilament sensory differences despite an alleged even distribution of cutaneous afferents. Mechanical property differences across foot sole sites have been proposed to account for these differences. Vibration (VPT; 3 Hz, 40 Hz, 250 Hz), and monofilament (MF) perception threshold measurements were compared with skin hardness, epidermal thickness, and stretch response across five foot sole locations in young healthy adults (n = 22). Perceptual thresholds were expected to correlate with all mechanical property measurements to help address sensitivity differences between sites. Following this hypothesis, the MedArch was consistently found to be the thinnest and softest site and demonstrated the greatest sensitivity. Conversely, the Heel was found to be the thickest and hardest site, and was relatively insensitive across perceptual tests. Site differences were not observed for epidermal stretch response measures. Despite an apparent trend of elevated sensory threshold at harder and thicker sites, significant correlations between sensitivity measures and skin mechanical properties were not observed. Skin hardness and epidermal thickness appeared to have a negligible influence on VPT and minor influence on MF within this young healthy population. When normalized (% greater or smaller than subject mean) to the subject mean for each variable, significant positive correlations were observed between MF and skin hardness (R2 = 0.422, P < 0.0001) and epidermal thickness (R2 = 0.433, P < 0.0001) providing evidence that skin mechanics can influence MF threshold. In young healthy adults, differences in sensitivity are present across the foot sole, but cannot solely be accounted for by differences in the mechanical properties of the skin. PMID:26059035
Vibration perception threshold in relation to postural control and fall risk assessment in elderly.
de Mettelinge, Tine Roman; Calders, Patrick; Palmans, Tanneke; Vanden Bossche, Luc; Van Den Noortgate, Nele; Cambier, Dirk
2013-09-01
This study investigates (i) the potential discriminative role of a clinical measure of peripheral neuropathy (PN) in assessing postural performance and fall risk and (ii) whether the integration of a simple screening vibration perception threshold (VPT) for PN in any physical (fall risk) assessment among elderly should be recommended, even if they do not suffer from DM. One hundred and ninety-five elderly were entered in a four-group model: DM with PN (D+; n = 75), DM without PN (D-; n = 28), non-diabetic elderly with idiopathic PN (C+; n = 31) and non-diabetic elderly without PN (C-; n = 61). Posturographic sway parameters were captured during different static balance conditions (AMTI AccuGait, Watertown, MA). VPT, fall data, Mini-Mental State Examination and Clock Drawing Test were registered. Two-factor repeated-measures ANOVA was used to compare between groups and across balance conditions. The groups with PN demonstrated a strikingly comparable, though bigger sway, and a higher prospective fall incidence than their peers without PN. The indication of PN, irrespective of its cause, interferes with postural control and fall incidence. The integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. Implications for Rehabilitation The indication of peripheral neuropathy (PN), irrespective of its cause, interferes with postural control and fall incidence. Therefore, the integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. It might be useful to integrate somatosensory stimulation in rehabilitation programs designed for fall prevention.
Nishiwaki, Y; Maekawa, K; Ogawa, Y; Asukai, N; Minami, M; Omae, K
2001-11-01
Although the clinical manifestations of acute sarin poisoning have been reported in detail, no comprehensive study of the chronic physical and psychiatric effects of acute sarin poisoning has been carried out. To clarify the chronic effects of sarin on the nervous system, a cross-sectional epidemiologic study was conducted 3 years after the Tokyo subway sarin attack. Subjects consisted of the rescue team staff members and police officers who had worked at the disaster site. Subjects consisted of 56 male exposed subjects and 52 referent subjects matched for age and occupation. A neurobehavioral test, stabilometry, and measurement of vibration perception thresholds were performed, as well as psychometric tests to assess traumatic stress symptoms. The exposed group performed less well in the backward digit span test than the referent group in a dose-effect manner. This result was the same after controlling for possible confounding factors and was independent of traumatic stress symptoms. In other tests of memory function, except for the Benton visual retention test (mean correct answers), effects related to exposure were also suggested, although they were not statistically significant. In contrast, the dose-effect relationships observed in the neurobehavioral tests (psychomotor function) were unclear. None of the stabilometry and vibration perception threshold parameters had any relation to exposure. Our findings suggest the chronic decline of memory function 2 years and 10 months to 3 years and 9 months after exposure to sarin in the Tokyo subway attack, and further study is needed.
Nishiwaki, Y; Maekawa, K; Ogawa, Y; Asukai, N; Minami, M; Omae, K
2001-01-01
Although the clinical manifestations of acute sarin poisoning have been reported in detail, no comprehensive study of the chronic physical and psychiatric effects of acute sarin poisoning has been carried out. To clarify the chronic effects of sarin on the nervous system, a cross-sectional epidemiologic study was conducted 3 years after the Tokyo subway sarin attack. Subjects consisted of the rescue team staff members and police officers who had worked at the disaster site. Subjects consisted of 56 male exposed subjects and 52 referent subjects matched for age and occupation. A neurobehavioral test, stabilometry, and measurement of vibration perception thresholds were performed, as well as psychometric tests to assess traumatic stress symptoms. The exposed group performed less well in the backward digit span test than the referent group in a dose-effect manner. This result was the same after controlling for possible confounding factors and was independent of traumatic stress symptoms. In other tests of memory function, except for the Benton visual retention test (mean correct answers), effects related to exposure were also suggested, although they were not statistically significant. In contrast, the dose-effect relationships observed in the neurobehavioral tests (psychomotor function) were unclear. None of the stabilometry and vibration perception threshold parameters had any relation to exposure. Our findings suggest the chronic decline of memory function 2 years and 10 months to 3 years and 9 months after exposure to sarin in the Tokyo subway attack, and further study is needed. PMID:11713003
Salisbury, C M; Gillespie, R B; Tan, H Z; Barbagli, F; Salisbury, J K
2011-01-01
In this paper, we extend the concept of the contrast sensitivity function - used to evaluate video projectors - to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures.
Ye, Ying; Griffin, Michael J
2018-01-01
Thermotactile thresholds and vibrotactile thresholds are measured to assist the diagnosis of the sensorineural component of the hand-arm vibration syndrome (HAVS). This study investigates whether thermotactile and vibrotactile thresholds distinguish between fingers with and without numbness and tingling. In 60 males reporting symptoms of the hand-arm vibration syndrome, thermotactile thresholds for detecting hot and cold temperatures and vibrotactile thresholds at 31.5 and 125 Hz were measured on the index and little fingers of both hands. In fingers reported to suffer numbness or tingling, hot thresholds increased, cold thresholds decreased, and vibrotactile thresholds at both 31.5 and 125 Hz increased. With sensorineural symptoms on all three phalanges (i.e. numbness or tingling scores of 6), both thermotactile thresholds and both vibrotactile thresholds had sensitivities greater than 80% and specificities around 90%, with areas under the receiver operating characteristic curves around 0.9. There were correlations between all four thresholds, but cold thresholds had greater sensitivity and greater specificity on fingers with numbness or tingling on only the distal phalanx (i.e. numbness or tingling scores of 1) suggesting cold thresholds provide better indications of early sensorineural disorder. Thermotactile thresholds and vibrotactile thresholds can provide useful indications of sensorineural function in patients reporting symptoms of the sensorineural component of HAVS.
Aeroelastic Model of Vocal-Fold Vibrating Element for Studying the Phonation Threshold
NASA Astrophysics Data System (ADS)
Horáček, J.; Švec, J. G.
2002-10-01
An original theoretical model for vibration onset of the vocal folds in the air-flow coming from the human subglottal tract is designed, which allows studying the influence of the physical properties of the vocal folds (e.g., geometrical shape, mass, viscosity) on their vibration characteristics (such as the natural frequencies, mode shapes of vibration and the thresholds of instability). The mathematical model of the vocal fold is designed as a simplified dynamic system of two degrees of freedom (rotation and translation) vibrating on an elastic foundation in the wall of a channel conveying air. An approximate unsteady one-dimensional flow theory for the inviscid incompressible fluid is presented for the phonatory air-flow. A generally defined shape of the vocal-fold surface is considered for expressing the unsteady aerodynamic forces in the glottis. The parameters of the mechanical part of the model, i.e., the mass, stiffness and damping matrices, are related to the geometry and material density of the vocal folds as well as to the fundamental natural frequency and damping known from experiments. The coupled numerical solution yields the vibration characteristics (natural frequencies, damping and mode shapes of vibration), including the instability thresholds of the aeroelastic system. The vibration characteristics obtained from the coupled numerical solution of the system appear to be in reasonable qualitative agreement with the physiological data and clinical observations. The model is particularly suitable for studying the phonation threshold, i.e., the onset of vibration of the vocal folds.
Force illusions and drifts observed during muscle vibration.
Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L
2018-01-01
We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with combined perception of kinematic-kinetic variables and suggest that vibration leads to consistent shifts of the referent coordinate and, possibly, of coactivation command to the effector.
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
1990-01-01
Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.
Smith, Darren A; Saranga, Jacob; Pritchard, Andrew; Kommatas, Nikolaos A; Punnoose, Shinu Kovelal; Kale, Supriya Tukaram
2018-01-01
Mulligan's mobilisation-with-movement (MWM) techniques are proposed to achieve their clinical benefit via neurophysiological mechanisms. However, previous research has focussed on responses in the sympathetic nervous system only, and is not conclusive. An alternative measure of neurophysiological response to MWM is required to support or refute this mechanism of action. Recently, vibration threshold (VT) has been used to quantify changes in the sensory nervous system in patients experiencing musculoskeletal pain. To investigate the effect of a lateral glide MWM of the hip joint on vibration threshold compared to a placebo and control condition in asymptomatic volunteers. Fifteen asymptomatic volunteers participated in this single-blinded, randomised, within-subject, placebo, control design. Participants received each of three interventions in a randomised order; a lateral glide MWM of the hip joint into flexion, a placebo MWM, and a control intervention. Vibration threshold (VT) measures were taken at baseline and immediately after each intervention. Mean change in VT from baseline was calculated for each intervention and then analysed for between group differences using a one-way analysis of variance (ANOVA). A one-way ANOVA revealed no statistically significant differences between the three experimental conditions (P = 0.812). This small study found that a lateral glide MWM of the hip did not significantly change vibration threshold compared to a placebo and control intervention in an asymptomatic population. This study provides a method of using vibration threshold to investigate the potential neurophysiological effects of a manual therapy intervention that should be repeated in a larger, symptomatic population. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.
Louraki, M; Tsentidis, C; Kallinikou, D; Katsalouli, M; Kanaka-Gantenbein, C; Kafassi, N; Papathanasiou, A; Karavanaki, K
2014-07-01
To define the reproducibility of vibration perception thresholds (VPTs) and the possible associated factors, as an early index of peripheral diabetic neuropathy (PDN) in type 1 diabetes mellitus (T1DM) children and adolescents. A single examiner studied 118 T1DM subjects (aged 13.5±3.4 years) and 79 controls (aged 12.0±3.07 years). Glycaemic control was assessed with HbA1c levels. VPT was measured twice on upper and lower limbs, using a Biothesiometer. Concordance between the two VPT measurements was evaluated using the Cohen's Weighted Kappa statistic (Kappa=0.41-0.60→moderate concordance, Kappa=0.61-0.80→substantial concordance). T1DM children had significantly higher VPTs than controls at all sites (p=0.001), but with lower Kappa values (0.64-0.70). VPT values increased in parallel with HbA1c (a.<8%, b. 8-9.5%, c.>9.5%) and T1DM duration (a.<5 years, b.5.1-10, c.>10 years). However, Kappa values were lower in the groups with the poorest control (HbA1c>9.5%) (Kappa=0.54-0.76) or the longest T1DM duration (>10 years) (Kappa=0.49-0.71). Although VPTs increased with stature and male gender, no effect on VPT reproducibility was observed. However, obesity was associated with lower VPT values and poorer concordance. These findings suggest that the reproducibility of VPTs is lower in the high-risk patients for early subclinical PDN development, who need a regular follow-up. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Tactile perception of skin and skin cream by friction induced vibrations.
Ding, Shuyang; Bhushan, Bharat
2016-11-01
Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Su, Anselm Ting; Maeda, Setsuo; Fukumoto, Jin; Miyai, Nobuyuki; Isahak, Marzuki; Yoshioka, Atsushi; Nakajima, Ryuichi; Bulgiba, Awang; Miyashita, Kazuhisa
2014-01-01
This study aimed to explore the clinical characteristics of hand arm vibration syndrome (HAVS) in a group of tree fellers in a tropical environment. We examined all tree fellers and selected control subjects in a logging camp of central Sarawak for vibration exposure and presence of HAVS symptoms utilizing vibrotactile perception threshold test (VPT) and cold water provocation test (CWP). None of the subjects reported white finger. The tree fellers reported significantly higher prevalence of finger coldness as compared to the control subjects (OR=10.32, 95%CI=1.21-87.94). A lower finger skin temperature, longer fingernail capillary return time and higher VPT were observed among the tree fellers as compared to the control subjects in all fingers (effect size >0.5). The VPT following CWP of the tree fellers was significantly higher (repeated measures ANOVA p=0.002, partial η(2)=0.196) than the control subject. The A (8) level was associated with finger tingling, numbness and dullness (effect size=0.983) and finger coldness (effect size=0.524) among the tree fellers. Finger coldness and finger tingling, numbness and dullness are important symptoms for HAVS in tropical environment that may indicate vascular and neurological damage due to hand-transmitted vibration exposure.
Effects of whole body vibration on motor unit recruitment and threshold
Woledge, Roger C.; Martin, Finbarr C.; Newham, Di J.
2012-01-01
Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = −0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition. PMID:22096119
Effects of whole body vibration on motor unit recruitment and threshold.
Pollock, Ross D; Woledge, Roger C; Martin, Finbarr C; Newham, Di J
2012-02-01
Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.
The conventional tuning fork as a quantitative tool for vibration threshold.
Alanazy, Mohammed H; Alfurayh, Nuha A; Almweisheer, Shaza N; Aljafen, Bandar N; Muayqil, Taim
2018-01-01
This study was undertaken to describe a method for quantifying vibration when using a conventional tuning fork (CTF) in comparison to a Rydel-Seiffer tuning fork (RSTF) and to provide reference values. Vibration thresholds at index finger and big toe were obtained in 281 participants. Spearman's correlations were performed. Age, weight, and height were analyzed for their covariate effects on vibration threshold. Reference values at the fifth percentile were obtained by quantile regression. The correlation coefficients between CTF and RSTF values at finger/toe were 0.59/0.64 (P = 0.001 for both). Among covariates, only age had a significant effect on vibration threshold. Reference values for CTF at finger/toe for the age groups 20-39 and 40-60 years were 7.4/4.9 and 5.8/4.6 s, respectively. Reference values for RSTF at finger/toe for the age groups 20-39 and 40-60 years were 6.9/5.5 and 6.2/4.7, respectively. CTF provides quantitative values that are as good as those provided by RSTF. Age-stratified reference data are provided. Muscle Nerve 57: 49-53, 2018. © 2017 Wiley Periodicals, Inc.
Schneider, Torben; Solanky, Bhavana S.; Yiannakas, Marios C.; Altmann, Dan R.; Wheeler-Kingshott, Claudia A. M.; Peters, Amy L.; Day, Brian L.; Thompson, Alan J.; Ciccarelli, Olga
2015-01-01
Spinal neurodegeneration is an important determinant of disability progression in patients with primary progressive multiple sclerosis. Advanced imaging techniques, such as single-voxel 1H-magnetic resonance spectroscopy and q-space imaging, have increased pathological specificity for neurodegeneration, but are challenging to implement in the spinal cord and have yet to be applied in early primary progressive multiple sclerosis. By combining these imaging techniques with new clinical measures, which reflect spinal cord pathology more closely than conventional clinical tests, we explored the potential for spinal magnetic resonance spectroscopy and q-space imaging to detect early spinal neurodegeneration that may be responsible for clinical disability. Data from 21 patients with primary progressive multiple sclerosis within 6 years of disease onset, and 24 control subjects were analysed. Patients were clinically assessed on grip strength, vibration perception thresholds and postural stability, in addition to the Expanded Disability Status Scale, Nine Hole Peg Test, Timed 25-Foot Walk Test, Multiple Sclerosis Walking Scale-12, and Modified Ashworth Scale. All subjects underwent magnetic resonance spectroscopy and q-space imaging of the cervical cord and conventional brain and spinal magnetic resonance imaging at 3 T. Multivariate analyses and multiple regression models were used to assess the differences in imaging measures between groups and the relationship between magnetic resonance imaging measures and clinical scores, correcting for age, gender, spinal cord cross-sectional area, brain T2 lesion volume, and brain white matter and grey matter volume fractions. Although patients did not show significant cord atrophy when compared with healthy controls, they had significantly lower total N-acetyl-aspartate (mean 4.01 versus 5.31 mmol/l, P = 0.020) and glutamate-glutamine (mean 4.65 versus 5.93 mmol/l, P = 0.043) than controls. Patients showed an increase in q-space imaging-derived indices of perpendicular diffusivity in both the whole cord and major columns compared with controls (P < 0.05 for all indices). Lower total N-acetyl-aspartate was associated with higher disability, as assessed by the Expanded Disability Status Scale (coefficient = −0.41, 0.01 < P < 0.05), Modified Ashworth Scale (coefficient = −3.78, 0.01 < P < 0.05), vibration perception thresholds (coefficient = −4.37, P = 0.021) and postural sway (P < 0.001). Lower glutamate-glutamine predicted increased postural sway (P = 0.017). Increased perpendicular diffusivity in the whole cord and columns was associated with increased scores on the Modified Ashworth Scale, vibration perception thresholds and postural sway (P < 0.05 in all cases). These imaging findings indicate reduced structural integrity of neurons, demyelination, and abnormalities in the glutamatergic pathways in the cervical cord of early primary progressive multiple sclerosis, in the absence of extensive spinal cord atrophy. The observed relationship between imaging measures and disability suggests that early spinal neurodegeneration may underlie clinical impairment, and should be targeted in future clinical trials with neuroprotective agents to prevent the development of progressive disability. PMID:25863355
NASA Astrophysics Data System (ADS)
Huang, Dao-Ling; Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng
2017-02-01
We report a photodetachment and high-resolution photoelectron imaging study of cold deprotonated 2-hydroxypyrimidine anions, C4H3N2O-. Photodetachment spectroscopy reveals an excited dipole-bound state (DBS) of C4H3N2O- with a binding energy of 598 ± 5 cm-1 below the detachment threshold of 26,010 ± 5 cm-1. Twenty vibrational levels of the DBS are observed as resonances in the photodetachment spectrum, with three below the detachment threshold and seventeen above the threshold. By tuning the detachment laser to the above-threshold vibrational resonances, highly non-Franck-Condon photoelectron spectra are obtained. Nine fundamental vibrational frequencies are resolved, including six symmetry-forbidden modes. The 598 cm-1 binding energy for the DBS is quite high due to the large dipole moment of the C4H3N2Orad (>6 D). However, no evidence of a second DBS is observed below the detachment threshold.
Effects of footwear on plantar foot sensitivity: a study with Formula 1 shoes.
Schlee, Günther; Sterzing, Thorsten; Milani, Thomas L
2009-05-01
The aim of this study was to investigate the influence of Formula 1 footwear on the ability of the plantar foot to detect vibration stimuli. Twenty-five male subjects participated in the study. Five foot/shoe conditions were analysed (barefoot and four shoe conditions). Vibration thresholds were measured at three anatomical locations of the plantar foot (heel, first metatarsal head and hallux) at two frequencies (30 and 200 Hz). The results show a frequency-dependent influence of footwear on foot sensitivity. The comparison between barefoot and shod conditions showed lower thresholds (P < 0.01) for the barefoot condition at 30 Hz, whereas lower thresholds (P < 0.01) were found for all shoe conditions at 200 Hz compared to barefoot. Lower thresholds (P < 0.01) were measured at 200 Hz in comparison to 30 Hz in all experimental conditions. The shoe outsole material seems to facilitate the transmission of high-frequent vibration stimuli to the skin, resulting in better vibration sensitivity at 200 Hz when wearing Formula 1 shoes compared to barefoot.
Shibata, E; Kaneko, F
2013-04-29
The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Grini-Grandval, M N; Bingenheimer, S; Maunsell, R; Ouaknine, M; Giovanni, A
2002-01-01
The viscosity of the surface mucus of the vocal cords is one of the important elements for good laryngeal functioning. It has been demonstrated that inhalation of hydrated air increases the phonatory threshold pressure by decreasing viscosity of the mucus (1) leading to a more regular vibration that can be appreciated by jitter (2). In an attempt to correlate the concepts of tissue viscosity and surface mucus considering the theoretical model of vibration we measured the phonatory threshold pressure in 6 healthy female subjects before and after aerosol treatment. We were able to demonstrate that the pressure threshold is lower (3.15 hPa) after aerosol treatment than before (3.79 hPa) and this was statistically significant (p: 0.041). The discussion is based on this decrease of mucus viscosity applied to the physiological concepts necessary to understand glottic vibration.
Design of a robotic device for assessment and rehabilitation of hand sensory function.
Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger
2011-01-01
This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. © 2011 IEEE
A comparison of hand-arm vibration syndrome between Malaysian and Japanese workers.
Su, Anselm Ting; Fukumoto, Jin; Darus, Azlan; Hoe, Victor C W; Miyai, Nobuyuki; Isahak, Marzuki; Takemura, Shigeki; Bulgiba, Awang; Yoshimasu, Kouichi; Maeda, Setsuo; Miyashita, Kazuhisa
2013-01-01
The aim of this study was to investigate the clinical characteristics of HAVS in a tropical environment in comparison with a temperate environment. We conducted a series medical examinations among the forestry, construction and automobile industry workers in Malaysia adopting the compulsory medical examination procedure used by Wakayama Medical University for Japanese vibratory tools workers. We matched the duration of vibration exposure and compared our results against the Japanese workers. We also compared the results of the Malaysian tree fellers against a group of symptomatic Japanese tree fellers diagnosed with HAVS. Malaysian subjects reported a similar prevalence of finger tingling, numbness and dullness (Malaysian=25.0%, Japanese=21.5%, p=0.444) but had a lower finger skin temperature (FST) and higher vibrotactile perception threshold (VPT) values as compared with the Japanese workers. No white finger was reported in Malaysian subjects. The FST and VPT of the Malaysian tree fellers were at least as bad as the Japanese tree fellers despite a shorter duration (mean difference=20.12 years, 95%CI=14.50, 25.40) of vibration exposure. Although the vascular disorder does not manifest clinically in the tropical environment, the severity of HAVS can be as bad as in the temperate environment with predominantly neurological disorder. Hence, it is essential to formulate national legislation for the control of the occupational vibration exposure.
Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Brandt, Christian; Madsen, Peter Teglberg
2012-01-15
Snakes lack both an outer ear and a tympanic middle ear, which in most tetrapods provide impedance matching between the air and inner ear fluids and hence improve pressure hearing in air. Snakes would therefore be expected to have very poor pressure hearing and generally be insensitive to airborne sound, whereas the connection of the middle ear bone to the jaw bones in snakes should confer acute sensitivity to substrate vibrations. Some studies have nevertheless claimed that snakes are quite sensitive to both vibration and sound pressure. Here we test the two hypotheses that: (1) snakes are sensitive to sound pressure and (2) snakes are sensitive to vibrations, but cannot hear the sound pressure per se. Vibration and sound-pressure sensitivities were quantified by measuring brainstem evoked potentials in 11 royal pythons, Python regius. Vibrograms and audiograms showed greatest sensitivity at low frequencies of 80-160 Hz, with sensitivities of -54 dB re. 1 m s(-2) and 78 dB re. 20 μPa, respectively. To investigate whether pythons detect sound pressure or sound-induced head vibrations, we measured the sound-induced head vibrations in three dimensions when snakes were exposed to sound pressure at threshold levels. In general, head vibrations induced by threshold-level sound pressure were equal to or greater than those induced by threshold-level vibrations, and therefore sound-pressure sensitivity can be explained by sound-induced head vibration. From this we conclude that pythons, and possibly all snakes, lost effective pressure hearing with the complete reduction of a functional outer and middle ear, but have an acute vibration sensitivity that may be used for communication and detection of predators and prey.
Effect of vibration duration on human discomfort. [passenger comfort and random vibration
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Dempsey, T. K.; Leatherwood, J. D.
1978-01-01
The duration effects of random vertical vibration on passenger discomfort were studied in a simulated section of an aircraft cabin configured to seat six persons in tourist-class style. Variables of the study included time of exposure (0.25 min to 60 min) and the rms amplitude of vibration (0.025g to 0.100g). The vibrations had a white noise spectrum with a bandwidth of 10 Hz centered at 5 Hz. Data indicate that the discomfort threshold occurred at an rms vertical acceleration level of 0.027g for all durations of vibration. However, for acceleration levels that exceeded the discomfort threshold, a systematic decrease in discomfort occurred as a function of increasing duration of vibration. For the range of accelerations used, the magnitude of the discomfort decrement was shown to be independent of acceleration level. The results suggest that discomfort from vertical vibration applied in the frequency range at which humans are most sensitive decreases with longer exposure, which is the opposite of the recommendation of the International Standard ISO 2631-1974 (E) Guide for the Evaluation of Human Exposure to Whole-Body Vibration.
Pettorossi, Vito Enrico; Panichi, Roberto; Botti, Fabio Massimo; Biscarini, Andrea; Filippi, Guido Maria; Schieppati, Marco
2015-10-01
To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to previously experienced position of head with respect to trunk. Tonic proprioceptive inflow, as might occur as a consequence of enduring or permanent head postures, can induce adaptive plastic changes in vestibular-dependent motion sensitiveness. These changes might be counteracted by vibration of selected neck muscles. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Impacts of selected stimulation patterns on the perception threshold in electrocutaneous stimulation
2011-01-01
Background Consistency is one of the most important concerns to convey stable artificially induced sensory feedback. However, the constancy of perceived sensations cannot be guaranteed, as the artificially evoked sensation is a function of the interaction of stimulation parameters. The hypothesis of this study is that the selected stimulation parameters in multi-electrode cutaneous stimulation have significant impacts on the perception threshold. Methods The investigated parameters included the stimulated location, the number of active electrodes, the number of pulses, and the interleaved time between a pair of electrodes. Biphasic, rectangular pulses were applied via five surface electrodes placed on the forearm of 12 healthy subjects. Results Our main findings were: 1) the perception thresholds at the five stimulated locations were significantly different (p < 0.0001), 2) dual-channel simultaneous stimulation lowered the perception thresholds and led to smaller variance in perception thresholds compared to single-channel stimulation, 3) the perception threshold was inversely related to the number of pulses, and 4) the perception threshold increased with increasing interleaved time when the interleaved time between two electrodes was below 500 μs. Conclusions To maintain a consistent perception threshold, our findings indicate that dual-channel simultaneous stimulation with at least five pulses should be used, and that the interleaved time between two electrodes should be longer than 500 μs. We believe that these findings have implications for design of reliable sensory feedback codes. PMID:21306616
Thermal perception thresholds among workers in a cold climate.
Burström, Lage; Björ, Bodil; Nilsson, Tohr; Pettersson, Hans; Rödin, Ingemar; Wahlström, Jens
2017-10-01
To investigate whether exposure to cold could influence the thermal perception thresholds in a working population. This cross-sectional study was comprised of 251 males and females and was carried out at two mines in the northern part of Norway and Sweden. The testing included a baseline questionnaire, a clinical examination and measurements of thermal perception thresholds, on both hands, the index (Digit 2) and little (Digit 5) fingers, for heat and cold. The thermal perception thresholds were affected by age, gender and test site. The thresholds were impaired by experiences of frostbite in the fingers and the use of medication that potentially could affect neurosensory functions. No differences were found between the calculated normative values for these workers and those in other comparative investigations conducted in warmer climates. The study provided no support for the hypothesis that living and working in cold climate will lead to impaired thermal perception thresholds. Exposure to cold that had caused localized damage in the form of frostbite was shown to lead to impaired thermal perception.
Neck Proprioception Shapes Body Orientation and Perception of Motion
Pettorossi, Vito Enrico; Schieppati, Marco
2014-01-01
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject’s mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes. PMID:25414660
Neck proprioception shapes body orientation and perception of motion.
Pettorossi, Vito Enrico; Schieppati, Marco
2014-01-01
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Gill, H K; Yadav, S B; Ramesh, V; Bhatia, E
2014-01-01
Diabetic peripheral neuropathy (DPN) predisposes to foot ulceration and gangrene. It has been reported that DPN is lower in Indians relative to Caucasians. Studies among recent onset patients with type 2 diabetes mellitus (T2DM) are very few. We studied the prevalence and risk factors of DPN in patients with newly diagnosed T2DM. We prospectively studied 195 consecutive patients over age 30 with a duration of diabetes ≤6 months. All underwent a clinical and biochemical evaluation and were screened for DPN using Neuropathy Symptom Score (NSS) and Neuropathy Disability Score (NDS) as well as the vibration perception threshold using a biothesiometer. We compared the prevalence of peripheral neuropathy (PN) in 75 age- and sex-matched healthy controls. The cases had a mean age of 47.6 ± 10.2 years (59% males) and duration of symptoms of 5.9 ± 8.2 months prior to presentation. The overall prevalence of DPN was 29.2% [95% CI 22.8-35.7]. PN among matched control was 10.7% (95% CI 3.5-17.8). The prevalence of DPN showed an increasing trend with age (trend chi-square 11.8, P = 0.001). Abnormal vibration perception threshold was present in 43.3% (95% CI 36.3-50.3) of cases and had a significant correlation with NDS (P = 0.000). Abnormal monofilament testing was present in 6.1% of cases (95% CI 2.7- 9.5). A logistic regression analysis showed that DPN was independently associated with age (P = 0.002) and duration of diabetes prior to presentation (P = 0.02) but not with body mass index, plasma glucose, or HbA1c. Our study showed high prevalence of PN in recently diagnosed patients with T2DM, which was independently associated with age and duration of symptoms of diabetes prior to the diagnosis. Screening for DPN at diagnosis of diabetes is warranted, especially among older subjects.
Goel, Amit; Shivaprasad, Channabasappa; Kolly, Anish; Sarathi H A, Vijaya; Atluri, Sridevi
2017-01-01
The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 μS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 μS, VPT testing > 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.
Kolly, Anish; Sarathi H. A., Vijaya; Atluri, Sridevi
2017-01-01
The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 μS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 μS, VPT testing > 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN. PMID:28880907
Kelly, Carolyn; Fleischer, Adam; Yalla, Sai; Grewal, Gurtej S.; Albright, Rachel; Berns, Dana; Crews, Ryan; Najafi, Bijan
2016-01-01
Background Patients with diabetic peripheral neuropathy (DPN) demonstrate gait alterations compared with their nonneuropathic counterparts, which may place them at increased risk for falling. However, it is uncertain whether patients with DPN also have a greater fear of falling. Methods A voluntary group of older adults with diabetes was asked to complete a validated fear of falling questionnaire (Falls Efficacy Scale International [FES-I]) and instructed to walk 20 m in their habitual shoes at their habitual speed. Spatiotemporal parameters of gait (eg, stride velocity and gait speed variability) were collected using a validated body-worn sensor technology. Balance during walking was also assessed using sacral motion in the mediolateral and anteroposterior directions. The level of DPN was quantified using vibration perception threshold from the great toe. Results Thirty-four diabetic patients (mean ± SD: age, 67.6 ± 9.2 years; body mass index, 30.9 ± 5.7; hemoglobin A1c, 7.9% ± 2.3%) with varying levels of neuropathy (mean ± SD vibration perception threshold, 34.6 ± 22.9 V) were recruited. Most participants (28 of 34, 82%) demonstrated moderate to high concern about falling based on their FES-I score. Age (r = 0.6), hemoglobin A1c level (r = 0.39), number of steps required to reach steady-state walking (ie, gait initiation) (r = 0.4), and duration of double support (r = 0.44) were each positively correlated with neuropathy severity (P < .05). Participants with a greater fear of falling also walked with slower stride velocities and shorter stride lengths (r = −0.3 for both, P < .05). However, no correlation was observed between level of DPN and the participant’s actual concern about falling. Conclusions Fear of falling is prevalent in older adults with diabetes mellitus but is unrelated to level of neuropathy. PMID:24297984
NASA Astrophysics Data System (ADS)
Teplukhin, Alexander; Babikov, Dmitri
2016-09-01
A method for calculations of rotational-vibrational states of triatomic molecules up to dissociation threshold (and scattering resonances above it) is devised, that combines hyper-spherical coordinates, sequential diagonalization-truncation procedure, optimized grid DVR, and complex absorbing potential. Efficiency and accuracy of the method and new code are tested by computing the spectrum of ozone up to dissociation threshold, using two different potential energy surfaces. In both cases good agreement with results of previous studies is obtained for the lower energy states localized in the deep (˜10 000 cm-1) covalent well. Upper part of the bound state spectrum, within 600 cm-1 below dissociation threshold, is also computed and is analyzed in detail. It is found that long progressions of symmetric-stretching and bending states (up to 8 and 11 quanta, respectively) survive up to dissociation threshold and even above it, whereas excitations of the asymmetric-stretching overtones couple to the local vibration modes, making assignments difficult. Within 140 cm-1 below dissociation threshold, large-amplitude vibrational states of a floppy complex O⋯O2 are formed over the shallow van der Waals plateau. These are assigned using two local modes: the rocking-motion and the dissociative-motion progressions, up to 6 quanta in each, both with frequency ˜20 cm-1. Many of these plateau states are mixed with states of the covalent well. Interestingly, excitation of the rocking-motion helps keeping these states localized within the plateau region, by raising the effective barrier.
[Occupational exposure to hand-transmitted vibration in Poland].
Harazin, Barbara; Zieliński, Grzegorz
2004-01-01
Occupational exposure to hand transmitted vibration may cause disorders in upper extremities known as hand-arm vibration syndrome. Therefore it is essential to know the sources of vibration, occupational groups exposed to vibration and the number of exposed workers. The aim of the study was to estimate the number of men and women exposed to hand-transmitted vibration in Poland. The completed questionnaires were obtained from 265 (80%) sanitary inspection stations. They included questions on: the name of workplaces, the name and the type of vibration sources, workers' gender, the number of workers exposed to vibration, indicating the extent of exposure measured against the three threshold limit values (< 0.5 TLV; 0.5 < TLV < 1 and > 1 TLV), and the number of workers exposed to hand-transmitted vibration not documented by measurements in a particular workplaces, indicating one of the three possible kinds of exposure (occasional, periodical and constant). The questionnaire data were based on measurements and analyses performed in 1997-2000. The results of the study showed that vibrating tools used by grinders, fitters, locksmiths, rammers, road workers, carpenters and smiths proved to be the most frequent sources of hand-transmitted vibration. It was revealed that 78.6% of operators of these tools were exposed to vibration exceeding 1 TLV. The study also indicated that 17,000 workers, including 1700 women, were exposed to vibration exceeding the threshold limit values.
Abdel-Aziz, Khaled; Schneider, Torben; Solanky, Bhavana S; Yiannakas, Marios C; Altmann, Dan R; Wheeler-Kingshott, Claudia A M; Peters, Amy L; Day, Brian L; Thompson, Alan J; Ciccarelli, Olga
2015-06-01
Spinal neurodegeneration is an important determinant of disability progression in patients with primary progressive multiple sclerosis. Advanced imaging techniques, such as single-voxel (1)H-magnetic resonance spectroscopy and q-space imaging, have increased pathological specificity for neurodegeneration, but are challenging to implement in the spinal cord and have yet to be applied in early primary progressive multiple sclerosis. By combining these imaging techniques with new clinical measures, which reflect spinal cord pathology more closely than conventional clinical tests, we explored the potential for spinal magnetic resonance spectroscopy and q-space imaging to detect early spinal neurodegeneration that may be responsible for clinical disability. Data from 21 patients with primary progressive multiple sclerosis within 6 years of disease onset, and 24 control subjects were analysed. Patients were clinically assessed on grip strength, vibration perception thresholds and postural stability, in addition to the Expanded Disability Status Scale, Nine Hole Peg Test, Timed 25-Foot Walk Test, Multiple Sclerosis Walking Scale-12, and Modified Ashworth Scale. All subjects underwent magnetic resonance spectroscopy and q-space imaging of the cervical cord and conventional brain and spinal magnetic resonance imaging at 3 T. Multivariate analyses and multiple regression models were used to assess the differences in imaging measures between groups and the relationship between magnetic resonance imaging measures and clinical scores, correcting for age, gender, spinal cord cross-sectional area, brain T2 lesion volume, and brain white matter and grey matter volume fractions. Although patients did not show significant cord atrophy when compared with healthy controls, they had significantly lower total N-acetyl-aspartate (mean 4.01 versus 5.31 mmol/l, P = 0.020) and glutamate-glutamine (mean 4.65 versus 5.93 mmol/l, P = 0.043) than controls. Patients showed an increase in q-space imaging-derived indices of perpendicular diffusivity in both the whole cord and major columns compared with controls (P < 0.05 for all indices). Lower total N-acetyl-aspartate was associated with higher disability, as assessed by the Expanded Disability Status Scale (coefficient = -0.41, 0.01 < P < 0.05), Modified Ashworth Scale (coefficient = -3.78, 0.01 < P < 0.05), vibration perception thresholds (coefficient = -4.37, P = 0.021) and postural sway (P < 0.001). Lower glutamate-glutamine predicted increased postural sway (P = 0.017). Increased perpendicular diffusivity in the whole cord and columns was associated with increased scores on the Modified Ashworth Scale, vibration perception thresholds and postural sway (P < 0.05 in all cases). These imaging findings indicate reduced structural integrity of neurons, demyelination, and abnormalities in the glutamatergic pathways in the cervical cord of early primary progressive multiple sclerosis, in the absence of extensive spinal cord atrophy. The observed relationship between imaging measures and disability suggests that early spinal neurodegeneration may underlie clinical impairment, and should be targeted in future clinical trials with neuroprotective agents to prevent the development of progressive disability. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human Response to Aircraft-Noise-Induced Building Vibration
NASA Technical Reports Server (NTRS)
Cawthorn, J. M.; Dempsey, T. K.; DeLoach, R.
1978-01-01
The effects of noise induced building structure vibration and the rattle of objects on human response to aircraft flyover noise were investigated in a series of studies conducted in both the field and the laboratory. The subjective detection thresholds for vibration and rattle were determined as well as the effect of vibration and rattle upon aircraft noise annoyance.
NASA Astrophysics Data System (ADS)
Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng
2017-07-01
We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.
[Short-term memory characteristics of vibration intensity tactile perception on human wrist].
Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo
2014-12-25
In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.
Rotor-to-stator rub vibration in centrifugal compressor
NASA Technical Reports Server (NTRS)
Gao, J. J.; Qi, Q. M.
1985-01-01
One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented.
Balancing with Vibration: A Prelude for “Drift and Act” Balance Control
Milton, John G.; Ohira, Toru; Cabrera, Juan Luis; Fraiser, Ryan M.; Gyorffy, Janelle B.; Ruiz, Ferrin K.; Strauss, Meredith A.; Balch, Elizabeth C.; Marin, Pedro J.; Alexander, Jeffrey L.
2009-01-01
Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical vibrations at the fingertip (0.001 m, 15–50 Hz). High speed motion capture measurements in three dimensions demonstrate that vibration does not shorten the neural latency for stick balancing or change the distribution of the changes in speed made by the fingertip during stick balancing, but does decrease the amplitude of the fluctuations in the relative positions of the fingertip and the tip of the stick in the horizontal plane, A(x,y). The findings are interpreted in terms of a time-delayed “drift and act” control mechanism in which controlling movements are made only when controlled variables exceed a threshold, i.e. the stick survival time measures the time to cross a threshold. The amplitude of the oscillations produced by this mechanism can be decreased by parametric excitation. It is shown that a plot of the logarithm of the vibration-induced increase in stick balancing skill, a measure of the mean first passage time, versus the standard deviation of the A(x,y) fluctuations, a measure of the distance to the threshold, is linear as expected for the times to cross a threshold in a stochastic dynamical system. These observations suggest that the balanced state represents a complex time–dependent state which is situated in a basin of attraction that is of the same order of size. The fact that vibration amplitude can benefit balance control raises the possibility of minimizing risk of falling through appropriate changes in the design of footwear and roughness of the walking surfaces. PMID:19841741
Vibrational Mode-Specific Autodetachment and Coupling of CH2CN-
NASA Astrophysics Data System (ADS)
Lyle, Justin; Mabbs, Richard
2017-06-01
The Cyanomethyl Anion, CH_{2}CN-, and neutral radical have been studied extensively, with several findings of autodetachment about the totally symmetric transition, as well as high resolution experiments revealing symmetrically forbidden and weak vibrational features. We report photoelectron spectra using the Velocity-Mapped Imaging Technique in 1-2 \\wn increments over a range of 13460 to 15384 \\wn that has not been previously examined. These spectra include excitation of the ground state cyanomethyl anion into the direct detachment thresholds of previously reported vibrational modes for the neutral radical. Significant variations from Franck-Condon behavior were observed in the branching ratios for resolved vibrational features for excitation in the vicinity of the thresholds involving the νb{3} and νb{5} modes. These are consistent with autodetachment from rovibrational levels of a dipole bound state acting as a resonance in the detachment continuum. The autodetachment channels involve single changes in vibrational quantum number, consistent with the vibrational propensity rule but in some cases reveal relaxation to a different vibrational mode indicating coupling between the modes and/or a breakdown of the normal mode approximation.
Dynamic Characteristics and Human Perception of Vibration Aboard a Military Propeller Aircraft
2007-09-01
a significant reduction in the X-axis seat pan vibration as compared to the original operational seat cushion at the blade passage frequency ( BPF ...system characteristics at higher frequencies. A body region perception survey suggested that the subjects were most sensitive to the BPF component of...perception of the exposure. Current human exposure guidelines may not optimally reflect these relationships for assessing higher frequency propeller
Influence of surgical gloves on haptic perception thresholds.
Hatzfeld, Christian; Dorsch, Sarah; Neupert, Carsten; Kupnik, Mario
2018-02-01
Impairment of haptic perception by surgical gloves could reduce requirements on haptic systems for surgery. While grip forces and manipulation capabilities were not impaired in previous studies, no data is available for perception thresholds. Absolute and differential thresholds (20 dB above threshold) of 24 subjects were measured for frequencies of 25 and 250 Hz with a Ψ-method. Effects of wearing a surgical glove, moisture on the contact surface and subject's experience with gloves were incorporated in a full-factorial experimental design. Absolute thresholds of 12.8 dB and -29.6 dB (means for 25 and 250 Hz, respectively) and differential thresholds of -12.6 dB and -9.5 dB agree with previous studies. A relevant effect of the frequency on absolute thresholds was found. Comparisons of glove- and no-glove-conditions did not reveal a significant mean difference. Wearing a single surgical glove does not affect absolute and differential haptic perception thresholds. Copyright © 2017 John Wiley & Sons, Ltd.
Hockett, Paul; Staniforth, Michael; Reid, Katharine L
2010-10-28
In this article we present photoelectron spectra and angular distributions in which ion rotational states are resolved. This data enables the comparison of direct and threshold photoionization techniques. We also present angle-resolved photoelectron signals at different total energies, providing a method to scan the structure of the continuum in the near-threshold region. Finally, we have studied the influence of vibrational excitation on the photoionization dynamics.
The sensitivity of the sole of the foot in patients with Morbus Parkinson.
Prätorius, B; Kimmeskamp, S; Milani, T L
2003-08-07
The sensory input of the foot has an important influence on balance. In patients with Morbus Parkinson (PD-patients) balance control is often impaired. Therefore, the aim of this study was to quantify the sensitivity of the plantar foot in PD-patients. Five sites of the plantar foot were examined in 24 PD-patients and in 20 controls using Semmes-Weinstein Monofilaments for touch pressure and a vibration-exciter (30 Hz) for vibration. The results show significantly higher thresholds in PD-patients. For each tested location (except the heel) the thresholds are at least twice as high as in controls. Moreover, this study proved the correlation between motor and somatosensory systems: the stronger the motor deficiencies in PD-patients (Unified Parkinson's Disease Rating System score) the higher the sensitivity thresholds for vibration. In conclusion, reduced sensitivity of the plantar foot may contribute to impaired balance control.
Modulation of soleus corticospinal excitability during Achilles tendon vibration.
Lapole, Thomas; Temesi, John; Arnal, Pierrick J; Gimenez, Philippe; Petitjean, Michel; Millet, Guillaume Y
2015-09-01
Soleus (SOL) corticospinal excitability has been reported to increase during Achilles tendon vibration. The aim of the present study was to further investigate SOL corticospinal excitability and elucidate the changes to intracortical mechanisms during Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the SOL by transcranial magnetic stimulation (TMS) of the corresponding motor cortical area of the leg with and without 50-Hz Achilles tendon vibration. SOL input-output curves were determined. Paired-pulse protocols were also performed to investigate short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) by conditioning test TMS pulses with sub-threshold TMS pulses at inter-stimulus intervals of 3 and 13 ms, respectively. During Achilles tendon vibration, motor threshold was lower than in the control condition (43 ± 13 vs. 49 ± 11 % of maximal stimulator output; p = 0.008). Input-output curves were also influenced by vibration, i.e. there was increased maximal MEP amplitude (0.694 ± 0.347 vs. 0.268 ± 0.167 mV; p < 0.001), decreased TMS intensity to elicit a MEP of half the maximal MEP amplitude (100 ± 13 vs. 109 ± 9 % motor threshold; p = 0.009) and a strong tendency for decreased slope constant (0.076 ± 0.04 vs. 0.117 ± 0.04; p = 0.068). Vibration reduced ICF (98 ± 61 vs. 170 ± 105 % of test MEP amplitude; p = 0.05), but had no effect on SICI (53 ± 26 vs. 48 ± 22 % of test MEP amplitude; p = 0.68). The present results further document the increased vibration-induced corticospinal excitability in the soleus muscle and suggest that this increase is not mediated by changes in SICI or ICF.
