NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1991-01-01
A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1991-01-01
A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.
NASA Technical Reports Server (NTRS)
Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.
1989-01-01
Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.
NASA Technical Reports Server (NTRS)
Ferebee, R. C.
1982-01-01
A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.
The Shock and Vibration Digest, Volume 14, Number 4
1982-04-01
temperature, humidity, shock, and vibration -- can influence this capability; as a result an almost continuous program of research and development has...pro- ducing reliability tests. For some time there has been interest in the Army Test Methodology program for developing a vibration system capable...geology of the Livermore Valley is obtained. 82-768 Transient Stress Wave Propagation in HTGR Fuel Element Impacts I.T. Almajan and P.D. Smith
Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses
NASA Technical Reports Server (NTRS)
Dompka, R. V.; Cronkhite, J. D.
1986-01-01
Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.
2018-02-28
qualification testing to include vibrational, thermal bake and thermal cycling to ensure the experiment would perform as expected during operation on...series of tests for flight qualification. These tests included bake and thermal cycling. In addition, vibrational testing was also accomplished
Application of a computerized vibroacoustic data bank for random vibration criteria development
NASA Technical Reports Server (NTRS)
Ferebee, R. C.
1982-01-01
A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablets, and a dry silver hard copier which are all desk top type hardware and occupy minimal space. Currently, the data bank contains data from the Saturn 5 and Titan 3 flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one third octave band plots over the frequency range from 20 to 2000 Hz. The data were stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data were statistically analyzed, and the resulting 97.5 percent confidence levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. A user's manual is included to guide potential users through the programs.
Vibration Tests on Transit Buses
DOT National Transportation Integrated Search
1979-03-01
The objective of this vibration measurement program was to quantify the vibration environment which would be experienced by Automatic Vehicle Monitoring (AVM) equipment when installed on buses during typical city route service operations. Two buses w...
NASA Technical Reports Server (NTRS)
Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa
1993-01-01
This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.
Vibration testing of the JE-M-604-4-IUE rocket motor (Thiokol P/N E 28639-03)
NASA Technical Reports Server (NTRS)
Alt, R. E.; Tosh, J. T.
1976-01-01
The NASA International Ultraviolet Explorer (IUE) rocket motor (TE-M-604-4), a solid fuel, spherical rocket motor, was vibration tested in the Impact, Vibration, and Acceleration (IVA) Test Unit of the von Karman Gas Dynamics Facility (VKF). The objective of the test program was to subject the motor to qualification levels of sinusoidal and random vibration prior to the altitude firing of the motor in the Propulsion Development Test Cell (T-3), Engine Test Facility (ETF), AEDC. The vibration testing consisted of a low level sine survey from 5 to 2,000 Hz, followed by a qualification level sine sweep and qualification level random vibration. A second low level sine survey followed the qualification level testing. This sequence of testing was accomplished in each of three orthogonal axes. No motor problems were observed due to the imposition of these dynamic environments.
NASA Technical Reports Server (NTRS)
Cronkhite, James D.
1993-01-01
Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.
Ground Vibration Testing Options for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry
2011-01-01
New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.
Characterization of Friction Joints Subjected to High Levels of Random Vibration
NASA Technical Reports Server (NTRS)
deSantos, Omar; MacNeal, Paul
2012-01-01
This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.
Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing
NASA Technical Reports Server (NTRS)
Hughes, William O.
2003-01-01
The NASA Glenn Research Center, the U.S. Department of Energy, and the Stirling Technology Company (STC) are developing a highly efficient, long-life, free-piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions, including deep-space and Mars surface applications. As part of this development, four structural dynamic test programs were recently performed on Stirling Technology Demonstration Convertors (TDC's) that were designed and built by STC under contract to the Department of Energy. This testing was performed in Glenn's Structural Dynamics Laboratory and Microgravity Emissions Laboratory. The first test program, in November and December 1999, demonstrated that the Stirling TDC could withstand the harsh random vibration experienced during a typical spacecraft launch and survive with no structural damage or functional power performance degradation. This was a critical step in enabling the use of Stirling convertors for future spacecraft power systems. The most severe test was a 12.3grms random vibration test, with test durations of 3 min per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. The Microgravity Emissions Laboratory is typically used to measure the dynamics produced by operating space experiments and the resulting impact to the International Space Station's microgravity environment. For the second Stirling dynamic test program, performed in January 2001, the Microgravity Emissions Laboratory was used to characterize the structure-borne disturbances produced by the normal operation of a pair of Stirling convertors. The forces and moments produced by the normal operation of a Stirling system must be recognized and controlled, if necessary, so that other nearby spacecraft components, such as cameras, are not adversely affected. The Stirling convertor pair emitted relatively benign tonal forces at its operational frequency and associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.
NASA Technical Reports Server (NTRS)
Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.
2004-01-01
The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.
Coupled rotor/airframe vibration analysis program manual. Volume 2: Sample input and output listings
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
Sample input and output listings obtained with the base program (SIMVIB) of the coupled rotor/airframe vibration analysis and the external programs, G400/F389 and E927 are presented. Results for five of the base program test cases are shown. They represent different applications of the SIMVIB program to study the vibration characteristics of various dynamic configurations. Input and output listings obtained for one cycle of the G400/F389 coupled program are presented. Results from the rotor aeroelastic analysis E927 also appear. A brief description of the check cases is provided. A summary of the check cases for all the external programs interacting with the SIMVIB program is illustrated.
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
Study of inducer load and stress, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.
Payload test philosophy. [to provide confidence in Shuttle structural math models
NASA Technical Reports Server (NTRS)
Mayhew, D.
1979-01-01
Shuttle payload test philosophy is discussed with reference to testing to provide confidence in Shuttle structural math models. Particular attention is given the Shuttle quarter-scale program and the Mated Vertical Ground Vibration Test Program.
Neural Network Modeling of UH-60A Pilot Vibration
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi
2003-01-01
Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.
Integrated Structural Analysis and Test Program
NASA Technical Reports Server (NTRS)
Kaufman, Daniel
2005-01-01
An integrated structural-analysis and structure-testing computer program is being developed in order to: Automate repetitive processes in testing and analysis; Accelerate pre-test analysis; Accelerate reporting of tests; Facilitate planning of tests; Improve execution of tests; Create a vibration, acoustics, and shock test database; and Integrate analysis and test data. The software package includes modules pertaining to sinusoidal and random vibration, shock and time replication, acoustics, base-driven modal survey, and mass properties and static/dynamic balance. The program is commanded by use of ActiveX controls. There is minimal need to generate command lines. Analysis or test files are selected by opening a Windows Explorer display. After selecting the desired input file, the program goes to a so-called analysis data process or test data process, depending on the type of input data. The status of the process is given by a Windows status bar, and when processing is complete, the data are reported in graphical, tubular, and matrix form.
NASA Technical Reports Server (NTRS)
Twomey, William J.
1993-01-01
A short history is traced of the work done at Sikorsky Aircraft under the NASA/industry DAMVIBS program. This includes both work directly funded by the program as well as work which was internally funded but which received its initial impetus from DAMVIBS. The development of a finite element model of the UH-60A airframe having a marked improvement in vibration-predicting ability is described. A new program, PAREDYM, developed at Sikorsky, which automatically adjusts an FEM so that its modal characteristics match test values, is described, as well as the part this program played in the improvement of the UH-60A model. Effects of the bungee suspension system on the shake test data used for model verification are described. The impetus given by the modeling improvement, as well as the recent availability of PAREDYM, has brought for the first time the introduction of low-vibration design into the design cycle at Sikorsky.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
Structural-Vibration-Response Data Analysis
NASA Technical Reports Server (NTRS)
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
Development of an integrated aeroservoelastic analysis program and correlation with test data
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Brenner, M. J.; Voelker, L. S.
1991-01-01
The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.
NASA Technical Reports Server (NTRS)
Tolmei, V. R.
1982-01-01
Proposed circuit would monitor vibration spectrum of engines under test or in service. It could detect subtle out-of-specification conditions and could be programed to shut down engine if an out-of-limits condition develops. Possible uses of monitor are in bench testing automobiles and outboard motors and as a safety device in very critical engine applications.