Gold, J E; Punnett, L; Cherniack, M; Wegman, D H
2005-01-01
Upper extremity musculoskeletal disorders (UEMSDs) comprise a large proportion of work-related illnesses in the USA. Physical risk factors including manual force and segmental vibration have been associated with UEMSDs. Reduced sensitivity to vibration in the fingertips (a function of nerve integrity) has been found in those exposed to segmental vibration, to hand force, and in office workers. The objective of this study was to determine whether an association exists between digital vibration thresholds (VTs) and exposure to ergonomic stressors in automobile manufacturing. Interviews and physical examinations were conducted in a cross-sectional survey of workers (n = 1174). In multivariable robust regression modelling, associations with workers' estimates of ergonomic stressors stratified on tool use were determined. VTs were separately associated with hand force, vibration as felt through the floor (whole body vibration), and with an index of multiple exposures in both tool users and non-tool users. Additional associations with contact stress and awkward upper extremity postures were found in tool users. Segmental vibration was not associated with VTs. Further epidemiologic and laboratory studies are needed to confirm the associations found. The association with self-reported whole body vibration exposure suggests a possible sympathetic nervous system effect, which remains to be explored.
Marginally perceptible outcome feedback, motor learning and implicit processes.
Masters, Rich S W; Maxwell, Jon P; Eves, Frank F
2009-09-01
Participants struck 500 golf balls to a concealed target. Outcome feedback was presented at the subjective or objective threshold of awareness of each participant or at a supraliminal threshold. Participants who received fully perceptible (supraliminal) feedback learned to strike the ball onto the target, as did participants who received feedback that was only marginally perceptible (subjective threshold). Participants who received feedback that was not perceptible (objective threshold) showed no learning. Upon transfer to a condition in which the target was unconcealed, performance increased in both the subjective and the objective threshold condition, but decreased in the supraliminal condition. In all three conditions, participants reported minimal declarative knowledge of their movements, suggesting that deliberate hypothesis testing about how best to move in order to perform the motor task successfully was disrupted by the impoverished disposition of the visual outcome feedback. It was concluded that sub-optimally perceptible visual feedback evokes implicit processes.
Hearing at low and infrasonic frequencies.
Møller, H; Pedersen, C S
2004-01-01
The human perception of sound at frequencies below 200 Hz is reviewed. Knowledge about our perception of this frequency range is important, since much of the sound we are exposed to in our everyday environment contains significant energy in this range. Sound at 20-200 Hz is called low-frequency sound, while for sound below 20 Hz the term infrasound is used. The hearing becomes gradually less sensitive for decreasing frequency, but despite the general understanding that infrasound is inaudible, humans can perceive infrasound, if the level is sufficiently high. The ear is the primary organ for sensing infrasound, but at levels somewhat above the hearing threshold it is possible to feel vibrations in various parts of the body. The threshold of hearing is standardized for frequencies down to 20 Hz, but there is a reasonably good agreement between investigations below this frequency. It is not only the sensitivity but also the perceived character of a sound that changes with decreasing frequency. Pure tones become gradually less continuous, the tonal sensation ceases around 20 Hz, and below 10 Hz it is possible to perceive the single cycles of the sound. A sensation of pressure at the eardrums also occurs. The dynamic range of the auditory system decreases with decreasing frequency. This compression can be seen in the equal-loudness-level contours, and it implies that a slight increase in level can change the perceived loudness from barely audible to loud. Combined with the natural spread in thresholds, it may have the effect that a sound, which is inaudible to some people, may be loud to others. Some investigations give evidence of persons with an extraordinary sensitivity in the low and infrasonic frequency range, but further research is needed in order to confirm and explain this phenomenon.
Ahn, Ryeok; Yoo, Cheol-In; Lee, Hun; Sim, Chang-Sun; Sung, Joo Hyun; Yoon, Jae-Kook; Shin, Song-Woo
2013-10-01
The purpose of this study was to describe normative data for the neuromuscular assessments of the hand-arm vibration syndrome (HAVS) in Korean. Data for the vibrotactile perception threshold (VPT) at three frequencies (31.5, 125, and 250 Hz), the hand grip strength (HGS), the finger pinch strength (FPS), the finger tapping test, and the Purdue pegboard tests were collected from 120 male office workers aged 30-59 years with no prior history of regular use of handheld vibrating tools. The collected data were compared with the results of a similar study of shipbuilding workers in order to investigate the diagnostic utility of clinical test for HAVS. The mean VPT values indicate that no significant differences were observed between the dominant and non-dominant hands or between the index and little fingers. The age group of 30s was highly sensitive to vibration input with a peak in sensitivity at 125 Hz among all age groups. In neuromuscular performance, dominant hands are usually more accurate, dexterous, and functionally quicker than non-dominant hands. The index finger was superior to the little finger in the finger tapping counts (p < 0.05). Also, FPS was greater in the index finger than in the middle finger (p < 0.05). The HGS of dominant hands was significantly stronger than that of non-dominant hands (p < 0.05). When the normative data were compared with the data of shipyard workers exposed to vibration, there were statistically significant differences in VPT and neuromuscular functions. The current data can be used to evaluate HAVS in Korean male workers. Age is an important factor for VPT.
Concorde noise-induced building vibrations, John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Miller, W. T.; Ward, D. W.
1978-01-01
The outdoor/indoor noise levels and associated vibration levels resulting from aircraft and nonaircraft events were recorded at eight homesites and a school. In addition, limited subjective tests were conducted to examine the human detection/annoyance thresholds for building vibration and rattle caused by aircraft noise. Presented herein are the majority of the window and wall vibration data recorded during Concorde and subsonic aircraft overflights.
Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.
Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon
2017-01-01
The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.
Kyriakareli, Artemis; Cousins, Sian; Pettorossi, Vito E; Bronstein, Adolfo M
2013-10-02
Transcranial direct current stimulation (tDCS) was used in 17 normal individuals to modulate vestibulo-ocular reflex (VOR) and self-motion perception rotational thresholds. The electrodes were applied over the temporoparietal junction bilaterally. Both vestibular nystagmic and perceptual thresholds were increased during as well as after tDCS stimulation. Body rotation was labeled as ipsilateral or contralateral to the anode side, but no difference was observed depending on the direction of rotation or hemisphere polarity. Threshold increase during tDCS was greater for VOR than for motion perception. 'Sham' stimulation had no effect on thresholds. We conclude that tDCS produces an immediate and sustained depression of cortical regions controlling VOR and movement perception. Temporoparietal areas appear to be involved in vestibular threshold modulation but the differential effects observed between VOR and perception suggest a partial dissociation between cortical processing of reflexive and perceptual responses.
Zhao, Xue-hong; Fan, Xiao-li; Song, Xin-ai; Shi, Lei
2011-09-01
To investigate the effects of 100 Hz sinusoidal vibration on H reflex and M wave in rat soleus muscle following immobilization. The immobilization of rat soleus muscle was induced as a disuse muscle model, and 100 Hz sinusoidal vibration was generated by a vibrator and applied to the immobilized soleus muscle, then the changes of H reflex and M wave in muscle were observed after 14 d. Compared to control, after 14 d of immobilization M(max) in soleus muscle decreased (P<0.01), stimulus threshold and S(max) increased (P<0.01); Hmax and H(max)/M(max) decreased (P<0.05, S(max) increased (P<0.05). Compared to immobilized soleus muscle, after 14 d of immobilization with 100 Hz sinusoidal vibration, the M(max) increased(P<0.01), stimulus threshold and S(Mmax) decreased (P<0.05), H(max) (P<0.01) increased and H(max)/M(max) increased (P<0.05). 100 Hz sinusoidal vibration plays a significant antagonist role against the changes in H reflex and M wave in rat soleus muscle following immobilization.
Crop Row Detection in Maize Fields Inspired on the Human Visual Perception
Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J. M.; Guijarro, M.; Ribeiro, A.
2012-01-01
This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. PMID:22623899
Vaxenburg, Roman; Wyche, Isis; Svoboda, Karel; Efros, Alexander L.
2018-01-01
Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks. PMID:29584719
Peripheral neuropathy in military aircraft maintenance workers in Australia.
Guest, Maya; Attia, John R; D'este, Catherine A; Boggess, May M; Brown, Anthony M; Gibson, Richard E; Tavener, Meredith A; Ross, James; Gardner, Ian; Harrex, Warren
2011-04-01
This study aimed to examine possible persisting peripheral neuropathy in a group who undertook fuel tank repairs on F-111 aircraft, relative to two contemporaneous comparison groups. Vibration perception threshold (VPT) was tested using biothesiometry in 614 exposed personnel, compared with two unexposed groups (513 technical trades and 403 nontrades). Regression modeling was used to examine associations, adjusting for possible confounders. We observed that 26% of participants had chronic persistent increased VPT in the great toe. In contrast, statistically significant higher VPT of the great toe was observed in the comparison groups; however, the effect was small, about 1/4 the magnitude of diabetes. Age, height, and diabetes were all significant and strong predictors in most models. This study highlights chronic persisting peripheral neuropathy in a population of aircraft maintainers.
Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.
Grande, G; Cafarelli, E
2003-06-01
Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.
Musical duplex perception: perception of figurally good chords with subliminal distinguishing tones.
Hall, M D; Pastore, R E
1992-08-01
In a variant of duplex perception with speech, phoneme perception is maintained when distinguishing components are presented below intensities required for separate detection, forming the basis for the claim that a phonetic module takes precedence over nonspeech processing. This finding is replicated with music chords (C major and minor) created by mixing a piano fifth with a sinusoidal distinguishing tone (E or E flat). Individual threshold intensities for detecting E or E flat in the context of the fixed piano tones are established. Chord discrimination thresholds defined by distinguishing tone intensity were determined. Experiment 2 verified masked detection thresholds and subliminal chord identification for experienced musicians. Accurate chord perception was maintained at distinguishing tone intensities nearly 20 dB below the threshold for separate detection. Speech and music findings are argued to demonstrate general perceptual principles.
Knox, Emily C L; Webb, Oliver J; Esliger, Dale W; Biddle, Stuart J H; Sherar, Lauren B
2014-04-01
The promotion of physical activity (PA) guidelines to the general public is an important issue that lacks empirical investigation. PA campaigns often feature participation thresholds that cite PA guidelines verbatim [e.g., 150 min/week moderate-to-vigorous physical activity (MVPA)]. Some campaigns instead prefer to use generic PA messages (e.g., do as much MVPA as possible). 'Thresholds' may disrupt understanding of the health benefits of modest PA participation. This study examined the perception of health benefits of PA after exposure to PA messages that did and did not contain a duration threshold. Brief structured interviews were conducted with a convenience sample of adults (n = 1100). Participants received a threshold message (150 min/week MVPA), a message that presented the threshold as a minimum; a generic message or no message. Participants rated perceived health effects of seven PA durations. One-way analyses of variance with post hoc tests for group differences were used to assess raw perception ratings for each duration of PA. Recipients of all three messages held more positive perceptions of >150 min/week of MVPA relative to those not receiving any message. For MVPA durations <150 min/week, the generic PA message group perceived the greatest health benefits. Those receiving the threshold message tended to have the least positive perceptions of durations <150 min/week. Threshold messages were associated with lower perceived health benefits for modest PA durations. Campaigns based on threshold messages may be limited when promoting small PA increases at a population level.
An electrophysiological investigation of the receptor apparatus of the duck's bill
Gregory, J. E.
1973-01-01
1. The properties of receptors in the duck's bill have been studied by recording from units isolated by dissecting fine filaments from the maxillary and ophthalmic nerves. 2. The units studied were divisible into three groups, phasic mechanoreceptors responsive to vibration, thermoreceptive units, and high threshold mechanoreceptors. 3. Vibration-sensitive mechanoreceptors (113 units) had small receptive fields, showed a rapidly adapting discharge to mechanical stimulation of the bill, were sensitive to vibratory but not to thermal stimuli and showed no background discharge. 4. Temperature receptors (twenty-one units) were insensitive to mechanical stimulation and showed a temperature-dependent background discharge. Sudden cooling produced a transient increase in discharge frequency. 5. High threshold mechanosensitive units (eight units) gave a slowly adapting discharge to strong mechanical stimulation and were insensitive to vibratory and thermal stimulation. 6. It is concluded that the low-threshold, vibration-sensitive responses come from Herbst corpuscles. No specific function can yet be assigned to the Grandry corpuscles. PMID:4689962
Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination
Lepora, Nathan F.; Fox, Charles W.; Evans, Mathew H.; Diamond, Mathew E.; Gurney, Kevin; Prescott, Tony J.
2012-01-01
Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys have suggested a neural mechanism of evidence accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian sequential analysis. For our robot whisker data, we find that variable reaction-time decision-making with sequential analysis performs better than the fixed response-time maximum-likelihood estimation. These probabilistic classifiers also use whatever available features of the whisker signals aid the discrimination, giving improved performance over a single-feature strategy, such as matching the peak power spectra of whisker vibrations. These results cast new light on how the various proposals for texture discrimination in rodents depend on the whisker contact mechanics and suggest the possibility of a common account of decision-making across mammalian species. PMID:22279155
Kumru, H; Kofler, M; Flores, M C; Portell, E; Robles, V; Leon, N; Vidal, J
2013-08-01
Somatic antinociceptive effects of baclofen have been demonstrated in animal models. We hypothesized that if enhanced thermal or pain sensitivity is produced by loss of gamma-aminobutyric acid (GABA)-ergic tone in the central nervous system, spinal administration of GABA agonists might be predicted to be effective in thermal and/or pain perception changes and pain-related evoked potentials in candidates for intrathecal baclofen (ITB) treatment. Eleven patients with severe spinal cord injury (SCI) who suffered from severe spasticity were evaluated during a 50-μg ITB bolus test. Warm and heat pain thresholds, evoked heat pain perception, and contact heat-evoked potentials (CHEPs) were determined above SCI level from the right and left sides. Nine age- and gender-matched healthy volunteers undergoing repeat testing without any placebo injection served as control group. In patients, heat pain perception threshold increased, and evoked pain perception and amplitude of CHEPs decreased significantly after ITB bolus application in comparison with baseline (p < 0.005), with no change in warm perception threshold. In controls, no significant changes were observed in repeat testing over time. Our findings indicate that ITB modulates heat pain perception threshold, evoked heat pain perception and heat pain-related evoked potentials without inducing warm perception threshold changes in SCI patients. This phenomenon should be taken into account in the clinical evaluation and management of pain in patients receiving baclofen. © 2012 European Federation of International Association for the Study of Pain Chapters.
Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model
Sakasaki, Juntaro; Kasae, Syota; Nishimura, Keisuke; Shin, Min-Chul; Yoshimura, Megumu
2017-01-01
We investigated the effects of a vibratory stimulus on the plantar surface of the hind limb for motor, sensory, and locomotive function using a mouse cast model. The right knee joint of C57BL/6 male mice (7 weeks, 20 g, n = 31) was flexed with aluminum splint and tape for 6 weeks. These mice were randomly divided into 2 groups (control group, n = 11 and vibration group, n = 12). The mice in the vibration group received vibration on the sole of the ankle for 15 minutes per day, 5 days per week. After the knee joint cast was removed, we measured the range of motion (ROM) of both knee and ankle joints and the sensory threshold of the sole. Further, both walking and swimming movements were analyzed with a digital video. The sole vibration did not affect the passive ROM of the knee joint and sensory threshold after cast removal. However, it increased the ankle dorsiflexion range and improved free walking, swimming, and active movement of the knee joint. In conclusion, we show that the vibration recovered both walking and swimming movements, which resulted from improvements in both the passive ankle dorsiflexion and active knee movement. PMID:29040289
Experimental Analysis of the Mechanism of Hearing under Water
Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim
2015-01-01
The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975
System Detects Vibrational Instabilities
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1990-01-01
Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.
Color difference threshold determination for acrylic denture base resins.
Ren, Jiabao; Lin, Hong; Huang, Qingmei; Liang, Qifan; Zheng, Gang
2015-01-01
This study aimed to set evaluation indicators, i.e., perceptibility and acceptability color difference thresholds, of color stability for acrylic denture base resins for a spectrophotometric assessing method, which offered an alternative to the visual method described in ISO 20795-1:2013. A total of 291 disk specimens 50±1 mm in diameter and 0.5±0.1 mm thick were prepared (ISO 20795-1:2013) and processed through radiation tests in an accelerated aging chamber (ISO 7491:2000) for increasing times of 0 to 42 hours. Color alterations were measured with a spectrophotometer and evaluated using the CIE L*a*b* colorimetric system. Color differences were calculated through the CIEDE2000 color difference formula. Thirty-two dental professionals without color vision deficiencies completed perceptibility and acceptability assessments under controlled conditions in vitro. An S-curve fitting procedure was used to analyze the 50:50% perceptibility and acceptability thresholds. Furthermore, perceptibility and acceptability against the differences of the three color attributes, lightness, chroma, and hue, were also investigated. According to the S-curve fitting procedure, the 50:50% perceptibility threshold was 1.71ΔE00 (r(2)=0.88) and the 50:50% acceptability threshold was 4.00 ΔE00 (r(2)=0.89). Within the limitations of this study, 1.71/4.00 ΔE00 could be used as perceptibility/acceptability thresholds for acrylic denture base resins.
Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.
Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo
2017-08-29
This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.
Yu, Tzu-Ying; Jacobs, Robert J.; Anstice, Nicola S.; Paudel, Nabin; Harding, Jane E.; Thompson, Benjamin
2013-01-01
Purpose. We developed and validated a technique for measuring global motion perception in 2-year-old children, and assessed the relationship between global motion perception and other measures of visual function. Methods. Random dot kinematogram (RDK) stimuli were used to measure motion coherence thresholds in 366 children at risk of neurodevelopmental problems at 24 ± 1 months of age. RDKs of variable coherence were presented and eye movements were analyzed offline to grade the direction of the optokinetic reflex (OKR) for each trial. Motion coherence thresholds were calculated by fitting psychometric functions to the resulting datasets. Test–retest reliability was assessed in 15 children, and motion coherence thresholds were measured in a group of 10 adults using OKR and behavioral responses. Standard age-appropriate optometric tests also were performed. Results. Motion coherence thresholds were measured successfully in 336 (91.8%) children using the OKR technique, but only 31 (8.5%) using behavioral responses. The mean threshold was 41.7 ± 13.5% for 2-year-old children and 3.3 ± 1.2% for adults. Within-assessor reliability and test–retest reliability were high in children. Children's motion coherence thresholds were significantly correlated with stereoacuity (LANG I & II test, ρ = 0.29, P < 0.001; Frisby, ρ = 0.17, P = 0.022), but not with binocular visual acuity (ρ = 0.11, P = 0.07). In adults OKR and behavioral motion coherence thresholds were highly correlated (intraclass correlation = 0.81, P = 0.001). Conclusions. Global motion perception can be measured in 2-year-old children using the OKR. This technique is reliable and data from adults suggest that motion coherence thresholds based on the OKR are related to motion perception. Global motion perception was related to stereoacuity in children. PMID:24282224
Mason, Kayleigh J; O'Neill, Terence W; Lunt, Mark; Jones, Anthony K P; McBeth, John
2018-01-26
Amplification of sensory signalling within the nervous system along with psychosocial factors contributes to the variation and severity of knee pain. Quantitative sensory testing (QST) is a non-invasive test battery that assesses sensory perception of thermal, pressure, mechanical and vibration stimuli used in the assessment of pain. Psychosocial factors also have an important role in explaining the occurrence of pain. The aim was to determine whether QST measures were associated with self-reported pain, and whether those associations were mediated by psychosocial factors. Participants with knee pain identified from a population-based cohort completed a tender point count and a reduced QST battery of thermal, mechanical and pressure pain thresholds, temporal summation, mechanical pain sensitivity (MPS), dynamic mechanical allodynia (DMA) and vibration detection threshold performed following the protocol by the German Research Network on Neuropathic Pain. QST assessments were performed at the most painful knee and opposite forearm (if pain-free). Participants were asked to score for their global and knee pain intensities within the past month (range 0-10), and complete questionnaire items investigating anxiety, depression, illness perceptions, pain catastrophising, and physical functioning. QST measures (independent variable) significantly correlated (Spearman's rho) with self-reported pain intensity (dependent variable) were included in structural equation models with psychosocial factors (latent mediators). Seventy-two participants were recruited with 61 participants (36 women; median age 64 years) with complete data included in subsequent analyses. Tender point count was significantly correlated with global pain intensity. DMA at the knee and MPS at the most painful knee and opposite pain-free forearm were significantly correlated with both global pain and knee pain intensities. Psychosocial factors including pain catastrophising sub-scales (rumination and helplessness) and illness perceptions (consequences and concern) were significant partial mediators of the association with global pain intensity when loaded on to a latent mediator for: tender point count [75% total effect; 95% confidence interval (CI) 22%, 100%]; MPS at the knee (49%; 12%, 86%); and DMA at the knee (63%; 5%, 100%). Latent psychosocial factors were also significant partial mediators of the association between pain intensity at the tested knee with MPS at the knee (30%; 2%, 58%), but not for DMA at the knee. Measures of mechanical hyperalgesia at the most painful knee and pain-free opposite forearm were associated with increased knee and global pain indicative of altered central processing. Psychosocial factors were significant partial mediators, highlighting the importance of the central integration of emotional processing in pain perception. Associations between mechanical hyperalgesia at the forearm and knee, psychosocial factors and increased levels of clinical global and knee pain intensity provide evidence of altered central processing as a key mechanism in knee pain, with psychological factors playing a key role in the expression of clinical pain.
Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi
2015-11-01
Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. © The Author 2015. Published by Oxford University Press.
Motion of a drop driven by substrate vibrations
NASA Astrophysics Data System (ADS)
Brunet, P.; Eggers, J.; Deegan, R. D.
2009-01-01
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wet by the drop. Frequency of vibrations ranges from 30 to 200 Hz, and above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up/down symmetry-breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We use Ar predissociation and vibrational autodetachment below 2100 wn to obtain vibrational spectra of the low-energy modes of nitromethane anion. We interpret the spectra using anharmonic calculations, which reveal strong mode coupling and Fermi resonances. Not surprisingly, the number of evaporated Ar atoms varies with photon energy, and we follow the propensity of evaporating two versus one Ar atoms as photon energy increases. The photodetachment spectrum is discussed in the context of threshold effects and the importance of hot bands.
Cartilage conduction is characterized by vibrations of the cartilaginous portion of the ear canal.
Nishimura, Tadashi; Hosoi, Hiroshi; Saito, Osamu; Miyamae, Ryosuke; Shimokura, Ryota; Yamanaka, Toshiaki; Kitahara, Tadashi; Levitt, Harry
2015-01-01
Cartilage conduction (CC) is a new form of sound transmission which is induced by a transducer being placed on the aural cartilage. Although the conventional forms of sound transmission to the cochlea are classified into air or bone conduction (AC or BC), previous study demonstrates that CC is not classified into AC or BC (Laryngoscope 124: 1214-1219). Next interesting issue is whether CC is a hybrid of AC and BC. Seven volunteers with normal hearing participated in this experiment. The threshold-shifts by water injection in the ear canal were measured. AC, BC, and CC thresholds at 0.5-4 kHz were measured in the 0%-, 40%-, and 80%-water injection conditions. In addition, CC thresholds were also measured for the 20%-, 60%-, 100%-, and overflowing-water injection conditions. The contributions of the vibrations of the cartilaginous portion were evaluated by the threshold-shifts. For AC and BC, the threshold-shifts by the water injection were 22.6-53.3 dB and within 14.9 dB at the frequency of 0.5-4 kHz, respectively. For CC, when the water was filled within the bony portion, the thresholds were elevated to the same degree as AC. When the water was additionally injected to reach the cartilaginous portion, the thresholds at 0.5 and 1 kHz dramatically decreased by 27.4 and 27.5 dB, respectively. In addition, despite blocking AC by the injected water, the CC thresholds in force level were remarkably lower than those for BC. The vibration of the cartilaginous portion contributes to the sound transmission, particularly in the low frequency range. Although the airborne sound is radiated into the ear canal in both BC and CC, the mechanism underlying its generation is different between them. CC generates airborne sound in the canal more efficiently than BC. The current findings suggest that CC is not a hybrid of AC and BC.
Cartilage Conduction Is Characterized by Vibrations of the Cartilaginous Portion of the Ear Canal
Nishimura, Tadashi; Hosoi, Hiroshi; Saito, Osamu; Miyamae, Ryosuke; Shimokura, Ryota; Yamanaka, Toshiaki; Kitahara, Tadashi; Levitt, Harry
2015-01-01
Cartilage conduction (CC) is a new form of sound transmission which is induced by a transducer being placed on the aural cartilage. Although the conventional forms of sound transmission to the cochlea are classified into air or bone conduction (AC or BC), previous study demonstrates that CC is not classified into AC or BC (Laryngoscope 124: 1214–1219). Next interesting issue is whether CC is a hybrid of AC and BC. Seven volunteers with normal hearing participated in this experiment. The threshold-shifts by water injection in the ear canal were measured. AC, BC, and CC thresholds at 0.5–4 kHz were measured in the 0%-, 40%-, and 80%-water injection conditions. In addition, CC thresholds were also measured for the 20%-, 60%-, 100%-, and overflowing-water injection conditions. The contributions of the vibrations of the cartilaginous portion were evaluated by the threshold-shifts. For AC and BC, the threshold-shifts by the water injection were 22.6–53.3 dB and within 14.9 dB at the frequency of 0.5–4 kHz, respectively. For CC, when the water was filled within the bony portion, the thresholds were elevated to the same degree as AC. When the water was additionally injected to reach the cartilaginous portion, the thresholds at 0.5 and 1 kHz dramatically decreased by 27.4 and 27.5 dB, respectively. In addition, despite blocking AC by the injected water, the CC thresholds in force level were remarkably lower than those for BC. The vibration of the cartilaginous portion contributes to the sound transmission, particularly in the low frequency range. Although the airborne sound is radiated into the ear canal in both BC and CC, the mechanism underlying its generation is different between them. CC generates airborne sound in the canal more efficiently than BC. The current findings suggest that CC is not a hybrid of AC and BC. PMID:25768088
Elfman, Kane W; Aly, Mariam; Yonelinas, Andrew P
2014-12-01
Recent evidence suggests that the hippocampus, a region critical for long-term memory, also supports certain forms of high-level visual perception. A seemingly paradoxical finding is that, unlike the thresholded hippocampal signals associated with memory, the hippocampus produces graded, strength-based signals in perception. This article tests a neurocomputational model of the hippocampus, based on the complementary learning systems framework, to determine if the same model can account for both memory and perception, and whether it produces the appropriate thresholded and strength-based signals in these two types of tasks. The simulations showed that the hippocampus, and most prominently the CA1 subfield, produced graded signals when required to discriminate between highly similar stimuli in a perception task, but generated thresholded patterns of activity in recognition memory. A threshold was observed in recognition memory because pattern completion occurred for only some trials and completely failed to occur for others; conversely, in perception, pattern completion always occurred because of the high degree of item similarity. These results offer a neurocomputational account of the distinct hippocampal signals associated with perception and memory, and are broadly consistent with proposals that CA1 functions as a comparator of expected versus perceived events. We conclude that the hippocampal computations required for high-level perceptual discrimination are congruous with current neurocomputational models that account for recognition memory, and fit neatly into a broader description of the role of the hippocampus for the processing of complex relational information. © 2014 Wiley Periodicals, Inc.
Rabey, Martin; Slater, Helen; OʼSullivan, Peter; Beales, Darren; Smith, Anne
2015-10-01
The objectives of this study were to explore the existence of subgroups in a cohort with chronic low back pain (n = 294) based on the results of multimodal sensory testing and profile subgroups on demographic, psychological, lifestyle, and general health factors. Bedside (2-point discrimination, brush, vibration and pinprick perception, temporal summation on repeated monofilament stimulation) and laboratory (mechanical detection threshold, pressure, heat and cold pain thresholds, conditioned pain modulation) sensory testing were examined at wrist and lumbar sites. Data were entered into principal component analysis, and 5 component scores were entered into latent class analysis. Three clusters, with different sensory characteristics, were derived. Cluster 1 (31.9%) was characterised by average to high temperature and pressure pain sensitivity. Cluster 2 (52.0%) was characterised by average to high pressure pain sensitivity. Cluster 3 (16.0%) was characterised by low temperature and pressure pain sensitivity. Temporal summation occurred significantly more frequently in cluster 1. Subgroups were profiled on pain intensity, disability, depression, anxiety, stress, life events, fear avoidance, catastrophizing, perception of the low back region, comorbidities, body mass index, multiple pain sites, sleep, and activity levels. Clusters 1 and 2 had a significantly greater proportion of female participants and higher depression and sleep disturbance scores than cluster 3. The proportion of participants undertaking <300 minutes per week of moderate activity was significantly greater in cluster 1 than in clusters 2 and 3. Low back pain, therefore, does not appear to be homogeneous. Pain mechanisms relating to presentations of each subgroup were postulated. Future research may investigate prognoses and interventions tailored towards these subgroups.
Sensitivity of Crustaceans to Substrate-Borne Vibration.
Roberts, Louise; Breithaupt, Thomas
2016-01-01
There is increasing interest in the responsiveness of crustaceans to vibrations, especially in the context of marine developments where techniques such as pile driving create strong vibrations that are readily transmitted through the seabed. Experiments were undertaken under controlled conditions to investigate the sensitivity of unconditioned crustaceans to substrate-borne vibration. The subjects were exposed to a range of frequencies and amplitudes using the staircase method of presentation to determine the thresholds of response. Behavior varied according to the strength of the stimuli and included bursts of movement and rapid bouts of movement.
Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane
NASA Technical Reports Server (NTRS)
Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.
1989-01-01
An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.
Strzalkowski, Nicholas D J; Ali, R Ayesha; Bent, Leah R
2017-10-01
Single unit microneurography was used to record the firing characteristics of the four classes of foot sole cutaneous afferents [fast and slowly adapting type I and II (FAI, FAII, SAI, and SAII)] in response to sinusoidal vibratory stimuli. Frequency (3-250 Hz) and amplitude (0.001-2 mm) combinations were applied to afferent receptive fields through a 6-mm diameter probe. The impulses per cycle, defined as the number of action potentials evoked per vibration sine wave, were measured over 1 s of vibration at each frequency-amplitude combination tested. Afferent entrainment threshold (lowest amplitude at which an afferent could entrain 1:1 to the vibration frequency) and afferent firing threshold (minimum amplitude for which impulses per cycle was greater than zero) were then obtained for each frequency. Increases in vibration frequency are generally associated with decreases in expected impulses per cycle ( P < 0.001), but each foot sole afferent class appears uniquely tuned to vibration stimuli. FAII afferents tended to have the lowest entrainment and firing thresholds ( P < 0.001 for both); however, these afferents seem to be sensitive across frequency. In contrast to FAII afferents, SAI and SAII afferents tended to demonstrate optimal entrainment to frequencies below 20 Hz and FAI afferents faithfully encoded frequencies between 8 and 60 Hz. Contrary to the selective activation of distinct afferent classes in the hand, application of class-specific frequencies in the foot sole is confounded due to the high sensitivity of FAII afferents. These findings may aid in the development of sensorimotor control models or the design of balance enhancement interventions. NEW & NOTEWORTHY Our work provides a mechanistic look at the capacity of foot sole cutaneous afferents to respond to vibration of varying frequency and amplitude. We found that foot sole afferent classes are uniquely tuned to vibration stimuli; however, unlike in the hand, they cannot be independently activated by class-specific frequencies. Viewing the foot sole as a sensory structure, the present findings may aid in the refinement of sensorimotor control models and design of balance enhancement interventions. Copyright © 2017 the American Physiological Society.
Yosipovitch, Gil; Meredith, Gregory; Chan, Yiong Huak; Goh, Chee Leok
2004-02-01
The perception of pain is a personal experience influenced by many factors, including genetic, ethnic and cultural issues. Understanding these perceptions is especially important in dermatologic patients undergoing minor surgical operations and who often differ in their pain response to surgical treatments. Little is known about how these differences affect the perception of experimental pain. The purpose of this study was to determine experimental pain perception differences in three distinct East Asian ethnic populations. Pain thresholds were examined with a psychophysical computerized quantitative thermal sensory testing device (TSA 2001) in healthy volunteers recruited from three different Asian ethnic groups. Using the methods of limits, experimental pain perception threshold was measured on the forehead and volar aspect of the forearm in 49 healthy subjects. The measurements were then repeated after skin barrier perturbation with adhesive tape stripping of the stratum corneum. All three ethnic groups were analyzed separately with respect to age, gender educational level and skin type. A total of 20 Chinese, 14 Malay and 15 Indian subjects completed the study. Thermal pain thresholds were similar in all three ethnic groups before and after tape strippings. No significant differences were noted between genders. Using quantitative sensory thermal testing, we demonstrated that no significant differences in pain occur between different races and genders.
Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.
Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru
2016-10-01
Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Gravity matters: Motion perceptions modified by direction and body position.
Claassen, Jens; Bardins, Stanislavs; Spiegel, Rainer; Strupp, Michael; Kalla, Roger
2016-07-01
Motion coherence thresholds are consistently higher at lower velocities. In this study we analysed the influence of the position and direction of moving objects on their perception and thereby the influence of gravity. This paradigm allows a differentiation to be made between coherent and randomly moving objects in an upright and a reclining position with a horizontal or vertical axis of motion. 18 young healthy participants were examined in this coherent threshold paradigm. Motion coherence thresholds were significantly lower when position and motion were congruent with gravity independent of motion velocity (p=0.024). In the other conditions higher motion coherence thresholds (MCT) were found at lower velocities and vice versa (p<0.001). This result confirms previous studies with higher MCT at lower velocity but is in contrast to studies concerning perception of virtual turns and optokinetic nystagmus, in which differences of perception were due to different directions irrespective of body position, i.e. perception took place in an egocentric reference frame. Since the observed differences occurred in an upright position only, perception of coherent motion in this study is defined by an earth-centered reference frame rather than by an ego-centric frame. Copyright © 2016 Elsevier Inc. All rights reserved.
Moura, Brenda de Souza; Ferreira, Natália Dos Reis; DosSantos, Marcos F; Janini, Maria Elisa Rangel
2018-01-01
To investigate the presence of changes in vibration detection and pressure pain threshold in patients with burning-mouth syndrome (BMS). Case-control study. The sample was composed of 30 volunteers, 15 with BMS and 15 in the control group. The pressure-pain threshold (PPT) and vibration-detection threshold (VDT) were examined. The clinical evaluation was complemented with the McGill Pain Questionnaire (MPQ), Douleur Neuropathique 4 (DN4) and Beck Depression and Anxiety Inventories (BDI and BAI, respectively). BMS subjects showed a statistically significant higher PPT in the tongue (p = 0.002), right (p = 0.001) and left (p = 0.004) face, and a significant reduction of the VDT in the tongue (p = 0.013) and right face (p = 0.030). Significant differences were also found when comparing the PPT and the VDT of distinct anatomical areas. However, a significant interaction (group × location) was only for the PPT. BMS subjects also showed significantly higher levels of depression (p = 0.01), as measured by the BDI, compared to controls; and a significant inverse correlation between the VDT in the left face and anxiety levels was detected. The study of somatosensory changes in BMS and its correlations with the clinical features as well as the levels of anxiety and depression expands current understanding of the neuropathic origin and the possible contribution of psychogenic factors related to this disease.
Hip proprioceptive feedback influences the control of mediolateral stability during human walking
Roden-Reynolds, Devin C.; Walker, Megan H.; Wasserman, Camille R.
2015-01-01
Active control of the mediolateral location of the feet is an important component of a stable bipedal walking pattern, although the roles of sensory feedback in this process are unclear. In the present experiments, we tested whether hip abductor proprioception influenced the control of mediolateral gait motion. Participants performed a series of quiet standing and treadmill walking trials. In some trials, 80-Hz vibration was applied intermittently over the right gluteus medius (GM) to evoke artificial proprioceptive feedback. During walking, the GM was vibrated during either right leg stance (to elicit a perception that the pelvis was closer mediolaterally to the stance foot) or swing (to elicit a perception that the swing leg was more adducted). Vibration during quiet standing evoked leftward sway in most participants (13 of 16), as expected from its predicted perceptual effects. Across the 13 participants sensitive to vibration, stance phase vibration caused the contralateral leg to be placed significantly closer to the midline (by ∼2 mm) at the end of the ongoing step. In contrast, swing phase vibration caused the vibrated leg to be placed significantly farther mediolaterally from the midline (by ∼2 mm), whereas the pelvis was held closer to the stance foot (by ∼1 mm). The estimated mediolateral margin of stability was thus decreased by stance phase vibration but increased by swing phase vibration. Although the observed effects of vibration were small, they were consistent with humans monitoring hip proprioceptive feedback while walking to maintain stable mediolateral gait motion. PMID:26289467
NASA Astrophysics Data System (ADS)
Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng
2016-06-01
Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)
Vitamin B supplementation for diabetic peripheral neuropathy
Jayabalan, Bhavani; Low, Lian Leng
2016-01-01
Vitamin B12 deficiency has been associated with significant neurological pathology, especially peripheral neuropathy. This review aims to examine the existing evidence on the effectiveness of vitamin B12 supplementation for the treatment of diabetic peripheral neuropathy. A search of PubMed and the Cochrane Central Register of Controlled Trials for all relevant randomised controlled trials was conducted in December 2014. Any type of therapy using vitamin B12 or its coenzyme forms was assessed for efficacy and safety in diabetics with peripheral neuropathy. Changes in vibration perception thresholds, neuropathic symptoms and nerve conduction velocities, as well as the adverse effects of vitamin B12 therapy, were assessed. Four studies comprising 363 patients met the inclusion criteria. This review found no evidence that the use of oral vitamin B12 supplements is associated with improvement in the clinical symptoms of diabetic neuropathy. Furthermore, the majority of studies reported no improvement in the electrophysiological markers of nerve conduction. PMID:26892473
A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks.
Akram, Sana; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Imran, Muhammad; Guizani, Mohsen; Hayat, Amir; Ilahi, Manzoor
2015-12-01
As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics.
Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis
Baeumler, Petra I.; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik
2014-01-01
Background The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Methods Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Results Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Conclusions Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory profiles in order to fully characterize its effect on sensory perception and to explore the predictive value of sensory profiles for the effectiveness of acupuncture. PMID:25502787
Effects of acupuncture on sensory perception: a systematic review and meta-analysis.
Baeumler, Petra I; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik
2014-01-01
The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory profiles in order to fully characterize its effect on sensory perception and to explore the predictive value of sensory profiles for the effectiveness of acupuncture.
Poole, Kerry; Mason, Howard
2007-03-15
To establish the relationship between quantitative tests of hand function and upper limb disability, as measured by the Disability of the Arm, Shoulder and Hand (DASH) questionnaire, in hand-arm vibration syndrome (HAVS). A total of 228 individuals with HAVS were included in this study. Each had undergone a full HAVS assessment by an experienced physician, including quantitative tests of vibrotactile and thermal perception thresholds, maximal hand-grip strength (HG) and the Purdue pegboard (PP) test. Individuals were also asked to complete a DASH questionnaire. PP and HG of the quantitative tests gave the best and statistically significant individual correlations with the DASH disability score (r2 = 0.168 and 0.096). Stepwise linear regression analysis revealed that only PP and HG measurements were statistically significant predictors of upper limb disability (r2 = 0.178). Overall a combination of the PP and HG measurements, rather than each alone, gave slightly better discrimination, although not statistically significant, between normal and abnormal DASH scores with a sensitivity of 73.1% and specificity of 64.3%. Measurements of manual dexterity and hand-grip strength using PP and HG may be useful in helping to confirm lack of upper limb function and 'perceived' disability in HAVS.
Asymptotic Laws of Thermovibrational Convecton in a Horizontal Fluid Layer
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Myznikova, B. I.; Keller, I. O.
2017-02-01
Theoretical study of convective instability is applied to a horizontal layer of incompressible single-component fluid subjected to the uniform steady gravity, longitudinal vibrations of arbitrary frequency and initial temperature difference. The mathematical model of thermovibrational convection has the form of initial boundary value problem for the Oberbeck-Boussinesq system of equations. The problems are solved using different simulation strategies, like the method of averaging, method of multiple scales, Galerkin approach, Wentzel-Kramers-Brillouin method and Floquet technique. The numerical analysis has shown that the effect of vibrations on the stability threshold is complex: vibrations can either stabilize or destabilize the basic state depending on values of the parameters. The influence of the Prandtl number on the instability thresholds is investigated. The asymptotic behaviour of critical values of the parameters is studied in two limiting cases: (i) small amplitude and (ii) low frequency of vibration. In case (i), the instability is due to the influence of thermovibrational mechanism on the classical Rayleigh-Benard convective instability. In case (ii), the nature of the instability is related to the instability of oscillating counter-streams with a cubic profile.
Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne
2009-12-07
Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.
2012-06-01
mucosa penetrations to periosteum by a 27-gauge short needle attached to a dental cartridge syringe . New needles were used for each injection, and the...of the American Dental Association, 134(2), 228-234. 7. Bonjar AHS. (2011) Syringe micro vibrator (SMV) a new device being introduced in dentistry...Lautenbacher S. (2004) Pathophysiology of Pain Perception. New York , New York : Kluwer and Plenum. 16 Flanagan T, Wahl MJ, Schmitt MM, Wahl JA. (2007) Size
Sonza, Anelise; Völkel, Nina; Zaro, Milton A; Achaval, Matilde; Hennig, Ewald M
2015-07-01
Whole-body vibration (WBV) training has become popular in recent years. However, WBV may be harmful to the human body. The goal of this study was to determine the acceleration magnitudes at different body segments for different frequencies of WBV. Additionally, vibration sensation ratings by subjects served to create perception vibration magnitude and discomfort maps of the human body. In the first of two experiments, 65 young adults mean (± SD) age range of 23 (± 3.0) years, participated in WBV severity perception ratings, based on a Borg scale. Measurements were performed at 12 different frequencies, two intensities (3 and 5 mm amplitudes) of rotational mode WBV. On a separate day, a second experiment (n = 40) included vertical accelerometry of the head, hip and lower leg with the same WBV settings. The highest lower limb vibration magnitude perception based on the Borg scale was extremely intense for the frequencies between 21 and 25 Hz; somewhat hard for the trunk region (11-25 Hz) and fairly light for the head (13-25 Hz). The highest vertical accelerations were found at a frequency of 23 Hz at the tibia, 9 Hz at the hip and 13 Hz at the head. At 5 mm amplitude, 61.5% of the subjects reported discomfort in the foot region (21-25 Hz), 46.2% for the lower back (17, 19 and 21 Hz) and 23% for the abdominal region (9-13 Hz). The range of 3-7 Hz represents the safest frequency range with magnitudes less than 1 g(*)sec for all studied regions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
[Contemporary approach to evaluation of sensory disorders in polyneuropathy due to vibration].
Nepershina, C P; Lagutina, G N; Kuzmina, L P; Skrypnik, O V; Ryabininal, S N; Lagutina, A P
2016-08-01
Recently, the studies search possibilities to visualize and objectify sensory disorders in polyneuropathy caused by vibration. Special attention is paid on studies of injuried structures responsible for temperature and pain sensitivity. Examination covered 92 patients with vibration disease, aged 34 to 73 years. Methods used are: pallesthesiometry, quantitative sensory tests, questionnaires and s 'cales of pain (visual analog scale (VAS) of pain, Pain-Detect, MPQ DN-, HADS). Correlation was found between.temperature, pain thresholds and VAS and pallesthesiometry parameters. The obtained results analysis indicates formation distal polyneuropathy syndrome of upper limbs with concomitant pain during vibration disease.
Borgeat, F; Pannetier, M F
1982-01-01
This exploratory study examined the usefulness of averaging electrodermal potential responses for research on subliminal auditory perception. Eighteen female subjects were exposed to three kinds (emotional, neutral and 1000 Hz tone) of auditory stimulation which were repeated six times at three intensities (detection threshold, 10 dB under this threshold and 10 dB above identification threshold). Analysis of electrodermal potential responses showed that the number of responses was related to the emotionality of subliminal stimuli presented at detection threshold but not at 10 dB under it. The data interpretation proposed refers to perceptual defence theory. This study indicates that electrodermal response count constitutes a useful measure for subliminal auditory perception research, but averaging those responses was not shown to bring additional information.
Cutaneous sensitivity in unilateral trans-tibial amputees
Templeton, Cale A.; Strzalkowski, Nicholas D. J.; Galvin, Patti
2018-01-01
Aim To examine tactile sensitivity in the leg and foot sole of below-knee amputees (diabetic n = 3, traumatic n = 1), and healthy control subjects (n = 4), and examine the association between sensation and balance. Method Vibration perception threshold (VPT; 3, 40, 250Hz) and monofilaments (MF) were used to examine vibration and light touch sensitivity on the intact limb, residual limb, and homologous locations on controls. A functional reach test was performed to assess functional balance. Results Tactile sensitivity was lower for diabetic amputee subjects compared to age matched controls for both VPT and MF; which was expected due to presence of diabetic peripheral neuropathy. In contrast, the traumatic amputee participant showed increased sensitivity for VPT at 40Hz and 250Hz vibration in both the intact and residual limbs compared to controls. Amputees with lower tactile sensitivity had shorter reach distances compared to those with higher sensitivity. Conclusion Changes in tactile sensitivity in the residual limb of trans-tibial amputees may have implications for the interaction between the amputee and the prosthetic device. The decreased skin sensitivity observed in the residual limb of subjects with diabetes is of concern as changes in skin sensitivity may be important in 1) identification/prevention of excessive pressure and 2) for functional stability. Interestingly, we saw increased residual limb skin sensitivity in the individual with the traumatic amputation. Although not measured directly in the present study, this increase in tactile sensitivity may be related to cortical reorganisation, which is known to occur following amputation, and would support similar findings observed in upper limb amputees. PMID:29856766
Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne
2013-08-01
Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy
Alves-Pinto, Ana; Aschmann, Simon; Lützow, Ines; Lampe, Renée
2015-01-01
Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings. PMID:26124965
Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy.
Blumenstein, Tobias; Alves-Pinto, Ana; Turova, Varvara; Aschmann, Simon; Lützow, Ines; Lampe, Renée
2015-01-01
Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings.