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2009-01-01
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.
Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent
NASA Technical Reports Server (NTRS)
Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.
2008-01-01
For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.
Environmental Testing of the NEXT PM1R Ion Engine
NASA Technical Reports Server (NTRS)
Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2007-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test program and confidence in the engineering solutions available for the remaining findings of the first test program, specifically the particulate contamination, the hardware environmental qualification program can proceed with confidence
1977-09-01
Ibrahim , Old Dominion University, Norfolk, VA and E.C. Mikulcik, _ 9 The University of Calgary, Calgary, Alberta, Canada LABORATORY IDENTIFICATION OF...existed for a shaker control application. We only had to write a "GP DAP " program to make it a calculator-type program. S S. ". Voice: What are the
Active vibration control testing of the SPICES program: final demonstration article
NASA Astrophysics Data System (ADS)
Dunne, James P.; Jacobs, Jack H.
1996-05-01
The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.
Mated vertical ground vibration test
NASA Technical Reports Server (NTRS)
Ivey, E. W.
1980-01-01
The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P.; Reed, D.
1993-01-01
Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.
Modeling of UH-60A Hub Accelerations with Neural Networks
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi
2002-01-01
Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Aydelott, J. C.
1978-01-01
The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.
Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1
NASA Technical Reports Server (NTRS)
Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.
1986-01-01
The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.
NASA Technical Reports Server (NTRS)
Welge, R. T.
1972-01-01
A CH-54B Skycrane helicopter was fabricated with boron/epoxy reinforced stringers in the tail cone and boron/epoxy tubes in the tail skid. The fabrication of the tail cone was made with conventional tooling, production shop personnel, and no major problems. The flight test program includes a stress and vibration survey using strain gages and vibration transducers located in critical areas. The program to inspect and monitor the reliability of the components is discussed.
The Shock and Vibration Digest. Volume 13. Number 2
1981-02-01
accuracy, running time, 56(4), pp 1084-1091 (Oct 1974). core storage, complexity of program execution, ease of implementation, ease of effecting slight...consist of sessions on such topics as optimality criteria meth- specialized and elaborate developments but also of ods, mathematical programming ...Steininger - MBB, Ottobrunn, Ger- Gunfire Blast Pressure Predictions many R. Munt - RAE Aero., UK Aircraft Fuel Tank Slosh and Vibration Test Development of
Another Look at the Draft Mil-Std-1540E Unit Random Vibration Test Requirements
NASA Astrophysics Data System (ADS)
Perl, E.; Peterson, A. J..; Davis, D.
2012-07-01
The draft Mil-Std-1540E has been updated to reflect lessons learned since its publication as an SMC Standard in 2008, [1], and an earlier Aerospace Corporation Technical Report released in 2006, [2]. This paper discusses the technical rationale supporting some of the unit random vibration test requirements to provide better insight into their derivation and application to programs. It is intended that these requirements be tailored for each program to reflect the customer risk profile. Several tailoring options are provided and a two phase test strategy is discussed to highlight its applicability to utilizing heritage hardware in new applications.
Active vibration control for flexible rotor by optimal direct-output feedback control
NASA Technical Reports Server (NTRS)
Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.
1989-01-01
Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.
Active vibration control for flexible rotor by optimal direct-output feedback control
NASA Technical Reports Server (NTRS)
Nonami, K.; Dirusso, E.; Fleming, D. P.
1989-01-01
Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 microns down to approximately 25 microns (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
NASA Technical Reports Server (NTRS)
1974-01-01
The results of the LAGEOS thermal/optical/vibrational analysis and test program are reported. Through analyses and tests it is verified that the MSFC LAGEOS design provides a retroreflector thermal environment which maintains acceptable retroflector internal thermal gradients. The technical results of the study, organized by the major task areas are presented. The interrelationships of the major tasks are described and the major decisions are identified.
Vibration level data Brighton-New York City Transit Authority
DOT National Transportation Integrated Search
1980-08-31
This report documents the results of a vibration measurement program conducted on 14-15 August 1980 in the Midwood Section of Brooklyn, New York, next to the tracks of the Brighton Line of the New York City Transit Authority. The test was conducted b...
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism
NASA Technical Reports Server (NTRS)
Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael
2014-01-01
Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
Preatoni, Ezio; Colombo, Alessandro; Verga, Monica; Galvani, Christel; Faina, Marcello; Rodano, Renato; Preatoni, Ennio; Cardinale, Marco
2012-09-01
The aims of this study were to assess the behavior of a vibrating platform under different conditions and to compare the effects of an 8-week periodized training program with whole-body vibration (WBV) alone or in combination with conventional strength training (ST). Vibrating frequencies, displacements, and peak accelerations were tested through a piezoelectric accelerometer under different conditions of load and subjects' position. Eighteen national-level female athletes were assigned to 1 of 3 different groups performing WBV, conventional ST, or a combination of the 2 (WBV + ST). Isometric maximal voluntary contraction, dynamic maximal concentric force, and vertical jump tests were performed before and after the conditioning program. Vibrating displacements and maximum accelerations measured on the device were not always consistent with their expected values calculated from the display and manufacturers' information (sinusoidal waveforms). The WBV alone or in combination with low-intensity resistance exercise did not seem to induce significant enhancements in force and power when compared with ST. It appears that WBV cannot substitute parts of ST loading in a cohort of young female athletes. However, vibration effects might be limited by the behavior of the commercial platforms as the one used in the study. More studies are needed to analyze the performances of devices and the effectiveness of protocols.
Using the Saturn V and Titan III Vibroacoustic Databanks for Random Vibration Criteria Development
NASA Technical Reports Server (NTRS)
Ferbee, R C.
2009-01-01
This is an update to TN D-7159, "Development and Application of Vibroacoustic Structural Data Banks in Predicting Vibration Design and Test Criteria for Rocket Vehicle Structures", which was originally published in 1973. Errors in the original document have been corrected and additional data from the Titan III program have been included. Methods for using the vibroacoustic databanks for vibration test criteria development are shown, as well as all of the data with drawings and pictures of the measurement locations. An Excel spreadsheet with the data included is available from the author.
Scaling Techniques for Combustion Device Random Vibration Predictions
NASA Technical Reports Server (NTRS)
Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.
2016-01-01
This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
user instruction and software descriptions for the base program of the coupled rotor/airframe vibration analysis are provided. The functional capabilities and procedures for running the program are provided. Interfaces with external programs are discussed. The procedure of synthesizing a dynamic system and the various solution methods are described. Input data and output results are presented. Detailed information is provided on the program structure. Sample test case results for five representative dynamic configurations are provided and discussed. System response are plotted to demonstrate the plots capabilities available. Instructions to install and execute SIMVIB on the CDC computer system are provided.
New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4
NASA Astrophysics Data System (ADS)
Kozin, Igor N.; Law, Mark M.; Tennyson, Jonathan; Hutson, Jeremy M.
2004-11-01
A general computational method for the accurate calculation of rotationally and vibrationally excited states of tetraatomic molecules is developed. The resulting program is particularly appropriate for molecules executing wide-amplitude motions and isomerizations. The program offers a choice of coordinate systems based on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method includes all six vibrational dimensions plus three rotational dimensions. Vibration-rotation calculations with reduced dimensionality in the radial degrees of freedom are easily tackled via constraints imposed on the radial coordinates via the input file. Program summaryTitle of program: WAVR4 Catalogue number: ADUN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC nonprofit use license Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun Unix Operating systems under which the program has been tested: Tru64 Unix, Microsoft Windows, Sun Unix Programming language used: Fortran 90 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 11 937 No. of bytes in distributed program, including test data, etc.: 84 770 Distribution format: tar.gz Nature of physical problem: WAVR4 calculates the bound ro-vibrational levels and wavefunctions of a tetraatomic system using body-fixed coordinates based on generalised orthogonal vectors. Method of solution: The angular coordinates are treated using a finite basis representation (FBR) based on products of spherical harmonics. A discrete variable representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator functions [2] is used for the radial coordinates. Matrix elements are computed using an efficient Gaussian quadrature in the angular coordinates and the DVR approximation in the radial coordinates. The solution of the secular problem is carried through a series of intermediate diagonalisations and truncations. Restrictions on the complexity of the problem: (1) The size of the final Hamiltonian matrix that can be practically diagonalised; (2) The DVR approximation for a radial coordinate fails for values of the coordinate near zero—this is remedied only for one radial coordinate by using analytical integration. Typical running time: problem-dependent Unusual features of the program: A user-supplied subroutine to evaluate the potential energy is a program requirement. External routines: BLAS and LAPACK are required. References: [1] J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 92 (1985) 1400. [2] J.R. Henderson, C.R. Le Sueur, J. Tennyson, Comp. Phys. Comm. 75 (1993) 379.