Music, Mark; Finderle, Zarko; Cankar, Ksenija
2011-05-01
The aim of the present study was to investigate the effect of quantitatively measured cold perception (CP) thresholds on microcirculatory response to local cooling as measured by direct and indirect response of laser-Doppler (LD) flux during local cooling at different temperatures. The CP thresholds were measured in 18 healthy males using the Marstock method (thermode placed on the thenar). The direct (at the cooling site) and indirect (on contralateral hand) LD flux responses were recorded during immersion of the hand in a water bath at 20°C, 15°C, and 10°C. The cold perception threshold correlated (linear regression analysis, Pearson correlation) with the indirect LD flux response at cooling temperatures 20°C (r=0.782, p<0.01) and 15°C (r=0.605, p<0.01). In contrast, there was no correlation between the CP threshold and the indirect LD flux response during cooling in water at 10°C. The results demonstrate that during local cooling, depending on the cooling temperature used, cold perception threshold influences indirect LD flux response. Copyright © 2011 Elsevier Inc. All rights reserved.
Kagerer, Florian A; Viswanathan, Priya; Contreras-Vidal, Jose L; Whitall, Jill
2014-04-01
Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (nine per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high-threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set. Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier sub-cortical circuitry in those with higher thresholds.
Kagerer, Florian A.; Viswanathan, Priya; Contreras-Vidal, Jose L.; Whitall, Jill
2014-01-01
Unilateral tapping studies have shown that adults adjust to both perceptible and subliminal changes in phase or frequency. This study focuses on the phase responses to abrupt/perceptible and gradual/subliminal changes in auditory-motor relations during alternating bilateral tapping. We investigated these responses in participants with and without good perceptual acuity as determined by an auditory threshold test. Non-musician adults (9 per group) alternately tapped their index fingers in synchrony with auditory cues set at a frequency of 1.4 Hz. Both groups modulated their responses (with no after-effects) to perceptible and to subliminal changes as low as a 5° change in phase. The high threshold participants were more variable than the adults with low threshold in their responses in the gradual condition set (p=0.05). Both groups demonstrated a synchronization asymmetry between dominant and non-dominant hands associated with the abrupt condition and the later blocks of the gradual condition. Our findings extend previous work in unilateral tapping and suggest (1) no relationship between a discrimination threshold and perceptible auditory-motor integration and (2) a noisier subcortical circuitry in those with higher thresholds. PMID:24449013
Milosavljevic, Stephan; McBride, David I; Bagheri, Nasser; Vasiljev, Radivoj M; Mani, Ramakrishnan; Carman, Allan B; Rehn, Borje
2011-04-01
The purpose of this study was to determine exposure to whole-body vibration (WBV) and mechanical shock in rural workers who use quad bikes and to explore how personal, physical, and workplace characteristics influence exposure. A seat pad mounted triaxial accelerometer and data logger recorded full workday vibration and shock data from 130 New Zealand rural workers. Personal, physical, and workplace characteristics were gathered using a modified version of the Whole Body Vibration Health Surveillance Questionnaire. WBVs and mechanical shocks were analysed in accordance with the International Standardization for Organization (ISO 2631-1 and ISO 2631-5) standards and are presented as vibration dose value (VDV) and mechanical shock (S(ed)) exposures. VDV(Z) consistently exceeded European Union (Guide to good practice on whole body vibration. Directive 2002/44/EC on minimum health and safety, European Commission Directorate General Employment, Social Affairs and Equal Opportunities. 2006) guideline exposure action thresholds with some workers exceeding exposure limit thresholds. Exposure to mechanical shock was also evident. Increasing age had the strongest (negative) association with vibration and shock exposure with body mass index (BMI) having a similar but weaker effect. Age, daily driving duration, dairy farming, and use of two rear shock absorbers created the strongest multivariate model explaining 33% of variance in VDV(Z). Only age and dairy farming combined to explain 17% of the variance for daily mechanical shock. Twelve-month prevalence for low back pain was highest at 57.7% and lowest for upper back pain (13.8%). Personal (age and BMI), physical (shock absorbers and velocity), and workplace characteristics (driving duration and dairy farming) suggest that a mix of engineered workplace and behavioural interventions is required to reduce this level of exposure to vibration and shock.
NASA Astrophysics Data System (ADS)
Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe
2018-01-01
The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.
Concorde noise-induced building vibrations: John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.
Result on speech perception after conversion from Spectra® to Freedom®.
Magalhães, Ana Tereza de Matos; Goffi-Gomez, Maria Valéria Schmidt; Hoshino, Ana Cristina; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; Brito, Rubens
2012-04-01
New technology in the Freedom® speech processor for cochlear implants was developed to improve how incoming acoustic sound is processed; this applies not only for new users, but also for previous generations of cochlear implants. To identify the contribution of this technology-- the Nucleus 22®--on speech perception tests in silence and in noise, and on audiometric thresholds. A cross-sectional cohort study was undertaken. Seventeen patients were selected. The last map based on the Spectra® was revised and optimized before starting the tests. Troubleshooting was used to identify malfunction. To identify the contribution of the Freedom® technology for the Nucleus22®, auditory thresholds and speech perception tests were performed in free field in sound-proof booths. Recorded monosyllables and sentences in silence and in noise (SNR = 0dB) were presented at 60 dBSPL. The nonparametric Wilcoxon test for paired data was used to compare groups. Freedom® applied for the Nucleus22® showed a statistically significant difference in all speech perception tests and audiometric thresholds. The Freedom® technology improved the performance of speech perception and audiometric thresholds of patients with Nucleus 22®.
Muir, Jesse; Kiel, Douglas P; Rubin, Clinton T
2013-11-01
Whole body vibration devices are used as a means to augment training, and their potential to treat a range of musculoskeletal diseases and injuries is now being considered. The goal of this work is to determine the degree to which acceleration delivered by whole body vibration devices at the plantar surfaces of a standing human is transmitted through the axial and appendicular skeleton, and how this mechanical challenge corresponds to the safety threshold limit values established by the International Standards Organization ISO-2631. Non-blinded laboratory assessment of a range of whole body vibration devices as it pertains to acceleration transmission to healthy volunteers. Using skin and bite-bar mounted accelerometers, transmissibility to the tibia and cranium was determined in six healthy adults standing on a programmable whole body vibration device as a function of frequency and intensity. Measures of transmissibility were then made from three distinct types of whole body vibration platforms, which delivered a 50-fold range of peak-to-peak acceleration intensities (0.3-15.1 gp-p; where 1g is Earth's gravitational field). For a given frequency, transmissibility was independent of intensity when below 1g. Transmissibility declined non-linearly with increasing frequency. Depending on the whole body vibration device, vibration ranged from levels considered safe by ISO-2631 for up to 8h each day (0.3 gp-p @ 30 Hz), to levels that were seven times higher than what is considered a safe threshold for even 1 min of exposure each day (15.1 gp-p @ 30 Hz). Transmissibility to the cranium was markedly attenuated by the degree of flexion in the knees. Vibration can have adverse effects on a number of physiologic systems. This work indicates that readily accessible whole body vibration devices markedly exceed ISO guidelines for safety, and extreme caution must be practiced when considering their use. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Ferreira, Natália dos Reis; Janini, Maria Elisa Rangel
2018-01-01
Objective To investigate the presence of changes in vibration detection and pressure pain threshold in patients with burning-mouth syndrome (BMS). Design of the study Case-control study. The sample was composed of 30 volunteers, 15 with BMS and 15 in the control group. The pressure-pain threshold (PPT) and vibration-detection threshold (VDT) were examined. The clinical evaluation was complemented with the McGill Pain Questionnaire (MPQ), Douleur Neuropathique 4 (DN4) and Beck Depression and Anxiety Inventories (BDI and BAI, respectively). Results BMS subjects showed a statistically significant higher PPT in the tongue (p = 0.002), right (p = 0.001) and left (p = 0.004) face, and a significant reduction of the VDT in the tongue (p = 0.013) and right face (p = 0.030). Significant differences were also found when comparing the PPT and the VDT of distinct anatomical areas. However, a significant interaction (group × location) was only for the PPT. BMS subjects also showed significantly higher levels of depression (p = 0.01), as measured by the BDI, compared to controls; and a significant inverse correlation between the VDT in the left face and anxiety levels was detected. Conclusions The study of somatosensory changes in BMS and its correlations with the clinical features as well as the levels of anxiety and depression expands current understanding of the neuropathic origin and the possible contribution of psychogenic factors related to this disease. PMID:29782537
Vibrotactile Sensitivity of the Head
2009-01-01
Frequency interaction, F (12, 120) = .82, p = .63. Post hoc comparisons ( LSD ) revealed that PZ (M = –8.04 dB) was significantly more sensitive to...Post hoc comparisons ( LSD ) also revealed that thresholds at 45 and 63 Hz were significantly higher than thresholds at 32 Hz (M = –3.56), p ɘ.05...B.; Shaw , J.; Walsh, N.; Nguyen, V. Effects of Aging on Vibration Detection Thresholds at Various Body Regions. BMC Geriatrics. 3(1). http://www
Otto, David; He, Linlin; Xia, Yanhong; Li, Yajuan; Wu, Kegong; Ning, Zhixiong; Zhao, Baixiao; Hudnell, H Kenneth; Kwok, Richard; Mumford, Judy; Geller, Andrew; Wade, Timothy
2006-03-01
This study was designed to assess the effects of exposure to arsenic in drinking water on visual and vibrotactile function in residents of the Bamen region of Inner Mongolia, China. Arsenic was measured by hydride generation atomic fluorescence. 321 participants were divided into three exposure groups- low (non-detectable-20), medium (100-300) and high (400-700 microg/l) arsenic in drinking water (AsW). Three visual tests were administered: acuity, contrast sensitivity and color discrimination (Lanthony's Desaturated 15 Hue Test). Vibration thresholds were measured with a vibrothesiometer. Vibration thresholds were significantly elevated in the high exposure group compared to other groups. Further analysis using a spline regression model suggested that the threshold for vibratory effects is between 150-170 microg/l AsW. These findings provide the first evidence that chronic exposure to arsenic in drinking water impairs vibrotactile thresholds. The results also indicate that arsenic affects neurological function well below the 1000 microg/I concentration reported by NRC (1999). No evidence of arsenic-related effects on visual function was found.
Translucency thresholds for dental materials.
Salas, Marianne; Lucena, Cristina; Herrera, Luis Javier; Yebra, Ana; Della Bona, Alvaro; Pérez, María M
2018-05-12
To determine the translucency acceptability and perceptibility thresholds for dental resin composites using CIEDE2000 and CIELAB color difference formulas. A 30-observer panel performed perceptibility and acceptability judgments on 50 pairs of resin composites discs (diameter: 10mm; thickness: 1mm). Disc pair differences for the Translucency Parameter (ΔTP) were calculated using both color difference formulas (ΔTP 00 ranged from 0.11 to 7.98, and ΔTP ab ranged from 0.01 to 12.79). A Takagi-Sugeno-Kang (TSK) Fuzzy Approximation was used as fitting procedure. From the resultant fitting curves, the 95% confidence intervals were estimated and the 50:50% translucency perceptibility and acceptability thresholds (TPT and TAT) were calculated. Differences between thresholds were statistically analyzed using Student t tests (α=0.05). CIEDE2000 50:50% TPT was 0.62 and TAT was 2.62. Corresponding CIELAB values were 1.33 and 4.43, respectively. Translucency perceptibility and acceptability thresholds were significantly different using both color difference formulas (p=0.01 for TPT and p=0.005 for TAT). CIEDE2000 color difference formula provided a better data fit than CIELAB formula. The visual translucency difference thresholds determined with CIEDE2000 color difference formula can serve as reference values in the selection of resin composites and evaluation of its clinical performance. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Vibration-Induced Climbing of Drops
NASA Astrophysics Data System (ADS)
Brunet, P.; Eggers, J.; Deegan, R. D.
2007-10-01
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.
Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various gravity levels
NASA Astrophysics Data System (ADS)
Gandikota, G.; Chatain, D.; Lyubimova, T.; Beysens, D.
2014-06-01
Horizontal vibration applied to the support of a simple pendulum can deviate from the equilibrium position of the pendulum to a nonvertical position. A similar phenomenon is expected when a liquid-vapor interface is subjected to strong horizontal vibration. Beyond a threshold value of vibrational velocity the interface should attain an equilibrium position at an angle to the initial horizontal position. In the present paper experimental investigation of this phenomenon is carried out in a magnetic levitation device to study the effect of the vibration parameters, gravity acceleration, and the liquid-vapor density on the interface position. The results compare well with the theoretical expression derived by Wolf [G. H. Wolf, Z. Phys. B 227, 291 (1969), 10.1007/BF01397662].
The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water
NASA Astrophysics Data System (ADS)
Desai, Sandeep Rangrao; Pavitran, Sampat
2018-02-01
Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited flow capacity of the pump. The tests are carried out first on plain tube arrays to establish the same as the datum case and results are compared to known results of plain tube arrays and hence the quality of the test rig is also assessed. The fluid elastic vibration tests are then carried out on finned tube arrays with coarse and fine fin pitches and effects of fins and fin pitch on instability threshold are shown. The vibration response of the tube is recorded for each gradually increasing flow rates of water till instability point is reached. The parameters at the instability are then presented in terms of dimensionless parameters to compare them with published results. It is concluded that, arrays with higher pitch ratios are unstable at comparatively higher flow velocities and instability threshold for finned tube arrays is delayed due to addition of the fins. Further, it is concluded that, instability threshold for finned tube arrays with fine fin pitch is delayed compared to coarse fin pitch and hence for increased fin density, instability threshold is delayed. The experimental results in terms of critical velocities obtained for different tube arrays subjected to water cross flow will serve as the base flow rates for air-water cross flow experiments to be conducted in the next phase.
Cheng, H; Zhang, X C; Duan, L; Ma, Y; Wang, J X
1995-01-01
The vibrotactile sense thresholds (VSTs) of the middle fingers of 60 healthy persons and 97 patients with Hand-Arm Vibration Syndrome (HAVS) or subclinical HAVS were measured quantitatively. Intermittent vibratory irritations were adopted, with vibration stimulus frequencies at 8, 16, 31.5, 63, 125, 250, and 500 Hz. The equal VST contours of the fingers were mapped. Results showed that the VSTs of the normal group were not correlated with sex or handedness. From 8 Hz to 250 Hz the equal VST contours of the normal group were relatively flat; at more than 250 Hz the contours began an abrupt ascent. The VST values had a logarithmic rising tendency with the increasing age of subjects. In the equal VST contours the frequency of the most sensitive threshold value was 125 Hz in the normal group and 8 Hz in the HAVS group. The patients' VST values were higher than that of the healthy persons. The vibrotactilegram showed that the VST values of the patient groups first shifted at high frequencies and VST loss displayed a "V"-type hollow at 125 Hz and 250 Hz. The quantitative test method of VST was a valuable auxiliary detection method for HAVS. The "V"-type hollow of VST was an early clinical manifestation of HAVS.
Perception of fore-and-aft whole-body vibration intensity measured by two methods.
Forta, Nazım Gizem; Schust, Marianne
2015-01-01
This experimental study investigated the perception of fore-and-aft whole-body vibration intensity using cross-modality matching (CM) and magnitude estimation (ME) methods. Thirteen subjects were seated on a rigid seat without a backrest and exposed to sinusoidal stimuli from 0.8 to 12.5 Hz and 0.4 to 1.6 ms(-2) r.m.s. The Stevens exponents did not significantly depend on vibration frequency or the measurement method. The ME frequency weightings depended significantly on vibration frequency, but the CM weightings did not. Using the CM and ME weightings would result in higher weighted exposures than those calculated using the ISO (2631-1, 1997) Wd. Compared with ISO Wk, the CM and ME-weighted exposures would be greater at 1.6 Hz and lesser above that frequency. The CM and ME frequency weightings based on the median ratings for the reference vibration condition did not differ significantly. The lack of a method effect for weightings and for Stevens exponents suggests that the findings from the two methods are comparable. Frequency weighting curves for seated subjects for x-axis whole-body vibration were derived from an experiment using two different measurement methods and were compared with the Wd and Wk weighting curves in ISO 2631-1 (1997).
Experiences and consequences for women with hand-arm vibration injuries.
Bylund, Sonya Hörnqwist; Ahlgren, Christina
2010-01-01
Vibrating machines are used in a variety of occupations. Exposure to hand-arm vibration can cause vascular, neurological, and muscular symptoms in the hands and arms. This qualitative study provides a deeper understanding of the consequences of vibration injuries in women. In depth interviews were conducted with eight women with vibration injuries. The women were metal and wood product assemblers and dental personnel. The transcribed interviews were analyzed in accordance with the grounded theory method. The core category in the findings was "another life". This was constructed by the categories "consequences for everyday activities", "work performance", "household duties", "leisure", and "self perception" and shows that the injury had affected most parts of the women's lives and decreased their quality of life. The importance of well-functioning hands in all activities was highlighted. Reduced hand function due to numbness, muscle weakness, and pain caused restricted abilities to perform activities at work, at home, and during leisure time. The women described impact on their self-perception, as the injury had affected them in their roles as a worker, mother, and woman. The findings indicate that a vibration injury is a multidimensional problem that can affect every aspect of an individual's life. Health care providers should be aware of these complex consequences.
Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity
NASA Technical Reports Server (NTRS)
Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.
2001-01-01
Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.
Pitch perception and production in congenital amusia: Evidence from Cantonese speakers.
Liu, Fang; Chan, Alice H D; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C M
2016-07-01
This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production.
Pitch perception and production in congenital amusia: Evidence from Cantonese speakers
Liu, Fang; Chan, Alice H. D.; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C. M.
2016-01-01
This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production. PMID:27475178
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI s), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline
NASA Astrophysics Data System (ADS)
Tzeng, Sheng Yuan; Dong, Changwu; Tzeng, Wen Bih
2012-10-01
We report the vibronic and cation spectra of p-vinylaniline, which are recorded by using the resonant two-photon ionization and the mass-analyzed threshold ionization spectroscopic techniques. The band origin of the S1 ← S0 electronic transition appears at 31,490 ± 2 cm-1 and the adiabatic ionization energy is determined to be 59,203 ± 5 cm-1. Due to the nature of the substituent, the amino and vinyl groups lead to lower electronic excitation and ionization energies by a few thousand wave numbers. Most of the observed active modes result from the in-plane ring deformation and substituent-sensitive vibrations of this molecule in the electronically excited S1 and cationic ground D0 states. By comparing the frequencies of the observed active vibrations, one may conclude that the molecular geometry and the vibrational coordinates of these modes of the p-vinylaniline cation in the D0 state resemble those of the neutral species in the S1 state.
Differences in Taste Perception and Spicy Preference: A Thai-Japanese Cross-cultural Study.
Trachootham, Dunyaporn; Satoh-Kuriwada, Shizuko; Lam-Ubol, Aroonwan; Promkam, Chadamas; Chotechuang, Nattida; Sasano, Takashi; Shoji, Noriaki
2017-12-25
Taste perception is influenced by several factors. However, the relation between taste perception and food culture is unclear. This study compared taste thresholds between populations with different food culture, i.e. Thai and Japanese. A matched case-control study was conducted in 168 adults (84 for each; aged between 50 and 90 years). The age, sex, systemic disease, medication, smoking, xerostomia, and oral hygiene of both groups were not different. Recognition thresholds (RTs) of sweet, salty, sour, bitter, and umami were measured using filter paper disc (FPD). Detection taste thresholds were measured using electrogustometry. Spicy preference was measured by calibrated questionnaires. Higher RTs of all tastes and higher detection taste thresholds were found in Thai as compared to those of Japanese (P < 0.0001). Separate analyses of healthy and unhealthy persons confirmed the significant differences between 2 countries. The average thresholds for sweet, salty, sour, and bitter in Thai and Japanese were 4 and 2, respectively. The average threshold for umami in Thai and Japanese was 5 and 3, respectively. Moreover, Thai population had stronger preference for spicy food (P < 0.0001) with 70% mild- or moderate and 10% strong lovers, compared to over 90% non- or mild-spicy lovers in Japanese. In addition, 70% of Thai consumed spicy food weekly, whilst 80% of Japanese consumed it monthly. Our findings suggested that population with stronger spicy preference such as Thai had much poorer taste sensitivity and perception than that with milder preference like Japanese. Extensive international survey is needed to conclude the influence of food culture on taste perception. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An examination of gas compressor stability and rotating stall
NASA Technical Reports Server (NTRS)
Fozi, Aziz A.
1987-01-01
The principal sources of vibration related reliability problems in high pressure centrifugal gas compressors are the re-excitation of the first critical speed or Resonant Subsynchronous Vibration (RSSV), and the forced vibration due to rotating stall in the vaneless diffusers downstream of the impellers. An example of such field problems is given elsewhere. This paper describes the results of a test program at the author's company, initiated in 1983 and completed during 1985, which studied the RSSV threshold and the rotating stall phenomenon in a high pressure gas compressor.
Effect of acute stress on taste perception: in relation with baseline anxiety level and body weight.
Ileri-Gurel, Esin; Pehlivanoglu, Bilge; Dogan, Murat
2013-01-01
We aimed to determine the effect of acute stress on taste perception and its modulation in relation to body weight and baseline anxiety in this study. The anxiety of the participants, randomly allocated to stress (n = 35) or control (n = 16) groups, was assessed by State Trait Anxiety Inventory. Stroop color-word interference and cold pressor tests were applied as stress protocol. Glucose and salt taste detection thresholds were evaluated before and after the stress protocol in the stress group and corresponding times in the control group. Stress protocol increased heart rate and blood pressure as an indicator of stress system activation. Following stress glucose and salt thresholds decreased in the stress group, unchanged in the control group. Prestress salt thresholds were positively and decrements in salt thresholds were negatively correlated with trait anxiety scores of participants. The state anxiety levels of stress group positively correlated with the decrease in glucose thresholds. Waist-to-hip ratio was negatively correlated with prestress salt thresholds of the subjects. Our results revealed that thresholds for sweet and salty tastes are modulated during stressful conditions. Our data also demonstrated a relationship between taste perception and baseline anxiety levels of healthy individuals, which may be important to understand the appetite alterations in individuals under stressful conditions.
Concorde noise-induced building vibrations John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.
1978-01-01
The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics.
Structural Health Monitoring: Leveraging Pain in the Human Body
NASA Astrophysics Data System (ADS)
Nayak, Subhadarshi
2012-07-01
Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.
Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N. B.; Hummel, Thomas
2011-01-01
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality. PMID:21556139
Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N B; Hummel, Thomas
2011-04-27
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.
Kakinuma, Kaoru; Sasaki, Takehiro; Jamsran, Undarmaa; Okuro, Toshiya; Takeuchi, Kazuhiko
2014-10-01
Applying the threshold concept to rangeland management is an important challenge in semi-arid and arid regions. Threshold recognition and prediction is necessary to enable local pastoralists to prevent the occurrence of an undesirable state that would result from unsustainable grazing pressure, but this requires a better understanding of the pastoralists' perception of vegetation threshold changes. We estimated plant species cover in survey plots along grazing gradients in steppe and desert-steppe areas of Mongolia. We also conducted interviews with local pastoralists and asked them to evaluate whether the plots were suitable for grazing. Floristic composition changed nonlinearly along the grazing gradient in both the desert-steppe and steppe areas. Pastoralists observed the floristic composition changes along the grazing gradients, but their evaluations of grazing suitability did not always decrease along the grazing gradients, both of which included areas in a post-threshold state. These results indicated that local pastoralists and scientists may have different perceptions of vegetation states, even though both of groups used plant species and coverage as indicators in their evaluations. Therefore, in future studies of rangeland management, researchers and pastoralists should exchange their knowledge and perceptions to successfully apply the threshold concept to rangeland management.
Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers
NASA Astrophysics Data System (ADS)
Ostapenko, S.; Tarasov, I.
2000-04-01
A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.
Threshold Capability Development in Intensive Mode Business Units
ERIC Educational Resources Information Center
Crispin, Stuart; Hancock, Phil; Male, Sally Amanda; Baillie, Caroline; MacNish, Cara; Leggoe, Jeremy; Ranmuthugala, Dev; Alam, Firoz
2016-01-01
Purpose: The purpose of this paper is to explore: student perceptions of threshold concepts and capabilities in postgraduate business education, and the potential impacts of intensive modes of teaching on student understanding of threshold concepts and development of threshold capabilities. Design/Methodology/Approach: The student experience of…
Children's perceptions of smile esthetics and their influence on social judgment.
Rossini, Gabriele; Parrini, Simone; Castroflorio, Tommaso; Fortini, Arturo; Deregibus, Andrea; Debernardi, Cesare L
2016-11-01
To define a threshold of acceptance of smile esthetics for children and adolescents. A systematic search in the medical literature (PubMed, PubMed Central, National Library of Medicine's Medline, Embase, Cochrane Central Register of Controlled Clinical Trials, Web of Knowledge, Scopus, Google Scholar, and LILACs) was performed to identify all peer-reviewed papers reporting data regarding the evaluation of children's and adolescents' perceptions of dental esthetic factors. The search was conducted using a research strategy based on keywords such as "children," "adolescents," "smile aesthetics perception," "smile aesthetics evaluation." Studies analyzing smile esthetics involving at least 10 observers younger than 18 years of age were selected. Among the 1667 analyzed articles, five studies were selected for the final review process. No study included in the review analyzed perception of smile anomalies in a quantitative or qualitative way, thus no threshold was identified for smile features. Among the analyzed samples, unaltered smiles were always significantly associated with better evaluation scores when compared with altered smiles. Smile esthetics influence social perception during childhood and adolescence. However, thresholds of smile esthetic acceptance in children and adolescents are still not available.
Multiple Fingers - One Gestalt.
Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut
2016-01-01
The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.
A spectroscopist's view of energy states, energy transfers, and chemical reactions.
Moore, C Bradley
2007-01-01
This chapter describes a research career beginning at Berkeley in 1960, shortly after Sputnik and the invention of the laser. Following thesis work on vibrational spectroscopy and the chemical reactivity of small molecules, we studied vibrational energy transfers in my own lab. Collision-induced transfers among vibrations of a single molecule, from one molecule to another, and from vibration to rotation and translation were elucidated. My research group also studied the competition between vibrational relaxation and chemical reaction for potentially reactive collisions with one molecule vibrationally excited. Lasers were used to enrich isotopes by the excitation of a predissociative transition of a selected isotopomer. We also tested the hypotheses of transition-state theory for unimolecular reactions of ketene, formaldehyde, and formyl fluoride by (a) resolving individual molecular eigenstates above a dissociation threshold, (b) locating vibrational levels at the transition state, (c) observing quantum resonances in the barrier region for motion along a reaction coordinate, and (d) studying energy release to fragments.
Vitamin B supplementation for diabetic peripheral neuropathy.
Jayabalan, Bhavani; Low, Lian Leng
2016-02-01
Vitamin B12 deficiency has been associated with significant neurological pathology, especially peripheral neuropathy. This review aims to examine the existing evidence on the effectiveness of vitamin B12 supplementation for the treatment of diabetic peripheral neuropathy. A search of PubMed and the Cochrane Central Register of Controlled Trials for all relevant randomised controlled trials was conducted in December 2014. Any type of therapy using vitamin B12 or its coenzyme forms was assessed for efficacy and safety in diabetics with peripheral neuropathy. Changes in vibration perception thresholds, neuropathic symptoms and nerve conduction velocities, as well as the adverse effects of vitamin B12 therapy, were assessed. Four studies comprising 363 patients met the inclusion criteria. This review found no evidence that the use of oral vitamin B12 supplements is associated with improvement in the clinical symptoms of diabetic neuropathy. Furthermore, the majority of studies reported no improvement in the electrophysiological markers of nerve conduction. Copyright © Singapore Medical Association.
The sensitivity of clinical diagnostic methods in the diagnosis of diabetic neuropathy.
Onde, M E; Ozge, A; Senol, M G; Togrol, E; Ozdag, F; Saracoglu, M; Misirli, H
2008-01-01
This study assessed the sensitivity of various methods for the clinical diagnosis of diabetic peripheral neuropathy. A total of 147 randomly selected patients with diabetes mellitus and 65 age- and sex-matched healthy controls were evaluated by various clinical (the neuropathy symptom score [NSS], the neuropathy disability score [NDS], vibration perception thresholds [VPTs], Tinel's sign and Phalen's sign), laboratory (fasting plasma glucose and glycosylated haemoglobin levels) and electro-physiological (nerve conduction studies, H-reflex and F-wave measurements) methods. In the patient group, 8.2% had an abnormal NSS, 28.5% had a positive Phalen's sign, 32.6% had a positive Tinel's sign, 42.8% had an abnormal VPT and 57.1% had an abnormal NDS. Significant correlations were found between electro-physiologically confirmed neuropathy and the two provocation tests and abnormal VPTs. In conclusion, assessment with a complete neurological examination and standard electrophysiological tests is very important for the diagnosis of diabetic peripheral neuropathy and the prevention of morbidity in patients with or without symptoms.
Endogenous modulation of human visual cortex activity improves perception at twilight.
Cordani, Lorenzo; Tagliazucchi, Enzo; Vetter, Céline; Hassemer, Christian; Roenneberg, Till; Stehle, Jörg H; Kell, Christian A
2018-04-10
Perception, particularly in the visual domain, is drastically influenced by rhythmic changes in ambient lighting conditions. Anticipation of daylight changes by the circadian system is critical for survival. However, the neural bases of time-of-day-dependent modulation in human perception are not yet understood. We used fMRI to study brain dynamics during resting-state and close-to-threshold visual perception repeatedly at six times of the day. Here we report that resting-state signal variance drops endogenously at times coinciding with dawn and dusk, notably in sensory cortices only. In parallel, perception-related signal variance in visual cortices decreases and correlates negatively with detection performance, identifying an anticipatory mechanism that compensates for the deteriorated visual signal quality at dawn and dusk. Generally, our findings imply that decreases in spontaneous neural activity improve close-to-threshold perception.
Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.
2014-01-01
Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus identification accuracy and exposure duration, we were able to investigate whether a high-amplitude perception-related cortical event was (1) only evoked for conditions where perception was most probable (2) had invariant amplitude once evoked and (3) was largely absent for conditions where perception was least probable (criteria satisfying an all-on-none hypothesis). We found that averaged evoked responses showed a gradual increase in amplitude with increasing perceptual strength. However, single trial analyses demonstrated that stimulus perception was correlated with an all-or-none response, the temporal precision of which increased systematically as perception transitioned from ambiguous to robust states. Due to poor signal-to-noise resolution of single trial data, whether perception-related responses, whenever present, were invariant in amplitude could not be unambiguously demonstrated. However, our findings strongly suggest that visual perception of simple stimuli is associated with an all-or-none cortical evoked response the temporal precision of which varies as a function of perceptual strength. PMID:22020091
Improved wavelet de-noising method of rail vibration signal for wheel tread detection
NASA Astrophysics Data System (ADS)
Zhao, Quan-ke; Zhao, Quanke; Gao, Xiao-rong; Luo, Lin
2011-12-01
The irregularities of wheel tread can be detected by processing acceleration vibration signal of railway. Various kinds of noise from different sources such as wheel-rail resonance, bad weather and artificial reasons are the key factors influencing detection accuracy. A method which uses wavelet threshold de-noising is investigated to reduce noise in the detection signal, and an improved signal processing algorithm based on it has been established. The results of simulations and field experiments show that the proposed method can increase signal-to-noise ratio (SNR) of the rail vibration signal effectively, and improve the detection accuracy.
The role of viscous fluid flow in active cochlear partition vibration
NASA Astrophysics Data System (ADS)
Svobodny, Thomas
2001-11-01
Sound transduction occurs via the forcing of the basilar membrane by a traveling wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number (because of the tiny size). The actual transduction occurs through the mechanism of stereocilia of hair cells. Analysis and simulation of the interaction between the microhydrodynamical flow and the basilar membrane vibration will be presented in this talk. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection.
Romaiguère, P; Vedel, J P; Azulay, J P; Pagni, S
1991-01-01
1. Single motor unit activity was recorded in the extensor carpi radialis longus and extensor carpi radialis brevis muscles of five healthy human subjects, using metal microelectrodes. 2. Motor units were characterized on the basis of their twitch contraction times and their force recruitment thresholds during voluntary imposed-ramp contractions. 3. The discharge patterns of forty-three motor units were studied during tonic vibration reflex elicited by prolonged (150 s) trains of vibration (30 Hz) applied to the distal tendons of the muscles. The temporal relationships between the individual small tendon taps of the vibratory stimulus and the motor unit impulses were analysed on dot raster displays and post-stimulus time histograms. 4. After tendon taps, the impulses of motor units with long twitch contraction times (mean +/- S.D., 47.2 +/- 10.7 ms) and low recruitment thresholds (0.88 +/- 0.6 N) formed a single narrow peak (P1) with a latency (22.7 +/- 1.4 ms) which was comparable to that of the tendon jerk in the extensor carpi radialis muscles. These motor units were named 'P1 units'. On the other hand, the response of motor units with shorter twitch contraction times (31.1 +/- 3.3 ms) and higher recruitment thresholds (3.21 +/- 1.3 N) showed two peaks: a short latency (23.4 +/- 1.3 ms) P1 peak similar to the previous one and a P2 peak occurring 9.4 +/- 1.2 ms later. These motor units were named 'P1-P2 units'. 5. When the reflex contraction increased slowly, the P1 peaks of 'P1-P2 units' were clearly predominant at the beginning of the contraction, during the rising phase of the motor unit discharge frequency, while the P2 peaks became predominant when the units had reached their maximal discharge frequency. 6. Increasing the tendon vibration frequency (35, 55, 75, 95 Hz) did not modify the 'P1 unit' discharge pattern. Due to interference between vibration period and peak latencies, increasing the vibration frequency caused the P1 and P2 peaks of 'P1-P2 units' to overlap. 7. Superficial cutaneous stimulation of the dorsal side of the forearm during tendon vibration noticeably decreased the P1 peaks in both types of motor units. In the P2 peaks it could result in either a decrease or an increase but the average effect was a slight increase. 8. When applied 10 s before tendon vibration, cutaneous stimulation considerably suppressed the tonic vibration reflex.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1822565
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2017-01-01
We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.
Neural correlates of coherent and biological motion perception in autism.
Koldewyn, Kami; Whitney, David; Rivera, Susan M
2011-09-01
Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.
Neural correlates of coherent and biological motion perception in autism
Koldewyn, Kami; Whitney, David; Rivera, Susan M.
2011-01-01
Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323
Sonic Booms And Building Vibration Revisited
NASA Astrophysics Data System (ADS)
Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph
2006-05-01
Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.
Guidelines for Head Tactile Communication
2010-03-01
significant effects were explored using least significant difference ( LSD ). The mean static force created on the head by the headband was 0.47 N. Due to...differences in thresholds attributable to head location, frequency, and noise condition, and significant effects were explored using LSD . The mean...Stuart, M.; Turman, A. B.; Shaw , J.; Walsh, N.; Nguyen, V. Effects of Aging on Vibration Detection Thresholds at Various Body Regions. BMC Geriatrics
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; ...
2014-12-31
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less
Vibrotactile perception assessment for a haptic interface on an antigravity suit.
Ko, Sang Min; Lee, Kwangil; Kim, Daeho; Ji, Yong Gu
2017-01-01
Haptic technology is used in various fields to transmit information to the user with or without visual and auditory cues. This study aimed to provide preliminary data for use in developing a haptic interface for an antigravity (anti-G) suit. With the structural characteristics of the anti-G suit in mind, we determined five areas on the body (lower back, outer thighs, inner thighs, outer calves, and inner calves) on which to install ten bar-type eccentric rotating mass (ERM) motors as vibration actuators. To determine the design factors of the haptic anti-G suit, we conducted three experiments to find the absolute threshold, moderate intensity, and subjective assessments of vibrotactile stimuli. Twenty-six fighter pilots participated in the experiments, which were conducted in a fixed-based flight simulator. From the results of our study, we recommend 1) absolute thresholds of ∼11.98-15.84 Hz and 102.01-104.06 dB, 2) moderate intensities of 74.36 Hz and 126.98 dB for the lower back and 58.65 Hz and 122.37 dB for either side of the thighs and calves, and 3) subjective assessments of vibrotactile stimuli (displeasure, easy to perceive, and level of comfort). The results of this study will be useful for the design of a haptic anti-G suit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haines, T; Chong, J; Verrall, A B; Julian, J; Bernholz, C; Spears, R; Muir, D C
1988-01-01
The objective of this study was to investigate whether aesthesiometric threshold changes occur over the course of a workshift in vibration exposed hard rock miners relative to workers unexposed to vibration during the shift. The subjects were 99 miners and 40 smelter workers; four subjects declined to participate and nine were excluded from the analysis because of apparent failure to comprehend the testing procedure. Two point discrimination and depth sense aesthesiometry were conducted at the beginning and at the end of the workshift in all digits of both hands excluding the thumbs. In addition to the use of a vibrating tool during the shift, age, digital temperature, signs of arm injury, presence of fingertip callus, and handedness were documented. In the analysis the difference between postshift and preshift readings was studied in relation to these variables, particularly exposure to the jackleg drill during the shift. With the exception of exposure of the jackleg drill, no associations were observed between these variables and change over the workshift in aesthesiometric results, on both unadjusted comparison of means and backward elimination regression analysis. A statistically significant association, however, was found between the use of a jackleg drill and change in two point discrimination and in depth sense aesthesiometric results over the course of the shift, for the right hand. Evidence of the occurrence of a learning effect, particularly for two point discrimination aesthesiometry, was observed. The occurrence of an effect in the right, but not the left, hand reflects dominant handedness and relatively greater vibration exposure in the right hand in our subjects. This study supports the incorporation of an exposure free interval before aesthesiometric testing of vibration exposed workers. PMID:3342191
Tsuge, Mikio; Izumizaki, Masahiko; Kigawa, Kazuyoshi; Atsumi, Takashi; Homma, Ikuo
2012-12-01
We studied the influence of false proprioceptive information generated by arm vibration and false visual information provided by a mirror in which subjects saw a reflection of another arm on perception of arm position, in a forearm position-matching task in right-handed subjects (n = 17). The mirror was placed between left and right arms, and arranged so that the reflected left arm appeared to the subjects to be their unseen right (reference) arm. The felt position of the right arm, indicated with a paddle, was influenced by vision of the mirror image of the left arm. If the left arm appeared flexed in the mirror, subjects felt their right arm to be more flexed than it was. Conversely, if the left arm was extended, they felt their right arm to be more extended than it was. When reference elbow flexors were vibrated at 70-80 Hz, an illusion of extension of the vibrated arm was elicited. The illusion of a more flexed reference arm evoked by seeing a mirror image of the flexed left arm was reduced by vibration. However, the illusion of extension of the right arm evoked by seeing a mirror image of the extended left arm was increased by vibration. That is, when the mirror and vibration illusions were in the same direction, they reinforced each other. However, when they were in opposite directions, they tended to cancel one another. The present study shows the interaction between proprioceptive and visual information in perception of arm position.
The Shock and Vibration Digest, Volume 17, Number 10
1985-10-01
Venkayya, V.B. and Tischler, V.A., 49. Calico , R.A., Jr. and Tnyfault, D.V., "Frequency Control and the Effect on the "Decoupled Large Space Structure...Hurwitz presented. The threshold concept is de- Numerical Structural Mechanics scribed, as are receiver operating charac- Branch (Code 1844 ) teristic...Part Vibration and Dynamics of Off Road Vehi- 2 - Realistic Complex Elements des M. Apetaur I.A. Craighead, P.R. Brown Prague Univ. of Tech
Nociception at the diabetic foot, an uncharted territory
Chantelau, Ernst A
2015-01-01
The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350
Automatic monitoring of the alignment and wear of vibration welding equipment
Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith
2017-05-23
A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host machine, a check station, and a welding robot. At least one displacement sensor is positioned with respect to one of the welding equipment and the check station. The robot moves the horn and anvil via an arm to the check station, when a threshold condition is met, i.e., a predetermined amount of time has elapsed or a predetermined number of welds have been completed. The robot moves the horn and anvil to the check station, activates the at least one displacement sensor, at the check station, and determines a status condition of the welding equipment by processing the received signals. The status condition may be one of the alignment of the vibration welding equipment and the wear or degradation of the vibration welding equipment.
Pina Rodrigues, Ana; Rebola, José; Jorge, Helena; Ribeiro, Maria José; Pereira, Marcelino; van Asselen, Marieke; Castelo-Branco, Miguel
2017-01-01
The specificity of visual channel impairment in dyslexia has been the subject of much controversy. The purpose of this study was to determine if a differential pattern of impairment can be verified between visual channels in children with developmental dyslexia, and in particular, if the pattern of deficits is more conspicuous in tasks where the magnocellular-dorsal system recruitment prevails. Additionally, we also aimed at investigating the association between visual perception thresholds and reading. In the present case-control study, we compared perception thresholds of 33 children diagnosed with developmental dyslexia and 34 controls in a speed discrimination task, an achromatic contrast sensitivity task, and a chromatic contrast sensitivity task. Moreover, we addressed the correlation between the different perception thresholds and reading performance, as assessed by means of a standardized reading test (accuracy and fluency). Group comparisons were performed by the Mann-Whitney U test, and Spearman's rho was used as a measure of correlation. Results showed that, when compared to controls, children with dyslexia were more impaired in the speed discrimination task, followed by the achromatic contrast sensitivity task, with no impairment in the chromatic contrast sensitivity task. These results are also consistent with the magnocellular theory since the impairment profile of children with dyslexia in the visual threshold tasks reflected the amount of magnocellular-dorsal stream involvement. Moreover, both speed and achromatic thresholds were significantly correlated with reading performance, in terms of accuracy and fluency. Notably, chromatic contrast sensitivity thresholds did not correlate with any of the reading measures. Our evidence stands in favor of a differential visual channel deficit in children with developmental dyslexia and contributes to the debate on the pathophysiology of reading impairments.
NASA Astrophysics Data System (ADS)
Mikishev, Alexander B.; Nepomnyashchy, Alexander A.
2018-05-01
The paper presents the analysis of the impact of vertical periodic vibrations on the long-wavelength Marangoni instability in a liquid layer with poorly conducting boundaries in the presence of insoluble surfactant on the deformable gas-liquid interface. The layer is subject to a uniform transverse temperature gradient. Linear stability analysis is performed in order to find critical values of Marangoni numbers for both monotonic and oscillatory instability modes. Longwave asymptotic expansions are used. At the leading order, the critical values are independent on vibration parameters; at the next order of approximation we obtained the rise of stability thresholds due to vibration.
Mirlohi, Susan; Dietrich, Andrea M; Duncan, Susan E
2011-08-01
Humans interact with their environment through the five senses, but little is known about population variability in the ability to assess contaminants. Sensory thresholds and biochemical indicators of metallic flavor perception in humans were evaluated for ferrous (Fe(2+)) iron in drinking water; subjects aged 19-84 years participated. Metallic flavor thresholds for individuals and subpopulations based on age were determined. Oral lipid oxidation and oral pH were measured in saliva as potential biochemical indicators. Individual thresholds were 0.007-14.14 mg/L Fe(2+) and the overall population threshold was 0.17 mg/L Fe(2+) in reagent water. Average thresholds for individuals younger and older than 50 years of age (grouped by the daily recommended nutritional guidelines for iron intake) were significantly different (p = 0.013); the population thresholds for each group were 0.045 mg/L Fe(2+) and 0.498 mg/L Fe(2+), respectively. Many subjects >50 and a few subjects <50 years were insensitive to metallic flavor. There was no correlation between age, oral lipid oxidation, and oral pH. Standardized olfactory assessment found poor sensitivity for Fe(2+) corresponded with conditions of mild, moderate, and total anosmia. The findings demonstrate an age-dependent sensitivity to iron indicating as people age they are less sensitive to metallic perception.
Sharp, Calum; Woodcock, James; Sica, Gennaro; Peris, Eulalia; Moorhouse, Andrew T; Waddington, David C
2014-01-01
In this work, exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments are developed, so as to better understand the differences in human response to these two sources of environmental vibration. Data for this research come from a field study comprising interviews with respondents and measurements of their vibration exposure (N = 752). A logistic regression model is able to accurately classify 96% of these measured railway vibration signals as freight or passenger based on two signal properties that quantify the duration and low frequency content of each signal. Exposure-response relationships are then determined using ordinal probit modeling with fixed thresholds. The results indicate that people are able to distinguish between freight and passenger railway vibration, and that the annoyance response due to freight railway vibration is significantly higher than that due to passenger railway vibration, even for equal levels of exposure. In terms of a community tolerance level, the population studied is 15 dB (re 10(-6) m s(-2)) more tolerant to passenger railway vibration than freight railway vibration. These results have implications for the expansion of freight traffic on rail, or for policies to promote passenger railway.
The generation of O(1S) from the dissociative recombination of O2(+)
NASA Technical Reports Server (NTRS)
Guberman, Steven L.; Giusti-Suzor, Annick
1991-01-01
The multichannel quantum defect theory (MQDT) method and large scale wave functions are applied to the calculation of the cross sections and rates for dissociative recombination of O2(+) along the 1Sigma-u(+) dissociative potential. Indirect dissociative recombination is accounted for by simultaneously including both the vibronic and electronic coupling to the intermediate Rydberg resonances. An enhanced MQDT approach involving a second-order K matrix is described. Cross sections and rates for the lowest three vibrational levels of the ion are reported. The shapes of the cross sections are discussed in terms of Fano's profile index. It is found that, for each of the three ion vibrational levels, the intermediate Rydberg resonances reduce the dissociative recombination rate below the direct recombination rate. Just above threshold, resonances with centers below threshold play an important role.
NASA Astrophysics Data System (ADS)
Tong, Xin; Winney, Alexander H.; Willitsch, Stefan
2010-10-01
We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N2+ ions as a test system, we achieve >90% selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited by collisions with background-gas molecules. The technique can be employed to produce a wide range of apolar and polar molecular ions in the ground and excited rovibrational states. Our approach opens up new perspectives for cold quantum-controlled ion-molecule-collision studies, frequency-metrology experiments with state-selected molecular ions and molecular-ion qubits.
The threshold signal:noise ratio in the perception of fragmented figures.
Merkul'ev, A V; Pronin, S V; Semenov, L A; Foreman, N; Chikhman, V N; Shelepin, Yu E
2006-01-01
Perception thresholds were measured for fragmented outline figures (the Gollin test). A new approach to the question of the perception of incomplete images was developed. In this approach, figure fragmentation consisted of masking with multiplicative texture-like noise--this interference was termed "invisible" masking. The first series of studies established that the "similarity" between the amplitude-frequency spectra of test figures and "invisible" masks, expressed as a linear correlation coefficient, had significant effects on the recognition thresholds of these figures. The second series of experiments showed that progressing formation of the figures was accompanied by increases in the correlation between their spatial-frequency characteristics and the corresponding characteristics of the incomplete figure, while the correlation with the "invisible" mask decreased. It is suggested that the ratio of the correlation coefficients, characterizing the "similarity" of the fragmented figure with the intact figure and the "invisible" mask, corresponds to the signal:noise ratio. The psychophysical recognition threshold for figures for naive subjects not familiar with the test image alphabet was reached after the particular level of fragmentation at which this ratio was unity.
Lane change warning threshold based on driver perception characteristics.
Wang, Chang; Sun, Qinyu; Fu, Rui; Li, Zhen; Zhang, Qiong
2018-08-01
Lane Change Warning system (LCW) is exploited to alleviate driver workload and improve the safety performance of lane changes. Depending on the secure threshold, the lane change warning system could transmit caution to drivers. Although the system possesses substantial benefits, it may perturb the conventional operating of the driver and affect driver judgment if the warning threshold does not conform to the driver perception of safety. Therefore, it is essential to establish an appropriate warning threshold to enhance the accuracy rate and acceptability of the lane change warning system. This research aims to identify the threshold that conforms to the driver perception of the ability to safely change lanes with a rear vehicle fast approaching. We propose a theoretical warning model of lane change based on a safe minimum distance and deceleration of the rear vehicle. For the purpose of acquiring the different safety levels of lane changes, 30 licensed drivers are recruited and we obtain the extreme moments represented by driver perception characteristics from a Front Extremity Test and a Rear Extremity Test implemented on the freeway. The required deceleration of the rear vehicle corresponding to the extreme time is calculated according to the proposed model. In light of discrepancies in the deceleration in these extremity experiments, we determine two levels of a hierarchical warning system. The purpose of the primary warning is to remind drivers of the existence of potentially dangerous vehicles and the second warning is used to warn the driver to stop changing lanes immediately. We use the signal detection theory to analyze the data. Ultimately, we confirm that the first deceleration threshold is 1.5 m/s 2 and the second deceleration threshold is 2.7 m/s 2 . The findings provide the basis for the algorithm design of LCW and enhance the acceptability of the intelligent system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ising, Erik; Dahlin, Lars B; Elding Larsson, Helena
2018-01-01
To investigate whether multi-frequency vibrometry can identify individuals with elevated vibration perception thresholds (VPTs), reflecting impaired vibrotactile sense, among children and adolescents with type 1 diabetes. In 72 pediatric patients with type 1 diabetes, VPTs were evaluated for seven frequencies on two sites of the hand, and five frequencies on two sites of the foot. Z-scores, based on previously collected reference data, were calculated. Perception to light touch was investigated using monofilaments. Subjects' characteristics were analyzed in comparison to normal and impaired vibrotactile sense. Subjects' median age, disease duration and age at disease onset were 12.8, 5.3 and 6.9 years, respectively. A total of 13 out of 72 (18%) subjects had impaired vibrotactile sense on at least one foot site. Impaired vibrotactile sense was more common among subjects treated with multiple daily insulin injections (MDI) compared to subjects treated with continuous subcutaneous insulin infusion (CSII) (p = 0.013). Age at disease onset was higher among subjects with impaired vibrotactile sense (p = 0.046). No significant correlations were found with gender, HbA1c or duration of diabetes. Impaired vibrotactile sense, mirroring diabetic peripheral neuropathy, was found in 1/5 of the children and adolescents in the study, and was more common in patients treated with MDI than in subjects treated with CSII.
An advanced stochastic model for threshold crossing studies of rotor blade vibrations.
NASA Technical Reports Server (NTRS)
Gaonkar, G. H.; Hohenemser, K. H.
1972-01-01
A stochastic model to analyze turbulence-excited rotor blade vibrations, previously described by Gaonkar et al. (1971), is generalized to include nonuniformity of the atmospheric turbulence velocity across the rotor disk in the longitudinal direction. The results of the presented analysis suggest that the nonuniformity of the vertical turbulence over the rotor disk is of little influence on the random blade flapping response, at least as far as longitudinal nonuniformity is concerned.
Vertical structures in vibrated wormlike micellar solutions
NASA Astrophysics Data System (ADS)
Epstein, Tamir; Deegan, Robert
2008-11-01
Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.
Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico
2011-04-01
Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
South Carolina Univ., Columbia. Dept. of Physics.
This book contains 65 physics experiments. The experiments are for a college-level physics course for music and art majors. The initial experiments are devoted to the general concept of vibration and cover vibrating strings, air columns, reflection, and interference. Later experiments explore light, color perception, cameras, mirrors and symmetry,…
Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...
2014-05-01
In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less
Observation of Excited Quadrupole-Bound States in Cold Anions
NASA Astrophysics Data System (ADS)
Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng
2017-07-01
We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.
Uddin, Zakir; MacDermid, Joy C.; Moro, Jaydeep; Galea, Victoria; Gross, Anita R.
2016-01-01
Objective: To estimate the extent to which psychophysical quantitative sensory test (QST) and patient factors (gender, age and comorbidity) predict pain, function and health status in people with shoulder disorders. To determine if there are gender differences for QST measures in current perception threshold (CPT), vibration threshold (VT) and pressure pain (PP) threshold and tolerance. Design: A cross-sectional study design. Setting: MacHAND Clinical Research Lab at McMaster University. Subjects: 34 surgical and 10 nonsurgical participants with shoulder pain were recruited. Method: Participants completed the following patient reported outcomes: pain (Numeric Pain Rating, Pain Catastrophizing Scale, Shoulder Pain and Disability Index) and health status (Short Form-12). Participants completed QST at 4 standardized locations and then an upper extremity performance-based endurance test (FIT-HaNSA). Pearson r’s were computed to determine the relationships between QST variables and patient factors with either pain, function or health status. Eight regression models were built to analysis QST’s and patient factors separately as predictors of either pain, function or health status. An independent sample t-test was done to evaluate the gender effect on QST. Results: Greater PP threshold and PP tolerance was significantly correlated with higher shoulder functional performance on the FIT-HANSA (r =0.31-0.44) and lower self-reported shoulder disability (r = -0.32 to -0.36). Higher comorbidity was consistently correlated (r =0.31-0.46) with more pain, and less function and health status. Older age was correlated to more pain intensity and less function (r =0.31-0.57). In multivariate models, patient factors contributed significantly to pain, function or health status models (r2 =0.19-0.36); whereas QST did not. QST was significantly different between males and females [in PP threshold (3.9 vs. 6.2, p < .001) and PP tolerance (7.6 vs. 2.6, p < .001) and CPT (1.6 vs. 2.3, p =.02)]. Conclusion: Psychophysical dimensions and patient factors (gender, age and comorbidity) affect self-reported and performance-based outcome measures in people with shoulder disorders. PMID:29399220
Resonant inelastic collisions of electrons with diatomic molecules
NASA Astrophysics Data System (ADS)
Houfek, Karel
2012-05-01
In this contribution we give a review of applications of the nonlocal resonance theory which has been successfully used for treating the nuclear dynamics of low-energy electron collisions with diatomic molecules over several decades. We give examples and brief explanations of various structures observed in the cross sections of vibrational excitation and dissociative electron attachment to diatomic molecules such as threshold peaks, boomerang oscillations below the dissociative attachment threshold, or outer-well resonances.
DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg
2016-06-01
Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.
Human speckle perception threshold for still images from a laser projection system.
Roelandt, Stijn; Meuret, Youri; Jacobs, An; Willaert, Koen; Janssens, Peter; Thienpont, Hugo; Verschaffelt, Guy
2014-10-06
We study the perception of speckle by human observers in a laser projector based on a 40 persons survey. The speckle contrast is first objectively measured making use of a well-defined speckle measurement method. We statistically analyse the results of the user quality scores, revealing that the speckle perception is not only influenced by the speckle contrast settings of the projector, but it is also strongly influenced by the type of image shown. Based on the survey, we derive a speckle contrast threshold for which speckle can be seen, and separately we investigate a speckle disturbance limit that is tolerated by the majority of test persons.
Tactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration
Zhao, Xuezeng
2017-01-01
The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, reciprocating sliding with increasing velocities and pressures are two common behaviors in humans to discriminate different materials, but the question remains as to what the correlation of the sliding velocity and normal load on the tactile perceptions of surface roughness and hardness is for material discrimination. In order to investigate this correlation, a finger-inspired crossed-I beam structure tactile tester has been designed to mimic the anthropic tactile discrimination behaviors. A novel method of characterizing the fast Fourier transform integral (FFT) slope of the vibration acceleration signal generated from fingertip rubbing on surfaces at increasing sliding velocity and normal load, respectively, are defined as kv and kw, and is proposed to discriminate the surface roughness and hardness of different materials. Over eight types of materials were tested, and they proved the capability and advantages of this high tactile-discriminating method. Our study may find applications in investigating humanoid robot perceptual abilities. PMID:29182538
Khoury, Eliana Dirce Torres; Souza, Givago da Silva; da Costa, Carlos Araújo; de Araújo, Amélia Ayako Kamogari; de Oliveira, Cláudia Simone Baltazar; Silveira, Luiz Carlos de Lima; Pinheiro, Maria da Conceição Nascimento
2015-01-01
The purpose of this work was to evaluate the somatosensory system of methylmercury-exposed inhabitants living in the communities of the Tapajós river basin by using psychophysical tests and to compare with measurements performed in inhabitants of the Tocantins river basin. We studied 108 subjects from Barreiras and São Luiz do Tapajós, two communities of the Tapajós river basin, State of Pará, Amazon, Brazil, aged 13–53 years old. Mercury analysis was performed in head hair samples weighting 0.1–0.2 g by using atomic absorption spectrometry. Three somatosensory psychophysical tests were performed: tactile sensation threshold, vibration sensation duration, and two-point discrimination. Semmes-Weinstein 20 monofilaments with different diameters were used to test the tactile sensation in the lower lip, right and left breasts, right and left index fingers, and right and left hallux. The threshold was the thinner monofilament perceived by the subject. Vibration sensation was investigated using a 128 Hz diapason applied to the sternum, right and left radial sides of the wrist, and right and left outer malleoli. Two trials were performed at each place. A stopwatch recorded the vibration sensation duration. The two-point discrimination test was performed using a two-point discriminator. Head hair mercury concentration was significantly higher in mercury-exposed inhabitants of Tapajós than in non-exposed inhabitants of Tocantins (p < 0.01). When all subjects were divided in two groups independently of age—mercury-exposed and non-exposed—the following results were found: tactile sensation thresholds in mercury-exposed subjects were higher than in non-exposed subjects at all body parts, except at the left chest; vibration sensation durations were shorter in mercury-exposed than in non-exposed subjects, at all locations except in the upper sternum; two-point discrimination thresholds were higher in mercury-exposed than in non-exposed subjects at all body parts. There was a weak linear correlation between tactile sensation threshold and mercury concentration in the head hair samples. No correlation was found for the other two measurements. Mercury-exposed subjects had impaired somatosensory function compared with non-exposed control subjects. Long-term mercury exposure of riverside communities in the Tapajós river basin is a possible but not a definitely proven cause for psychophysical somatosensory losses observed in their population. Additionally, the relatively simple psychophysical measures used in this work should be followed by more rigorous measures of the same population. PMID:26658153
Khoury, Eliana Dirce Torres; Souza, Givago da Silva; da Costa, Carlos Araújo; de Araújo, Amélia Ayako Kamogari; de Oliveira, Cláudia Simone Baltazar; Silveira, Luiz Carlos de Lima; Pinheiro, Maria da Conceição Nascimento
2015-01-01
The purpose of this work was to evaluate the somatosensory system of methylmercury-exposed inhabitants living in the communities of the Tapajós river basin by using psychophysical tests and to compare with measurements performed in inhabitants of the Tocantins river basin. We studied 108 subjects from Barreiras and São Luiz do Tapajós, two communities of the Tapajós river basin, State of Pará, Amazon, Brazil, aged 13-53 years old. Mercury analysis was performed in head hair samples weighting 0.1-0.2 g by using atomic absorption spectrometry. Three somatosensory psychophysical tests were performed: tactile sensation threshold, vibration sensation duration, and two-point discrimination. Semmes-Weinstein 20 monofilaments with different diameters were used to test the tactile sensation in the lower lip, right and left breasts, right and left index fingers, and right and left hallux. The threshold was the thinner monofilament perceived by the subject. Vibration sensation was investigated using a 128 Hz diapason applied to the sternum, right and left radial sides of the wrist, and right and left outer malleoli. Two trials were performed at each place. A stopwatch recorded the vibration sensation duration. The two-point discrimination test was performed using a two-point discriminator. Head hair mercury concentration was significantly higher in mercury-exposed inhabitants of Tapajós than in non-exposed inhabitants of Tocantins (p < 0.01). When all subjects were divided in two groups independently of age-mercury-exposed and non-exposed-the following results were found: tactile sensation thresholds in mercury-exposed subjects were higher than in non-exposed subjects at all body parts, except at the left chest; vibration sensation durations were shorter in mercury-exposed than in non-exposed subjects, at all locations except in the upper sternum; two-point discrimination thresholds were higher in mercury-exposed than in non-exposed subjects at all body parts. There was a weak linear correlation between tactile sensation threshold and mercury concentration in the head hair samples. No correlation was found for the other two measurements. Mercury-exposed subjects had impaired somatosensory function compared with non-exposed control subjects. Long-term mercury exposure of riverside communities in the Tapajós river basin is a possible but not a definitely proven cause for psychophysical somatosensory losses observed in their population. Additionally, the relatively simple psychophysical measures used in this work should be followed by more rigorous measures of the same population.
On-line tool breakage monitoring of vibration tapping using spindle motor current
NASA Astrophysics Data System (ADS)
Li, Guangjun; Lu, Huimin; Liu, Gang
2008-10-01
Input current of driving motor has been employed successfully as monitoring the cutting state in manufacturing processes for more than a decade. In vibration tapping, however, the method of on-line monitoring motor electric current has not been reported. In this paper, a tap failure prediction method is proposed to monitor the vibration tapping process using the electrical current signal of the spindle motor. The process of vibration tapping is firstly described. Then the relationship between the torque of vibration tapping and the electric current of motor is investigated by theoretic deducing and experimental measurement. According to those results, a monitoring method of tool's breakage is proposed through monitoring the ratio of the current amplitudes during adjacent vibration tapping periods. Finally, a low frequency vibration tapping system with motor current monitoring is built up using a servo motor B-106B and its driver CR06. The proposed method has been demonstrated with experiment data of vibration tapping in titanic alloys. The result of experiments shows that the method, which can avoid the tool breakage and giving a few error alarms when the threshold of amplitude ratio is 1.2 and there is at least 2 times overrun among 50 adjacent periods, is feasible for tool breakage monitoring in the process of vibration tapping small thread holes.
Chen, Xiaojie; Green, Paul G.; Levine, Jon D.
2010-01-01
We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ~44 Hz during a 1 minute suprathreshold stimulus) much greater than has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves, and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. PMID:20800357
Vibrational and rotational excitation effects of the N(2D) + D2(X1Σg +) → ND(X3Σ+) + D(2S) reaction
NASA Astrophysics Data System (ADS)
Zhu, Ziliang; Wang, Haijie; Wang, Xiquan; Shi, Yanying
2018-05-01
The effects of the rovibrational excitation of reactants in the N(2D) + D2(X1Σg+) → ND(X3Σ+) + D(2S) reaction are calculated in a collision energy range from the threshold to 1.0 eV using the time-dependent wave packet approach and a second-order split operator. The reaction probability, integral cross-section, differential cross-section and rate constant of the title reaction are calculated. The integral cross-section and rate constant of the initial states v = 0, j = 0, 1, are in good agreement with experimental data available in the literature. The rotational excitation of the D2 molecule has little effect on reaction probability, integral cross-section and the rate constant, but it increased the sideways and forward scattering signals. The vibrational excitation of the D2 molecule reduced the threshold and broke up the forward-backward symmetry of the differential cross-section; it also increased the forward scattering signals. This may be because the vibrational excitation of the D2 molecule reduced the lifetime of the intermediate complex.
Communication in a noisy environment: Perception of one's own voice and speech enhancement
NASA Astrophysics Data System (ADS)
Le Cocq, Cecile
Workers in noisy industrial environments are often confronted to communication problems. Lost of workers complain about not being able to communicate easily with their coworkers when they wear hearing protectors. In consequence, they tend to remove their protectors, which expose them to the risk of hearing loss. In fact this communication problem is a double one: first the hearing protectors modify one's own voice perception; second they interfere with understanding speech from others. This double problem is examined in this thesis. When wearing hearing protectors, the modification of one's own voice perception is partly due to the occlusion effect which is produced when an earplug is inserted in the car canal. This occlusion effect has two main consequences: first the physiological noises in low frequencies are better perceived, second the perception of one's own voice is modified. In order to have a better understanding of this phenomenon, the literature results are analyzed systematically, and a new method to quantify the occlusion effect is developed. Instead of stimulating the skull with a bone vibrator or asking the subject to speak as is usually done in the literature, it has been decided to excite the buccal cavity with an acoustic wave. The experiment has been designed in such a way that the acoustic wave which excites the buccal cavity does not excite the external car or the rest of the body directly. The measurement of the hearing threshold in open and occluded car has been used to quantify the subjective occlusion effect for an acoustic wave in the buccal cavity. These experimental results as well as those reported in the literature have lead to a better understanding of the occlusion effect and an evaluation of the role of each internal path from the acoustic source to the internal car. The speech intelligibility from others is altered by both the high sound levels of noisy industrial environments and the speech signal attenuation due to hearing protectors. A possible solution to this problem is to denoise the speech signal and transmit it under the hearing protector. Lots of denoising techniques are available and are often used for denoising speech in telecommunication. In the framework of this thesis, denoising by wavelet thresholding is considered. A first study on "classical" wavelet denoising technics is conducted in order to evaluate their performance in noisy industrial environments. The tested speech signals are altered by industrial noises according to a wide range of signal to noise ratios. The speech denoised signals are evaluated with four criteria. A large database is obtained and analyzed with a selection algorithm which has been designed for this purpose. This first study has lead to the identification of the influence from the different parameters of the wavelet denoising method on its quality and has identified the "classical" method which has given the best performances in terms of denoising quality. This first study has also generated ideas for designing a new thresholding rule suitable for speech wavelet denoising in an industrial noisy environment. In a second study, this new thresholding rule is presented and evaluated. Its performances are better than the "classical" method found in the first study when the signal to noise ratio from the speech signal is between --10 dB and 15 dB.
Jilani, Hannah; Ahrens, Wohlfgang; Buchecker, Kirsten; Russo, Paola; Hebestreit, Antje
2017-01-01
Background : To measure sensory taste perception in children with an accurate and reproducible method is challenging and objective measurement methods are scarce. Objective : Aim was to characterize sensory taste perception, by measuring the number of fungiform papillae (FP) and to investigate whether the number of FP is associated with sensitivity for bitter taste and with taste preferences for sweet, salty, fatty or umami in children between 8 and 11 years of age. Design : Number of FP was measured with a digital camera in 83 children in a German subsample of the IDEFICS study. Among those 56 children performed a taste threshold test for bitter and taste preference tests for sweet, salty, fatty and umami. The association between the number of FP and sensory taste perception was analysed. Results : There is a tendency towards a lower number of FP in children with a higher fat preference (30 vs. 25 papillae, p=0.06). Results show no association between the number of FP and neither the bitter taste thresholds nor taste preferences for sweet, salty and umami. Conclusion : Bitter taste threshold might be independent of the number of FP, while the perception of fat was associated with the number of FP.
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421
Griffioen, Mari A; Greenspan, Joel D; Johantgen, Meg; Von Rueden, Kathryn; O'Toole, Robert V; Dorsey, Susan G; Renn, Cynthia L
2018-01-01
Chronic pain is a significant problem for patients with lower extremity injuries. While pain hypersensitivity has been identified in many chronic pain conditions, it is not known whether patients with chronic pain following lower extremity fracture report pain hypersensitivity in the injured leg. To quantify and compare peripheral somatosensory function and sensory nerve activation thresholds in persons with chronic pain following lower extremity fractures with a cohort of persons with no history of lower extremity fractures. This was a cross-sectional study where quantitative sensory testing and current perception threshold testing were conducted on the injured and noninjured legs of cases and both legs of controls. A total of 14 cases and 28 controls participated in the study. Mean time since injury at the time of testing for cases was 22.3 (standard deviation = 12.1) months. The warmth detection threshold ( p = .024) and nerve activation thresholds at 2,000 Hz ( p < .001) and 250 Hz ( p = .002), respectively, were significantly higher in cases compared to controls. This study suggests that patients with chronic pain following lower extremity fractures may experience hypoesthesia in the injured leg, which contrasts with the finding of hyperesthesia previously observed in other chronic pain conditions but is in accord with patients with nerve injuries and surgeries. This is the first study to examine peripheral sensory nerve function at the site of injury in patients with chronic pain following lower extremity fractures using quantitative sensory testing and current perception threshold testing.
NASA Astrophysics Data System (ADS)
Wu, Pei Ying; Tzeng, Wen Bih
2015-10-01
We applied two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic, photoionization efficiency, and cation spectra of the selected rotamers of 3-fluorostyrene. The adiabatic ionization energies of cis- and trans-3-fluorostyrene were determined to be 69 960 ± 5 and 69 856 ± 5 cm-1, respectively. Cation vibrations 10a, 15, 6b, and 12 of both rotamers have been found to have frequencies of 218, 404, 452, and 971 cm-1, respectively. This finding shows that the relative orientation of the vinyl group with respect to the F atom does not affect these vibrations of the 3-fluorostyrene cation. Our one-dimensional potential energy surface calculations support that the cis-trans isomerization of 3-fluorostyrene does not occur under the present experimental conditions.
Teaching Evolution: The Blog as a Liminal Space
ERIC Educational Resources Information Center
Akkaraju, Shylaja; Wolf, Alexander
2016-01-01
A "threshold concept" is a challenging concept that acts as a doorway leading to deeper understanding and a dramatic shift in perception. A learner that is involved in grasping a threshold concept is said to be undergoing a threshold experience within a "liminal space" or learning environment. We used the blog as a liminal…
Cross-modal cueing effects of visuospatial attention on conscious somatosensory perception.
Doruk, Deniz; Chanes, Lorena; Malavera, Alejandra; Merabet, Lotfi B; Valero-Cabré, Antoni; Fregni, Felipe
2018-04-01
The impact of visuospatial attention on perception with supraliminal stimuli and stimuli at the threshold of conscious perception has been previously investigated. In this study, we assess the cross-modal effects of visuospatial attention on conscious perception for near-threshold somatosensory stimuli applied to the face. Fifteen healthy participants completed two sessions of a near-threshold cross-modality cue-target discrimination/conscious detection paradigm. Each trial began with an endogenous visuospatial cue that predicted the location of a weak near-threshold electrical pulse delivered to the right or left cheek with high probability (∼75%). Participants then completed two tasks: first, a forced-choice somatosensory discrimination task (felt once or twice?) and then, a somatosensory conscious detection task (did you feel the stimulus and, if yes, where (left/right)?). Somatosensory discrimination was evaluated with the response reaction times of correctly detected targets, whereas the somatosensory conscious detection was quantified using perceptual sensitivity (d') and response bias (beta). A 2 × 2 repeated measures ANOVA was used for statistical analysis. In the somatosensory discrimination task (1 st task), participants were significantly faster in responding to correctly detected targets (p < 0.001). In the somatosensory conscious detection task (2 nd task), a significant effect of visuospatial attention on response bias (p = 0.008) was observed, suggesting that participants had a less strict criterion for stimuli preceded by spatially valid than invalid visuospatial cues. We showed that spatial attention has the potential to modulate the discrimination and the conscious detection of near-threshold somatosensory stimuli as measured, respectively, by a reduction of reaction times and a shift in response bias toward less conservative responses when the cue predicted stimulus location. A shift in response bias indicates possible effects of spatial attention on internal decision processes. The lack of significant results in perceptual sensitivity (d') could be due to weaker effects of endogenous attention on perception.
Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.
2017-07-01
The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.
Effects of visual erotic stimulation on vibrotactile detection thresholds in men.
Jiao, Chuanshu; Knight, Peter K; Weerakoon, Patricia; Turman, A Bulent
2007-12-01
This study examined the effects of sexual arousal on vibration detection thresholds in the right index finger of 30 healthy, heterosexual males who reported no sexual dysfunction. Vibrotactile detection thresholds at frequencies of 30, 60, and 100 Hz were assessed before and after watching erotic and control videos using a forced-choice, staircase method. A mechanical stimulator was used to produce the vibratory stimulus. Results were analyzed using repeated measures analysis of variance. After watching the erotic video, the vibrotactile detection thresholds at 30, 60, and 100 Hz were significantly reduced (p < .01). No changes in thresholds were detected at any frequency following exposure to the non-erotic stimulus. The results show that sexual arousal resulted in an increase in vibrotactile sensitivity to low frequency stimuli in the index finger of sexually functional men.
Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto
2014-04-05
The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.
Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli
Peters, Ryan M.; Rasman, Brandon G.; Inglis, J. Timothy
2015-01-01
Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. PMID:25925318
Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.
Peters, Ryan M; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2015-07-01
Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. Copyright © 2015 the American Physiological Society.
[Correlation of perceptive temperature threshold of oral mucosa and sympathetic skin response].
Wang, Z G; Dong, T Z; Li, J; Chen, G
2018-02-09
Objectives: To explore the critical values of temperature perception in various mucosa sites of oral cavity and to draw the perceptive temperature threshold maps in healthy volunteers. To observe the interrelationship between subjective cognitive perception and sympathetic skin response (SSR) under various levels of thermal stimuli. Methods: Forty-two healthy volunteers (recruited from the students of Tianjin Medical University, 16 females and 26 males) were enrolled in the present study. The whole oral mucosa of each subject was divided into multiple partitions according to the mucosa type as well as tooth position. Peltier patch (commodity name) semiconductor chip was placed in the central part of each subarea of the mucosa. The stimulus was increased or decreased at 1 ℃ each time from a baseline temperature of 37 ℃. Warm (WT) and cold (CT) perception thresholds were measured thereafter respectively. A topographic temperature map of the oral mucosa for each subject was drew. Furthermore, the SSR was elicited and recorded at three temperature levels of 50 ℃, 55 ℃, 60 ℃ respectively. Analog test with visual analogue scale (VAS) and McGill scales were also performed. Data were statistically analyzed with variance and generalized estimation equation. Results: The tip of the tongue was the most sensitive area with both WT [(38.8±2.1) ℃, P< 0.05] and CT [(23.5±4.2) ℃, P< 0.05]. The highest heat threshold of gingival mucosa was in the left lower posterior teeth area [(49.9±3.7) ℃, P< 0.05], and the highest cold threshold of gingival mucosa was in the left upper posterior teeth area [(15.9±5.5) ℃, P< 0.05]. The perceptive temperature threshold increased gradually from the midline to both left and right sides were observed symmetrically and bilaterally. There was no statistically significant differences in temperature perception threshold between males and females [WT, male (44.8±3.1) ℃, female (44.8±3.2) ℃, OR= 1.100, P= 0.930; CT, Male (18.4±4.9) ℃, female (20.8±4.8) ℃, OR= 0.157, P= 0.210]. The SSR amplitude at sites of the tongue tip and the lower lip were increased with the rise of temperature [tongue tip (4.58±4.04) mv, P< 0.05, lower lip (2.89±3.01) mv, P< 0.05]. However, SSR amplitude values had no significant differences between males and females [tongue tip, male (2.00±2.16) mv, female (1.89±1.20) mv, P= 0.890; lower lip, male (0.94±0.82) mv, female (0.85±0.68) mv, P= 0.887]. Nevertheless, the amplitude of SSR and the VAS score of subjects showed a similar trend. Conclusions: The temperature perception levels were different amongst sites of lip, buccal mucosa, tongue dorsal mucosa and gingival mucosa. SSR amplitude values could reflect the responses of the mouth to the thermal stimuli.
Optoacoustic induced vibrations within the inner ear.
Zhang, K Y; Wenzel, G I; Balster, S; Lim, H H; Lubatschowski, H; Lenarz, T; Ertmer, W; Reuter, G
2009-12-07
An acoustic transient can be generated inside an absorbing tissue as a result of laser-tissue interaction after pulsed laser irradiation. Herein we report a novel application of this physical process, the optoacoustic wave generation in the inner ear and subsequently the induction of basilar membrane vibrations. These laser induced vibrations show a direct correlation to the laser energy and an indirect correlation to the distance from the irradiation focus. Through these characteristics they may be used, in a new generation of cochlear implants, to improve the frequency specific cochlear activation and consequently improve speech perception in hearing impaired patients with residual hearing.
Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.
Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa
2016-07-01
The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.
NASA Astrophysics Data System (ADS)
Sidorov, N. V.; Teplyakova, N. A.; Palatnikov, M. N.; Bobreva, L. A.
2017-09-01
Crystals of LiNbO3congr and LiNbO3:Mg (0.19-5.91 mole %) were studied by IR and Raman spectroscopy. It was found that the intensities of the bands corresponding to the stretching vibrations of the OH groups in the IR spectra of LiNbO3:Mg crystals change and components of the bands disappear with increase of the Mg content. This was explained by disappearance of the OH groups close to {Nb}_{Li}^{4+}-{V}_{Li}- defects as a result of displacement of NbLi defects by Mg cations. In the Raman spectra of the LiNbO3:Mg (5.1 mole %) compared with the congruent crystal the lines corresponding to the vibrations of oxygen atoms in the oxygen octahedra and the stretching bridge vibrations of the oxygen atoms along the polar axis become broader, and new low-intensity lines that may correspond to pseudoscalar vibrations of A2-type symmetry also appear. The broadening of the lines is due to deformation of the oxygen octahedra caused both by increase of the Mg content in the crystal structure and by change in the localization of the protons. Suppression of the photorefraction effect in the LiNbO3:Mg crystals with Mg contents above the threshold level can be explained by change in the localization of the protons in the structure and by screening of the space charge field.
Pollard, Jonisha; Porter, William; Mayton, Alan; Xu, Xueyan; Weston, Eric
2017-01-01
Falls from mobile equipment are reported at surface mine quarry operations each year in considerable numbers. Research shows that a preponderance of falls occur while getting on/off mobile equipment. Contributing factors to the risk of falls include the usage of ladders, exiting onto a slippery surface, and foot or hand slippage. Balance issues may also contribute to fall risks for mobile equipment operators who are exposed to whole-body vibration (WBV). For this reason, the National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research conducted a study at four participating mine sites with seven haul truck operators. The purpose was to ascertain whether WBV and hand-arm vibration (HAV) exposures for quarry haul truck operators were linked to short-term decreases in performance in relation to postural stability, touch sensation threshold, and grip strength that are of crucial importance when getting on/off the trucks. WBV measures of frequency-weighted RMS accelerations (wRMS) and vibration dose value (VDV), when compared to the ISO/ANSI standards, were mostly below levels identified for the Health Guidance Caution Zone (HGCZ), although there were instances where the levels were within and above the specified Exposure Action Value. Comparably, all mean HAV levels, when compared to the ISO/ANSI standards, were below the HGCZ. For the existing conditions and equipment, no significant correlation could be identified between the WBV, HAV, postural stability, touch sensation threshold, and grip strength measures taken during this study. PMID:28220051
Exhibition of stochastic resonance in vestibular tilt motion perception.
Galvan-Garza, R C; Clark, T K; Mulavara, A P; Oman, C M
2018-04-03
Stochastic Resonance (SR) is a phenomenon broadly described as "noise benefit". The application of subsensory electrical Stochastic Vestibular Stimulation (SVS) via electrodes behind each ear has been used to improve human balance and gait, but its effect on motion perception thresholds has not been examined. This study investigated the capability of subsensory SVS to reduce vestibular motion perception thresholds in a manner consistent with a characteristic bell-shaped SR curve. We measured upright, head-centered, roll tilt Direction Recognition (DR) thresholds in the dark in 12 human subjects with the application of wideband 0-30 Hz SVS ranging from ±0-700 μA. To conservatively assess if SR was exhibited, we compared the proportions of both subjective and statistical SR exhibition in our experimental data to proportions of SR exhibition in multiple simulation cases with varying underlying SR behavior. Analysis included individual and group statistics. As there is not an established mathematical definition, three humans subjectively judged that SR was exhibited in 78% of subjects. "Statistically significant SR exhibition", which additionally required that a subject's DR threshold with SVS be significantly lower than baseline (no SVS), was present in 50% of subjects. Both percentages were higher than simulations suggested could occur simply by chance. For SR exhibitors, defined by subjective or statistically significant criteria, the mean DR threshold improved by -30% and -39%, respectively. The largest individual improvement was -47%. At least half of the subjects were better able to perceive passive body motion with the application of subsensory SVS. This study presents the first conclusive demonstration of SR in vestibular motion perception. Copyright © 2018 Elsevier Inc. All rights reserved.
Mechanisms Mediating Vibration-induced Chronic Musculoskeletal Pain Analyzed in the Rat
Dina, Olayinka A.; Joseph, Elizabeth K.; Levine, Jon D.; Green, Paul G.
2009-01-01
While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and re-exposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80 Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a pro-inflammatory cytokine or re-exposure to vibration. Exposure of a hind limb to vibration produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for ~2 weeks. When nociceptive thresholds had returned to baseline, exposure to a pro-inflammatory cytokine or re-exposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia induced by vibration was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-α (TNFα) receptor. Finally, in TNFα-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. Perspective These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFα and the second messenger PKCε as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. PMID:19962353
Lin, Z R; Nakamura, Y; Dykman, M I
2015-08-01
We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.
Audio-visual temporal perception in children with restored hearing.
Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David
2017-05-01
It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Fouberg, Erin H.
2013-01-01
Through qualitative analysis of 80 student essays, the author examines geographic concepts students describe as holding traits of threshold concepts. With a group of 11 Honors students, the author employs metacogntion, asking students to analyze their own learning to discover their threshold concepts. Recognizing the role of liminality, this study…
Response of the skeletal system to helicopter-unique vibration.
Gearhart, J R
1978-01-01
An 18-month prospective skeletal system study was conducted on flying and nonflying personnel relative to chronic low-frequency vibration as experienced in helicopter flight. The aviators were initial entry students in rotary-wing training while the non-flying participants were beginning basic military training. Comparisons were made on the basis of anthropometric measurements, radiological studies, and bone mineral density changes as measured by photon absorption. The bone mineral densitometry showed no significant variation in the aviator group. A short-term 10% demineralization of the distal ulna in the non-flying group was noted immediately following the physical training. The final bone mineral density of basic training subjects returned to the initial level 18 months after the physical training. It was concluded that the helicopter aircrew members under study were exposed to levels of vibration below the threshold of vibration required to produce a measurable change in the skeletal system.
NASA Astrophysics Data System (ADS)
Nobili, R.
2003-02-01
Two years ago, Ruggero et al. [1] focused attention on two curious phenomena regarding the magnitude and phase of tectorial-membrane (TM) vibration relative to basilar-membrane (BM) vibration at a basal site of the chinchilla cochlea: 1) Over a wide range of stimulus frequencies, auditory-nerve responses, which are believed to reflect closely the TM vibration, behave as a linear combination of both BM displacement and velocity. 2) Near threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity towards scala tympani, but at 80-90 dB SPL and 100-110 dB SPL responses undergo two large phase shifts approaching 180°. Such drastic phase shifts have no counterpart in BM vibrations. Here, it is argued that both these remarkable phenomena have a common origin: the viscoelastic properties of the TM attachment to limbus spiralis.
Lindenblatt, G.; Silny, J.
2006-01-01
Leakage currents, tiny currents flowing from an everyday-life appliance through the body to the ground, can cause a non-adequate perception (called electrocutaneous sensation, ECS) or even pain and should be avoided. Safety standards for low-frequency range are based on experimental results of current thresholds of electrocutaneous sensations, which however show a wide range between about 50 μA (rms) and 1000 μA (rms). In order to be able to explain these differences, the perception threshold was measured repeatedly in experiments with test persons under identical experimental setup, but by means of different methods (measuring strategies), namely: direct adjustment, classical threshold as amperage of 50% perception probability, and confidence rating procedure of signal detection theory. The current is injected using a 1 cm2 electrode at the highly touch sensitive part of the index fingertip. These investigations show for the first time that the threshold of electrocutaneous sensations is influenced both by adaptation to the non-adequate stimulus and individual, emotional factors. Therefore, classical methods, on which the majority of the safety investigations are based, cannot be used to determine a leakage current threshold. The confidence rating procedure of the modern signal detection theory yields a value of 179.5 μA (rms) at 50 Hz power supply net frequency as the lower end of the 95% confidence range considering the variance in the investigated group. This value is expected to be free of adaptation influences, and is distinctly lower than the European limits and supports the stricter regulations of Canada and USA. PMID:17111461
The effect of phasic auditory alerting on visual perception.
Petersen, Anders; Petersen, Annemarie Hilkjær; Bundesen, Claus; Vangkilde, Signe; Habekost, Thomas
2017-08-01
Phasic alertness refers to a short-lived change in the preparatory state of the cognitive system following an alerting signal. In the present study, we examined the effect of phasic auditory alerting on distinct perceptual processes, unconfounded by motor components. We combined an alerting/no-alerting design with a pure accuracy-based single-letter recognition task. Computational modeling based on Bundesen's Theory of Visual Attention was used to examine the effect of phasic alertness on visual processing speed and threshold of conscious perception. Results show that phasic auditory alertness affects visual perception by increasing the visual processing speed and lowering the threshold of conscious perception (Experiment 1). By manipulating the intensity of the alerting cue, we further observed a positive relationship between alerting intensity and processing speed, which was not seen for the threshold of conscious perception (Experiment 2). This was replicated in a third experiment, in which pupil size was measured as a physiological marker of alertness. Results revealed that the increase in processing speed was accompanied by an increase in pupil size, substantiating the link between alertness and processing speed (Experiment 3). The implications of these results are discussed in relation to a newly developed mathematical model of the relationship between levels of alertness and the speed with which humans process visual information. Copyright © 2017 Elsevier B.V. All rights reserved.
Preliminary experiments to quantify liquid movement under mimetic vocal fold vibrational forces.
Titze, Ingo R; Klemuk, Sarah; Lu, Xiaoying
2014-07-01
Hydration of vocal fold tissues is essential for self-sustained oscillation. Normal regulatory processes of liquid transport to and from the vocal folds would be expected through the autonomic systems, but the possibility exists that liquid movement may occur locally due to vibrational pressures. Such movement may cause regions of lower or higher concentrations of liquid viscosity and therewith changes in phonation threshold pressure. Hyaluronic acid, a glycosaminoglycan that attracts large quantities of free water, may be a key molecule for transporting or localizing liquids. Some preliminary experiments are reported in which attempts were made to move low-concentration HA liquids with vibration. None of the experiments was conclusive, but collectively they lay some groundwork for future explorations.
Haase, Steven J; Fisk, Gary D
2011-08-01
A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.
Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.
Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G
2010-04-01
While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.
Southeast PAVE PAWS Radar System. Environmental Assessment.
1983-03-01
reported, including fatigue, irritability, sleepiness, partial loss of memory, lower heart- beat rates, hypertension, hypotension, cardiac pain, and...Because such audiograms do not test hearing above 8 klz, binaural hearing thresholds were also determined for seven of the subjects for frequencies...perception and hearing ability above 8 kl:z as determined from the binaural thresholds. The average threshold pulse power density for 15-microsecond
Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.).
Scheiner, R; Erber, J; Page, R E
1999-07-01
Using the proboscis extension response we conditioned pollen and nectar foragers of the honey bee (Apis mellifera L.) to tactile patterns under laboratory conditions. Pollen foragers demonstrated better acquisition, extinction, and reversal learning than nectar foragers. We tested whether the known differences in response thresholds to sucrose between pollen and nectar foragers could explain the observed differences in learning and found that nectar foragers with low response thresholds performed better during acquisition and extinction than ones with higher thresholds. Conditioning pollen and nectar foragers with similar response thresholds did not yield differences in their learning performance. These results suggest that differences in the learning performance of pollen and nectar foragers are a consequence of differences in their perception of sucrose. Furthermore, we analysed the effect which the perception of sucrose reward has on associative learning. Nectar foragers with uniform low response thresholds were conditioned using varying concentrations of sucrose. We found significant positive correlations between the concentrations of the sucrose rewards and the performance during acquisition and extinction. The results are summarised in a model which describes the relationships between learning performance, response threshold to sucrose, concentration of sucrose and the number of rewards.
Abedi, Maryam; Jin, Tian; Sun, Kewen
2015-08-31
In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.
Thieulin, C; Pailler-Mattei, C; Vargiolu, R; Lancelot, S; Zahouani, H
2017-02-01
Tactile perception is one of the sensorial modes most stimulated by our daily environment. In particular, perceived softness is an important parameter for judging the sensory quality of surfaces and fabrics. Unfortunately, its assessment greatly depends on the tactile sense of each person, which in turn depends on many factors. Currently, the predominant method for evaluating the tactile perception of fabrics is the human handfeel panel. This qualitative approach does not permit the quantitative measure of touch feel perception. In this study, we present a new artificial finger device to investigate the tactile sensing of ten bathroom tissues. It enables simultaneously measuring the friction and vibrations caused when sliding an artificial finger on the surface of the tissue. The comparison between the results obtained with the artificial finger and the tactile perception evaluated using a handfeel panel showed that the artificial finger is able to separate the two parts of the tactile perception of bathroom tissues: softness and surface texture (velvetiness). The statistical analysis suggests that there is a good correlation between the vibrations measured with the artificial finger and the softness evaluated by the panel. It then shows that the friction measured by the artificial finger is related to the surface texture of a bathroom tissue. The ability of the artificial finger to mimic human touch is demonstrated. Finally, a Principal Component Analysis orders the signatures of the tactile perception of the bathroom tissues in four different groups. Copyright © 2016. Published by Elsevier B.V.
Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.
Birznieks, Ingvars; Vickery, Richard M
2017-05-22
Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (<60 Hz) evokes a distinct tactile sensation referred to as flutter whose frequency can be clearly perceived [6]. How afferent spiking activity translates into the perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sekar, Krithiga; Findley, William M.; Poeppel, David; Llinás, Rodolfo R.
2013-01-01
At perceptual threshold, some stimuli are available for conscious access whereas others are not. Such threshold inputs are useful tools for investigating the events that separate conscious awareness from unconscious stimulus processing. Here, viewing unmasked, threshold-duration images was combined with recording magnetoencephalography to quantify differences among perceptual states, ranging from no awareness to ambiguity to robust perception. A four-choice scale was used to assess awareness: “didn’t see” (no awareness), “couldn’t identify” (awareness without identification), “unsure” (awareness with low certainty identification), and “sure” (awareness with high certainty identification). Stimulus-evoked neuromagnetic signals were grouped according to behavioral response choices. Three main cortical responses were elicited. The earliest response, peaking at ∼100 ms after stimulus presentation, showed no significant correlation with stimulus perception. A late response (∼290 ms) showed moderate correlation with stimulus awareness but could not adequately differentiate conscious access from its absence. By contrast, an intermediate response peaking at ∼240 ms was observed only for trials in which stimuli were consciously detected. That this signal was similar for all conditions in which awareness was reported is consistent with the hypothesis that conscious visual access is relatively sharply demarcated. PMID:23509248
Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B
2009-11-01
To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.
Pan, Daniel; Xu, Xueyan S; Welcome, Daniel E; McDowell, Thomas W; Warren, Christopher; Wu, John; Dong, Ren G
2018-06-01
This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand-arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed. Practitioner Summary: Shocks and vibrations transmitted to the hand-arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue.
Zhang, Zhaoyan; Hieu Luu, Trung
2012-01-01
Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891
Zhang, Zhaoyan; Luu, Trung Hieu
2012-09-01
Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed.
Pietanza, L D; Colonna, G; Laporta, V; Celiberto, R; D'Ammando, G; Laricchiuta, A; Capitelli, M
2016-05-05
A new set of electron-vibrational (e-V) processes linking the first 10 vibrational levels of the symmetric mode of CO2 is derived by using a decoupled vibrational model and inserted in the Boltzmann equation for the electron energy distribution function (eedf). The new eedf and dissociation rates are in satisfactory agreement with the corresponding ones obtained by using the e-V cross sections reported in the database of Hake and Phelps (H-P). Large differences are, on the contrary, found when the experimental dissociation cross sections of Cosby and Helm are inserted in the Boltzman equation. Comparison of the corresponding rates with those obtained by using the low-energy threshold energy, reported in the H-P database, shows differences up to orders of magnitude, which decrease with the increasing of the reduced electric field. In all cases, we show the importance of superelastic vibrational collisions in affecting eedf and dissociation rates either in the direct electron impact mechanism or in the pure vibrational mechanism.
Tsang, Kenneth; de Bruin, Hubert; Archambeault, Mark
2008-01-01
Although most muscle spindle investigations have used the cat model and invasive measurement techniques, several investigators have used microneurography to record from the Ia and II fibres in humans during tendon vibration. In these studies the muscle spindle primary endings are stimulated using transverse vibration of the tendon at reflex sub-threshold amplitudes. Others have used low amplitude vibration and the stretch evoked M-wave response to determine reflex properties during both agonist and antagonist voluntary contractions. In the past we have developed a PC based instrument that uses Labview and a linear servomotor to study tendon reflex properties by recording stretch evoked M-wave responses from single tendon taps or electrical stimuli to the afferent nerve. In this paper we describe a further development of this system to provide precise vibrations of the tendon up to 65 Hz with amplitudes up to 4 mm. The resultant M-wave train is extracted from background noise via phase coherent subtractive filtering. Test results from vibrating the human distal flexor carpi radialis tendon at 10 and 30 Hz, for relaxed, slight flexion and slight extension, are also presented.