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino; Seible, Frieder
1990-01-01
Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.
Correlation of AH-1G airframe test data with a NASTRAN mathematical model
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1976-01-01
Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe.
Environmental qualification testing of payload G-534, the Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Hand-arm Vibration Effects on Performance, Tactile Acuity, and Temperature of Hand
Forouharmajd, Farhad; Yadegari, Mehrdad; Ahmadvand, Masoumeh; Forouharmajd, Farshad; Pourabdian, Siamak
2017-01-01
Effects of vibration appear as mechanical and psychological disorders, including stress reactions, cognitive and movement disorders, problem in concentration and paying attention to the assigned duties. The common signs and symptoms of hand-arm vibration (HAV) in the fingers and hands may appear as pins and needles feeling, tingling, numbness, and also the loss of finger sensation and dexterity. Laboratory Virtual Instrument Engineering Workbench programming software designed for occupational vibrations measurement was used to calculate HAV acceleration. Hole steadiness test is designed to measure involuntary movement of people. V-Pieron test is designed for one of the other aspects of the psycho motor phenomena of steadiness by moving the stylus across a V-form ruler. The two points test was an experiment of touch acuity, which used a caliper by placing the two styli very close on the pad of finger knuckles. The temperature of finger skin is also measured simultaneous to the above tests. Wilcoxon test indicated that a significant decrement in hand steadiness occurred after gripping a vibrating handle for 2 min (P ≤ 0.003). Wilcoxon test also represented a significant change in errors after gripping a grinder vibratory handle (P ≤ 0.003). The differences at all of the knuckles were significant with a confidence interval percentage of 99%. There was a significant reduction in finger skin temperature before and after exposure to vibration (mean = 0.45°C, based on paired sample test). The obtained results considerably demonstrated the relation between hand performance and vibrations due to gripping a grinder. It can be concluded that an injury or accident may happen after exposure to vibrations for the fine duties, in fast actions. PMID:29204383
Hand-arm Vibration Effects on Performance, Tactile Acuity, and Temperature of Hand.
Forouharmajd, Farhad; Yadegari, Mehrdad; Ahmadvand, Masoumeh; Forouharmajd, Farshad; Pourabdian, Siamak
2017-01-01
Effects of vibration appear as mechanical and psychological disorders, including stress reactions, cognitive and movement disorders, problem in concentration and paying attention to the assigned duties. The common signs and symptoms of hand-arm vibration (HAV) in the fingers and hands may appear as pins and needles feeling, tingling, numbness, and also the loss of finger sensation and dexterity. Laboratory Virtual Instrument Engineering Workbench programming software designed for occupational vibrations measurement was used to calculate HAV acceleration. Hole steadiness test is designed to measure involuntary movement of people. V-Pieron test is designed for one of the other aspects of the psycho motor phenomena of steadiness by moving the stylus across a V-form ruler. The two points test was an experiment of touch acuity, which used a caliper by placing the two styli very close on the pad of finger knuckles. The temperature of finger skin is also measured simultaneous to the above tests. Wilcoxon test indicated that a significant decrement in hand steadiness occurred after gripping a vibrating handle for 2 min ( P ≤ 0.003). Wilcoxon test also represented a significant change in errors after gripping a grinder vibratory handle ( P ≤ 0.003). The differences at all of the knuckles were significant with a confidence interval percentage of 99%. There was a significant reduction in finger skin temperature before and after exposure to vibration (mean = 0.45°C, based on paired sample test). The obtained results considerably demonstrated the relation between hand performance and vibrations due to gripping a grinder. It can be concluded that an injury or accident may happen after exposure to vibrations for the fine duties, in fast actions.