What happens during vocal warm-up?
Elliot, N; Sundberg, J; Gramming, P
1995-03-01
Most singers prefer to warm up their voices before performing. Although the subjective effect is often considerable, the underlying physiological effects are largely unknown. Because warm-up tends to increase blood flow in muscles, it seems likely that vocal warm-up might induce decreased viscosity in the vocal folds. According to the theory of vocal-fold vibration, such a decrease should lead to a lower phonation threshold pressure. In this investigation the effect of vocal warm-up on the phonation threshold pressure was examined in a group of male and female singers. The effect varied considerably between subjects, presumably because the vocal-fold viscosity was not a dominating factor for the phonation-threshold pressure.
Improving hand sensibility in vibration induced neuropathy: A case-series.
Rosén, Birgitta; Björkman, Anders; Lundborg, Göran
2011-04-27
We report a long-term series of nine workers suffering from vibration-induced neuropathy, after many years of exposure to hand-held vibrating tools at high or low frequency. They were treated with temporary selective cutaneous anaesthesia (EMLA® cream) of the forearm repeatedly for a period up to one year (in two cases four years). The aim was to improve their capacity to perceive touch and thereby improve hand function and diminish disability. The treatment principle is based on current concepts of brain plasticity, where a deafferentation of a skin area results in improved sensory function in adjacent skin areas. All participants had sensory hand problems in terms of numbness (median touch thresholds > 70 mg) and impaired hand function influencing ADL (mean DASH score 22).After an initial identical self-administered treatment period of 8 weeks (12-15 treatments with increasing intervals) they did one treatment every 2-3 month. After one year sensibility (touch thresholds and tactile discrimination) as well as hand function (mean DASH score 13) were improved in a majority of the cases. Seven of the participants choose to continue the treatment after the first year and two of them have continued at a regular basis for up to four years. A surprising, secondary finding was diminishing nocturnal numbness of the hand and arm in eight of the nine subjects from "frequently" to "hardly ever or never". Our observations open new perspectives for treatment of impaired sensibility and hand function in a group of patients with vibration induced hand problems where we have no treatment to offer today.
Improving hand sensibility in vibration induced neuropathy: A case-series
2011-01-01
Objectives We report a long-term series of nine workers suffering from vibration-induced neuropathy, after many years of exposure to hand-held vibrating tools at high or low frequency. They were treated with temporary selective cutaneous anaesthesia (EMLA® cream) of the forearm repeatedly for a period up to one year (in two cases four years). The aim was to improve their capacity to perceive touch and thereby improve hand function and diminish disability. The treatment principle is based on current concepts of brain plasticity, where a deafferentation of a skin area results in improved sensory function in adjacent skin areas. Methods All participants had sensory hand problems in terms of numbness (median touch thresholds > 70 mg) and impaired hand function influencing ADL (mean DASH score 22). After an initial identical self-administered treatment period of 8 weeks (12-15 treatments with increasing intervals) they did one treatment every 2-3 month. Results After one year sensibility (touch thresholds and tactile discrimination) as well as hand function (mean DASH score 13) were improved in a majority of the cases. Seven of the participants choose to continue the treatment after the first year and two of them have continued at a regular basis for up to four years. A surprising, secondary finding was diminishing nocturnal numbness of the hand and arm in eight of the nine subjects from "frequently" to "hardly ever or never". Conclusions Our observations open new perspectives for treatment of impaired sensibility and hand function in a group of patients with vibration induced hand problems where we have no treatment to offer today. PMID:21524297
Yıldız, Mustafa Z; Toker, İpek; Özkan, Fatma B; Güçlü, Burak
2015-01-01
We investigated the gating effect of passive and active movement on the vibrotactile detection thresholds of the Pacinian (P) psychophysical channel and forward masking. Previous work on gating mostly used electrocutaneous stimulation and did not allow focusing on tactile submodalities. Ten healthy adults participated in our study. Passive movement was achieved by swinging a platform, on which the participant's stimulated hand was attached, manually by a trained operator. The root-mean-square value of the movement speed was kept in a narrow range (slow: 10-20 cm/s, fast: 50-60 cm/s). Active movement was performed by the participant him-/herself using the same apparatus. The tactile stimuli consisted of 250-Hz sinusoidal mechanical vibrations, which were generated by a shaker mounted on the movement platform and applied to the middle fingertip. In the forward-masking experiments, a high-level masking stimulus preceded the test stimulus. Each movement condition was tested separately in a two-interval forced-choice detection task. Both passive and active movement caused a robust gating effect, that is, elevation of thresholds, in the fast speed range. Statistically significant change of thresholds was not found in slow movement conditions. Passive movement yielded higher thresholds than those measured during active movement, but this could not be confirmed statistically. On the other hand, the effect of forward masking was approximately constant as the movement condition varied. These results imply that gating depends on both peripheral and central factors in the P channel. Active movement may have some facilitatory role and produce less gating. Additionally, the results support the hypothesis regarding a critical speed for gating, which may be relevant for daily situations involving vibrations transmitted through grasped objects and for manual exploration.
Wahren, L K
1990-09-01
In a previous study, allodynia to cold and vibratory stimuli was found in the finger stumps of 24 patients with amputations, control values being obtained from fingers of the intact contralateral hand. When treated with regional intravenous guanethidine block (RGB), some of the patients only had short-lasting relief of symptoms, whereas others experienced a more long-lasting beneficial effect. In the present long-term follow-up study the patients were re-examined 6 years after the RGB treatment. The aim was to investigate whether the earlier symptoms and signs persisted, and whether there were any differences in these respects, between patients with long-lasting (group 1) and short-lasting relief of symptoms after RGB (group 2). All 24 patients were asked to answer a questionnaire concerning their clinical symptoms. In addition, 14 of them visited the laboratory for determination of thermal and vibration-induced pain thresholds. Comparisons were made with values obtained at the first examination before RGB treatment and with values from 14 healthy subjects tested in a similar way on 2 occasions with an interval of 8 years. Twenty of 23 patients reported that cold exposure still evoked stump pain. However, the threshold measurements showed that with time the patients had become more tolerant to thermal stimuli not only in the injured but also in the uninjured hand. A rise in pain threshold was also observed when vibration-induced pain was tested in the injured hand. There was no significant difference between groups 1 and 2. Similar changes in pain thresholds with time were not observed in the group of healthy control subjects.
Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees
NASA Astrophysics Data System (ADS)
Cappa, Federico; Bruschini, Claudia; Cipollini, Maria; Pieraccini, Giuseppe; Cervo, Rita
2014-02-01
The ability to discriminate among nestmates and non-nestmate is essential to defend social insect colonies from intruders. Over the years, nestmate recognition has been extensively studied in the honeybee Apis mellifera; nevertheless, the quantitative perceptual aspects at the basis of the recognition system represent an unexplored subject in this species. To test the existence of a cuticular hydrocarbons' quantitative perception threshold for nestmate recognition cues, we conducted behavioural assays by presenting different amounts of a foreign forager's chemical profile to honeybees at the entrance of their colonies. We found an increase in the explorative and aggressive responses as the amount of cues increased based on a threshold mechanism, highlighting the importance of the quantitative perceptual features for the recognition processes in A. mellifera.
Melodic interval perception by normal-hearing listeners and cochlear implant users
Luo, Xin; Masterson, Megan E.; Wu, Ching-Chih
2014-01-01
The perception of melodic intervals (sequential pitch differences) is essential to music perception. This study tested melodic interval perception in normal-hearing (NH) listeners and cochlear implant (CI) users. Melodic interval ranking was tested using an adaptive procedure. CI users had slightly higher interval ranking thresholds than NH listeners. Both groups' interval ranking thresholds, although not affected by root note, significantly increased with standard interval size and were higher for descending intervals than for ascending intervals. The pitch direction effect may be due to a procedural artifact or a difference in central processing. In another test, familiar melodies were played with all the intervals scaled by a single factor. Subjects rated how in tune the melodies were and adjusted the scaling factor until the melodies sounded the most in tune. CI users had lower final interval ratings and less change in interval rating as a function of scaling factor than NH listeners. For CI users, the root-mean-square error of the final scaling factors and the width of the interval rating function were significantly correlated with the average ranking threshold for ascending rather than descending intervals, suggesting that CI users may have focused on ascending intervals when rating and adjusting the melodies. PMID:25324084
Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan
2018-04-17
Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih
2015-03-01
We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.
Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira
2017-12-01
Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.
Oliveira, Denize; Reis, Felipe; Deliza, Rosires; Rosenthal, Amauri; Giménez, Ana; Ares, Gastón
2016-11-01
Reducing the concentration of added sugar in processed foods is one of the most realistic strategies to reduce the intake of this nutrient in the short-term. In order to be effective, gradual sugar reduction strategies need to determine the maximum sugar reduction that can be unnoticed by consumers. In this context, the present work aimed at providing recommendations for gradual sugar reduction in chocolate-flavoured milk by determining difference thresholds for added sugar and evaluating consumers' sensory and hedonic perception of reduced-sugar products. Five studies were conducted with 50 consumers to determine five sequential difference thresholds. In each study consumers completed six paired-comparison tests. Each pair was composed of a reference chocolate-flavoured milk and a sample that was reduced in added sugar from the reference. Difference thresholds, corresponding to the smallest reduction in sugar concentration that is noticed by consumers, were determined using survival analysis. Then, a study was carried to with 100 consumers to evaluate their sensory and hedonic perception of chocolate-flavoured milk samples with different added sugar concentrations. Results suggested that sequential sugar reductions can be set at 6.7% without affecting consumers' sensory and hedonic perception. Sugar reduction in chocolate-flavoured milk without affecting consumers' perception seems feasible and easy to implement. The approach of the present work could be extended to design recommendations for gradual reduction of the added sugar concentration of other industrialized products, contributing to the development of more healthful products that meet current nutritional recommendations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kürster, M.; Bertram, T.; Borelli, J. L.; Brix, M.; Gässler, W.; Herbst, T. M.; Naranjo, V.; Pott, J.-U.; Trowitzsch, J.; Connors, T. E.; Hinz, P. M.; McMahon, T. J.; Ashby, D. S.; Brynnel, J. G.; Cushing, N. J.; Edgin, T.; Esguerra, J. D.; Green, R. F.; Kraus, J.; Little, J.; Beckmann, U.; Weigelt, G. P.
2010-07-01
Characterisation, mitigation and correction of telescope vibrations have proven to be crucial for the performance of astronomical infrared interferometers. The project teams of the interferometers for the LBT, LINC-NIRVANA and LBTI, and LBT Observatory (LBTO) have embarked on a joint effort to implement an accelerometer-based vibration measurement system distributed over the optical elements of the LBT. OVMS, the Optical Path Difference and Vibration Monitoring System will serve to (i) ensure conditions suitable for adaptive optics (AO) and interferometric (IF) observations and (ii) utilize vibration information, converted into tip-tilt and optical path difference data, in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers. The system hardware is mainly developed by Steward Observatory's LBTI team and its installation at the LBT is underway. The OVMS software development and associated computer infrastructure is the responsibility of the LINC-NIRVANA team at MPIA Heidelberg. Initially, the OVMS will fill a data archive provided by LBTO that will be used to study vibration data and correlate them with telescope movements and environmental parameters thereby identifiying sources of vibrations and to eliminate or mitigate them. Data display tools will help LBTO staff to keep vibrations within predefined thresholds for quiet conditions for AO and IF observations. Later-on real-time data from the OVMS will be fed into the control loops of the AO systems and IF instruments in order to permit the correction of vibration signals with frequencies up to 450 Hz.
Bierer, Julie Arenberg; Nye, Amberly D
2014-01-01
Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. Conclusions Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields. PMID:25036146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.
2012-12-15
Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotationalmore » temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.« less
Reiner, Keren; Granot, Michal; Soffer, Eliran; Lipsitz, Joshua Dan
2016-04-01
Research shows that mindfulness meditation (MM) affects pain perception; however, studies have yet to measure patterns of change over time. We examined effects of MM on perception of experimental heat pain using multiple psychophysical indices, including pattern of change in response to tonic painful stimuli. We also tested the potential moderating role of baseline mindfulness. Forty participants were randomly assigned to a brief MM training or control group. We assessed: a) heat pain threshold (HPT), b) temperature which induces pain at a fixed, target intensity level, and c) response pattern over time to tonic heat pain. Compared to control group, the MM group showed increased HPT and more rapid attenuation of pain intensity for tonic pain stimuli. Moderation analyses indicated that baseline mindfulness moderated effects of MM on HPT. A brief MM intervention appears to affect perception of experimental pain both by increasing pain threshold and accelerating modulation of response. Findings may help elucidate mechanisms of MM for chronic pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Colour perception with changes in levels of illumination
NASA Astrophysics Data System (ADS)
Baah, Kwame F.; Green, Phil; Pointer, Michael
2012-01-01
The perceived colour of a stimulus depends on the conditions under which it is viewed. For colours employed as an important cue or identifier, such as signage and brand colours, colour reproduction tolerances are critically important. Typically, such stimuli would be judged using a known level of illumination but, in the target environment, the level of illumination used to view the samples may be entirely different. The effect of changes in the viewing condition on the perceptibility and acceptability of small colour differences should be understood when such tolerances and associated viewing conditions, are specified. A series of psychophysical experiments was conducted to determine whether changes in illumination level significantly alter acceptability and perceptibility thresholds of uniform colour stimuli. It was found that perceived colour discrimination thresholds varied by up to 2.0 ΔE00. For the perceptual correlate of hue however, this value could be of significance if the accepted error of colour difference was at the threshold, thereby yielding the possibility of rejection with changes in illumination level. Lightness and chroma on the other hand, exhibited greater tolerance and were less likely to be rejected with illuminance changes.
Dissatisfaction with own body makes patients with eating disorders more sensitive to pain
Yamamotova, Anna; Bulant, Josef; Bocek, Vaclav; Papezova, Hana
2017-01-01
Body image represents a multidimensional concept including body image evaluation and perception of body appearance. Disturbances of body image perception are considered to be one of the central aspects of anorexia nervosa and bulimia nervosa. There is growing evidence that body image distortion can be associated with changes in pain perception. The aim of our study was to examine the associations between body image perception, body dissatisfaction, and nociception in women with eating disorders and age-matched healthy control women. We measured body dissatisfaction and pain sensitivity in 61 patients with Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition diagnoses of eating disorders (31 anorexia nervosa and 30 bulimia nervosa) and in 30 healthy women. Thermal pain threshold latencies were evaluated using an analgesia meter and body image perception and body dissatisfaction were assessed using Anamorphic Micro software (digital pictures of their own body distorted into larger-body and thinner-body images). Patients with eating disorders overestimated their body size in comparison with healthy controls, but the two groups did not differ in body dissatisfaction. In anorexia and bulimia patient groups, body dissatisfaction (calculated in pixels as desired size/true image size) correlated with pain threshold latencies (r=0.55, p=0.001), while between body image perception (determined as estimation size/true image size) and pain threshold, no correlation was found. Thus, we demonstrated that in patients with eating disorders, pain perception is significantly associated with emotional contrary to sensory (visual) processing of one’s own body image. The more the patients desired to be thin, the more pain-sensitive they were. Our findings based on some shared mechanisms of body dissatisfaction and pain perception support the significance of negative emotions specific for eating disorders and contribute to better understanding of the psychosomatic characteristics of this spectrum of illnesses. PMID:28761371
Low authority-threshold control for large flexible structures
NASA Technical Reports Server (NTRS)
Zimmerman, D. C.; Inman, D. J.; Juang, J.-N.
1988-01-01
An improved active control strategy for the vibration control of large flexible structures is presented. A minimum force, low authority-threshold controller is developed to bring a system with or without known external disturbances back into an 'allowable' state manifold over a finite time interval. The concept of a constrained, or allowable feedback form of the controller is introduced that reflects practical hardware implementation concerns. The robustness properties of the control strategy are then assessed. Finally, examples are presented which highlight the key points made within the paper.
Huh, D C; Lee, J M; Oh, S M; Lee, J-H; Van Donkelaar, P; Lee, D H
2016-10-01
The effect of repetitive transcranial magnetic stimulation on kinesthetic perception, when applied to the somatosensory cortex, was examined. Further, the facilitatory and inhibitory effects of repetitive transcranial magnetic stimulation using different stimulation frequencies were tested. Six female (M age = 32.0 years, SD = 6.7) and nine male (M age = 32.9 years, SD = 6.6) participants were asked to perceive the tendon vibration illusion of the left wrist joint and to replicate the illusion with their right hand. When comparing changes in the corresponding movement amplitude and velocity after three different repetitive transcranial magnetic stimulation protocols (sham, 1 Hz inhibitory, and 5 Hz facilitatory repetitive transcranial magnetic stimulation), the movement amplitude was found to decrease with the inhibitory repetitive transcranial magnetic stimulation, while the movement velocity respectively increased and decreased with the facilitatory and inhibitory repetitive transcranial magnetic stimulation. These results confirmed the modulating effects of repetitive transcranial magnetic stimulation on kinesthetic perception in a single experimental paradigm. © The Author(s) 2016.
Raffler, Nastaran; Ellegast, Rolf; Kraus, Thomas; Ochsmann, Elke
2016-01-01
Due to the high cost of conducting field measurements, questionnaires are usually preferred for the assessment of physical workloads and musculoskeletal disorders (MSDs). This study compares the physical workloads of whole-body vibration (WBV) and awkward postures by direct field measurements and self-reported data of 45 occupational drivers. Manual materials handling (MMH) and MSDs were also investigated to analyse their effect on drivers' perception. Although the measured values for WBV exposure were very similarly distributed among the drivers, the subjects' perception differed significantly. Concerning posture, subjects seemed to estimate much better when the difference in exposure was significantly large. The percentage of measured awkward trunk and head inclination were significantly higher for WBV-overestimating subjects than non-overestimators; 77 and 80% vs. 36 and 33%. Health complaints in terms of thoracic spine, cervical spine and shoulder–arm were also significantly more reported by WBV-overestimating subjects (42, 67, 50% vs. 0, 25, 13%, respectively). Although more MMH was reported by WBV-overestimating subjects, there was no statistical significance in this study. PMID:26114619
Abejón, David; Rueda, Pablo; Vallejo, Ricardo
2016-04-01
Pulse frequency (Fc) is one of the most important parameters in neurostimulation, with Pulse Amplitude (Pw) and Amplitude (I). Up to certain Fc, increasing the number of pulses will generate action potentials in neighboring neural structures and may facilitate deeper penetration of the electromagnetic fields. In addition, changes in frequency modify the patient's sensation with stimulation. Fifty patients previously implanted with rechargeable current control spinal cord stimulation. With pulse width fixed at 300 μsec, we stimulated at 26 different Fc values between 40 and 1200 Hz and determine the influence of these changes on different stimulation thresholds: perception threshold (Tp ), therapeutic perception (Tt), and discomfort threshold (Td). Simultaneously, paresthesia coverage of the painful area and patient's sensation and satisfaction related to the quality of stimulation were recorded. Pulse Fc is inversely proportional to stimulation thresholds and this influence is statistically significant (p < 0.05). As Pulse Fc increased from 40 to 1200 Hz, the mean threshold decreases from 7.25 to 1.38 mA (Tp ), 8.17 to 1.63 (Tt ), and 9.20 to 1.85 (Td). Significant differences for Tp and Tt began at 750 Hz (Tp , Tt ) and at 650 Hz for Td. No significant influence was found regarding paresthesia coverage. As expected, Fc affects significantly patient's sensation and satisfaction. Changes in Fc affect the quality of paresthesias. Within the evaluated parameters higher frequencies are inversely proportional to stimulation thresholds and Tt. It seems that Fc is a vital parameter to achieve therapeutic success. Changes in Fc is a useful parameter to modulate the patient's sensory perception. Fc can be successfully used to adjust the quality of the paresthesias and to modify patient's subjective sensation. We showed that as the frequency increases, the patient's satisfaction with the perceived sensation decreases, suggesting that higher Fc may need to be set up at subthreshold amplitude to achieve positive response. © 2016 International Neuromodulation Society.
Mori, Shuji; Oyama, Kazuki; Kikuchi, Yousuke; Mitsudo, Takako; Hirose, Nobuyuki
2015-01-01
The objective of this study was to examine the hypothesis that between-channel gap detection, which includes between-frequency and between-ear gap detection, and perception of stop consonants, which is mediated by the length of voice-onset time (VOT), share common mechanisms, namely relative-timing operation in monitoring separate perceptual channels. The authors measured gap detection thresholds and identification functions of /ba/ and /pa/ along VOT in 49 native young adult Japanese listeners. There were three gap detection tasks. In the between-frequency task, the leading and trailing markers differed in terms of center frequency (Fc). The leading marker was a broadband noise of 10 to 20,000 Hz. The trailing marker was a 0.5-octave band-passed noise of 1000-, 2000-, 4000-, or 8000-Hz Fc. In the between-ear task, the two markers were spectrally identical but presented to separate ears. In the within-frequency task, the two spectrally identical markers were presented to the same ear. The /ba/-/pa/ identification functions were obtained in a task in which the listeners were presented synthesized speech stimuli of varying VOTs from 10 to 46 msec and asked to identify them as /ba/ or /pa/. The between-ear gap thresholds were significantly positively correlated with the between-frequency gap thresholds (except those obtained with the trailing marker of 4000-Hz Fc). The between-ear gap thresholds were not significantly correlated with the within-frequency gap thresholds, which were significantly correlated with all the between-frequency gap thresholds. The VOT boundaries and slopes of /ba/-/pa/ identification functions were not significantly correlated with any of these gap thresholds. There was a close relation between the between-ear and between-frequency gap detection, supporting the view that these two types of gap detection share common mechanisms of between-channel gap detection. However, there was no evidence for a relation between the perception of stop consonants and the between-frequency/ear gap detection in native Japanese speakers.
Pathogen alarm behavior in a termite: A new form of communication in social insects
Rosengaus; Jordan; Lefebvre; Traniello
1999-11-01
Dampwood termites, Zootermopsis angusticollis, show an alarm response after detecting the presence of spores of the pathogenic fungus Metarhizium anisopliae. Termites in direct contact with a high concentration of spores (10(7) spores/ml) show a striking vibratory display which appears to convey information about the presence of pathogens to nearby unexposed nestmates through substrate vibration. Nestmates not directly in contact with spores that perceive the vibrational signal increase significantly their distance from the spore-exposed vibrating termites, apparently to escape from the source of infection. The fleeing response is not induced by the presence of the spores alone or by pheromones, and requires the perception of the vibrations propagated through the substrate. This "pathogen alarm behavior" appears to be a previously unrecognized communication mechanism that allows termites to reduce disease risks within the nest.
Pathogen Alarm Behavior in a Termite: A New Form of Communication in Social Insects
NASA Astrophysics Data System (ADS)
Rosengaus, R. B.; Jordan, C.; Lefebvre, M. L.; Traniello, J. F. A.
Dampwood termites, Zootermopsis angusticollis, show an alarm response after detecting the presence of spores of the pathogenic fungus Metarhizium anisopliae. Termites in direct contact with a high concentration of spores (107 spores/ml) show a striking vibratory display which appears to convey information about the presence of pathogens to nearby unexposed nestmates through substrate vibration. Nestmates not directly in contact with spores that perceive the vibrational signal increase significantly their distance from the spore-exposed vibrating termites, apparently to escape from the source of infection. The fleeing response is not induced by the presence of the spores alone or by pheromones, and requires the perception of the vibrations propagated through the substrate. This "pathogen alarm behavior" appears to be a previously unrecognized communication mechanism that allows termites to reduce disease risks within the nest.
Results of clinical olfactometric studies.
Kittel, G
1976-09-01
A modification of a flow olfactometer with a new application appartus, with which "quasi-free" nasal respiration allows the elimination of adaptation without a special testing room, subsequent results using this device to examine olfactory thresholds before and after septum operations, as well as reference to threshold increases in 57 post-operative cases of cheilognathopalatoschisis are reported. An esthesio-neuroblastoma as well as the deformity syndrome with cheilognathopalatoschisis and encephalodystrophy are used as examples for combined olfactory transmission and perception disorders. Studies of 55 smokers with primary neurosensory disorders demonstrated a threefold increase in the olfactory threshold and an up to 50% decrease "fatique-time". A mean acetone deviation factor of 1.93 was seen in 100 students from 20-27 years of age before and after eating. Correspondingly, after a substantial breakfast and lunch, the olfactory threshold attained its maximum daily value within 90 minutes, much more pronounced than after intake of 80 grams of glucose solution. In contrast to the literature, the olfactory threshold was seen to continuously increase, dependent on age. Studies of the perceptive and recognition threshold on 100 normal individuals and 28 patients with hyposmia exhibited with 3 sigma, a significant difference. In patients with hyposmia, the absolute values for the two threshold types vary greatly, however not their deviation factors. More importance should be attached to the sense of smell as the so-called lesser senses give us the greatest pleasures.
Directional asymmetries and age effects in human self-motion perception.
Roditi, Rachel E; Crane, Benjamin T
2012-06-01
Directional asymmetries in vestibular reflexes have aided the diagnosis of vestibular lesions; however, potential asymmetries in vestibular perception have not been well defined. This investigation sought to measure potential asymmetries in human vestibular perception. Vestibular perception thresholds were measured in 24 healthy human subjects between the ages of 21 and 68 years. Stimuli consisted of a single cycle of sinusoidal acceleration in a single direction lasting 1 or 2 s (1 or 0.5 Hz), delivered in sway (left-right), surge (forward-backward), heave (up-down), or yaw rotation. Subject identified self-motion directions were analyzed using a forced choice technique, which permitted thresholds to be independently determined for each direction. Non-motion stimuli were presented to measure possible response bias. A significant directional asymmetry in the dynamic response occurred in 27% of conditions tested within subjects, and in at least one type of motion in 92% of subjects. Directional asymmetries were usually consistent when retested in the same subject but did not occur consistently in one direction across the population with the exception of heave at 0.5 Hz. Responses during null stimuli presentation suggested that asymmetries were not due to biased guessing. Multiple models were applied and compared to determine if sensitivities were direction specific. Using Akaike information criterion, it was found that the model with direction specific sensitivities better described the data in 86% of runs when compared with a model that used the same sensitivity for both directions. Mean thresholds for yaw were 1.3±0.9°/s at 0.5 Hz and 0.9±0.7°/s at 1 Hz and were independent of age. Thresholds for surge and sway were 1.7±0.8 cm/s at 0.5 Hz and 0.7±0.3 cm/s at 1.0 Hz for subjects <50 and were significantly higher in subjects >50 years old. Heave thresholds were higher and were independent of age.
Doi, Takahiro; Fujita, Ichiro
2014-01-01
Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye's image can be matched to multiple parts of the other eye's image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs), because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model) can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term “cross-matching,” represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS); this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth), and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in stereoscopic depth perception. PMID:25360107
Age-related changes in perception of movement in driving scenes.
Lacherez, Philippe; Turner, Laura; Lester, Robert; Burns, Zoe; Wood, Joanne M
2014-07-01
Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Participants included 61 regular drivers (age range 22-87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Auditory enhancement of visual perception at threshold depends on visual abilities.
Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène
2011-06-17
Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.
Shilpapriya, Mangalampally; Jayanthi, Mungara; Reddy, Venumbaka Nilaya; Sakthivel, Rajendran; Selvaraju, Girija; Vijayakumar, Poornima
2015-01-01
Pain is highly subjective and it is neurologically proven that stimulation of larger diameter fibers - e.g., using appropriate coldness, warmth, rubbing, pressure or vibration - can close the neural "gate" so that the central perception of itch and pain is reduced. This fact is based upon "gate control" theory of Melzack and Wall. The present study was carried out to investigate the effects of vibration stimuli on pain experienced during local anesthetic injections. Thirty patients aged 6-12 years old of both the genders with Frankel's behavior rating scale as positive and definitely positive requiring bilateral local anesthesia injections for dental treatment were included in the split-mouth cross over design. Universal pain assessment tool was used to assess the pain with and without vibration during the administration of local anesthesia and the results obtained were tabulated and statistically analyzed. Local anesthetic administration with vibration resulted in significantly less pain (P = 0.001) compared to the injections without the use of vibe. The results suggest that vibration can be used as an effective method to decrease pain during dental local anesthetic administration.
A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators
NASA Astrophysics Data System (ADS)
Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae
2014-07-01
To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200-240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens.
Dissociative recombination of HCl+
NASA Astrophysics Data System (ADS)
Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann
2017-08-01
The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.
Dissociative recombination of HCl.
Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann
2017-08-28
The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.
Computational analysis of blood clot dissolution using a vibrating catheter tip.
Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee
2012-04-01
We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Leatherwood, J. D.; Hollenbaugh, D. D.
1983-01-01
The results of physical measurements of the interior noise and vibration obtained within eight operational military helicopters are presented. The data were extensively analyzed and are presented in the following forms: noise and vibration spectra, overall root-mean-square acceleration levels in three linear axes, peak accelerations at dominant blade passage frequencies, acceleration exceedance data, and overall and ""A'' weighted sound pressure levels. Peak acceleration levels were compared to the ISO 1-hr reduced comfort and fatigue decreased proficiency boundaries and the NASA discomfort criteria. The ""A'' weighted noise levels were compared to the NASA annoyance criteria, and the overall noise spectra were compared to MIL-STD-1294 (""Acoustical Noise Limits in Helicopters''). Specific vibration components at blade passage frequencies for several aircraft exceeded both the ISO reduced comfort boundary and the NASA passenger discomfort criteria. The ""A'' weighted noise levels, corrected for SPH-4 helmet attenuation characteristics, exceeded the NASA annoyance threshold for several aircraft.
Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception.
Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil
2017-01-01
Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness.
Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception
Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil
2017-01-01
Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171
Increased Sensitivity to Thermal Pain and Reduced Subcutaneous Lidocaine Efficacy in Redheads
Liem, Edwin B.; Joiner, Teresa V.; Tsueda, Kentaro; Sessler, Daniel I.
2005-01-01
Background: Anesthetic requirement in redheads is exaggerated, suggesting that redheads may be especially sensitive to pain. We therefore tested the hypotheses that women with natural red hair are more sensitive to pain, and that redheads are resistant to topical and subcutaneous lidocaine. Methods: We evaluated pain sensitivity in red-haired (n=30) or dark-haired (n=30) women by determining the electrical current perception threshold, pain perception, and maximum pain tolerance with a Neurometer CPT/C (Neurotron, Inc., Baltimore, MD). We evaluated the analogous warm and cold temperature thresholds with the TSA-II Neurosensory Analyzer (Medoc Ltd., Minneapolis, MN). Volunteers were tested with both devices at baseline and with the Neurometer after 1-hour exposure to 4% liposomal lidocaine and after subcutaneous injection of 1% lidocaine. Data are presented as medians [interquartile ranges]. Results: Current perception, pain perception, and pain tolerance thresholds were similar in the red-haired and dark-haired women at 2000, 250, and 5 Hz. In contrast, redheads were more sensitive to cold pain perception (22.6°C [15.1, 26.1] vs. 12.6°C [0, 20], P=0.004), cold pain tolerance (6.0°C [0, 9.7] vs. 0.0°C [0.0, 2.0], P=0.001), and heat pain (46.3°C [45.7, 47.5] vs. 47.7°C [46.6, 48.7], P=0.009). Subcutaneous, lidocaine was significantly less effective in redheads, e.g., pain tolerance threshold at 2000 Hz stimulation in redheads was 11.0 mA [8.5, 16.5] vs. >20.0 mA [14.5, >20] in others, P=0.005). Conclusion: Red hair is the phenotype for mutations of the melanocortin 1 receptor. Our results indicate that redheads are more sensitive to thermal pain and are resistant to the analgesic effects of subcutaneous lidocaine. Mutations of the melanocortin 1 receptor, or a consequence thereof, thus modulate pain sensitivity. PMID:15731586
Chen, Yue; Ekstrom, Tor
2016-05-01
Face perception impairment in schizophrenia has been demonstrated, mostly through experimental studies. How this laboratory-defined behavioral impairment is associated with patients' perceptual experience of various faces in everyday life is however unclear. This question is important because a first-person account of face perception has direct consequences on social functioning of patients. In this study, we adapted and administered a self-reported questionnaire on narrative perceptual experience of faces along with psychophysical assessments of face perception in schizophrenia. The self-reported questionnaire includes six rating items of face-related functioning in everyday life, providing a subjective measure of face perception. The psychophysical assessment determines perceptual threshold for discriminating different facial identities, providing an objective measure of face perception. Compared to controls (n = 25), patients (n = 35) showed significantly lower scores (worse performance) in the subjective assessment and significantly higher thresholds (worse performance) in the objective assessment. The subjective and objective face perception assessments were moderately correlated in controls but not in patients. The subjective face perception assessments were significantly correlated with measurements of a social cognitive ability (Theory of Mind), again in controls but not in patients. These results suggest that in schizophrenia the quality of face-related functioning in everyday life is degraded and the role that basic face discrimination capacity plays in face-related everyday functioning is disrupted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Yue; Ekstrom, Tor
2016-01-01
Objectives Face perception impairment in schizophrenia has been demonstrated, mostly through experimental studies. How this laboratory-defined behavioral impairment is associated with patients’ perceptual experience of various faces in everyday life is however unclear. This question is important because a first-person account of face perception has direct consequences on social functioning of patients. In this study, we adapted and administered a self-reported questionnaire on narrative perceptual experience of faces along with psychophysical assessments of face perception in schizophrenia. Methods The self-reported questionnaire includes six rating items of face-related functioning in everyday life, providing a subjective measure of face perception. The psychophysical assessment determines perceptual threshold for discriminating different facial identities, providing an objective measure of face perception. Results Compared to controls (n=25), patients (n=35) showed significantly lower scores (worse performance) in the subjective assessment and significantly higher thresholds (worse performance) in the objective assessment. The subjective and objective face perception assessments were moderately correlated in controls but not in patients. The subjective face perception assessments were significantly correlated with measurements of a social cognitive ability (Theory of Mind), again in controls but not in patients. Conclusion These results suggest that in schizophrenia the quality of face-related functioning in everyday life is degraded and the role that basic face discrimination capacity plays in face-related everyday functioning is disrupted. PMID:26938027
Vibroacoustic processes and structural variations in muscular tissue
NASA Astrophysics Data System (ADS)
Antonets, V. A.; Klochkov, B. N.; Kovaleva, E. P.
1995-03-01
This paper reviews the problems and results obtained in the course of experimental and theoretical investigations of the vibroacoustic activity of contracting muscles. Two types of such processes are examined: (1) acoustic vibrations due to the macromolecular recombinations of muscle proteins, which are responsible for the muscle contraction, and (2) acoustic vibrations associated with the finite accuracy and speed of the receptor-effector system that controls the muscle contraction. By investigating the acoustic vibrations, we examine structural recombinations (conformation variations) in macromolecules during mechanochemical reactions. Since chemical reactions of macromolecules are always accompanied by conformational recombinations, the generation mechanism, which is responsible for the contraction processes in a muscular tissue, can also be extended to other macromolecular media. Investigation of infrasound vibrations makes it possible to explore the quality and error of control for the processes in the muscle under different types of loading. Since a living body is controlled via perceptions, the latter can be quantitatively estimated by the parametess of infrasound vibrations.
Thermal detection thresholds in 5-year-old preterm born children; IQ does matter.
de Graaf, Joke; Valkenburg, Abraham J; Tibboel, Dick; van Dijk, Monique
2012-07-01
Experiencing pain at newborn age may have consequences on one's somatosensory perception later in life. Children's perception for cold and warm stimuli may be determined with the Thermal Sensory Analyzer (TSA) device by two different methods. This pilot study in 5-year-old children born preterm aimed at establishing whether the TSA method of limits, which is dependent of reaction time, and the method of levels, which is independent of reaction time, would yield different cold and warm detection thresholds. The second aim was to establish possible associations between intellectual ability and the detection thresholds obtained with either method. A convenience sample was drawn from the participants in an ongoing 5-year follow-up study of a randomized controlled trial on effects of morphine during mechanical ventilation. Thresholds were assessed using both methods and statistically compared. Possible associations between the child's intelligence quotient (IQ) and threshold levels were analyzed. The method of levels yielded more sensitive thresholds than did the method of limits, i.e. mean (SD) cold detection thresholds: 30.3 (1.4) versus 28.4 (1.7) (Cohen'sd=1.2, P=0.001) and warm detection thresholds; 33.9 (1.9) versus 35.6 (2.1) (Cohen's d=0.8, P=0.04). IQ was statistically significantly associated only with the detection thresholds obtained with the method of limits (cold: r=0.64, warm: r=-0.52). The TSA method of levels, is to be preferred over the method of limits in 5-year-old preterm born children, as it establishes more sensitive detection thresholds and is independent of IQ. Copyright © 2011 Elsevier Ltd. All rights reserved.
Abedi, Maryam; Jin, Tian; Sun, Kewen
2015-01-01
In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver’s reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σFLL). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σFLL). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers. PMID:26404286
Aging: Sensitivity versus Criterion in Taste Perception.
ERIC Educational Resources Information Center
Kushnir, T.; Shapira, N.
1983-01-01
Employed the signal-detection paradigm as a model for investigating age-related biological versus cognitive effects on perceptual behavior. Old and young subjects reported the presence or absence of sugar in threshold level solutions and tap water. Older subjects displayed a higher detection threshold and obtained a stricter criterion of decision.…
Proprioceptive illusions created by vibration of one arm are altered by vibrating the other arm.
Hakuta, Naoyuki; Izumizaki, Masahiko; Kigawa, Kazuyoshi; Murai, Norimitsu; Atsumi, Takashi; Homma, Ikuo
2014-07-01
There is some evidence that signals coming from both arms are used to determine the perceived position and movement of one arm. We examined whether the sense of position and movement of one (reference) arm is altered by increases in muscle spindle signals in the other (indicator) arm in blindfolded participants (n = 26). To increase muscle spindle discharge, we applied 70-80 Hz muscle vibration to the elbow flexors of the indicator arm. In a first experiment, proprioceptive illusions in the vibrated reference arm in a forearm position-matching task were compared between conditions in which the indicator arm elbow flexors were vibrated or not vibrated. We found that the vibration illusion of arm extension induced by vibration of reference arm elbow flexors was reduced in the presence of vibration of the indicator elbow flexors. In a second experiment, participants were asked to describe their perception of the illusion of forearm extension movements of the reference arm evoked by vibration of reference arm elbow flexors in response to on/off and off/on transitions of vibration of non-reference arm elbow flexors. When vibration of non-reference arm elbow flexors was turned on, they reported a sensation of slowing down of the illusion of the reference arm. When it was turned off, they reported a sensation of speeding up. To conclude, the present study shows that both the sense of limb position and the sense of limb movement of one arm are dependent to some extent on spindle signals coming from the other arm.
Averbeck, Beate; Seitz, Lena; Kolb, Florian P; Kutz, Dieter F
2017-09-01
Sex-related differences in human thermal and pain sensitivity are the subject of controversial discussion. The goal of this study in a large number of subjects was to investigate sex differences in thermal and thermal pain perception and the thermal grill illusion (TGI) as a phenomenon reflecting crosstalk between the thermoreceptive and nociceptive systems. The thermal grill illusion is a sensation of strong, but not necessarily painful, heat often preceded by transient cold upon skin contact with spatially interlaced innocuous warm and cool stimuli. The TGI was studied in a group of 78 female and 58 male undergraduate students and was evoked by placing the palm of the right hand on the thermal grill (20/40 °C interleaved stimulus). Sex-related thermal perception was investigated by a retrospective analysis of thermal detection and thermal pain threshold data that had been measured in student laboratory courses over 5 years (776 female and 476 male undergraduate students) using the method of quantitative sensory testing (QST). To analyse correlations between thermal pain sensitivity and the TGI, thermal pain threshold and the TGI were determined in a group of 20 female and 20 male undergraduate students. The TGI was more pronounced in females than males. Females were more sensitive with respect to thermal detection and thermal pain thresholds. Independent of sex, thermal detection thresholds were dependent on the baseline temperature with a specific progression of an optimum curve for cold detection threshold versus baseline temperature. The distribution of cold pain thresholds was multi-modal and sex-dependent. The more pronounced TGI in females correlated with higher cold sensitivity and cold pain sensitivity in females than in males. Our finding that thermal detection threshold not only differs between the sexes but is also dependent on the baseline temperature reveals a complex processing of "cold" and "warm" inputs in thermal perception. The results of the TGI experiment support the assumption that sex differences in cold-related thermoreception are responsible for sex differences in the TGI.
Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey
2017-09-01
Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
The Design of Optical Sensor for the Pinhole/Occulter Facility
NASA Technical Reports Server (NTRS)
Greene, Michael E.
1990-01-01
Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.
Confidence Intervals for Laboratory Sonic Boom Annoyance Tests
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Christian, Andrew
2016-01-01
Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.
Pain perception studies in tension-type headache.
Bezov, David; Ashina, Sait; Jensen, Rigmor; Bendtsen, Lars
2011-02-01
Tension-type headache (TTH) is a disorder with high prevalence and significant impact on society. Understanding of pathophysiology of TTH is paramount for development of effective treatments and prevention of chronification of TTH. Our aim was to review the findings from pain perception studies of pathophysiology of TTH as well as to review the research of pathophysiology of TTH. Pain perception studies such as measurement of muscle tenderness, pain detection thresholds, pain tolerance thresholds, pain response to suprathreshold stimulation, temporal summation and diffuse noxious inhibitory control (DNIC) have played a central role in elucidating the pathophysiology of TTH. It has been demonstrated that continuous nociceptive input from peripheral myofascial structures may induce central sensitization and thereby chronification of the headache. Measurements of pain tolerance thresholds and suprathreshold stimulation have shown presence of generalized hyperalgesia in chronic tension-type headache (CTTH) patients, while DNIC function has been shown to be reduced in CTTH. One imaging study showed loss of gray matter structures involved in pain processing in CTTH patients. Future studies should aim to integrate pain perception and imaging to confirm this finding. Pharmacological studies have shown that drugs like tricyclic anti-depressant amitriptyline and nitric oxide synthase inhibitors can reverse central sensitization and the chronicity of headache. Finally, low frequency electrical stimulation has been shown to rapidly reverse central sensitization and may be a new modality in treatment of CTTH and other chronic pain disorders. © 2010 American Headache Society.
Uszynski, Marcin Kacper; Purtill, Helen; Donnelly, Alan; Coote, Susan
2016-07-01
This study aimed firstly to investigate the feasibility of the study protocol and outcome measures, secondly to obtain data in order to inform the power calculations for a larger randomised controlled trial, and finally to investigate if whole-body vibration (WBV) is more effective than the same duration and intensity of standard exercises (EXE) in people with Multiple Sclerosis (PwMS). Randomised controlled feasibility study. Outpatient MS centre. Twenty seven PwMS (age mean (SD) 48.1 (11.2)) with minimal gait impairments. Twelve weeks of WBV or standard EXE, three times weekly. Participants were measured with isokinetic muscle strength, vibration threshold, Timed Up and Go test (TUG), Mini-BESTest (MBT), 6 Minute Walk test (6MWT), Multiple Sclerosis Impact Scale 29 (MSIS 29), Modified Fatigue Impact Scale (MFIS) and Verbal Analogue scale for sensation (VAS) pre and post 12 week intervention. WBV intervention was found feasible with low drop-out rate (11.1%) and high compliance (90%). Data suggest that a sample of 52 in each group would be sufficient to detect a moderate effect size, with 80% power and 5% significance for 6 minute walk test. Large effect sizes in favour of standard exercise were found for vibration threshold at 5th metatarsophalangeal joint and heel (P=0.014, r= 0.5 and P=0.005, r=0.56 respectively). No between group differences were found for muscle strength, balance or gait (P>0.05). Data suggest that the protocol is feasible, there were no adverse effects. A trial including 120 people would be needed to detect an effect on walking endurance. © The Author(s) 2015.
Dysfunctional penile cholinergic nerves in diabetic impotent men
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco, R.; Saenz de Tejada, I.; Goldstein, I.
1990-08-01
Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to thatmore » from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.« less
Schultz, R O; Peters, M A; Sobocinski, K; Nassif, K; Schultz, K J
1983-01-01
Corneal epithelial lesions can be found in approximately one-half of asymptomatic patients with diabetes mellitus. These lesions are transient and clinically resemble the keratopathy seen in staphylococcal keratoconjunctivitis. Staphylococcal organisms, however, can be isolated in equal percentages from diabetic patients without keratopathy. Diabetic peripheral neuropathy was found to be related to the presence of diabetic keratopathy after adjusting for age with analysis of covariance. The strongest predictor of both keratopathy and corneal fluorescein staining was vibration perception threshold in the toes (P less than 0.01); and the severity of keratopathy was directly related to the degree of diminution of peripheral sensation. Other predictors of keratopathy were: reduced tear breakup time (P less than 0.03), type of diabetes (P less than 0.01), and metabolic status as indicated by c-peptide fasting (P less than 0.01). No significant relationships were found between the presence of keratopathy and tear glucose levels, endothelial cell densities, corneal thickness measurements, the presence of S epidermidis, or with duration of disease. It is our conclusion that asymptomatic epithelial lesions in the nontraumatized diabetic cornea can occur as a manifestation of generalized polyneuropathy and probably represent a specific form of corneal neuropathy. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6676964
Differential effect of muscle vibration on intracortical inhibitory circuits in humans
Rosenkranz, Karin; Rothwell, John C
2003-01-01
Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m.), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits. PMID:12821723
An, Seong-Mu; Choi, Sun-Young; Chung, Young-Wook; Jang, Tae-Ho
2014-01-01
Objective The purpose of this study was to examine whether orthodontic treatment experience affects the individual's perception of smile esthetics and to evaluate differences among orthodontically treated laypersons, non-treated laypersons, and dentists by using computerized image alterations. Methods A photograph of a woman's smile was digitally altered using a software image editing program. The alterations involved gingival margin height, crown width and length, incisal plane canting, and dental midline of the maxillary anterior teeth. Three groups of raters (orthodontically treated laypersons, non-treated laypersons, and dentists) evaluated the original and altered images using a visual analog scale. Results The threshold for detecting changes in maxillary central incisor gingival margin height among laypersons was 1.5 mm; the threshold of dentists, who were more perceptive, was 1.0 mm. For maxillary lateral incisor crown width and height, the threshold of all three groups was 3.0 mm. Canting of the incisal plane was perceived when the canting was 3.0 mm among non-treated laypersons, 2.0 mm among treated laypersons, and 1.0 mm among dentists. Non-treated laypersons could not perceive dental midline shifts; however, treated laypersons and dentists perceived them when the shift was ≥ 3.0 mm. Conclusions Laypersons with and without orthodontic treatment experience and dentists have different perceptions of smile esthetics. Orthodontically treated laypersons were more critical than non-treated laypersons regarding incisal plane canting and dental midline shifts. Based on these findings, it is suggested that orthodontic treatment experience improved the esthetic perceptions of laypersons. PMID:25473645
Intonation Processing in Congenital Amusia: Discrimination, Identification and Imitation
ERIC Educational Resources Information Center
Liu, Fang; Patel, Aniruddh D.; Fourcin, Adrian; Stewart, Lauren
2010-01-01
This study investigated whether congenital amusia, a neuro-developmental disorder of musical perception, also has implications for speech intonation processing. In total, 16 British amusics and 16 matched controls completed five intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance…
Physiology of the sensory sphere under spaceflight conditions
NASA Technical Reports Server (NTRS)
Yuganov, Y. M.; Kopanev, V. I.
1975-01-01
Information regarding the influence on sensory perception of certain space flight factors, including weightlessness, acceleration, and vibration, is presented. Several illusions which occur under these conditions are described. The results of ground based experiments are also discussed.
Piezoelectric Vibrational and Acoustic Alert for a Personal Communication Device
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Hellbaum, Richard F. (Inventor); Daugherty, Robert H. (Inventor); Scholz, Raymond C. (Inventor); Little, Bruce D. (Inventor); Fox, Robert L. (Inventor); Denhardt, Gerald A. (Inventor); Jang, SeGon (Inventor); Balein, Rizza (Inventor)
2001-01-01
An alert apparatus for a personal communication device includes a mechanically prestressed piezoelectric wafer positioned within the personal communication device and an alternating voltage input line coupled at two points of the wafer where polarity is recognized. The alert apparatus also includes a variable frequency device coupled to the alternating voltage input line, operative to switch the alternating voltage on the alternating voltage input line at least between an alternating voltage having a first frequency and an alternating voltage having a second frequency. The first frequency is preferably sufficiently high so as to cause the wafer to vibrate at a resulting frequency that produces a sound perceptible by a human ear, and the second frequency is preferably sufficiently low so as to cause the wafer to vibrate at a resulting frequency that produces a vibration readily felt by a holder of the personal communication device.
Vibrational Detection of Odorant Functional Groups by Drosophila melanogaster
Maniati, Klio; Haralambous, Katherine-Joanne
2017-01-01
Abstract A remarkable feature of olfaction, and perhaps the hardest one to explain by shape-based molecular recognition, is the ability to detect the presence of functional groups in odorants, irrespective of molecular context. We previously showed that Drosophila trained to avoid deuterated odorants could respond to a molecule bearing a nitrile group, which shares the vibrational stretch frequency with the CD bond. Here, we reproduce and extend this finding by showing analogous olfactory responses of Drosophila to the chemically vastly different functional groups, thiols and boranes, that nevertheless possess a common vibration at 2600 cm−1. Furthermore, we show that Drosophila do not respond to a cyanohydrin structure that renders nitrile groups invisible to IR spectroscopy. We argue that the response of Drosophila to these odorants which parallels their perception in humans, supports the hypothesis that odor character is encoded in odorant molecular vibrations, not in the specific shape-based activation pattern of receptors. PMID:29094064
NASA Astrophysics Data System (ADS)
Negreira, J.; Trollé, A.; Jarnerö, K.; Sjökvist, L.-G.; Bard, D.
2015-03-01
In timber housing constructions, vibrations can be a nuisance for inhabitants. Notably, the vibrational response of wooden floor systems is an issue in need of being dealt with more adequately in the designing of such buildings. Studies addressing human response to vibrations are needed in order to be able to better estimate what level of vibrations in dwellings can be seen as acceptable. In the present study, measurements on five different wooden floors were performed in a laboratory environment at two locations in Sweden (SP in Växjö and LU in Lund). Acceleration measurements were carried out while a person either was walking on a particular floor or was seated in a chair placed there as the test leader was walking on the floor. These participants filled out a questionnaire regarding their perception and experiencing of the vibrations in question. Independently of the subjective tests, several static and dynamic characteristics of the floors were determined through measurements. The ultimate aim was to develop indicators of human response to floor vibrations, specifically those regarding vibration acceptability and vibration annoyance, their being drawn based on relationships between the questionnaire responses obtained and the parameter values determined on the basis of the measurements carried out. To that end, use was made of multilevel regression. Although the sample of floors tested was small, certain clear trends could be noted. The first eigenfrequency (calculated in accordance with Eurocode 5) and Hu and Chui's criterion (calculated from measured quantities) proved to be the best indicators of vibration annoyance, and the Maximum Transient Vibration Value (computed on the basis of the accelerations experienced by the test subjects) to be the best indicator of vibration acceptability.
Prevalence and characteristics of vibrator use among women who have sex with women.
Schick, Vanessa; Herbenick, Debby; Rosenberger, Joshua G; Reece, Michael
2011-12-01
Research suggests that vibrator use may be more prevalent among lesbian/bisexual-identified women. However, previous research has been limited by small samples of lesbian- and bisexual-identified women and has not focused specifically on the characteristics of vibrator use between women. The present study was designed in order to develop a comprehensive understanding of women's use of vibrators with their female sexual partners and to understand the extent to which vibrator use is related to their sexual experiences. Data were collected via a cross-sectional web-based survey from 2,192 women living in the United States and the United Kingdom. All participants reported engaging in sexual behavior with only women in the previous year. Sociodemographic characteristics, vibrator use history, vibrator use perceptions, and the Female Sexual Function Index (FSFI). Over three-quarters of women in the sample reported a history of vibrator use during solo masturbation/with a female partner and over a quarter of the sample reported use in the previous month. Participants who were older, white, and in a long-term relationship were the most likely to use a vibrator with a female partner in the previous year. Vibrator use lifetime history was unrelated to all FSFI subscales with the exception of pain for lesbian and queer-identified women. In contrast to lifetime use, participants who used a vibrator with a female sexual partner in the previous month scored higher on several of the FSFI domains than women who reported no vibrator use or vibrator use only during solo masturbation in the past month. Vibrator use was common among this sample of women who have sex with women. Women who reported recent vibrator use with other women had higher mean sexual functioning scores than women who reported no vibrator use or vibrator use only during masturbation. Implications for health-care providers are discussed. © 2011 International Society for Sexual Medicine.
[Relationship between Occlusal Discomfort Syndrome and Occlusal Threshold].
Munakata, Motohiro; Ono, Yumie; Hayama, Rika; Kataoka, Kanako; Ikuta, Ryuhei; Tamaki, Katsushi
2016-03-01
Occlusal dysesthesia has been defined as persistent uncomfortable feelings of intercuspal position continuing for more than 6 months without evidence of physical occlusal discrepancy. The problem often occurs after occlusal intervention by dental care. Although various dental treatments (e. g. occlusal adjustment, orthodontic treatment and prosthetic reconstruction) are attempted to solve occlusal dysesthesia, they rarely reach a satisfactory result, neither for patients nor dentists. In Japan, these symptoms are defined by the term "Occlusal discomfort syndrome" (ODS). The aim of this study was to investigate the characteristics of ODS with the simple occlusal sensory perceptive and discriminative test. Twenty-one female dental patients with ODS (mean age 55.8 ± 19.2 years) and 21 age- and gender-matched dental patients without ODS (mean age 53.1 ± 16.8 years) participated in the study. Upon grinding occlusal registration foils that were stacked to different thicknesses, participants reported the thicknesses at which they recognized the foils (recognition threshold) and felt discomfort (discomfort threshold). Although there was no significant difference in occlusal recognition thresholds between the two patient groups, the discomfort threshold was significantly smaller in the patients with ODS than in those without ODS. Moreover, the recognition threshold showed an age-dependent increase in patients without ODS, whereas it remained comparable between the younger (< 60 years old) and elderly (60 years old or more) patient subgroups with ODS. These results suggest that occlusal discomfort threshold rather than recognition threshold is an issue in ODS. The foil grinding procedure is a simple and useful method to evaluate occlusal perceptive and discriminative abilities in patients with ODS.
Vibration energy absorption in the whole-body system of a tractor operator.
Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek
2014-01-01
Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).
The Molecular and Cellular Basis of Cold Sensation
2012-01-01
Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia. PMID:23421674
Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E
2014-04-01
The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.
Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E
2014-01-01
The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s−1. After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s−1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s−1). While thresholds showed slight improvement by week 3 (25 deg s−1), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. PMID:24366259
Threshold dose for discrimination of nicotine via cigarette smoking.
Perkins, Kenneth A; Kunkle, Nicole; Karelitz, Joshua L; Michael, Valerie C; Donny, Eric C
2016-06-01
The lowest nicotine threshold "dose" in cigarettes discriminated from a cigarette containing virtually no nicotine may help inform the minimum dose maintaining dependence. Spectrum research cigarettes (from NIDA) differing in nicotine content were used to evaluate a procedure to determine discrimination thresholds. Dependent smokers (n = 18; 13 M, 5 F) were tested on ability to discriminate cigarettes with nicotine contents of 11, 5, 2.4, and 1.3 mg/g, one per session, from the "ultralow" cigarette with 0.4 mg/g, after having discriminated 16 mg/g from 0.4 mg/g (all had 9-10 mg "tar"). Exposure to each was limited to 4 puffs/trial. All subjects were abstinent from smoking overnight prior to each session, and the number of sessions was determined by the participant's success in discrimination behavior on >80 % of trials. Subjective perceptions and behavioral choice between cigarettes were also assessed and related to discrimination behavior. The median threshold was 11 mg/g, but the range was 2.4 to 16 mg/g, suggesting wide variability in discrimination threshold. Compared to the ultralow, puff choice was greater for the subject's threshold dose but only marginal for the subthreshold (next lowest nicotine) cigarette. Threshold and subthreshold also differed on subjective perceptions but not withdrawal relief. Under these testing conditions, threshold content for discriminating nicotine via cigarettes may be 11 mg/g or greater for most smokers, but some can discriminate nicotine contents one-half or one-quarter this amount. Further study with other procedures and cigarette exposure amounts may identify systematic differences in nicotine discrimination thresholds.
Is Sweet Taste Perception Associated with Sweet Food Liking and Intake?
Jayasinghe, Shakeela N.; Kruger, Rozanne; Walsh, Daniel C. I.; Cao, Guojiao; Rivers, Stacey; Richter, Marilize; Breier, Bernhard H.
2017-01-01
A range of psychophysical taste measurements are used to characterize an individual’s sweet taste perception and to assess links between taste perception and dietary intake. The aims of this study were to investigate the relationship between four different psychophysical measurements of sweet taste perception, and to explore which measures of sweet taste perception relate to sweet food intake. Forty-four women aged 20–40 years were recruited for the study. Four measures of sweet taste perception (detection and recognition thresholds, and sweet taste intensity and hedonic liking of suprathreshold concentrations) were assessed using glucose as the tastant. Dietary measurements included a four-day weighed food record, a sweet food-food frequency questionnaire and a sweet beverage liking questionnaire. Glucose detection and recognition thresholds showed no correlation with suprathreshold taste measurements or any dietary intake measurement. Importantly, sweet taste intensity correlated negatively with total energy and carbohydrate (starch, total sugar, fructose, glucose) intakes, frequency of sweet food intake and sweet beverage liking. Furthermore, sweet hedonic liking correlated positively with total energy and carbohydrate (total sugar, fructose, glucose) intakes. The present study shows a clear link between sweet taste intensity and hedonic liking with sweet food liking, and total energy, carbohydrate and sugar intake. PMID:28708085
Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan
2015-01-01
An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799
Graph theoretical analysis of EEG functional connectivity during music perception.
Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle
2012-11-05
The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Problematic Internet Use: Perceptions of Addiction Counsellors
ERIC Educational Resources Information Center
Acier, Didier; Kern, Laurence
2011-01-01
Despite a growing number of publications on problematic Internet use (PIU), there is no consensus on the nature of the phenomenon, its constituent criteria, and its clinical threshold. This qualitative study examines the perceptions of addiction counsellors who have managed individuals with PIU in Quebec (Canada). Four focus groups were conducted…
Quantitative Sensory Testing in Adults with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Fründt, Odette; Grashorn, Wiebke; Schöttle, Daniel; Peiker, Ina; David, Nicole; Engel, Andreas K.; Forkmann, Katarina; Wrobel, Nathalie; Münchau, Alexander; Bingel, Ulrike
2017-01-01
Altered sensory perception has been found in patients with autism spectrum disorders (ASD) and might be related to aberrant sensory perception thresholds. We used the well-established, standardized Quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain to investigate 13 somatosensory parameters including…
USDA-ARS?s Scientific Manuscript database
Limonin and nomilin are two bitter compounds present in citrus and are thought to cause the bitter off-flavor of Huanglongbing-infected fruit/juice. This study determined the thresholds of limonin, nomilin, and their combination in a simple matrix (sucrose and citric acid), a complex matrix (sucrose...
High-resolution threshold photoionization of N2O
NASA Technical Reports Server (NTRS)
Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.
1991-01-01
Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.
Maupas, Eric; Dyer, Joseph-Omer; Melo, Sibele de Andrade; Forget, Robert
2017-09-01
Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic stroke. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Association between Computer Use and Entrapment Neuropathies in the Wrist Region
ERIC Educational Resources Information Center
Colak, S.; Bamac, B.; Colak, T.; Ozbek, A.
2013-01-01
There is general consensus in the literature that computer use is often associated with an increased prevalence of hand and wrist disorders. Symptoms may be associated with specific clinical entities such as peripheral nerve entrapment. Motor and sensory nerve conduction velocity and vibration threshold in the hand of computer users have been…
NASA Astrophysics Data System (ADS)
Yan, Peng; Lu, Wenbo; Zhang, Jing; Zou, Yujun; Chen, Ming
2017-04-01
Ground vibration, as the most critical public hazard of blasting, has received much attention from the community. Many countries established national standards to suppress vibration impact on structures, but a world-accepted blasting vibration criterion on human safety is still missing. In order to evaluate human response to the vibration from blasting excavation of a large-scale rock slope in China, this study aims to suggest a revised criterion. The vibration frequency was introduced to improve the existing single-factor (peak particle velocity) standard recommended by the United States Bureau of Mines (USBM). The feasibility of the new criterion was checked based on field vibration monitoring and investigation of human reactions. Moreover, the air overpressure or blast effects on human beings have also been discussed. The result indicates that the entire zone of influence can be divided into three subzones: severe-annoyance, light-annoyance and perception zone according to the revised safety standard. Both the construction company and local residents have provided positive comments on this influence degree assessment, which indicates that the presented criterion is suitable for evaluating human response to nearby blasts. Nevertheless, this specific criterion needs more field tests and verifications before it can be
Vibration sensory thresholds depend on pressure of applied stimulus.
Lowenthal, L M; Hockaday, T D
1987-01-01
Vibration sensory thresholds (VSTs) were estimated in 40 healthy subjects and 8 with diabetic peripheral neuropathy. A vibrameter and a biothesiometer were used at four sites and at differing pressures. In normal subjects, with the vibrameter at 200 g, mean VST +/- SE for all sites was 1.87 micron +/- 0.22 and at 400 g dropped to 1.08 micron +/- 0.15 (P less than .0001). In 20 of these subjects with a biothesiometer at 200 and 400 g, mean VST fell from 12.8 +/- 1.5 to 11.1 +/- 1.1 (arbitrary units) (P = .01) when the greater pressure was applied. In the 8 subjects with peripheral neuropathy, with the vibrameter at 200 and 400 g, respectively, mean VST fell from 70.7 +/- 26 to 7.2 +/- 1.8. VST in these subjects was estimated again after 1 mo and showed strong correlations with the previous values. Biothesiometer results correlated with vibrameter results at all sites. Thus, VST decreases as the pressure of the applied stimulus is increased and this effect appears to be more marked in peripheral neuropathy. This has important consequences in monitoring this condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.
2012-04-28
The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energymore » is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.« less
Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.
Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho
2018-06-02
Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.
Exploring Perception of Vibrations from Rail: An Interview Study.
Maclachlan, Laura; Waye, Kerstin Persson; Pedersen, Eja
2017-10-26
Rail transport is an environmentally responsible approach and traffic is expected to increase in the coming decades. Little is known about the implications for quality of life of populations living close to railways. This study explores the way in which vibrations from rail are perceived and described by these populations. The study took place in the Västra Götaland and Värmland regions of Sweden. A qualitative study approach was undertaken using semi-structured interviews within a framework of predetermined questions in participants' homes. A 26.3% response rate was achieved and 17 participants were interviewed. The experience of vibrations was described in tangible terms through different senses. Important emerging themes included habituation to and acceptance of vibrations, worry about property damage, worry about family members and general safety. Participants did not reflect on health effects, however, chronic exposure to vibrations through multimodal senses in individual living environments may reduce the possibility for restoration in the home. Lack of empowerment to reduce exposure to vibrations was important. This may alter individual coping strategies, as taking actions to avoid the stressor is not possible. The adoption of other strategies, such as avoidance, may negatively affect an individual's ability to cope with the stressor and their health.
de Kleijn, Jasper L; van Kalmthout, Ludwike W M; van der Vossen, Martijn J B; Vonck, Bernard M D; Topsakal, Vedat; Bruijnzeel, Hanneke
2018-05-24
Although current guidelines recommend cochlear implantation only for children with profound hearing impairment (HI) (>90 decibel [dB] hearing level [HL]), studies show that children with severe hearing impairment (>70-90 dB HL) could also benefit from cochlear implantation. To perform a systematic review to identify audiologic thresholds (in dB HL) that could serve as an audiologic candidacy criterion for pediatric cochlear implantation using 4 domains of speech and language development as independent outcome measures (speech production, speech perception, receptive language, and auditory performance). PubMed and Embase databases were searched up to June 28, 2017, to identify studies comparing speech and language development between children who were profoundly deaf using cochlear implants and children with severe hearing loss using hearing aids, because no studies are available directly comparing children with severe HI in both groups. If cochlear implant users with profound HI score better on speech and language tests than those with severe HI who use hearing aids, this outcome could support adjusting cochlear implantation candidacy criteria to lower audiologic thresholds. Literature search, screening, and article selection were performed using a predefined strategy. Article screening was executed independently by 4 authors in 2 pairs; consensus on article inclusion was reached by discussion between these 4 authors. This study is reported according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. Title and abstract screening of 2822 articles resulted in selection of 130 articles for full-text review. Twenty-one studies were selected for critical appraisal, resulting in selection of 10 articles for data extraction. Two studies formulated audiologic thresholds (in dB HLs) at which children could qualify for cochlear implantation: (1) at 4-frequency pure-tone average (PTA) thresholds of 80 dB HL or greater based on speech perception and auditory performance subtests and (2) at PTA thresholds of 88 and 96 dB HL based on a speech perception subtest. In 8 of the 18 outcome measures, children with profound HI using cochlear implants performed similarly to children with severe HI using hearing aids. Better performance of cochlear implant users was shown with a picture-naming test and a speech perception in noise test. Owing to large heterogeneity in study population and selected tests, it was not possible to conduct a meta-analysis. Studies indicate that lower audiologic thresholds (≥80 dB HL) than are advised in current national and manufacturer guidelines would be appropriate as audiologic candidacy criteria for pediatric cochlear implantation.
Haptic perception accuracy depending on self-produced movement.
Park, Chulwook; Kim, Seonjin
2014-01-01
This study measured whether self-produced movement influences haptic perception ability (experiment 1) as well as the factors associated with levels of influence (experiment 2) in racket sports. For experiment 1, the haptic perception accuracy levels of five male table tennis experts and five male novices were examined under two different conditions (no movement vs. movement). For experiment 2, the haptic afferent subsystems of five male table tennis experts and five male novices were investigated in only the self-produced movement-coupled condition. Inferential statistics (ANOVA, t-test) and custom-made devices (shock & vibration sensor, Qualisys Track Manager) of the data were used to determine the haptic perception accuracy (experiment 1, experiment 2) and its association with expertise. The results of this research show that expert-level players acquire higher accuracy with less variability (racket vibration and angle) than novice-level players, especially in their self-produced movement coupled performances. The important finding from this result is that, in terms of accuracy, the skill-associated differences were enlarged during self-produced movement. To explain the origin of this difference between experts and novices, the functional variability of haptic afferent subsystems can serve as a reference. These two factors (self-produced accuracy and the variability of haptic features) as investigated in this study would be useful criteria for educators in racket sports and suggest a broader hypothesis for further research into the effects of the haptic accuracy related to variability.
Asymmetric Oscillation Distorts the Perceived Heaviness of Handheld Objects.
Amemiya, T; Maeda, T
2008-01-01
Weight perception has been of great interest for over three centuries. Most research has been concerned with the weight of static objects, and some illusions have been discovered. Here, we show a new illusion related to the perception of the heaviness of oscillating objects. We performed experiments that involved comparing the weight of two objects of identical physical appearance but with different gross weights and oscillation patterns (vibrating vertically at frequencies of 5 or 9 cycles per second with symmetric and asymmetric acceleration patterns). The results show that the perceived weight of an object vibrating with asymmetric acceleration increases compared to that with symmetric acceleration when the acceleration peaks in the gravity direction. In contrast, almost no heaviness perception change was observed in the anti-gravity direction. We speculate that the reason for the divergence between these results is caused by the differential impact of these two hypothesized perceptual mechanisms as follows: the salience of pulse stimuli appears to have a strong influence in the gravity direction, whereas filling-in could explain our observations in the anti-gravity direction. The study of this haptic illusion can provide valuable insights into not only human perceptual mechanisms but into the design of ungrounded haptic interfaces.
Odour perception in chronic renal disease.
Griep, M I; Van der Niepen, P; Sennesael, J J; Mets, T F; Massart, D L; Verbeelen, D L
1997-10-01
The sense of smell plays an important role in the quality of life. Many studies have shown a declining odour perception in the elderly, as well as in subjects in poor health or nutritional state. Considering the high prevalence of poor nutritional state in renal disease and the importance of odour perception in nutrition and health, the relationship between renal function, nutritional state, and odour perception is explored in this study. A total of 101 patients with chronic renal failure participated in the study. Thirty-eight haemodialysis patients (mean age = 64.3 years) were evaluated both before and after dialysis. Sixteen patients on peritoneal dialysis treatment (mean age = 64.0 years), 28 transplanted patients (mean age = 53.5 years, mean creatinine clearance = 64.0 ml/min) and 19 patients with varying degrees of renal insufficiency were also included (mean age = 63.7 years, mean creatinine clearance = 29.5 ml/min). Patients with cognitive deficits or upper respiratory airway diseases were excluded. A validated objective procedure was used to measure odour perception, by determining the detection threshold for isoamyl acetate (banana odour) as the lowest detectable odour concentration. Healthy control persons had significantly lower odour thresholds compared to patients on peritoneal (P = 0.001) and haemodialysis (P = 0.002). No significant difference was observed in odour perception between patients on peritoneal and haemodialysis (P = 0.779) and for patients on haemodialysis before and after a dialysis session. Transplanted patients had significantly better odour perception compared to matched patients on dialysis (P < 0.001). Odour perception of transplanted patients and matched healthy control persons was similar (P = 0.81). In patients with varying degrees of renal insufficiency, including healthy controls and transplanted patients, a significant positive correlation was found between odour perception and creatinine clearance (P = 0.02). A significant negative correlation was found between odour perception and serum concentration of urea (P < 0.001), serum phosphorus (P = 0.022) and protein catabolic rate (P < 0.05). Other parameters measuring nutritional status (albumin, BMI) were not correlated with odour perception. Our results show that the ability to smell is severely impaired in patients with chronic renal failure and is related to the degree of renal impairment and the degree of accumulation of uraemic toxins. After renal transplantation, patients have a normal odour perception, indicating the capacity of the olfactory system to recover once the concentration of uraemic toxins remains below a critical threshold. Acute removal of uraemic toxins by dialysis does not correct olfactory disturbances, suggesting a long lasting effect of uraemia on olfactory function.
Joly, Charles-Alexandre; Péan, Vincent; Hermann, Ruben; Seldran, Fabien; Thai-Van, Hung; Truy, Eric
2017-10-01
The cochlear implant (CI) fitting level prediction accuracy of electrically-evoked compound action potential (ECAP) should be enhanced by the addition of demographic data in models. No accurate automated fitting of CI based on ECAP has yet been proposed. We recorded ECAP in 45 adults who had been using MED-EL CIs for more than 11 months and collected the most comfortable loudness level (MCL) used for CI fitting (prog-MCL), perception thresholds (meas-THR), and MCL (meas-MCL) measured with the stimulation used for ECAP recording. Linear mixed models taking into account cochlear site factors were computed to explain prog-MCL, meas-MCL, and meas-THR. Cochlear region and ECAP threshold were predictors of the three levels. In addition, significant predictors were the ECAP amplitude for the prog-MCL and the duration of deafness for the prog-MCL and the meas-THR. Estimations were more accurate for the meas-THR, then the meas-MCL, and finally the prog-MCL. These results show that 1) ECAP thresholds are more closely related to perception threshold than to comfort level, 2) predictions are more accurate when the inter-subject and cochlear regions variations are considered, and 3) differences between the stimulations used for ECAP recording and for CI fitting make it difficult to accurately predict the prog-MCL from the ECAP recording. Predicted prog-MCL could be used as bases for fitting but should be used with care to avoid any uncomfortable or painful stimulation.
Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.
Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk
2015-07-01
Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.
NASA Astrophysics Data System (ADS)
Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang
2018-03-01
The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.
NASA Astrophysics Data System (ADS)
Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.
2014-09-01
The microdynamics of large-amplitude nonlinear vibrations of uranium nitride diatomic lattices has been investigated using the computer simulation and neutron scattering methods at temperatures T = 600-2500°C near the thresholds of the dissociation and destruction of the reactor fuel materials. It has been found using the computer simulation that, in the spectral gap between the frequency bands of acoustic and optical phonons in crystals with an open surface, there are resonances of new-type harmonic surface vibrations and a gap-filling band of their genetic successors, i.e., nonlinear surface vibrations. Experimental measurements of the slow neutron scattering spectra of uranium nitride on the DIN-2PI neutron spectrometer have revealed resonances and bands of these surface vibrations in the spectral gap, as well as higher optical vibration overtones. It has been shown that the solitons and bisolitons initiate the formation and collapse of dynamic pores with the generation of surface vibrations at the boundaries of the cavities, evaporation of atoms and atomic clusters, formation of cracks, and destruction of the material. It has been demonstrated that the mass transfer of nitrogen in cracks and along grain boundaries can occur through the revealed microdynamics mechanism of the surfing diffusion of light nitrogen atoms at large-amplitude soliton waves propagating in the stabilizing sublattice of heavy uranium atoms and in the nitrogen sublattice.
Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J
2011-07-01
Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America
Anderson, Elizabeth S.; Nelson, David A.; Kreft, Heather; Nelson, Peggy B.; Oxenham, Andrew J.
2011-01-01
Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350–5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC’s probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. PMID:21786905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less
Hand function in workers with hand-arm vibration syndrome.
Cederlund, R; Isacsson, A; Lundborg, G
1999-01-01
Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.
Pain control in orthodontics using a micropulse vibration device: A randomized clinical trial.
Lobre, Wendy D; Callegari, Brent J; Gardner, Gary; Marsh, Curtis M; Bush, Anneke C; Dunn, William J
2016-07-01
To investigate the relationship between a micropulse vibration device and pain perception during orthodontic treatment. This study was a parallel group, randomized clinical trial. A total of 58 patients meeting eligibility criteria were assigned using block allocation to one of two groups: an experimental group using the vibration device or a control group (n = 29 for each group). Patients used the device for 20 minutes daily. Patients rated pain intensity on a visual analog scale at appropriate intervals during the weeks after the separator or archwire appointment. Data were analyzed using repeated measures analysis of variance at α = .05. During the 4-month test period, significant differences between the micropulse vibration device group and the control group for overall pain (P = .002) and biting pain (P = .003) were identified. The authors observed that perceived pain was highest at the beginning of the month, following archwire adjustment. The micropulse vibration device significantly lowered the pain scores for overall pain and biting pain during the 4-month study period.
The Influence of Pregnancy on Sweet Taste Perception and Plaque Acidogenicity.
Sonbul, H; Ashi, H; Aljahdali, E; Campus, G; Lingström, P
2017-05-01
Objectives Women undergo different physiological and oral changes during pregnancy and this may increase the risk of dental caries and other oral diseases. The aim of the present study was to investigate changes in biofilm acidogenicity and correlate them to sweet taste perception in pregnant and non-pregnant women. Methods Three groups of Saudi women participated in this cross-sectional study: (1) women in early pregnancy (n = 40/mean age 29.6 years/DMFT 10.7), (2) women in late pregnancy (n = 40/29.5 years/DMFT 10.8) and (3) non-pregnant women (n = 41/27.7 years/DMFT 12.3). Changes in plaque pH were determined by using colour-coded indicator strips before and after a 1-min rinse with a 10% sucrose solution. A taste perception test determining sweet preference and threshold levels was also performed. Results A significant difference regarding plaque pH was seen between the early, late and non-pregnant women when calculated as the area under the curve (p < 0.05). Regarding the taste perception tests, taste preference and threshold were correlated (p < 0.001, r = 0.6). Between the three groups, a statistically significant difference was seen in taste threshold and taste preference respectively (p = 0.001 and p < 0.001). Conclusions The findings in this study suggest that pregnant women may undergo taste changes and experience lower plaque pH, which may result in an increased risk of dental caries.
Perception of combined translation and rotation in the horizontal plane in humans
2016-01-01
Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived. PMID:27334952
Improved analysis of ground vibrations produced by man-made sources.
Ainalis, Daniel; Ducarne, Loïc; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges
2018-03-01
Man-made sources of ground vibration must be carefully monitored in urban areas in order to ensure that structural damage and discomfort to residents is prevented or minimised. The research presented in this paper provides a comparative evaluation of various methods used to analyse a series of tri-axial ground vibration measurements generated by rail, road, and explosive blasting. The first part of the study is focused on comparing various techniques to estimate the dominant frequency, including time-frequency analysis. The comparative evaluation of the various methods to estimate the dominant frequency revealed that, depending on the method used, there can be significant variation in the estimates obtained. A new and improved analysis approach using the continuous wavelet transform was also presented, using the time-frequency distribution to estimate the localised dominant frequency and peak particle velocity. The technique can be used to accurately identify the level and frequency content of a ground vibration signal as it varies with time, and identify the number of times the threshold limits of damage are exceeded. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensing of Substrate Vibrations in the Adult Cicada Okanagana rimosa (Hemiptera: Cicadidae).
Alt, Joscha A; Lakes-Harlan, Reinhard
2018-05-01
Detection of substrate vibrations is an evolutionarily old sensory modality and is important for predator detection as well as for intraspecific communication. In insects, substrate vibrations are detected mainly by scolopidial (chordotonal) sense organs found at different sites in the legs. Among these sense organs, the tibial subgenual organ (SGO) is one of the most sensitive sensors. The neuroanatomy and physiology of vibratory sense organs of cicadas is not well known. Here, we investigated the leg nerve by neuronal tracing and summed nerve recordings. Tracing with Neurobiotin revealed that the cicada Okanagana rimosa (Say) (Hemiptera: Cicadidae) has a femoral chordotonal organ with about 20 sensory cells and a tibial SGO with two sensory cells. Recordings from the leg nerve show that the vibrational response is broadly tuned with a threshold of about 1 m/s2 and a minimum latency of about 6 ms. The vibratory sense of cicadas might be used in predator avoidance and intraspecific communication, although no tuning to the peak frequency of the calling song (9 kHz) could be found.
Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G
2016-10-01
We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.
ERIC Educational Resources Information Center
Guclu, Burak; Oztek, Cigdem
2007-01-01
Tactile perception depends on the contributions of four psychophysical tactile channels mediated by four corresponding receptor systems. The sensitivity of the tactile channels is determined by detection thresholds that vary as a function of the stimulus frequency. It has been widely reported that tactile thresholds increase (i.e., sensitivity…
Auditory Stream Segregation and the Perception of Across-Frequency Synchrony
ERIC Educational Resources Information Center
Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.
2010-01-01
This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…
Seeing and identifying with a virtual body decreases pain perception.
Hänsel, Alexander; Lenggenhager, Bigna; von Känel, Roland; Curatolo, Michele; Blanke, Olaf
2011-09-01
Pain and the conscious mind (or the self) are experienced in our body. Both are intimately linked to the subjective quality of conscious experience. Here, we used virtual reality technology and visuo-tactile conflicts in healthy subjects to test whether experimentally induced changes of bodily self-consciousness (self-location; self-identification) lead to changes in pain perception. We found that visuo-tactile stroking of a virtual body but not of a control object led to increased pressure pain thresholds and self-location. This increase was not modulated by the synchrony of stroking as predicted based on earlier work. This differed for self-identification where we found as predicted that synchrony of stroking increased self-identification with the virtual body (but not a control object), and positively correlated with an increase in pain thresholds. We discuss the functional mechanisms of self-identification, self-location, and the visual perception of human bodies with respect to pain perception. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events
NASA Astrophysics Data System (ADS)
Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin
2017-09-01
This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.
Peters, Ryan M.; McKeown, Monica D.; Carpenter, Mark G.
2016-01-01
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults. PMID:27489366
Ocular vestibular evoked myogenic potentials elicited with vibration applied to the teeth.
Parker-George, Jennifer C; Bell, Steven L; Griffin, Michael J
2016-01-01
This study investigated whether the method for eliciting vibration-induced oVEMPs could be improved by applying vibration directly to the teeth, and how vibration-induced oVEMP responses depend on the duration of the applied vibration. In 10 participants, a hand-held shaker was used to present 100-Hz vibration tone pips to the teeth via a customised bite-bar or to other parts of the head. oVEMP potentials were recorded in response to vibration in three orthogonal directions and five stimulus durations (10-180 ms). The oVEMP responses were analysed in terms of the peak latency onset, peak-to-peak amplitude, and the quality of the trace. Vibration applied to the teeth via the bite-bar produced oVEMPs that were more consistent, of higher quality and of greater amplitude than those evoked by vibration applied to the head. Longer duration stimuli produced longer duration oVEMP responses. One cycle duration stimuli produced responses that were smaller in amplitude and lower quality than the longer stimulus durations. Application of vibration via the teeth using a bite-bar is an effective means of producing oVEMPs. A 1-cycle stimulus is not optimal to evoke an oVEMP because it produces less robust responses than those of longer stimulus duration. A positive relationship between the duration of the stimulus and the response is consistent with the notion that the vibration-induced oVEMP is an oscillatory response to the motion of the head, rather than being a simple reflex response that occurs when the stimulus exceeds a threshold level of stimulation. Applying acceleration to the teeth through a bite-bar elicits clearer oVEMP responses than direct application to other parts of the head and has potential to improve clinical measurements. A 100-Hz 1-cycle stimulus produces less robust oVEMP responses than longer 100-Hz stimuli. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Proprioceptive guidance of human voluntary wrist movements studied using muscle vibration.
Cody, F W; Schwartz, M P; Smit, G P
1990-01-01
1. The alterations in voluntary wrist extension and flexion movement trajectories induced by application of vibration to the tendon of flexor carpi radialis throughout the course of the movement, together with the associated EMG patterns, have been studied in normal human subjects. Both extension and flexion movements were routinely of a target amplitude of 30 deg and made against a torque load of 0.32 N m. Flexor tendon vibration consistently produced undershooting of voluntary extension movements. In contrast, voluntary flexion movements were relatively unaffected. 2. The degree of vibration-induced undershooting of 1 s voluntary extension movements was graded according to the amplitude (0.75, 1.0 and 1.5 mm) of flexor tendon vibration. 3. As flexor vibration was initiated progressively later (at greater angular thresholds) during the course of 1 s voluntary extension movements, and the period of vibration was proportionately reduced, so the degree of vibration-induced undershooting showed a corresponding decline. 4. Varying the torque loads (0.32, 0.65 and 0.97 N m) against which 1 s extension movements were made, and thereby the strength of voluntary extensor contraction, produced no systematic changes in the degree of flexor vibration-induced undershooting. 5. Analysis of EMG patterns recorded from wrist flexor and extensor muscles indicated that vibration-induced undershooting of extension movements resulted largely from a reduction in activity in the prime-mover rather than increased antagonist activity. The earliest reductions in extensor EMG commenced some 40 ms after the onset of vibration, i.e. well before voluntary reaction time; these initial responses were considered to be 'automatic' in nature. 6. These results support the view that the central nervous system utilizes proprioceptive information in the continuous regulation of moderately slow voluntary wrist movements. Proprioceptive sensory input from the passively lengthening antagonist muscle, presumably arising mainly from muscle spindle I a afferents, appears to be particularly important and to act mainly in the reciprocal control of the prime-mover. PMID:2213604
Whole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?
Supej, Matej; Ogrin, Jan; Holmberg, Hans-Christer
2018-01-01
Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which forms of skiing involve stronger vibrations and whether these exceed safety thresholds set by existing standards and directives. Therefore, this study was designed to examine whole-body vibrations connected with different types of skiing and the associated potential risk of developing low back pain. Eight highly skilled ski instructors, all former competitive ski racers and equipped with five accelerometers and a Global Satellite Navigation System to measure vibrations and speed, respectively, performed six different forms of skiing: straight running, plowing, snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate exposure to periodic, random and transient vibrations the power spectrum density (PSD) and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square acceleration (RMS), crest factor, maximum transient vibration value and the fourth-power vibration dose value (VDV)] were calculated. Ground reaction forces were estimated from data provided by accelerometers attached to the pelvis. The major novel findings were that all of the forms of skiing tested produced whole-body vibrations, with highest PSD values of 1.5–8 Hz. Intensified PSD between 8.5 and 35 Hz was observed only when skidding was involved. The RMS values for 10 min of short swinging or carved turns, as well as all 10-min equivalent VDV values exceeded the limits set by European Directive 2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection with high ground reaction forces, contribute to a high risk for low back pain among active alpine skiers. PMID:29593563
Perkins, Kenneth A; Kunkle, Nicole; Karelitz, Joshua L
2017-04-01
The lowest threshold content (or "dose") of nicotine discriminated in cigarettes may differ due to menthol preference. Menthol and non-menthol Spectrum research cigarettes differing in nicotine content were used to determine discrimination thresholds. Dependent smokers preferring menthol (n = 40) or non-menthol (n = 21) brands were tested on ability to discriminate cigarettes (matched for their menthol preference) with nicotine contents of 16-17, 11-12, 5, 2, and 1 mg/g, one per session, from an "ultra-low" cigarette with 0.4 mg/g. Controlled exposure to each cigarette was four puffs/trial, and the number of sessions was determined by the lowest nicotine content they could discriminate on >80% of trials (i.e., ≥5 of 6). We also assessed subjective perceptions and behavioral choice between cigarettes to relate them to discrimination responses. Controlling for Fagerstrom Test of Nicotine Dependence score, discrimination thresholds were more likely to be at higher nicotine content cigarettes for menthol vs. non-menthol smokers (p < .005), with medians of 16 vs. 11 mg/g, respectively. Compared to the ultra-low, threshold and subthreshold (next lowest) cigarettes differed on most perceptions and puff choice, but menthol preference did not alter these associations. Notably, threshold cigarettes did, but subthreshold did not, increase choice over the ultra-low. Threshold for discriminating nicotine via smoking may be generally higher for menthol vs. non-menthol smokers. More research is needed to identify why menthol smoking is related to higher nicotine thresholds and to verify that cigarettes unable to be discriminated do not support reinforcement.
Aided and Unaided Speech Perception by Older Hearing Impaired Listeners
Woods, David L.; Arbogast, Tanya; Doss, Zoe; Younus, Masood; Herron, Timothy J.; Yund, E. William
2015-01-01
The most common complaint of older hearing impaired (OHI) listeners is difficulty understanding speech in the presence of noise. However, tests of consonant-identification and sentence reception threshold (SeRT) provide different perspectives on the magnitude of impairment. Here we quantified speech perception difficulties in 24 OHI listeners in unaided and aided conditions by analyzing (1) consonant-identification thresholds and consonant confusions for 20 onset and 20 coda consonants in consonant-vowel-consonant (CVC) syllables presented at consonant-specific signal-to-noise (SNR) levels, and (2) SeRTs obtained with the Quick Speech in Noise Test (QSIN) and the Hearing in Noise Test (HINT). Compared to older normal hearing (ONH) listeners, nearly all unaided OHI listeners showed abnormal consonant-identification thresholds, abnormal consonant confusions, and reduced psychometric function slopes. Average elevations in consonant-identification thresholds exceeded 35 dB, correlated strongly with impairments in mid-frequency hearing, and were greater for hard-to-identify consonants. Advanced digital hearing aids (HAs) improved average consonant-identification thresholds by more than 17 dB, with significant HA benefit seen in 83% of OHI listeners. HAs partially normalized consonant-identification thresholds, reduced abnormal consonant confusions, and increased the slope of psychometric functions. Unaided OHI listeners showed much smaller elevations in SeRTs (mean 6.9 dB) than in consonant-identification thresholds and SeRTs in unaided listening conditions correlated strongly (r = 0.91) with identification thresholds of easily identified consonants. HAs produced minimal SeRT benefit (2.0 dB), with only 38% of OHI listeners showing significant improvement. HA benefit on SeRTs was accurately predicted (r = 0.86) by HA benefit on easily identified consonants. Consonant-identification tests can accurately predict sentence processing deficits and HA benefit in OHI listeners. PMID:25730423
Watson, Paul J; Latif, R Khalid; Rowbotham, David J
2005-11-01
The expression and report of pain is influenced by social environment and culture. Previous studies have suggested ethnically determined differences in report of pain threshold, intensity and affect. The influence of ethnic differences between White British and South Asians has remained unexplored. Twenty age-matched, male volunteers in each group underwent evaluation. Cold and warm perception and cold and heat threshold were assessed using an ascending method of limits. Magnitude estimation of pain unpleasantness and pain intensity were investigated with thermal stimuli of 46, 47, 48 and 49 degrees C. Subjects also completed a pain anxiety questionnaire. Data was analysed using t-test, Mann-Whitney and repeated measures analysis of variance as appropriate. There were no differences in cold and warm perception between the two groups. There was a statistically significant difference between the two groups for heat pain threshold (P=0.006) and heat pain intensity demonstrated a significant effect for ethnicity (F=13.84, P=0.001). Although no group differences emerged for cold pain threshold and heat unpleasantness, South Asians demonstrated lower cold pain threshold and reported more unpleasantness at all temperatures but this was not statistically significant. Our study shows that ethnicity plays an important role in heat pain threshold and pain report, South Asian males demonstrated lower pain thresholds and higher pain report when compared with matched White British males. There were no differences in pain anxiety between the two groups and no correlations were identified between pain and pain anxiety Haemodynamic measures and anthropometry did not explain group differences.
Perkins, Kenneth A; Kunkle, Nicole; Karelitz, Joshua L; Perkins, K A; Kunkle, N; Karelitz, J L
2017-06-01
Despite its potential for understanding tobacco dependence, behavioral discrimination of nicotine via smoking has not been formally examined as a function of nicotine dependence level. Spectrum research cigarettes were used to compare non-dependent with dependent smokers on the lowest content of nicotine they could discriminate (i.e., "threshold"). Dependent (n=21; 16M, 5F) or non-dependent (n=7; 4M, 3F) smokers were tested on ability to discriminate between cigarettes with nicotine contents of 17, 11, 5, 2, and 1mg/g, one per session, from an "ultra-low" cigarette with 0.4mg/g (all had 9-10mg "tar"). All abstained from smoking overnight prior to sessions, and number of sessions was determined by the lowest nicotine content they could reliably discriminate from the ultra-low on >80% of trials (i.e., ≥5 of 6). Subjective perceptions and cigarette choice behavior were also assessed and related to discrimination behavior. Discrimination thresholds (and most perceptions) did not differ between dependent and non-dependent smokers, with median thresholds of 11mg/g for both subgroups. Yet, "liking" and puff choice for threshold cigarettes were greater in dependent but not non-dependent smokers, while cigarettes with nicotine contents below threshold did not support "liking" or choice in both groups. In sum, this preliminary study suggests threshold for discriminating nicotine via smoking may not vary by dependence level, and further study is needed to confirm that cigarettes unable to be discriminated are also not reinforcing. Copyright © 2017 Elsevier B.V. All rights reserved.
[Decrease and asymmetry in taste perception in patients with nerve trunk damage].
Nikulina, V A; Kokin, G S; Morozov, I S
1995-01-01
The purpose of this article was the gustatory perception state study (NaCl solution perception) in patients with one-sided damages of branchial plexus as well as of radial, facial and ulnar nervous trunks. The decrease of gustatory perception was observed in 78 (70.3%) cases, while the lack of such alterations in 33 (29.7%) patients. The gustatory perception disturbances (increase of the absolute threshold on the ipsilateral tongue's half) took place in 82.2% and 69.6% at right and left limbs damages respectively. The results presented testified the strengthening of normally existing asymmetry in gustatory perception especially in patients with left-sided denervation. The degree of gustatory perception restoration may serve as a prognostic test at surgery of such patients.
The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.