NASA Technical Reports Server (NTRS)
1971-01-01
A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.
NASA Technical Reports Server (NTRS)
Howland, G. R.; Durno, J. A.; Twomey, W. J.
1990-01-01
Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.
Vibration and Acoustic Testing for Mars Micromission Spacecraft
NASA Technical Reports Server (NTRS)
Kern, Dennis L.; Scharton, Terry D.
1999-01-01
The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the spacecraft and the test fixture, alleviates the severe overtest at spacecraft resonances inherent in rigid fixture vibration tests. It has the distinct advantage over response limiting that the method is not dependent on the accuracy of a detailed dynamic model of the spacecraft. Combined loads, vibration, and modal testing were recently performed on the QuikSCAT spacecraft. The combined tests were performed in a single test setup per axis on a vibration shaker, reducing test time by a factor of two or three. Force gages were employed to measure the true c.g. acceleration of the spacecraft for structural loads verification using a sine burst test, to automatically notch random vibration test input accelerations at spacecraft resonances based on predetermined force limits, and to directly measure modal masses in a base drive modal test. In addition to these combined tests on the shaker, the QuikSCAT spacecraft was subjected to a direct field acoustic test by surrounding the spacecraft, still on the vibration shaker, with rock concert type acoustic speakers. Since the spacecraft contractor does not have a reverberant field acoustic test facility, performing a direct field acoustic test -saved the program nearly two weeks schedule time that would have been required for packing / unpacking and shipping of the spacecraft. This paper discusses the rationale behind and advantages of the above test approaches and provides examples of their actual implementation and comparisons to flight data. The applicability of the test approaches to Mars Micromission spacecraft qualification is discussed.
Streamlined design and self reliant hardware for active control of precision space structures
NASA Technical Reports Server (NTRS)
Hyland, David C.; King, James A.; Phillips, Douglas J.
1994-01-01
Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
NASA Technical Reports Server (NTRS)
Straub, F. K.; Byrns, E. V., Jr.
1986-01-01
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.
Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques
NASA Technical Reports Server (NTRS)
Wilder, R.
1979-01-01
Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.
Environmental test of the BGO calorimeter for DArk Matter Particle Explorer
NASA Astrophysics Data System (ADS)
Hu, Yi-Ming; Chang, Jin; Chen, Deng-Yi; Guo, Jian-Hua; Zhang, Yun-Long; Feng, Chang-Qing
2016-11-01
DArk Matter Particle Explorer (DAMPE) is the first Chinese astronomical satellite, successfully launched on Dec. 17 2015. As the most important payload of DAMPE, the BGO calorimeter contains 308 bismuth germanate crystals, with 616 photomultiplier tubes, one coupled to each end of every crystal. Environmental tests have been carried out to explore the environmental adaptability of the flight model of the BGO calorimeter. In this work we report the results of the vibration tests. During the vibration tests, no visible damage occurred in the mechanical assembly. After random or sinusoidal vibrations, the change of the first order natural frequency of BGO calorimeter during the modal surveys is less than 5%. The shift ratio of Most Probable Value of MIPs changes in cosmic-ray tests are shown, the mean value of which is about -4%. The comparison of results of cosmic-ray tests before and after the vibration shows no significant change in the performance of the BGO calorimeter. All these results suggest that the calorimeter and its structure have passed through the environment tests successfully. Supported by National Natural Science Foundation of China (11203090, 11003051, 11273070) and Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202)
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex
2012-01-01
NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.
Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun
2012-01-16
Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.
Space Station Freedom NiH2 cell testing program
NASA Technical Reports Server (NTRS)
Moore, Bruce; Frate, Dave
1994-01-01
Testing for the Space Station Freedom Nickel Hydrogen Cell Test Program began in 1990 at Crave Division, Naval Surface Warfare Center. The program has included receipt inspection, random vibration, acceptance, characterization, and life cycle testing of Ni-H2 cells in accordance with the NASA LeRC Interagency Order C-31001-J. A total of 400 Ni-H2 cells have been received at NAVSURFWARCENDIV Crane from three separate manufacturers; Yardney Technical Products (Yardney), Eagle Picher Industries (Eagle Picher), and Gates Energy Products (Gates). Of those, 308 cells distributed among 39 packs have undergone life cycle testing under a test regime simulating low earth orbit conditions. As of 30 September 1993, there are 252 cells assembled into 32 packs still on life cycle test. Since the beginning of the program, failed cells have been detected in all phases of testing. The failures include the following; seven 65 AmpHr and 81 AmpHr Yardney cells were found to be leaking KOH on receipt, one 65 AmpHr Eagle Picher cell failed the acceptance test, one 65 AmpHr Gates cell failed during the characterization test, and six 65 AmpHr Gates cells failed the random vibration test. Of the 39 life cycle packs, testing on seven packs, 56 cells, has been suspended because of low end of discharge voltages. All of the failed life cycle packs were cycled at 60% depth of discharge.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
NASA Astrophysics Data System (ADS)
Fonda, James; Rao, Vittal S.; Sana, Sridhar
2001-08-01
This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.
New Tables For IABG's 320kN Shaker System: Design And Procurement Process
NASA Astrophysics Data System (ADS)
Baumgartl, Ralf
2012-07-01
For more than 25 years IABG is operating its 320kN vibration system in testing of space and non-space applications. The vibration system is a multi shaker system, using four electrodynamic shakers, driving a 3x3m2 head expander and a 3x3m2 slip table. During the recent years a modernisation program of the shaker system has been implemented. The purpose of this program was to exchange system components, which have reached their expected duration of life, as well as to exchange components which did no longer fulfil the state-of-the-art requirements in testing and thus to adapt the vibration system to future challenges. Two major components of the shaker system, which have been covered during the modernisation program, are the shaker tables (the head expander and the slip table). Being the direct interface of a vibration test facility to a specimen, the shaker tables are crucial regarding the shaker system overall performance. And this fact applies even more for shaker systems with large tables, because there are no off-the-shelf solutions in this area. During the recent 5 years IABG specified, designed and procured a new head expander and a new slip table for the 320kN shaker system. This paper describes the overall process investigating on the following listed aspects: - general requirements for the tables - definition of boundary conditions and guidance principles - specific areas of interest - definition of the table material and the manufacturing method - design solutions - challenges during manufacturing - results - table properties
Vibration Isolation for Launch of a Space Station Orbital Replacement Unit
NASA Technical Reports Server (NTRS)
Maly, Joseph R.; Sills, Joel W., Jr.; Pendleton, Scott C.; James, George H., III; Mimovich, Mark
2004-01-01
Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions.
Ground and flight test results of a total main rotor isolation system
NASA Technical Reports Server (NTRS)
Halwes, Dennis R.
1987-01-01
A six degree-of-freedom (DOF) isolation system using six LIVE units has been installed under an Army/NASA contract on a Bell 206LM helicopter. This system has been named the Total Rotor Isolation System, or TRIS. To determine the effectiveness of TRIS in reducing helicopter vibration, a flight verification study was conducted at Bell's Flight Research Center in Arlington, Texas. The flight test data indicate that the 4/rev vibration level at the pilot's seat were suppressed below the 0.04g level throughout the transition envelope. Flight tests indicate over 95% suppression of vibration level from the rotor hub to the pilot's seat. The TRIS installation was designed with a decoupled control system and has shown a significant improvement in aircraft flying qualities, such that it permitted the trimmed aircraft to be flown hands-off for a significant period of time, over 90 seconds. The TRIS flight test program has demonstrated a system that greatly reduces vibration levels of a current-generation helicopter, while significantly improving the flying qualities to a point where stability augmentation is no longer a requirement.