Gulbinaite, Rasa; İlhan, Barkın; VanRullen, Rufin
2017-07-26
The modulatory role of spontaneous brain oscillations on perception of threshold-level stimuli is well established. Here, we provide evidence that alpha-band (∼10 Hz) oscillations not only modulate perception of threshold-level sensory inputs but also can drive perception and generate percepts without a physical stimulus being present. We used the "triple-flash" illusion: Occasional perception of three flashes when only two spatially coincident veridical ones, separated by ∼100 ms, are presented. The illusion was proposed to result from superposition of two hypothetical oscillatory impulse response functions generated in response to each flash: When the delay between flashes matches the period of the oscillation, the superposition enhances a later part of the oscillation that is normally damped; when this enhancement crosses perceptual threshold, a third flash is erroneously perceived (Bowen, 1989). In Experiment 1, we varied stimulus onset asynchrony and validated Bowen's theory: The optimal stimulus onset asynchrony for illusion to occur was correlated, across human subjects (both genders), with the subject-specific impulse response function period determined from a separate EEG experiment. Experiment 2 revealed that prestimulus parietal, but no occipital, alpha EEG phase and power, as well as poststimulus alpha phase-locking, together determine the occurrence of the illusion on a trial-by-trial basis. Thus, oscillatory reverberations create something out of nothing: A third flash where there are only two. SIGNIFICANCE STATEMENT We highlight a novel property of alpha-band (∼10 Hz) oscillations based on three experiments (two EEG and one psychophysics) by demonstrating that alpha-band oscillations do not merely modulate perception, but can also drive perception. We show that human participants report seeing a third flash when only two are presented (the "triple-flash" illusion) most often when the interflash delay matches the period of participant's oscillatory impulse response function reverberating in alpha. Within-subject, the phase and power of ongoing parietal, but not occipital, alpha-band oscillations at the time of the first flash determine illusory percept on a trial-by-trial basis. We revealed a physiologically plausible mechanism that validates and extends the original theoretical account of the triple-flash illusion proposed by Bowen in 1989. Copyright © 2017 the authors 0270-6474/17/377219-12$15.00/0.
Abraham, Alon; Alabdali, Majed; Alsulaiman, Abdulla; Albulaihe, Hana; Breiner, Ari; Katzberg, Hans D; Aljaafari, Danah; Lovblom, Leif E; Bril, Vera
2017-01-01
Polyneuropathy is one of the most prevalent neurologic disorders. Although several studies explored the role of the neurological examination in polyneuropathy, they were mostly restricted to specific subgroups of patients and have not correlated examination findings with symptoms and electrophysiological results. To explore the sensitivity and specificity of different neurological examination components in patients with diverse etiologies for polyneuropathy, find the most sensitive combination of examination components for polyneuropathy detection, and correlate examination findings with symptoms and electrophysiological results. Patients with polyneuropathy attending the neuromuscular clinic from 01/2013 to 09/2015 were evaluated. Inclusion criteria included symptomatic polyneuropathy, which was confirmed by electrophysiological studies. 47 subjects with no symptoms or electrophysiological findings suggestive for polyneuropathy, served as controls. The total cohort included 312 polyneuropathy patients, with a mean age of 60±14 years. Abnormal examination was found in 95%, most commonly sensory findings (86%). The most common abnormal examination components were impaired ankle reflexes (74%), vibration (73%), and pinprick (72%) sensation. Combining ankle reflex examination with vibration or pinprick perception had the highest sensitivity, of 88%. The specificities of individual examination component were generally high, excluding ankle reflexes (62%), and vibration perception (77%). Abnormal examination findings were correlated with symptomatic weakness and worse electrophysiological parameters. The neurological examination is a valid, sensitive and specific tool for diagnosing polyneuropathy, and findings correlate with polyneuropathy severity. Ankle reflex examination combined with either vibration or pinprick sensory testing is the most sensitive combination for diagnosing polyneuropathy, and should be considered minimal essential components of the physical examination in patients with suspected polyneuropathy.
Masked speech perception across the adult lifespan: Impact of age and hearing impairment.
Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid
2017-02-01
As people grow older, speech perception difficulties become highly prevalent, especially in noisy listening situations. Moreover, it is assumed that speech intelligibility is more affected in the event of background noises that induce a higher cognitive load, i.e., noises that result in informational versus energetic masking. There is ample evidence showing that speech perception problems in aging persons are partly due to hearing impairment and partly due to age-related declines in cognition and suprathreshold auditory processing. In order to develop effective rehabilitation strategies, it is indispensable to know how these different degrading factors act upon speech perception. This implies disentangling effects of hearing impairment versus age and examining the interplay between both factors in different background noises of everyday settings. To that end, we investigated open-set sentence identification in six participant groups: a young (20-30 years), middle-aged (50-60 years), and older cohort (70-80 years), each including persons who had normal audiometric thresholds up to at least 4 kHz, on the one hand, and persons who were diagnosed with elevated audiometric thresholds, on the other hand. All participants were screened for (mild) cognitive impairment. We applied stationary and amplitude modulated speech-weighted noise, which are two types of energetic maskers, and unintelligible speech, which causes informational masking in addition to energetic masking. By means of these different background noises, we could look into speech perception performance in listening situations with a low and high cognitive load, respectively. Our results indicate that, even when audiometric thresholds are within normal limits up to 4 kHz, irrespective of threshold elevations at higher frequencies, and there is no indication of even mild cognitive impairment, masked speech perception declines by middle age and decreases further on to older age. The impact of hearing impairment is as detrimental for young and middle-aged as it is for older adults. When the background noise becomes cognitively more demanding, there is a larger decline in speech perception, due to age or hearing impairment. Hearing impairment seems to be the main factor underlying speech perception problems in background noises that cause energetic masking. However, in the event of informational masking, which induces a higher cognitive load, age appears to explain a significant part of the communicative impairment as well. We suggest that the degrading effect of age is mediated by deficiencies in temporal processing and central executive functions. This study may contribute to the improvement of auditory rehabilitation programs aiming to prevent aging persons from missing out on conversations, which, in turn, will improve their quality of life. Copyright © 2016 Elsevier B.V. All rights reserved.
Tolerability to prolonged lifting tasks. A validation of the recommended limits.
Capodaglio, P; Bazzini, G
1997-01-01
Prolonged physical exertion is subjectively regulated by the perception of effort. This preliminary study was conducted to validate the use of subjective perceptions of effort in assessing objectively tolerable workloads for prolonged lifting tasks. Ten healthy male subjects tested their maximal lifting capacity (MLC) on a lift dynamometer (LidoLift, Loredan Biomed., West Sacramento, CA) and underwent incremental and 30-minute endurance lifting tests. Cardiorespiratory parameters were monitored with an oxygen uptake analyzer, mechanical parameters were calculated using a computerized dynamometer. Ratings of perceived exertion were given on Borg's 10-point scale. Physiological responses to repetitive lifting were matched with subjective perceptions. A single-variable statistical regression for power functions was performed to obtain the individual "iso-perception" curves as functions of the mechanical work exerted. We found that the "iso-perception" curve corresponding to a "moderate" perception of effort may represent the individual "tolerance threshold" for prolonged lifting tasks, since physiological responses at this level of intensity did not change significantly and the respiratory exchange ratio was less than one. The individually tolerable weight for lifting tasks lasting 30 min has been expressed as a percentage of the isoinertial MLC value and compared with the currently recommended limits for prolonged lifting tasks (Italian legislation D.L. 626/94). On the basis of our preliminary results a "tolerance threshold" of 20% MLC has been proposed for prolonged lifting tasks.
Fluctuation scaling in the visual cortex at threshold
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-05-01
Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects, the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global property that modulates detection thresholds with a scaling exponent that departs from 2, β =2.48 ±0.07 . We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form K =(1.19 ±0.04 ) S2+(2.68 ±0.06 ) that departs from the expected 4/3 power function regime. A random multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative process provides a unifying description of fluctuation scaling and the quadratic S -K relation and is related to on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.
Schädler, Marc René; Warzybok, Anna; Ewert, Stephan D; Kollmeier, Birger
2016-05-01
A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.
Computational gestalts and perception thresholds.
Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel
2003-01-01
In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.
Stochastic Resonance In Visual Perception
NASA Astrophysics Data System (ADS)
Simonotto, Enrico
1996-03-01
Stochastic resonance (SR) is a well established physical phenomenon wherein some measure of the coherence of a weak signal can be optimized by random fluctuations, or "noise" (K. Wiesenfeld and F. Moss, Nature), 373, 33 (1995). In all experiments to date the coherence has been measured using numerical analysis of the data, for example, signal-to-noise ratios obtained from power spectra. But, can this analysis be replaced by a perceptive task? Previously we had demonstrated this possibility with a numerical model of perceptual bistability applied to the interpretation of ambiguous figures(M. Riani and E. Simonotto, Phys. Rev. Lett.), 72, 3120 (1994). Here I describe an experiment wherein SR is detected in visual perception. A recognizible grayscale photograph was digitized and presented. The picture was then placed beneath a threshold. Every pixel for which the grayscale exceeded the threshold was painted white, and all others black. For large enough threshold, the picture is unrecognizable, but the addition of a random number to every pixel renders it interpretable(C. Seife and M. Roberts, The Economist), 336, 59, July 29 (1995). However the addition of dynamical noise to the pixels much enhances an observer's ability to interpret the picture. Here I report the results of psychophysics experiments wherein the effects of both the intensity of the noise and its correlation time were studied.
NASA Astrophysics Data System (ADS)
Lapierre, David; Alijah, Alexander; Kochanov, Roman; Kokoouline, Viatcheslav; Tyuterev, Vladimir
2016-10-01
Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of O163 were determined using a previously developed efficient approach, which combines hyperspherical coordinates and a complex absorbing potential. The calculations are based on a recently computed potential energy surface of ozone determined with a spectroscopic accuracy [Tyuterev et al., J. Chem. Phys. 139, 134307 (2013), 10.1063/1.4821638]. The effect of permutational symmetry on rovibrational dynamics and the density of resonance states in O3 is discussed in detail. Correspondence between quantum numbers appropriate for short- and long-range parts of wave functions of the rovibrational continuum is established. It is shown, by symmetry arguments, that the allowed purely vibrational (J =0 ) levels of O163 and O183, both made of bosons with zero nuclear spin, cannot dissociate on the ground-state potential energy surface. Energies and wave functions of bound states of the ozone isotopologue O163 with rotational angular momentum J =0 and 1 up to the dissociation threshold were also computed. For bound levels, good agreement with experimental energies is found: The rms deviation between observed and calculated vibrational energies is 1 cm-1. Rotational constants were determined and used for a simple identification of vibrational modes of calculated levels.
Variability of argon laser-induced sensory and pain thresholds on human oral mucosa and skin.
Svensson, P.; Bjerring, P.; Arendt-Nielsen, L.; Kaaber, S.
1991-01-01
The variability of laser-induced pain perception on human oral mucosa and hairy skin was investigated in order to establish a new method for evaluation of pain in the orofacial region. A high-energy argon laser was used for experimental pain stimulation, and sensory and pain thresholds were determined. The intra-individual coefficients of variation for oral thresholds were comparable to cutaneous thresholds. However, inter-individual variation was smaller for oral thresholds, which could be due to larger variation in cutaneous optical properties. The short-term and 24-hr changes in thresholds on both surfaces were less than 9%. The results indicate that habituation to laser thresholds may account for part of the intra-individual variation observed. However, the subjective ratings of the intensity of the laser stimuli were constant. Thus, oral thresholds may, like cutaneous thresholds, be used for assessment and quantification of analgesic efficacies and to investigate various pain conditions. PMID:1814248
Smith, Suzanne D
2006-01-01
There have been increasing reports of annoyance, fatigue, and even neck and back pain during prolonged operation of military propeller aircraft, where persistent multi-axis vibration occurs at higher frequencies beyond human whole-body resonance. This paper characterizes and assesses the higher frequency vibration transmitted to the occupants onboard these aircraft. Multi-axis accelerations were measured at the occupied seating surfaces onboard the WC/C-130J, C-130H3, and E-2C Hawkeye. The effects of the vibration were assessed in accordance with current international guidelines (ISO 2631-1:1997). The relative psychophysical effects of the frequency components and the effects of selected mitigation strategies were also investigated. The accelerations associated with the blade passage frequency measured on the passenger seat pans located on the side of the fuselage near the propeller plane of the C-130J (102 Hz) and C-130H3 (68 Hz) were noteworthy (5.19 +/- 1.72 ms(-2) rms and 7.65 +/- 0.71 ms(-2) rms, respectively, in the lateral direction of the aircraft). The psychophysical results indicated that the higher frequency component would dominate the side passengers' perception of the vibration. Balancing the props significantly reduced the lower frequency propeller rotation vibration (17 Hz), but had little effect on the blade passage frequency vibration. The relationships among the frequency, vibration direction, and seat measurement sites were complex, challenging the development of seating systems and mitigation strategies. Psychophysical metrics could provide a tool for optimizing mitigation strategies, but the current international vibration standard may not provide optimum assessment methods for evaluating higher frequency operational exposures.
Reading behind the Lines: The Factors Affecting the Text Reception Threshold in Hearing Aid Users
ERIC Educational Resources Information Center
Zekveld, Adriana A.; Pronk, Marieke; Danielsson, Henrik; Rönnberg, Jerker
2018-01-01
Purpose: The visual Text Reception Threshold (TRT) test (Zekveld et al., 2007) has been designed to assess modality-general factors relevant for speech perception in noise. In the last decade, the test has been adopted in audiology labs worldwide. The 1st aim of this study was to examine which factors best predict interindividual differences in…
ERIC Educational Resources Information Center
Besser, Jana; Zekveld, Adriana A.; Kramer, Sophia E.; Ronnberg, Jerker; Festen, Joost M.
2012-01-01
Purpose: In this research, the authors aimed to increase the analogy between Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) and Speech Reception Threshold (SRT; Plomp & Mimpen, 1979) and to examine the TRT's value in estimating cognitive abilities that are important for speech comprehension in noise. Method: The…
Anaerobic threshold determination through ventilatory and electromyographics parameters.
Gassi, E R; Bankoff, A D P
2010-01-01
The aim of present study was to compare the alterations in electromyography signs with Ventilatory Threshold (VT). Had been part of the study eight men, amateur cyclists and triathletes (25.25 +/- 6.96 years), that they had exercised themselves in a mechanical cicloergometer, a cadence of 80 RPM and with the increased intensity being in 25 W/min until the exhaustion. The VT was determined by a non-linear increase in VE/VO2 without any increase in VE/VCO2 and compared with the intensity corresponding to break point of amplitude EMG sign during the incremental exercise. The EMG--Fatigue Threshold (FT) and Ventilatory Threshold (VT) parameters used were the power, the time, absolute and relative VO2, ventilation (VE), the heart hate (HH) and the subjective perception of the effort. The results had not shown to difference in none of the variable selected for the corresponding intensity to VT and FT--EMG of the muscles lateralis vastus and femoris rectus. The parameters used in the comparison between the electromyographic indicators and ventilatory were the load, the time, absolute VO2 and relative to corporal mass, to ventilation (VE), the heart frequency (HH) and the Subjective Perception of the Effort (SPE).
Fostick, Leah; Babkoff, Harvey; Zukerman, Gil
2014-06-01
To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Fifty-five sleep-deprived young adults were compared with 29 aging adults (older than 60 years) and with 18 young controls on auditory temporal order judgment (TOJ) and on speech perception tasks (Experiment 1). The sleep deprived were also compared with 51 dyslexic readers and with the young controls on TOJ and phonological awareness tasks (One-Minute Test for Pseudowords, Phoneme Deletion, Pig Latin, and Spoonerism; Experiment 2). Sleep deprivation resulted in longer TOJ thresholds, poorer speech perception, and poorer nonword reading compared with controls. The TOJ thresholds of the sleep deprived were comparable to those of the aging adults, but their pattern of speech performance differed. They also performed better on TOJ and phonological awareness than dyslexic readers. A variety of linguistic skills are affected by sleep deprivation. The comparison of sleep-deprived individuals with other groups with known difficulties in these linguistic skills might suggest that different groups exhibit common difficulties.
Yang, Feng; King, George A; Dillon, Loretta; Su, Xiaogang
2015-09-18
The primary purpose of this study was to systematically examine the effects of an 8-week controlled whole-body vibration training on reducing the risk of falls among community-dwelling adults. Eighteen healthy elderlies received vibration training which was delivered on a side alternating vibration platform in an intermittent way: five repetitions of 1 min vibration followed by a 1 min rest. The vibration frequency and amplitude were 20 Hz and 3.0mm respectively. The same training was repeated 3 times a week, and the entire training lasted for 8 weeks for a total of 24 training sessions. Immediately prior to (or pre-training) and following (or post-training) the 8-week training course, all participants' risk of falls were evaluated in terms of body balance, functional mobility, muscle strength and power, bone density, range of motion at lower limb joints, foot cutaneous sensation level, and fear of falling. Our results revealed that the training was able to improve all fall risk factors examined with moderate to large effect sizes ranging between 0.55 and 1.26. The important findings of this study were that an 8-week vibration training could significantly increase the range of motion of ankle joints on the sagittal plane (6.4° at pre-training evaluation vs. 9.6° at post-training evaluation for dorsiflexion and 45.8° vs. 51.9° for plantar-flexion, p<0.05 for both); reduce the sensation threshold of the foot plantar surface (p<0.05); and lower the fear of falling (12.2 vs. 10.8, p<0.05). These findings could provide guidance to design optimal whole-body vibration training paradigm for fall prevention among older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.
Borckardt, Jeffrey J; Bikson, Marom; Frohman, Heather; Reeves, Scott T; Datta, Abhishek; Bansal, Varun; Madan, Alok; Barth, Kelly; George, Mark S
2012-02-01
Several brain stimulation technologies are beginning to evidence promise as pain treatments. However, traditional versions of 1 specific technique, transcranial direct current stimulation (tDCS), stimulate broad regions of cortex with poor spatial precision. A new tDCS design, called high definition tDCS (HD-tDCS), allows for focal delivery of the charge to discrete regions of the cortex. We sought to preliminarily test the safety and tolerability of the HD-tDCS technique as well as to evaluate whether HD-tDCS over the motor cortex would decrease pain and sensory experience. Twenty-four healthy adult volunteers underwent quantitative sensory testing before and after 20 minutes of real (n = 13) or sham (n = 11) 2 mA HD-tDCS over the motor cortex. No adverse events occurred and no side effects were reported. Real HD-tDCS was associated with significantly decreased heat and cold sensory thresholds, decreased thermal wind-up pain, and a marginal analgesic effect for cold pain thresholds. No significant effects were observed for mechanical pain thresholds or heat pain thresholds. HD-tDCS appears well tolerated, and produced changes in underlying cortex that are associated with changes in pain perception. Future studies are warranted to investigate HD-tDCS in other applications, and to examine further its potential to affect pain perception. This article presents preliminary tolerability and efficacy data for a new focal brain stimulation technique called high definition transcranial direct current stimulation. This technique may have applications in the management of pain. Copyright © 2012. Published by Elsevier Inc.
Effect of bit wear on hammer drill handle vibration and productivity.
Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David
2017-08-01
The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.
Nonconscious semantic processing of emotional words modulates conscious access
Gaillard, Raphaël; Del Cul, Antoine; Naccache, Lionel; Vinckier, Fabien; Cohen, Laurent; Dehaene, Stanislas
2006-01-01
Whether masked words can be processed at a semantic level remains a controversial issue in cognitive psychology. Although recent behavioral studies have demonstrated masked semantic priming for number words, attempts to generalize this finding to other categories of words have failed. Here, as an alternative to subliminal priming, we introduce a sensitive behavioral method to detect nonconscious semantic processing of words. The logic of this method consists of presenting words close to the threshold for conscious perception and examining whether their semantic content modulates performance in objective and subjective tasks. Our results disclose two independent sources of modulation of the threshold for access to consciousness. First, prior conscious perception of words increases the detection rate of the same words when they are subsequently presented with stronger masking. Second, the threshold for conscious access is lower for emotional words than for neutral ones, even for words that have not been previously consciously perceived, thus implying that written words can receive nonconscious semantic processing. PMID:16648261
Pain perception and nonsuicidal self-injury: a laboratory investigation.
Hooley, Jill M; Ho, Doreen T; Slater, Joshua; Lockshin, Amanda
2010-07-01
People who engage in self-injurious behaviors such as cutting and burning may have altered pain perception. Using a community sample, we examined group differences in pain threshold and pain endurance between participants who self-injured and control participants who were exposed to pressure pain applied to the finger. Participants who self-injured had higher pain thresholds (time to report pain) and endured pain for longer than control participants. Among participants who self-injured, those with longer histories of self-injury had higher pain thresholds. Duration of self-injury was unrelated to pain endurance. Instead, greater pain endurance was predicted by higher levels of introversion and neuroticism and by more negative beliefs about one's self-worth. A highly self-critical cognitive style was the strongest predictor of prolonged pain endurance. People who self-injure may regard suffering and pain as something that they deserve. Our findings also have implications for understanding factors that might be involved in the development and maintenance of self-injury. PsycINFO Database Record (c) 2010 APA, all rights reserved
Exploring Perception of Vibrations from Rail: An Interview Study
Maclachlan, Laura; Pedersen, Eja
2017-01-01
Rail transport is an environmentally responsible approach and traffic is expected to increase in the coming decades. Little is known about the implications for quality of life of populations living close to railways. This study explores the way in which vibrations from rail are perceived and described by these populations. The study took place in the Västra Götaland and Värmland regions of Sweden. A qualitative study approach was undertaken using semi-structured interviews within a framework of predetermined questions in participants’ homes. A 26.3% response rate was achieved and 17 participants were interviewed. The experience of vibrations was described in tangible terms through different senses. Important emerging themes included habituation to and acceptance of vibrations, worry about property damage, worry about family members and general safety. Participants did not reflect on health effects, however, chronic exposure to vibrations through multimodal senses in individual living environments may reduce the possibility for restoration in the home. Lack of empowerment to reduce exposure to vibrations was important. This may alter individual coping strategies, as taking actions to avoid the stressor is not possible. The adoption of other strategies, such as avoidance, may negatively affect an individual’s ability to cope with the stressor and their health. PMID:29072612
Zero kinetic energy photoelectron spectroscopy of triphenylene.
Harthcock, Colin; Zhang, Jie; Kong, Wei
2014-06-28
We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm(-1). The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.
NASA Astrophysics Data System (ADS)
Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva
2018-02-01
Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G
2013-10-07
An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.
Impact of Xanthylium Derivatives on the Color of White Wine.
Bührle, Franziska; Gohl, Anita; Weber, Fabian
2017-08-19
Xanthylium derivatives are yellow to orange pigments with a glyoxylic acid bridge formed by dimerization of flavanols, which are built by oxidative cleavage of tartaric acid. Although their structure and formation under wine-like conditions are well established, knowledge about their color properties and their occurrence and importance in wine is deficient. Xanthylium cations and their corresponding esters were synthesized in a model wine solution and isolated via high-performance countercurrent chromatography (HPCCC) and solid phase extraction (SPE). A Three-Alternative-Forced-Choice (3-AFC) test was applied to reveal the color perception threshold of the isolated compounds in white wine. Their presence and color impact was assessed in 70 different wines (58 white and 12 rosé wines) by UHPLC-DAD-ESI-MS n and the storage stability in wine was determined. The thresholds in young Riesling wine were 0.57 mg/L (cations), 1.04 mg/L (esters) and 0.67 mg/L (1:1 ( w / w ) mixture), respectively. The low thresholds suggest a possible impact on white wine color, but concentrations in wines were below the threshold. The stability study showed the degradation of the compounds during storage under several conditions. Despite the low perception threshold, xanthylium derivatives might have no direct impact on white wine color, but might play a role in color formation as intermediate products in polymerization and browning.
Yi, Chih-Hsun; Lei, Wei-Yi; Hung, Jui-Sheng; Liu, Tso-Tsai; Chen, Chien-Lin; Pace, Fabio
2016-01-01
AIM To determine whether capsaicin infusion could influence heartburn perception and secondary peristalsis in patients with gastroesophageal reflux disease (GERD). METHODS Secondary peristalsis was performed with slow and rapid mid-esophageal injections of air in 10 patients with GERD. In a first protocol, saline and capsaicin-containing red pepper sauce infusions were randomly performed, whereas 2 consecutive sessions of capsaicin-containing red pepper sauce infusions were performed in a second protocol. Tested solutions including 5 mL of red pepper sauce diluted with 15 mL of saline and 20 mL of 0.9% saline were infused into the mid-esophagus via the manometric catheter at a rate of 10 mL/min with a randomized and double-blind fashion. During each study protocol, perception of heartburn, threshold volumes and peristaltic parameters for secondary peristalsis were analyzed and compared between different stimuli. RESULTS Infusion of capsaicin significantly increased heartburn perception in patients with GERD (P < 0.001), whereas repeated capsaicin infusion significantly reduced heartburn perception (P = 0.003). Acute capsaicin infusion decreased threshold volume of secondary peristalsis (P = 0.001) and increased its frequency (P = 0.01) during rapid air injection. The prevalence of GERD patients with successive secondary peristalsis during slow air injection significantly increased after capsaicin infusion (P = 0.001). Repeated capsaicin infusion increased threshold volume of secondary peristalsis (P = 0.002) and reduced the frequency of secondary peristalsis (P = 0.02) during rapid air injection. CONCLUSION Acute esophageal exposure to capsaicin enhances heartburn sensation and promotes secondary peristalsis in gastroesophageal reflux disease, but repetitive capsaicin infusion reverses these effects. PMID:28018112
NASA Astrophysics Data System (ADS)
Basiladze, S. G.
2017-05-01
The paper describes the general physical theory of signals, carriers of information, which supplements Shannon's abstract classical theory and is applicable in much broader fields, including nuclear physics. It is shown that in the absence of classical noise its place should be taken by the physical threshold of signal perception for objects of both macrocosm and microcosm. The signal perception threshold allows the presence of subthreshold (virtual) signal states. For these states, Boolean algebra of logic ( A = 0/1) is transformed into the "algebraic logic" of probabilities (0 ≤ a ≤ 1). The similarity and difference of virtual states of macroand microsignals are elucidated. "Real" and "quantum" information for computers is considered briefly. The maximum information transmission rate is estimated based on physical constants.
Changing mothers' perception of infant emotion: a pilot study.
Carnegie, Rebecca; Shepherd, C; Pearson, R M; Button, K S; Munafò, M R; Evans, J; Penton-Voak, I S
2016-02-01
Cognitive bias modification (CBM) techniques, which experimentally retrain abnormal processing of affective stimuli, are becoming established for various psychiatric disorders. Such techniques have not yet been applied to maternal processing of infant emotion, which is affected by various psychiatric disorders. In a pilot study, mothers of children under 3 years old (n = 2) were recruited and randomly allocated to one of three training exercises, aiming either to increase or decrease their threshold of perceiving distress in a morphed continuum of 15 infant facial images. Differences between pre- and post-training threshold were analysed between and within subjects. Compared to baseline thresholds, the threshold for perceiving infant distress decreased in the lowered threshold group (mean difference -1.7 frames, 95 % confidence intervals (CI) -3.1 to -0.3, p = 0.02), increased in the raised threshold group (1.3 frames, 95 % CI 0.6 to 2.1, p < 0.01) and was unchanged in the control group (0.1 frames, 95 % CI -0.8 to 1.1, p = 0.80). Between-group differences were similarly robust in regression models and were not attenuated by potential confounders. The findings suggest that it is possible to change the threshold at which mothers perceive ambiguous infant faces as distressed, either to increase or decrease sensitivity to distress. This small study was intended to provide proof of concept (i.e. that it is possible to alter a mother's perception of infant distress). Questions remain as to whether the effects persist beyond the immediate experimental session, have an impact on maternal behaviour and could be used in clinical samples to improve maternal sensitivity and child outcomes.
Xu, Yifang; Collins, Leslie M
2004-04-01
The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.
Capillary-Physics Mechanism of Elastic-Wave Mobilization of Residual Oil
NASA Astrophysics Data System (ADS)
Beresnev, I. A.; Pennington, W. D.; Turpening, R. M.
2003-12-01
Much attention has been given to the possibility of vibratory mobilization of residual oil as a method of enhanced recovery. The common features of the relevant applications have nonetheless been inconsistency in the results of field tests and the lack of understanding of a physical mechanism that would explain variable experiences. Such a mechanism can be found in the physics of capillary trapping of oil ganglia, driven through the pore channels by an external pressure gradient. Entrapping of ganglia occurs due to the capillary pressure building on the downstream meniscus entering a narrow pore throat. The resulting internal-pressure imbalance acts against the external gradient, which needs to exceed a certain threshold to carry the ganglion through. The ganglion flow thus exhibits the properties of the Bingham (yield-stress) flow, not the Darcy flow. The application of vibrations is equivalent to the addition of an oscillatory forcing to the constant gradient. When this extra forcing acts along the gradient, an instant "unplugging" occurs, while, when the vibration reverses direction, the flow is plugged. This asymmetry results in an average non-zero flow over one period of vibration, which explains the mobilization effect. The minimum-amplitude and maximum-frequency thresholds apply for the mobilization to occur. When the vibration amplitude exceeds a certain "saturation" level, the flow returns to the Darcy regime. The criterion of the mobilization of a particular ganglion involves the parameters of both the medium (pore geometry, interfacial and wetting properties, fluid viscosity) and the oscillatory field (amplitude and frequency). The medium parameters vary widely under natural conditions. It follows that an elastic wave with a given amplitude and frequency will always produce a certain mobilization effect, mobilizing some ganglia and leaving others intact. The exact macroscopic effect is hard to predict, as it will represent a response of the populations of ganglia with unknown parameter distributions. The variability of responses to vibratory stimulation should thus be expected.
Rotor Smoothing and Vibration Monitoring Results for the US Army VMEP
2009-06-01
individual component CI detection thresholds, and development of models for diagnostics, prognostics , and anomaly detection . Figure 16 VMEP Server...and prognostics are of current interest. Development of those systems requires large amounts of data (collection, monitoring , manipulation) to capture...development of automated systems and for continuous updating of algorithms to improve detection , classification, and prognostic performance. A test
Effects of mucosal loading on vocal fold vibration.
Tao, Chao; Jiang, Jack J
2009-06-01
A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.
Effects of mucosal loading on vocal fold vibration
NASA Astrophysics Data System (ADS)
Tao, Chao; Jiang, Jack J.
2009-06-01
A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
NASA Astrophysics Data System (ADS)
Forinash, Kyle; Richie, John P.; Jones, Tim
1990-01-01
The construction of a set of wind chimes tuned to specific pitches is described. A method for the determination of Young's modulus based on the measured frequencies of vibration of the sample is employed in the construction of the chimes. Some complications dealing with the perception of musical pitch are also discussed.
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2013 CFR
2013-01-01
... must be no buffeting in any normal flight condition, including configuration changes during cruise, severe enough to interfere with the satisfactory control of the airplane or cause excessive fatigue to... perceptible buffeting condition in the cruise configuration in straight flight at any speed up to VMO/MMO...
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2014 CFR
2014-01-01
... must be no buffeting in any normal flight condition, including configuration changes during cruise, severe enough to interfere with the satisfactory control of the airplane or cause excessive fatigue to... perceptible buffeting condition in the cruise configuration in straight flight at any speed up to VMO/MMO...
Bagavathiappan, Subramnaiam; Philip, John; Jayakumar, Tammana; Raj, Baldev; Rao, Pallela Narayana Someshwar; Varalakshmi, Muthukrishnan; Mohan, Viswanathan
2010-01-01
Background Diabetic neuropathy consists of multiple clinical manifestations of which loss of sensation is most prominent. High temperatures under the foot coupled with reduced or complete loss of sensation can predispose the patient to foot ulceration. The aim of this study was to look at the correlation between plantar foot temperature and diabetic neuropathy using a noninvasive infrared thermal imaging technique. Methods Infrared thermal imaging, a remote and noncontact experimental tool, was used to study the plantar foot temperatures of 112 subjects with type 2 diabetes selected from a tertiary diabetes centre in South India. Results Patients with diabetic neuropathy (defined as vibration perception threshold (VPT) values on biothesiometry greater than 20 V) had a higher foot temperature (32–35 °C) compared to patients without neuropathy (27–30 °C). Diabetic subjects with neuropathy also had higher mean foot temperature (MFT) (p = .001) compared to non-neuropathic subjects. MFT also showed a positive correlation with right great toe (r = 0.301, p = .001) and left great toe VPT values (r = 0.292, p = .002). However, there was no correlation between glycated hemoglobin and MFT. Conclusion Infrared thermal imaging may be used as an additional tool for evaluation of high risk diabetic feet. PMID:21129334
Elhadd, Tarik; Ponirakis, Georgios; Dabbous, Zeinab; Siddique, Mashhood; Chinnaiyan, Subitha; Malik, Rayaz A
2018-01-01
Metformin may lead to B 12 deficiency and neuropathy. There are no published data on the prevalence of Metformin-related B 12 deficiency and neuropathy in the Arabian Gulf. Determine whether Metformin intake is associated with B 12 deficiency and whether B 12 deficiency is associated with diabetic peripheral neuropathy (DPN) and painful diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) ( n = 362) attending outpatient clinics at HMC underwent assessment of B 12 levels, the DN4 questionnaire, and vibration perception threshold (VPT). Comparing Metformin to non-Metformin users there were no differences in B 12 levels, VPT, or DN4. The prevalence of B 12 deficiency (B 12 <133 pmol/l) was lower ( P < 0.01) in Metformin (8%) compared to non-Metformin (19%) users. Patients with B 12 deficiency had a comparable prevalence and severity of sensory neuropathy and painful neuropathy to patients without B 12 deficiency. Serum B 12 levels were comparable between Metformin and non-Metformin users with T2DM in Qatar. T2DM patients on Metformin had a lower prevalence of B 12 deficiency. Furthermore, the prevalence and severity of neuropathy and painful diabetic neuropathy were comparable between patients with and without B 12 deficiency.
Detection of keyboard vibrations and effects on perceived piano quality.
Fontana, Federico; Papetti, Stefano; Järveläinen, Hanna; Avanzini, Federico
2017-11-01
Two experiments were conducted on an upright and a grand piano, both either producing string vibrations or conversely being silent after the initial keypress, while pianists were listening to the feedback from a synthesizer through insulating headphones. In a quality experiment, participants unaware of the silent mode were asked to play freely and then rate the instrument according to a set of attributes and general preference. Participants preferred the vibrating over the silent setup, and preference ratings were associated to auditory attributes of richness and naturalness in the low and middle ranges. Another experiment on the same setup measured the detection of vibrations at the keyboard, while pianists played notes and chords of varying dynamics and duration. Sensitivity to string vibrations was highest in the lowest register and gradually decreased up to note D5. After the percussive transient, the tactile stimuli exhibited spectral peaks of acceleration whose perceptibility was demonstrated by tests conducted in active touch conditions. The two experiments confirm that piano performers perceive vibratory cues of strings mediated by spectral and spatial summations occurring in the Pacinian system in their fingertips, and suggest that such cues play a role in the evaluation of quality of the musical instrument.
ERIC Educational Resources Information Center
Gou, J.; Smith, J.; Valero, J.; Rubio, I.
2011-01-01
This paper reports on a clinical trial evaluating outcomes of a frequency-lowering technique for adolescents and young adults with severe to profound hearing impairment. Outcomes were defined by changes in aided thresholds, speech perception, and acceptance. The participants comprised seven young people aged between 13 and 25 years. They were…
NASA Astrophysics Data System (ADS)
Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2016-06-01
Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.
NASA Astrophysics Data System (ADS)
Tang, Xiaofeng; Zhou, Xiaoguo; Wu, Manman; Liu, Shilin; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi
2012-01-01
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH3Cl+ ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH3+ dissociated from CH3Cl+(A2A1 and B2E) ions were recorded. CH3+ was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH2Cl+ fragment was very low. For dissociation of CH3Cl+(A2A1) ions, a series of homocentric rings was clearly observed in the CH3+ image, which was assigned as the excitation of umbrella vibration of CH3+ ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH3+(11A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH3Cl+(B2E) ions, total kinetic energy released distribution for CH3+ fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B2E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH3Cl+, CH3+ formation from CH3Cl+(A2A1) ions was a rapid direct fragmentation, while CH3Cl+(B2E) ions statistically dissociated to CH3+ + Cl via internal conversion to the high vibrational states of X2E.
Tsujimura, Hiroji; Taoda, Kazushi; Kitahara, Teruyo
2015-01-01
The aims of this study were to clarify in detail the levels of whole-body vibration (WBV) exposure from a variety of agricultural machines in a rice farmer over one year, and to evaluate the daily level of exposure compared with European and Japanese threshold limits. The subject was a full-time, male rice farmer. We measured vibration accelerations on the seat pan and at the seat base of four tractors with various implements attached, one rice-planting machine, two combine harvesters, produced by the same manufacturer, and one truck used for transportation of agricultural machines. The position and velocity of the machines were recorded in parallel with WBV measurements. In addition, during the year starting in April 2010, the subject completed a questionnaire regarding his work (date, place, content, hours worked, machines used). We calculated the daily exposure to WBV, A(8), on all the days on which the subject used the agricultural machines. The WBV magnitude in farm fields was relatively high during tasks with high velocity and heavy mechanical load on the machine, and had no dominant axis. The subject worked for 159 days using the agricultural machines during the year, and the proportion of days on which A(8) values exceeded the thresholds was 90% for the Japan occupational exposure limit and 24% for the EU exposure action value. Our findings emphasize the need for rice farmers to have health management strategies suited to the farming seasons and measures to reduce WBV exposure during each farm task.
Prado, Arturo; Andrades, Patricio; Benitez, Susana; Parada, Franciso
2008-09-01
We describe a new method to study the sensibility of the nipple-areola complex of the breast with faradic electricity delivered through an electromyographic device used to monitor peripheral nerve conduction. The objective results of faradic pulses (2-50 mA per pulse) delivered to the nipple-areola complex of the breast through a Nihon-Kohden II machine (Evoked potential/Electromyographs, Nihon-Kohden Co., Japan) were evaluated in normal volunteers to get a basal measure that was defined by the patient as "a soft electric discharge." The measures were recorded and their output discharges averaged (at least 5 to each complex). Twenty-eight volunteers with normal breasts, 28 patients with breast hypertrophy before and after breast reduction, and 28 patients before and after breast augmentation were studied. The faradic pulses were perceived from 1.5 to 3.5 mA in the areola and from 3 to 5.5 mA in the nipple in the control group and from 4.5 to 7.0 mA in the areola and from 6.5 to 9.5 mA in the nipple in the breast hypertrophy group with no significant changes before and after surgery. In the breast augmentation group the faradic pulses were very similar to the volunteers that had normal breasts, but 13 months after breast augmentation with silicone gel prosthesis, a difference was found because all the patients had a higher threshold and three cases had lost sensibility of the nipple-areola complex. In normal breasts the areola had a lower threshold for faradic pulses compared to the nipple. Hypertrophic breasts had a higher threshold to the faradic stimulation than normal subjects in the pre- and postoperative period. Hypoplastic breasts before breast augmentation had a perception threshold similar to that of the normal volunteers but after breast augmentation this perception was much higher.
Muhney, Kelly A; Dechow, Paul C
2010-01-01
To compare patients' perception of discomfort, vibration and noise levels between piezoelectric and the magnetostrictive ultrasonic units during periodontal debridement. Periodontal debridement was performed on 75 subjects using a split-mouth design. Two quadrants on the same side were instrumented with a piezoelectric ultrasonic device (EMS Swiss Mini Master® Piezon) and the remaining 2 quadrants were instrumented with a magnetostrictive ultrasonic device (Dentsply Cavitron® SPS™). Subjects marked between 0 and 100 along a visual analog scale (VAS) for each of the 3 variables immediately after treatment of each half of the dentition. Scores of the VAS were compared using a nonparametric test for paired data, the Wilcoxon Signed-Rank test. The level of significance was set at p<0.05. Descriptive statistics included the median and the first and third quartiles as a measure of variation. Mean scores for patient discomfort and vibration were greater for the magnetostrictive device at p=0.007 and p=0.032, respectively. The scores for noise level between the 2 ultrasonic types were almost equal. The results show that, on average, patients in this study prefer instrumentation with the piezoelectric as it relates to awareness of associated discomfort and vibration. The results of this study may assist the clinician in the decision over which ultrasonic device may prove more beneficial in decreasing patient discomfort and increasing patient compliance.
Schultz-Coulon, H J; Borghorst, U
1982-03-01
Acoustic signals of low frequencies can be percepted by the tactile sense as vibrations to a limited extent. In educating deaf children one takes trouble to combine tactile and visual speech perception in order to improve speech discrimination. The question of this study was, whether an improvement of tactile discrimination can be achieved even by patients with late aquired deafness. In a 45 years old female patient who had become deaf after adolescence the tactile discrimination of instrumental sounds (electric organ) within the frequency area c3-c4 (131-262 cps) as well as of speech sounds (30 mono- and multisyllabic words) was trained by means of the SIEMENS-Fonator. After two training courses of ten hours each (à 45 min) the patient was not only able to recognize pitch differences of two half steps and more as well as the tones of the scale with few errors only, but could also identify the words to a high percentage; in monosyllables she reached an identification rate of 75.6% and in words with 3 syllables of 85%. Additionally, a marked improvement of speech discrimination by lip reading was observed when using the Fonator. Accordingly, even in patients with late aquired deafness it appears to be worthwhile to train the tactile discrimination of vibration stimuli as to support lip reading.
Effect of signal to noise ratio on the speech perception ability of older adults
Shojaei, Elahe; Ashayeri, Hassan; Jafari, Zahra; Zarrin Dast, Mohammad Reza; Kamali, Koorosh
2016-01-01
Background: Speech perception ability depends on auditory and extra-auditory elements. The signal- to-noise ratio (SNR) is an extra-auditory element that has an effect on the ability to normally follow speech and maintain a conversation. Speech in noise perception difficulty is a common complaint of the elderly. In this study, the importance of SNR magnitude as an extra-auditory effect on speech perception in noise was examined in the elderly. Methods: The speech perception in noise test (SPIN) was conducted on 25 elderly participants who had bilateral low–mid frequency normal hearing thresholds at three SNRs in the presence of ipsilateral white noise. These participants were selected by available sampling method. Cognitive screening was done using the Persian Mini Mental State Examination (MMSE) test. Results: Independent T- test, ANNOVA and Pearson Correlation Index were used for statistical analysis. There was a significant difference in word discrimination scores at silence and at three SNRs in both ears (p≤0.047). Moreover, there was a significant difference in word discrimination scores for paired SNRs (0 and +5, 0 and +10, and +5 and +10 (p≤0.04)). No significant correlation was found between age and word recognition scores at silence and at three SNRs in both ears (p≥0.386). Conclusion: Our results revealed that decreasing the signal level and increasing the competing noise considerably reduced the speech perception ability in normal hearing at low–mid thresholds in the elderly. These results support the critical role of SNRs for speech perception ability in the elderly. Furthermore, our results revealed that normal hearing elderly participants required compensatory strategies to maintain normal speech perception in challenging acoustic situations. PMID:27390712
Thompson, Janice L; Sebire, Simon J; Kesten, Joanna M; Zahra, Jesmond; Edwards, Mark; Solomon-Moore, Emma; Jago, Russell
2017-06-01
Few studies have examined parental perceptions of their child's screen-viewing (SV) within the context of parental SV time. This study qualitatively examined parents' perceptions of their 5-6-year-old child's SV within the context of their own quantitatively measured SV. A mixed-methods design employed semi-structured telephone interviews, demographic and SV questionnaires, objectively-measured physical activity and sedentary time. Deductive content analysis was used to explore parents' perceptions of, and concerns about, their child's SV, and management of their child's SV. Comparisons were made between parent-child dyads reporting low (<2-h per day) versus high SV time. Fifty-three parents were interviewed (94.3% mothers), with 52 interviews analysed. Fifteen parent-child dyads (28.8%) exceeded the 2-h SV threshold on both weekdays and weekend days; 5 parent-child dyads (9.6%) did not exceed this threshold. The remaining 32 dyads reported a combination of parent or child exceeding/not exceeding the SV threshold on either weekdays or weekend days. Three main themes distinguished the 15 parent-child dyads exceeding the SV threshold from the 5 dyads that did not: 1) parents' personal SV-related views and behaviours; 2) the family SV environment; and 3) setting SV rules and limits. Parents in the dyads not exceeding the SV threshold prioritized and engaged with their children in non-SV behaviours for relaxation, set limits around their own and their child's SV-related behaviours, and described an environment supportive of physical activity. Parents in the dyads exceeding the SV threshold were more likely to prioritise SV as a shared family activity, and described a less structured SV environment with minimal rule setting, influenced their child's need for relaxation time. The majority of parents in this study who exceeded the SV threshold expressed minimal concern and a relaxed approach to managing SV for themselves and their child(ren), suggesting a need to raise awareness amongst these parents about the time they spend engaging in SV. Parents may understand their SV-related parenting practices more clearly if they are encouraged to examine their own SV behaviours. Designing interventions aimed to create environments that are less supportive of SV, with more structured approaches to SV parenting strategies are warranted.
Alabdali, Majed; Alsulaiman, Abdulla; Albulaihe, Hana; Breiner, Ari; Katzberg, Hans D.; Aljaafari, Danah; Lovblom, Leif E.; Bril, Vera
2017-01-01
Introduction Polyneuropathy is one of the most prevalent neurologic disorders. Although several studies explored the role of the neurological examination in polyneuropathy, they were mostly restricted to specific subgroups of patients and have not correlated examination findings with symptoms and electrophysiological results. Objectives To explore the sensitivity and specificity of different neurological examination components in patients with diverse etiologies for polyneuropathy, find the most sensitive combination of examination components for polyneuropathy detection, and correlate examination findings with symptoms and electrophysiological results. Methods Patients with polyneuropathy attending the neuromuscular clinic from 01/2013 to 09/2015 were evaluated. Inclusion criteria included symptomatic polyneuropathy, which was confirmed by electrophysiological studies. 47 subjects with no symptoms or electrophysiological findings suggestive for polyneuropathy, served as controls. Results The total cohort included 312 polyneuropathy patients, with a mean age of 60±14 years. Abnormal examination was found in 95%, most commonly sensory findings (86%). The most common abnormal examination components were impaired ankle reflexes (74%), vibration (73%), and pinprick (72%) sensation. Combining ankle reflex examination with vibration or pinprick perception had the highest sensitivity, of 88%. The specificities of individual examination component were generally high, excluding ankle reflexes (62%), and vibration perception (77%). Abnormal examination findings were correlated with symptomatic weakness and worse electrophysiological parameters. Conclusion The neurological examination is a valid, sensitive and specific tool for diagnosing polyneuropathy, and findings correlate with polyneuropathy severity. Ankle reflex examination combined with either vibration or pinprick sensory testing is the most sensitive combination for diagnosing polyneuropathy, and should be considered minimal essential components of the physical examination in patients with suspected polyneuropathy. PMID:28249029
NASA Astrophysics Data System (ADS)
Vorozhtsov, S.; Kudryashova, O.; Promakhov, V.; Dammer, V.; Vorozhtsov, A.
2016-12-01
It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10-100 Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, T.; Tanaka, K.; Koyano, I.
1982-07-15
Charge transfer reactions N/sub 2//sup +/(v)+Ar..-->..Ar/sup +/+N/sub 2/ (1) have been studied by selecting the vibrational states of N/sub 2//sup +/ using the threshold electron--secondary ion coincidence (TESICO) technique. Relative cross sections sigma(v) for the individual vibrational states v = 0--3 have been determined at three collision energies, 0.3, 1.5, and 11.8 eV. Results show that Reaction (1), which is endoergic for v = 0, is considerably enhanced by the vibrational excitation of N/sub 2//sup +/ at all collision energies. While excitation of one vibrational quantum enhances the cross section substantially, excitation of additional quanta further increases the cross sectionmore » up to v = 3. The ratios sigma(2)/sigma(1) and sigma(3)/sigma(2) are, however, much smaller than sigma(1)/sigma(0) and are significantly larger at the highest collision energy than at the other two collision energies. These results are discussed in conjunction with the calculated results based on the simple two-state theory of Rapp and Francis and the Franck--Condon factors.« less
Őze, A; Puszta, A; Buzás, P; Kóbor, P; Braunitzer, G; Nagy, A
2018-06-21
Flashing light stimulation is often used to investigate the visual system. However, the magnitude of the effect of this stimulus on the various subcortical pathways is not well investigated. The signals of conscious vision are conveyed by the magnocellular, parvocellular and koniocellular pathways. Parvocellular and koniocellular pathways (or more precisely, the L-M opponent and S-cone isolating channels) can be accessed by isoluminant red-green (L-M) and S-cone isolating stimuli, respectively. The main goal of the present study was to explore how costimulation with strong white extrafoveal light flashes alters the perception of stimuli specific to these pathways. Eleven healthy volunteers with negative neurological and ophthalmological history were enrolled for the study. Isoluminance of L-M and S-cone isolating sine-wave gratings was set individually, using the minimum motion procedure. The contrast thresholds for these stimuli as well as for achromatic gratings were determined by an adaptive staircase procedure where subjects had to indicate the orientation (horizontal, oblique or vertical) of the gratings. Thresholds were then determined again while a strong white peripheral light flash was presented 50 ms before each trial. Peripheral light flashes significantly (p < 0.05) increased the contrast thresholds of the achromatic and S-cone isolating stimuli. The threshold elevation was especially marked in case of the achromatic stimuli. However, the contrast threshold for the L-M stimuli was not significantly influenced by the light flashes. We conclude that extrafoveally applied light flashes influence predominantly the perception of achromatic stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.
Perkins, Kenneth A.; Kunkle, Nicole; Karelitz, Joshua L.
2017-01-01
Background Despite its potential for understanding tobacco dependence, behavioral discrimination of nicotine via smoking has not been formally examined as a function of nicotine dependence level. Methods Spectrum research cigarettes were used to compare non-dependent with dependent smokers on the lowest content of nicotine they could discriminate (i.e., “threshold”). Dependent (n=21; 16 M, 5 F) or non-dependent (n=7; 4 M, 3 F) smokers were tested on ability to discriminate between cigarettes with nicotine contents of 17, 11, 5, 2, and 1 mg/g, one per session, from an “ultra-low” cigarette with 0.4 mg/g (all had 9–10 mg “tar”). All abstained from smoking overnight prior to sessions, and number of sessions was determined by the lowest nicotine content they could reliably discriminate from the ultra-low on >80% of trials (i.e., ≥5 of 6). Subjective perceptions and cigarette choice behavior were also assessed and related to discrimination behavior. Results Discrimination thresholds (and most perceptions) did not differ between dependent and non-dependent smokers, with median thresholds of 11 mg/g for both subgroups. Yet, “liking” and puff choice for threshold cigarettes were greater in dependent but not non-dependent smokers, while cigarettes with nicotine contents below threshold did not support “liking” or choice in both groups. Conclusions In sum, this preliminary study suggests threshold for discriminating nicotine via smoking may not vary by dependence level, and further study is needed to confirm that cigarettes unable to be discriminated are also not reinforcing. PMID:28380366
The effect of symmetrical and asymmetrical hearing impairment on music quality perception.
Cai, Yuexin; Zhao, Fei; Chen, Yuebo; Liang, Maojin; Chen, Ling; Yang, Haidi; Xiong, Hao; Zhang, Xueyuan; Zheng, Yiqing
2016-09-01
The purpose of this study was to investigate the effect of symmetrical, asymmetrical and unilateral hearing impairment on music quality perception. Six validated music pieces in the categories of classical music, folk music and pop music were used to assess music quality in terms of its 'pleasantness', 'naturalness', 'fullness', 'roughness' and 'sharpness'. 58 participants with sensorineural hearing loss [20 with unilateral hearing loss (UHL), 20 with bilateral symmetrical hearing loss (BSHL) and 18 with bilateral asymmetrical hearing loss (BAHL)] and 29 normal hearing (NH) subjects participated in the present study. Hearing impaired (HI) participants had greater difficulty in overall music quality perception than NH participants. Participants with BSHL rated music pleasantness and naturalness to be higher than participants with BAHL. Moreover, the hearing thresholds of the better ears from BSHL and BAHL participants as well as the hearing thresholds of the worse ears from BSHL participants were negatively correlated to the pleasantness and naturalness perception. HI participants rated the familiar music pieces higher than unfamiliar music pieces in the three music categories. Music quality perception in participants with hearing impairment appeared to be affected by symmetry of hearing loss, degree of hearing loss and music familiarity when they were assessed using the music quality rating test (MQRT). This indicates that binaural symmetrical hearing is important to achieve a high level of music quality perception in HI listeners. This emphasizes the importance of provision of bilateral hearing assistive devices for people with asymmetrical hearing impairment.
Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf
2012-04-01
Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.
Transmission of vibration across honeycombs and its detection by bee leg receptors
Sandeman; Tautz; Lindauer
1996-01-01
Vibration of the rims of open cells in a honeycomb, applied in the plane of the comb face, is transmitted across the comb. Attenuation or amplification of the vibratory signal depends on its frequency and on the type of comb. In general, framed combs, both large and small, strongly attenuate higher frequencies, whereas these are amplified in small open combs. The very poor transmission properties of the large framed combs used in commercial hives may explain the bees' habit of freeing an area of comb from the frame in those areas used for dancing. Extracellular electrical recordings from the leg of a honeybee detect large action potentials from receptors that monitor extension of the tibia on the femur. Measurements of threshold displacement amplitudes show these receptors to be sensitive to low frequencies. The amplification properties of unframed combs extend the range of these receptor systems to include frequencies that are emitted by the bee during its dance, namely the 15 Hz abdomen waggle and 250 Hz thorax vibration.
Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.
Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L
2015-12-17
Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.
The Application of Time-Frequency Methods to HUMS
NASA Technical Reports Server (NTRS)
Pryor, Anna H.; Mosher, Marianne; Lewicki, David G.; Norvig, Peter (Technical Monitor)
2001-01-01
This paper reports the study of four time-frequency transforms applied to vibration signals and presents a new metric for comparing them for fault detection. The four methods to be described and compared are the Short Time Frequency Transform (STFT), the Choi-Williams Distribution (WV-CW), the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels, are analyzed using these methods. The new metric for automatic fault detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the methods on this data set. Analysis with the CWT detects mechanical problems with the test rig not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic fault detection and to develop methods of setting the threshold for the metric.
Influence of Type of Frequency Weighting Function On VDV Analysis
NASA Astrophysics Data System (ADS)
Kowalska-Koczwara, Alicja; Stypuła, Krzysztof
2017-10-01
Transport vibrations are the subject of many research, mostly their influence on structural elements of the building is investigated. However, nowadays, especially in the centres of large cities were apartments, residential buildings are closer to the transport vibration sources, an increasing attention is given to providing vibrational comfort to humans in buildings. Currently, in most countries, two main methods of evaluation are used: root mean squared method (RMS) and vibration dose value (VDV). In this article, VDV method is presented and the analysis of the weighting functions selection on value of VDV is made. Measurements required for the analysis were made in Krakow, on masonry, residential, two storey building located in the city centre. The building is subjected into two transport vibration sources: tram passages and vehicle passages on very close located road. Measurement points were located on the basement wall at ground level to control the excitation and in the middle of the floor on the highest storey (in the place where people percept vibration). The room chosen for measurements is located closest to the transport excitation sources. During the measurements, 25 vibration events were recorded and analysed. VDV values were calculated for three different weighting functions according to standard: ISO 2631-1, ISO 2631-2 and BS-6841. Differences in VDV values are shown, but also influence of the weighting function selection on result of evaluation is also presented. VDV analysis was performed not only for the individual vibration event but also all day and night vibration exposure were calculated using formulas contained in the annex to the standard BS-6841. It is demonstrated that, although there are differences in the values of VDV, an influence on all day and night exposure is no longer so significant.
Implausibility of the vibrational theory of olfaction
Block, Eric; Ertem, Mehmed Z.; Jang, Seogjoo; ...
2015-04-21
The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of thesemore » compounds in vitro. Furthermore, the mouse (methylthio)methanethiol (MTMT)-recognizing receptor, MOR244-3, and other selected human and mouse ORs, responded similarly to normal, deuterated, and ¹³C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d₃₀ lacks the 1,380-1,550 cm⁻¹ IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of non-odorant molecular vibrational modes. As a result, these and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.« less
Implausibility of the vibrational theory of olfaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, Eric; Ertem, Mehmed Z.; Jang, Seogjoo
The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of thesemore » compounds in vitro. Furthermore, the mouse (methylthio)methanethiol (MTMT)-recognizing receptor, MOR244-3, and other selected human and mouse ORs, responded similarly to normal, deuterated, and ¹³C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d₃₀ lacks the 1,380-1,550 cm⁻¹ IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of non-odorant molecular vibrational modes. As a result, these and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.« less
14 CFR 25.251 - Vibration and buffeting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... cruise, severe enough to interfere with the control of the airplane, to cause excessive fatigue to the...) There may be no perceptible buffeting condition in the cruise configuration in straight flight at any... the cruise configuration for the ranges of airspeed or Mach number, weight, and altitude for which the...
14 CFR 25.251 - Vibration and buffeting.
Code of Federal Regulations, 2014 CFR
2014-01-01
... cruise, severe enough to interfere with the control of the airplane, to cause excessive fatigue to the...) There may be no perceptible buffeting condition in the cruise configuration in straight flight at any... the cruise configuration for the ranges of airspeed or Mach number, weight, and altitude for which the...
14 CFR 25.251 - Vibration and buffeting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... cruise, severe enough to interfere with the control of the airplane, to cause excessive fatigue to the...) There may be no perceptible buffeting condition in the cruise configuration in straight flight at any... the cruise configuration for the ranges of airspeed or Mach number, weight, and altitude for which the...
14 CFR 25.251 - Vibration and buffeting.
Code of Federal Regulations, 2012 CFR
2012-01-01
... cruise, severe enough to interfere with the control of the airplane, to cause excessive fatigue to the...) There may be no perceptible buffeting condition in the cruise configuration in straight flight at any... the cruise configuration for the ranges of airspeed or Mach number, weight, and altitude for which the...
14 CFR 25.251 - Vibration and buffeting.
Code of Federal Regulations, 2013 CFR
2013-01-01
... cruise, severe enough to interfere with the control of the airplane, to cause excessive fatigue to the...) There may be no perceptible buffeting condition in the cruise configuration in straight flight at any... the cruise configuration for the ranges of airspeed or Mach number, weight, and altitude for which the...
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2003-01-01
A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.
Tone perception in Mandarin-speaking school age children with otitis media with effusion
McPherson, Bradley; Li, Caiwei; Yang, Feng
2017-01-01
Objectives The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Methods Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Results Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions. Conclusions The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children. PMID:28829840
Tone perception in Mandarin-speaking school age children with otitis media with effusion.
Cai, Ting; McPherson, Bradley; Li, Caiwei; Yang, Feng
2017-01-01
The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions. The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children.
Spatial patterns of cutaneous vibration during whole-hand haptic interactions
Hayward, Vincent; Visell, Yon
2016-01-01
We investigated the propagation patterns of cutaneous vibration in the hand during interactions with touched objects. Prior research has highlighted the importance of vibrotactile signals during haptic interactions, but little is known of how vibrations propagate throughout the hand. Furthermore, the extent to which the patterns of vibrations reflect the nature of the objects that are touched, and how they are touched, is unknown. Using an apparatus comprised of an array of accelerometers, we mapped and analyzed spatial distributions of vibrations propagating in the skin of the dorsal region of the hand during active touch, grasping, and manipulation tasks. We found these spatial patterns of vibration to vary systematically with touch interactions and determined that it is possible to use these data to decode the modes of interaction with touched objects. The observed vibration patterns evolved rapidly in time, peaking in intensity within a few milliseconds, fading within 20–30 ms, and yielding interaction-dependent distributions of energy in frequency bands that span the range of vibrotactile sensitivity. These results are consistent with findings in perception research that indicate that vibrotactile information distributed throughout the hand can transmit information regarding explored and manipulated objects. The results may further clarify the role of distributed sensory resources in the perceptual recovery of object attributes during active touch, may guide the development of approaches to robotic sensing, and could have implications for the rehabilitation of the upper extremity. PMID:27035957
NASA Astrophysics Data System (ADS)
Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.
2015-07-01
All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.
NASA Technical Reports Server (NTRS)
Patsilinakou, E.; Wiedmann, R. T.; Fotakis, C.; Grant, E. R.
1989-01-01
Ionization-detected UV multiphoton absorption spectroscopy of the excited states of N2O is presented, showing Rydberg structure within 20,000/cm of the first ionization threshold. Despite evidence for strong Rydberg-continuum coupling in the form of broadened bands and Fano line-shapes, the Rydberg structure persists, with atomic-like quantum defects and vibration structure well-matched with that of the ion. In the most clearly resolved spectrum, corresponding to the 3p(delta)1Pi state, Renner-Teller and Herzberg-Teller coupling of electronic and vibrational angular momentum are revealed. It is suggested that these mixings are properties of the N2O(+)Pi ion core.
q Breathers in Finite Lattices: Nonlinearity and Weak Disorder
NASA Astrophysics Data System (ADS)
Ivanchenko, M. V.
2009-05-01
Nonlinearity and disorder are the recognized ingredients of the lattice vibrational dynamics, the factors that could be diminished, but never excluded. We generalize the concept of q breathers—periodic orbits in nonlinear lattices, exponentially localized in the linear mode space—to the case of weak disorder, taking the Fermi-Pasta-Ulan chain as an example. We show that these nonlinear vibrational modes remain exponentially localized near the central mode and stable, provided the disorder is sufficiently small. The instability threshold depends sensitively on a particular realization of disorder and can be modified by specifically designed impurities. Based on this sensitivity, an approach to controlling the energy flow between the modes is proposed. The relevance to other model lattices and experimental miniature arrays is discussed.
Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations
NASA Astrophysics Data System (ADS)
Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.
1992-03-01
The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.
Sharp, Madeleine E.; Viswanathan, Jayalakshmi; Lanyon, Linda J.; Barton, Jason J. S.
2012-01-01
Background There are few clinical tools that assess decision-making under risk. Tests that characterize sensitivity and bias in decisions between prospects varying in magnitude and probability of gain may provide insights in conditions with anomalous reward-related behaviour. Objective We designed a simple test of how subjects integrate information about the magnitude and the probability of reward, which can determine discriminative thresholds and choice bias in decisions under risk. Design/Methods Twenty subjects were required to choose between two explicitly described prospects, one with higher probability but lower magnitude of reward than the other, with the difference in expected value between the two prospects varying from 3 to 23%. Results Subjects showed a mean threshold sensitivity of 43% difference in expected value. Regarding choice bias, there was a ‘risk premium’ of 38%, indicating a tendency to choose higher probability over higher reward. An analysis using prospect theory showed that this risk premium is the predicted outcome of hypothesized non-linearities in the subjective perception of reward value and probability. Conclusions This simple test provides a robust measure of discriminative value thresholds and biases in decisions under risk. Prospect theory can also make predictions about decisions when subjective perception of reward or probability is anomalous, as may occur in populations with dopaminergic or striatal dysfunction, such as Parkinson's disease and schizophrenia. PMID:22493669
Sharp, Madeleine E; Viswanathan, Jayalakshmi; Lanyon, Linda J; Barton, Jason J S
2012-01-01
There are few clinical tools that assess decision-making under risk. Tests that characterize sensitivity and bias in decisions between prospects varying in magnitude and probability of gain may provide insights in conditions with anomalous reward-related behaviour. We designed a simple test of how subjects integrate information about the magnitude and the probability of reward, which can determine discriminative thresholds and choice bias in decisions under risk. Twenty subjects were required to choose between two explicitly described prospects, one with higher probability but lower magnitude of reward than the other, with the difference in expected value between the two prospects varying from 3 to 23%. Subjects showed a mean threshold sensitivity of 43% difference in expected value. Regarding choice bias, there was a 'risk premium' of 38%, indicating a tendency to choose higher probability over higher reward. An analysis using prospect theory showed that this risk premium is the predicted outcome of hypothesized non-linearities in the subjective perception of reward value and probability. This simple test provides a robust measure of discriminative value thresholds and biases in decisions under risk. Prospect theory can also make predictions about decisions when subjective perception of reward or probability is anomalous, as may occur in populations with dopaminergic or striatal dysfunction, such as Parkinson's disease and schizophrenia.
Cognitive abilities relate to self-reported hearing disability.
Zekveld, Adriana A; George, Erwin L J; Houtgast, Tammo; Kramer, Sophia E
2013-10-01
In this explorative study, the authors investigated the relationship between auditory and cognitive abilities and self-reported hearing disability. Thirty-two adults with mild to moderate hearing loss completed the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1996) and performed the Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) test as well as tests of spatial working memory (SWM) and visual sustained attention. Regression analyses examined the predictive value of age, hearing thresholds (pure-tone averages [PTAs]), speech perception in noise (speech reception thresholds in noise [SRTNs]), and the cognitive tests for the 5 AIADH factors. Besides the variance explained by age, PTA, and SRTN, cognitive abilities were related to each hearing factor. The reported difficulties with sound detection and speech perception in quiet were less severe for participants with higher age, lower PTAs, and better TRTs. Fewer sound localization and speech perception in noise problems were reported by participants with better SRTNs and smaller SWM. Fewer sound discrimination difficulties were reported by subjects with better SRTNs and TRTs and smaller SWM. The results suggest a general role of the ability to read partly masked text in subjective hearing. Large working memory was associated with more reported hearing difficulties. This study shows that besides auditory variables and age, cognitive abilities are related to self-reported hearing disability.
Centrifugal unbalance detection system
Cordaro, Joseph V.; Reeves, George; Mets, Michael
2002-01-01
A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.
Noh, Hwayoung; Paik, Hee-Young; Kim, Jihye; Chung, Jayong
2013-01-01
Salty taste perception affects salt intake, of which excess amounts is a major public health concern. Gene polymorphisms in salty taste receptors, zinc status and their interaction may affect salty taste perception. In this study, we examined the relationships among the α-epithelial sodium channel (αENaC) A663T genotype, zinc intake, and salty taste perception including salty taste acuity and preference in healthy young adults. The αENaC A663T genotype was determined by the PCR-restriction fragment length polymorphism in 207 adults. Zinc intake was examined by one 24-h recall and a two-day dietary record. Salty taste acuity and preference were determined by measuring the salty taste recognition threshold and the preferred salinity of beansprout soup, respectively. Men had significantly higher thresholds and preferences for salty taste than women did (p < 0.05). In women, the salty taste threshold was significantly lower in the highest tertile of available zinc intake than in the lowest tertile (12.2 mM and 17.6 mM, respectively, p = 0.02). Interestingly, a significant inverse association between available zinc intake and salty taste threshold was found only in women with αENaC AA homozygotes (β = −0.833, p = 0.02), and no such association was found in T663 allele carriers. The salty taste preference was not associated with the αENaC A663T genotype or available zinc intake in either sex. In conclusion, our data suggest that gene-nutrient interactions between the αENaC A663T genotype and available zinc intake play a role in determining the salty taste acuity in young women. PMID:24317554
Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.
Lin, James C; Wang, Zhangwei
2010-04-01
The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.
Wienemann, Tobias; Chantelau, Ernst A.; Koller, Armin
2014-01-01
Introduction and objective Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic) neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy). Design and methods A case–control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture). Cases were 12 patients (11 diabetic subjects) with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT) and deep pressure pain perception threshold (DPPPT) were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II®). Results In the control group, post-traumatic DPPPT (but not CPPPT) at the injured foot was reduced by about 15–25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15–20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal) versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group); CPPPT did not decrease post-operatively. Conclusion Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic) neuropathy. A degree of post-traumatic hypersensitivity required to ‘pull away’ from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking. PMID:25397867
Gear fault diagnosis based on the structured sparsity time-frequency analysis
NASA Astrophysics Data System (ADS)
Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong
2018-03-01
Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.
Piezoelectric MEMS switch to activate event-driven wireless sensor nodes
NASA Astrophysics Data System (ADS)
Nogami, H.; Kobayashi, T.; Okada, H.; Makimoto, N.; Maeda, R.; Itoh, T.
2013-09-01
We have developed piezoelectric microelectromechanical systems (MEMS) switches and applied them to ultra-low power wireless sensor nodes, to monitor the health condition of chickens. The piezoelectric switches have ‘S’-shaped piezoelectric cantilevers with a proof mass. Since the resonant frequency of the piezoelectric switches is around 24 Hz, we have utilized their superharmonic resonance to detect chicken movements as low as 5-15 Hz. When the vibration frequency is 4, 6 and 12 Hz, the piezoelectric switches vibrate at 0.5 m s-2 and generate 3-5 mV output voltages with superharmonic resonance. In order to detect such small piezoelectric output voltages, we employ comparator circuits that can be driven at low voltages, which can set the threshold voltage (Vth) from 1 to 31 mV with a 1 mV increment. When we set Vth at 4 mV, the output voltages of the piezoelectric MEMS switches vibrate below 15 Hz with amplitudes above 0.3 m s-2 and turn on the comparator circuits. Similarly, by setting Vth at 5 mV, the output voltages turn on the comparator circuits with vibrations above 0.4 m s-2. Furthermore, setting Vth at 10 mV causes vibrations above 0.5 m s-2 that turn on the comparator circuits. These results suggest that we can select small or fast chicken movements to utilize piezoelectric MEMS switches with comparator circuits.
Reading Behind the Lines: The Factors Affecting the Text Reception Threshold in Hearing Aid Users.
Zekveld, Adriana A; Pronk, Marieke; Danielsson, Henrik; Rönnberg, Jerker
2018-03-15
The visual Text Reception Threshold (TRT) test (Zekveld et al., 2007) has been designed to assess modality-general factors relevant for speech perception in noise. In the last decade, the test has been adopted in audiology labs worldwide. The 1st aim of this study was to examine which factors best predict interindividual differences in the TRT. Second, we aimed to assess the relationships between the TRT and the speech reception thresholds (SRTs) estimated in various conditions. First, we reviewed studies reporting relationships between the TRT and the auditory and/or cognitive factors and formulated specific hypotheses regarding the TRT predictors. These hypotheses were tested using a prediction model applied to a rich data set of 180 hearing aid users. In separate association models, we tested the relationships between the TRT and the various SRTs and subjective hearing difficulties, while taking into account potential confounding variables. The results of the prediction model indicate that the TRT is predicted by the ability to fill in missing words in incomplete sentences, by lexical access speed, and by working memory capacity. Furthermore, in line with previous studies, a moderate association between higher age, poorer pure-tone hearing acuity, and poorer TRTs was observed. Better TRTs were associated with better SRTs for the correct perception of 50% of Hagerman matrix sentences in a 4-talker babble, as well as with better subjective ratings of speech perception. Age and pure-tone hearing thresholds significantly confounded these associations. The associations of the TRT with SRTs estimated in other conditions and with subjective qualities of hearing were not statistically significant when adjusting for age and pure-tone average. We conclude that the abilities tapped into by the TRT test include processes relevant for speeded lexical decision making when completing partly masked sentences and that these processes require working memory capacity. Furthermore, the TRT is associated with the SRT of hearing aid users as estimated in a challenging condition that includes informational masking and with experienced difficulties with speech perception in daily-life conditions. The current results underline the value of using the TRT test in studies involving speech perception and aid in the interpretation of findings acquired using the test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, Jörn; Freie Universität Berlin, Institut für Chemie und Biochemie, 14195 Berlin; Sato, Kazuma
2015-04-28
Photoelectron detachment XLX{sup −}(00{sup 0}0) + hν → XLX(vib) + e{sup −} + KER (X = Br or I, L = H or D) at sufficiently low temperatures photoionizes linear dihalogen anions XLX{sup −} in the vibrational ground state (v{sub 1}v{sub 2}{sup l}v{sub 3} = 00{sup 0}0) and prepares the neutral radicals XLX(vib) in vibrational states (vib). At the same time, part of the photon energy (hν) is converted into kinetic energy release (KER) of the electron [R. B. Metz, S. E. Bradforth, and D. M. Neumark, Adv. Chem. Phys. 81, 1 (1992)]. The process may be described approximately inmore » terms of a Franck-Condon type transfer of the vibrational wavefunction representing XLX{sup −}(00{sup 0}0) from the domain close to the minimum of its potential energy surface (PES) to the domain close to the linear transition state of the PES of the neutral XLX. As a consequence, prominent peaks of the photoelectron detachment spectra (pds) correlate with the vibrational energies E{sub XLX,vib} of states XLX(vib) which are centered at linear transition state. The corresponding vibrational quantum numbers may be labeled vib = (v{sub 1}v{sub 2}{sup l}v{sub 3}) = (00{sup 0}v{sub 3}). Accordingly, the related most prominent peaks in the pds are labeled v{sub 3}. We construct a model PES which mimics the “true” PES in the domain of transition state such that it supports vibrational states with energies E{sub XLX,pds,00{sup 0}v{sub 3}} close to the peaks of the pds labeled v{sub 3} = 0, 2, and 4. Subsequently, the same model PES is also used to calculate approximate values of the energies E{sub XMuX,00{sup 0}0} of the isotopomers XMuX(00{sup 0}0). For the heavy isotopomers XHX and XDX, it turns out that all energies E{sub XLX,00{sup 0}v{sub 3}} are above the threshold for dissociation, which means that all heavy XLX(00{sup 0}v{sub 3}) with wavefunctions centered at the transition state are unstable resonances with finite lifetimes. Turning the table, bound states of the heavy XLX are van der Waals (vdW) bonded. In contrast, the energies E{sub XMuX,00{sup 0}0} of the light isotopomers XMuX(00{sup 0}0) are below the threshold for dissociation, with wavefunctions centered at the transition state. This means that XMuX(00{sup 0}0) are vibrationally bonded. This implies a fundamental change of the nature of chemical bonding, from vdW bonding of the heavy XHX, XDX to vibrational bonding of XMuX. For BrMuBr, the present results derived from experimental pds of BrHBr{sup −} and BrDBr{sup −} confirm the recent discovery of vibrational bonding based on quantum chemical ab initio calculations [D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem., Int. Ed. 53, 13706 (2014)]. The extension from BrLBr to ILI means the discovery of a new example of vibrational bonding. These empirical results for the vibrational bonding of IMuI, derived from the photoelectron spectra of IHI{sup −} and IDI{sup −}, are supported by ab initio simulations of the spectra and of the wavefunction representing vibrational bonding of IMuI.« less
Contrast effects on speed perception for linear and radial motion.
Champion, Rebecca A; Warren, Paul A
2017-11-01
Speed perception is vital for safe activity in the environment. However, considerable evidence suggests that perceived speed changes as a function of stimulus contrast, with some investigators suggesting that this might have meaningful real-world consequences (e.g. driving in fog). In the present study we investigate whether the neural effects of contrast on speed perception occur at the level of local or global motion processing. To do this we examine both speed discrimination thresholds and contrast-dependent speed perception for two global motion configurations that have matched local spatio-temporal structure. Specifically we compare linear and radial configurations, the latter of which arises very commonly due to self-movement. In experiment 1 the stimuli comprised circular grating patches. In experiment 2, to match stimuli even more closely, motion was presented in multiple local Gabor patches equidistant from central fixation. Each patch contained identical linear motion but the global configuration was either consistent with linear or radial motion. In both experiments 1 and 2, discrimination thresholds and contrast-induced speed biases were similar in linear and radial conditions. These results suggest that contrast-based speed effects occur only at the level of local motion processing, irrespective of global structure. This result is interpreted in the context of previous models of speed perception and evidence suggesting differences in perceived speed of locally matched linear and radial stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saqib, Najam us; Faizan Mysorewala, Muhammad; Cheded, Lahouari
2017-12-01
In this paper, we propose a novel monitoring strategy for a wireless sensor networks (WSNs)-based water pipeline network. Our strategy uses a multi-pronged approach to reduce energy consumption based on the use of two types of vibration sensors and pressure sensors, all having different energy levels, and a hierarchical adaptive sampling mechanism to determine the sampling frequency. The sampling rate of the sensors is adjusted according to the bandwidth of the vibration signal being monitored by using a wavelet-based adaptive thresholding scheme that calculates the new sampling frequency for the following cycle. In this multimodal sensing scheme, the duty-cycling approach is used for all sensors to reduce the sampling instances, such that the high-energy, high-precision (HE-HP) vibration sensors have low duty cycles, and the low-energy, low-precision (LE-LP) vibration sensors have high duty cycles. The low duty-cycling (HE-HP) vibration sensor adjusts the sampling frequency of the high duty-cycling (LE-LP) vibration sensor. The simulated test bed considered here consists of a water pipeline network which uses pressure and vibration sensors, with the latter having different energy consumptions and precision levels, at various locations in the network. This is all the more useful for energy conservation for extended monitoring. It is shown that by using the novel features of our proposed scheme, a significant reduction in energy consumption is achieved and the leak is effectively detected by the sensor node that is closest to it. Finally, both the total energy consumed by monitoring as well as the time to detect the leak by a WSN node are computed, and show the superiority of our proposed hierarchical adaptive sampling algorithm over a non-adaptive sampling approach.
An assessment of the Space Station Freedom program's leakage current requirement
NASA Technical Reports Server (NTRS)
Nagy, Michael
1991-01-01
The Space Station Freedom Program requires leakage currents to be limited to less than human perception level, which NASA presently defines as 5 mA for dc. The origin of this value is traced, and the literature for other dc perception threshold standards is surveyed. It is shown that while many varying standards exist, very little experimental data is available to support them.
ERIC Educational Resources Information Center
Dickinson, Abigail; Jones, Myles; Milne, Elizabeth
2014-01-01
Enhanced low-level perception, although present in individuals with autism, is not seen in individuals with high, but non-clinical, levels of autistic traits (Brock et al.in "Percept Lond" 40(6):739. doi:10.1068/p6953, 2011). This is surprising, as many of the higher-level visual differences found in autism have been shown to correlate…
Evaluation of the vehicle state with vibration-based diagnostics methods
NASA Astrophysics Data System (ADS)
Gai, V. E.; Polyakov, I. V.; Krasheninnikov, M. S.; Koshurina, A. A.; Dorofeev, R. A.
2017-02-01
Timely detection of a trouble in the mechanisms work is a guarantee of the stable operation of the entire machine complex. It allows minimizing unexpected losses, and avoiding any injuries inflicted on working people. The solution of the problem is the most important for vehicles and machines, working in remote areas of the infrastructure. All-terrain vehicles can be referred to such type of transport. The potential object of application of the described methodology is the multipurpose rotary-screw amphibious vehicle for rescue; reconnaissance; transport and technological operations. At the present time, there is no information on the use of these kinds of systems in ground-based vehicles. The present paper is devoted to the state estimation of a mechanism based on the analysis of vibration signals produced by the mechanism, in particular, the vibration signals of rolling bearings. The theory of active perception was used for the solution of the problem of the state estimation.
Motion coherence and direction discrimination in healthy aging.
Pilz, Karin S; Miller, Louisa; Agnew, Hannah C
2017-01-01
Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.
Accuracy of cochlear implant recipients in speech reception in the presence of background music.
Gfeller, Kate; Turner, Christopher; Oleson, Jacob; Kliethermes, Stephanie; Driscoll, Virginia
2012-12-01
This study examined speech recognition abilities of cochlear implant (CI) recipients in the spectrally complex listening condition of 3 contrasting types of background music, and compared performance based upon listener groups: CI recipients using conventional long-electrode devices, Hybrid CI recipients (acoustic plus electric stimulation), and normal-hearing adults. We tested 154 long-electrode CI recipients using varied devices and strategies, 21 Hybrid CI recipients, and 49 normal-hearing adults on closed-set recognition of spondees presented in 3 contrasting forms of background music (piano solo, large symphony orchestra, vocal solo with small combo accompaniment) in an adaptive test. Signal-to-noise ratio thresholds for speech in music were examined in relation to measures of speech recognition in background noise and multitalker babble, pitch perception, and music experience. The signal-to-noise ratio thresholds for speech in music varied as a function of category of background music, group membership (long-electrode, Hybrid, normal-hearing), and age. The thresholds for speech in background music were significantly correlated with measures of pitch perception and thresholds for speech in background noise; auditory status was an important predictor. Evidence suggests that speech reception thresholds in background music change as a function of listener age (with more advanced age being detrimental), structural characteristics of different types of music, and hearing status (residual hearing). These findings have implications for everyday listening conditions such as communicating in social or commercial situations in which there is background music.
Accuracy of Cochlear Implant Recipients on Speech Reception in Background Music
Gfeller, Kate; Turner, Christopher; Oleson, Jacob; Kliethermes, Stephanie; Driscoll, Virginia
2012-01-01
Objectives This study (a) examined speech recognition abilities of cochlear implant (CI) recipients in the spectrally complex listening condition of three contrasting types of background music, and (b) compared performance based upon listener groups: CI recipients using conventional long-electrode (LE) devices, Hybrid CI recipients (acoustic plus electric stimulation), and normal-hearing (NH) adults. Methods We tested 154 LE CI recipients using varied devices and strategies, 21 Hybrid CI recipients, and 49 NH adults on closed-set recognition of spondees presented in three contrasting forms of background music (piano solo, large symphony orchestra, vocal solo with small combo accompaniment) in an adaptive test. Outcomes Signal-to-noise thresholds for speech in music (SRTM) were examined in relation to measures of speech recognition in background noise and multi-talker babble, pitch perception, and music experience. Results SRTM thresholds varied as a function of category of background music, group membership (LE, Hybrid, NH), and age. Thresholds for speech in background music were significantly correlated with measures of pitch perception and speech in background noise thresholds; auditory status was an important predictor. Conclusions Evidence suggests that speech reception thresholds in background music change as a function of listener age (with more advanced age being detrimental), structural characteristics of different types of music, and hearing status (residual hearing). These findings have implications for everyday listening conditions such as communicating in social or commercial situations in which there is background music. PMID:23342550
Davidson, Lisa S; Geers, Ann E; Brenner, Christine
2010-10-01
Updated cochlear implant technology and optimized fitting can have a substantial impact on speech perception. The effects of upgrades in processor technology and aided thresholds on word recognition at soft input levels and sentence recognition in noise were examined. We hypothesized that updated speech processors and lower aided thresholds would allow improved recognition of soft speech without compromising performance in noise. 109 teenagers who had used a Nucleus 22-cochlear implant since preschool were tested with their current speech processor(s) (101 unilateral and 8 bilateral): 13 used the Spectra, 22 the ESPrit 22, 61 the ESPrit 3G, and 13 the Freedom. The Lexical Neighborhood Test (LNT) was administered at 70 and 50 dB SPL and the Bamford Kowal Bench sentences were administered in quiet and in noise. Aided thresholds were obtained for frequency-modulated tones from 250 to 4,000 Hz. Results were analyzed using repeated measures analysis of variance. Aided thresholds for the Freedom/3G group were significantly lower (better) than the Spectra/Sprint group. LNT scores at 50 dB were significantly higher for the Freedom/3G group. No significant differences between the 2 groups were found for the LNT at 70 or sentences in quiet or noise. Adolescents using updated processors that allowed for aided detection thresholds of 30 dB HL or better performed the best at soft levels. The BKB in noise results suggest that greater access to soft speech does not compromise listening in noise.
Sugar reduction in fruit nectars: Impact on consumers' sensory and hedonic perception.
Oliveira, Denize; Galhardo, Juliana; Ares, Gastón; Cunha, Luís M; Deliza, Rosires
2018-05-01
Sugar sweetened beverages are one of the main sources of added sugar in the diet. Therefore, sugar reduction in these products could contribute to the prevention of various negative health conditions, such as obesity, diabetes and cardiovascular diseases. In this context, the present work aimed to study consumer sensory and hedonic perception towards sugar reduction in fruit nectars. Five sequential difference thresholds for added sugar in three fruit nectars (passion fruit, orange/passion fruit and orange/pomegranate) were determined based on consumer perception. In each test, difference thresholds were estimated using survival analysis based on the responses of 50 consumers to six paired-comparison tests. Each pair was composed of two samples, a control nectar and a sample that was reduced in added sugar from the control. Consumers were asked to try each of the samples in each pair and to indicate which was sweeter. Then, consumers' sensory and hedonic perception of nectar samples was evaluated for each nectar using a 9-point hedonic scale and a check-all-that-apply question. Difference thresholds were estimated in 4.20%-8.14% of the added sugar concentration of the nectars. No significant differences in overall liking were detected for fruit nectars with 20% sugar reduction. However, large heterogeneity in consumer hedonic reaction towards sugar reduction was found, which should be taken into account in the design of sugar reduction programs. Consumer hedonic reaction towards sugar reduction was product dependent. Results from the present work reinforce the idea that gradual sugar reduction in sugar sweetened beverages is a feasible strategy that could contribute to reduce the sugar intake of the population. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y
2010-01-01
Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.
Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.
Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe
2015-11-11
This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.
A consumer-based approach to salt reduction: Case study with bread.
Antúnez, Lucía; Giménez, Ana; Ares, Gastón
2016-12-01
In recent years high sodium intake has raised growing concern worldwide. A widespread reduction of salt concentration in processed foods has been claimed as one of the most effective strategies to achieve a short-term impact on global health. However, one of the major challenges in reducing salt in food products is its potential negative impact on consumer perception. For this reason, gradual salt reduction has been recommended. In this context, the aim of the present work was to present a consumer-based approach to salt reduction, using bread as case study. Two consumer studies with a total of 303 consumers were carried out. In the first study, four sequential difference thresholds were determined through paired-comparison tests, starting at a salt concentration of 2%. In the second study, 99 consumers performed a two-bite evaluation of their sensory and hedonic perception of five bread samples: a control bread containing 2% salt and four samples with reduced salt content according to the difference thresholds determined in the first study. Survival analysis was used to determine average difference thresholds, which ranged from 9.4% to 14.3% of the salt concentration of the control bread. Results showed that salt concentration significantly influenced consumer overall liking of the bread samples. However, large heterogeneity was found in consumer hedonic reaction towards salt reduction: two groups of consumers with different preference and hedonic sensitivity to salt reduction were found. Results from the present work confirm that cumulative series of small salt reductions may be a feasible strategy for reducing the sodium content of bread without affecting consumer hedonic perception and stress the importance of considering consumer perception in the design of gradual salt reduction programmes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xuhong; Cao, Liang; Chen, Y. Frank; Liu, Jiepeng; Li, Jiang
2016-01-01
The developed pre-stressed cable reinforced concrete truss (PCT) floor system is a relatively new floor structure, which can be applied to various long-span structures such as buildings, stadiums, and bridges. Due to the lighter mass and longer span, floor vibration would be a serviceability concern problem for such systems. In this paper, field testing and theoretical analysis for the PCT floor system were conducted. Specifically, heel-drop impact and walking tests were performed on the PCT floor system to capture the dynamic properties including natural frequencies, mode shapes, damping ratios, and acceleration response. The PCT floor system was found to be a low frequency (<10 Hz) and low damping (damping ratio<2 percent) structural system. The comparison of the experimental results with the AISC's limiting values indicates that the investigated PCT system exhibits satisfactory vibration perceptibility, however. The analytical solution obtained from the weighted residual method agrees well with the experimental results and thus validates the proposed analytical expression. Sensitivity studies using the analytical solution were also conducted to investigate the vibration performance of the PCT floor system.
NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,
TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN
An Evaluation of Psychophysical Models of Auditory Change Perception
Micheyl, Christophe; Kaernbach, Christian; Demany, Laurent
2009-01-01
In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension, or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed using a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot account for the observed relationship between detection thresholds and direction-identification thresholds. It is shown that two alternative models can account for this relationship. One of them is based on the idea of sensory “quanta”; the other assumes that small changes are detected on the basis of Poisson processes with low means. The predictions of these two models are then compared against receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is concluded that human listeners' perception of small and unidimensional acoustic changes is better described by a discrete-state Poisson model than by the more commonly used CVG model or by the less favored HT and quantum models. PMID:18954215
The perception of verticality in lunar and Martian gravity conditions.
de Winkel, Ksander N; Clément, Gilles; Groen, Eric L; Werkhoven, Peter J
2012-10-31
Although the mechanisms of neural adaptation to weightlessness and re-adaptation to Earth-gravity have received a lot of attention since the first human space flight, there is as yet little knowledge about how spatial orientation is affected by partial gravity, such as lunar gravity of 0.16 g or Martian gravity of 0.38 g. Up to now twelve astronauts have spent a cumulated time of approximately 80 h on the lunar surface, but no psychophysical experiments were conducted to investigate their perception of verticality. We investigated how the subjective vertical (SV) was affected by reduced gravity levels during the first European Parabolic Flight Campaign of Partial Gravity. In normal and hypergravity, subjects accurately aligned their SV with the gravitational vertical. However, when gravity was below a certain threshold, subjects aligned their SV with their body longitudinal axis. The value of the threshold varied considerably between subjects, ranging from 0.03 to 0.57 g. Despite the small number of subjects, there was a significant positive correlation of the threshold with subject age, which calls for further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Perceptual color difference metric including a CSF based on the perception threshold
NASA Astrophysics Data System (ADS)
Rosselli, Vincent; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine
2008-01-01
The study of the Human Visual System (HVS) is very interesting to quantify the quality of a picture, to predict which information will be perceived on it, to apply adapted tools ... The Contrast Sensitivity Function (CSF) is one of the major ways to integrate the HVS properties into an imaging system. It characterizes the sensitivity of the visual system to spatial and temporal frequencies and predicts the behavior for the three channels. Common constructions of the CSF have been performed by estimating the detection threshold beyond which it is possible to perceive a stimulus. In this work, we developed a novel approach for spatio-chromatic construction based on matching experiments to estimate the perception threshold. It consists in matching the contrast of a test stimulus with that of a reference one. The obtained results are quite different in comparison with the standard approaches as the chromatic CSFs have band-pass behavior and not low pass. The obtained model has been integrated in a perceptual color difference metric inspired by the s-CIELAB. The metric is then evaluated with both objective and subjective procedures.
Kurnosov, A; Cacciatore, M; Pirani, F; Laganà, A; Martí, C; Garcia, E
2017-07-13
We report in this paper an investigation on energy transfer processes from vibration to vibration and/or translation in thermal and subthermal regimes for the O 2 + N 2 system performed using quantum-classical calculations on different empirical, semiempirical, and ab initio potential energy surfaces. In particular, the paper focuses on the rationalization of the non-Arrhenius behavior (inversion of the temperature dependence) of the quasi-resonant vibration-to-vibration energy transfer transition rate coefficients at threshold. To better understand the microscopic nature of the involved processes, we pushed the calculations to the detail of the related cross sections and analyzed the impact of the medium and long-range components of the interaction on them. Furthermore, the variation with temperature of the dependence of the quasi-resonant rate coefficient on the vibrational energy gap between initial and final vibrational states and the effectiveness of quantum-classical calculations to overcome the limitations of the purely classical treatments were also investigated. These treatments, handled in an open molecular science fashion by chaining data and competencies of the various laboratories using a grid empowered molecular simulator, have allowed a rationalization of the dependence of the computed rate coefficients in terms of the distortion of the O 2 -N 2 configuration during the diatom-diatom collisions. A way of relating such distortions to a smooth and continuous progress variable, allowing a proper evolution from both long to closer range formulation of the interaction and from its entrance to exit channel (through the strong interaction region) relaxed graphical representations, is also discussed in the paper.
Baumgarten, Thomas J; Königs, Sara; Schnitzler, Alfons; Lange, Joachim
2017-03-09
Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13-18 Hz). This can be compellingly explained by a model of discrete perceptual cycles.
Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.
De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D
2018-05-01
Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced anteropulsion of the body is desired.
Assessment of Infant Cry: Acoustic Cry Analysis and Parental Perception
ERIC Educational Resources Information Center
LaGasse, Linda L.; Neal, A. Rebecca; Lester, Barry M.
2005-01-01
Infant crying signals distress to potential caretakers who can alleviate the aversive conditions that gave rise to the cry. The cry signal results from coordination among several brain regions that control respiration and vocal cord vibration from which the cry sounds are produced. Previous work has shown a relationship between acoustic…