NASA Technical Reports Server (NTRS)
Bielawa, Richard L.; Hefner, Rachel E.; Castagna, Andre
1991-01-01
The results are presented of an analytic and experimental research program involving a Sikorsky S-55 helicopter tail cone directed ultimately to the improved structural analysis of airframe substructures typical of moderate sized helicopters of metal semimonocoque construction. Experimental static strain and dynamic shake-testing measurements are presented. Correlation studies of each of these tests with a PC-based finite element analysis (COSMOS/M) are described. The tests included static loadings at the end of the tail cone supported in the cantilever configuration as well as vibrational shake-testing in both the cantilever and free-free configurations.
An examination of gas compressor stability and rotating stall
NASA Technical Reports Server (NTRS)
Fozi, Aziz A.
1987-01-01
The principal sources of vibration related reliability problems in high pressure centrifugal gas compressors are the re-excitation of the first critical speed or Resonant Subsynchronous Vibration (RSSV), and the forced vibration due to rotating stall in the vaneless diffusers downstream of the impellers. An example of such field problems is given elsewhere. This paper describes the results of a test program at the author's company, initiated in 1983 and completed during 1985, which studied the RSSV threshold and the rotating stall phenomenon in a high pressure gas compressor.
Active damping of modal vibrations by force apportioning
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1980-01-01
Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.
Lam, Freddy Mh; Chan, Philip Fl; Liao, L R; Woo, Jean; Hui, Elsie; Lai, Charles Wk; Kwok, Timothy Cy; Pang, Marco Yc
2018-04-01
To investigate whether a comprehensive exercise program was effective in improving physical function among institutionalized older adults and whether adding whole-body vibration to the program conferred additional therapeutic benefits. A single-blinded randomized controlled trial was conducted. This study was carried out in residential care units. In total, 73 older adults (40 women, mean age: 82.3 ± 7.3 years) were enrolled into this study. Participants were randomly allocated to one of the three groups: strength and balance program combined with whole-body vibration, strength and balance program without whole-body vibration, and social and recreational activities consisting of upper limb exercises only. All participants completed three training sessions per week for eight weeks. Assessment of mobility, balance, lower limb strength, walking endurance, and self-perceived balance confidence were conducted at baseline and immediately after the eight-week intervention. Incidences of falls requiring medical attention were recorded for one year after the end of the training period. A significant time × group interaction was found for lower limb strength (five-times-sit-to-stand test; P = 0.048), with the exercise-only group showing improvement (pretest: 35.8 ± 16.1 seconds; posttest: 29.0 ± 9.8 seconds), compared with a decline in strength among controls (pretest: 27.1 ± 10.4 seconds; posttest: 28.7 ± 12.3 seconds; P = 0.030). The exercise with whole-body vibration group had a significantly better outcome in balance confidence (pretest: 39.2 ± 29.0; posttest: 48.4 ± 30.6) than the exercise-only group (pretest: 35.9 ± 24.8; posttest: 38.2 ± 26.5; P = 0.033). The exercise program was effective in improving lower limb strength among institutionalized older adults but adding whole-body vibration did not enhance its effect. Whole-body vibration may improve balance confidence without enhancing actual balance performance.
Qualification of Electrical Ground Support Equipment for New Space Programs
NASA Technical Reports Server (NTRS)
SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.
2011-01-01
With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.
The Shock and Vibration Digest. Volume 18, Number 8
1986-08-01
the swash plate . This is an active that vibration can be reduced by separation of control system...element program model . ture-borne sound intensity has been tried earlier The agreement is shown to be very good. A on thin- plate constructions in ...predicting the response of two displacement controlled laboratory tests that were used for the determination of the model parameters. 86-1532
Mechanical environmental test program for the Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Buckingham, R.; Sharp, G. R.
1974-01-01
This paper describes the spacecraft and subsystem level mechanical environmental test program which was developed for the Communications Technology Satellite (CTS). At the spacecraft level it includes sine and random vibration, static loading, centrifuge loading, pyrotechnic and separation shock simulation and (tentatively) acoustics. At the subsystem level it entails the same type of environmental exposure as applicable. Matrices of system and subsystem tests are presented showing type, level and hardware status for each major test.
Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.
NASA Technical Reports Server (NTRS)
Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)
2000-01-01
As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.
The USAF Phillips Laboratory sodium-sulfur battery technology program: Results and status
NASA Technical Reports Server (NTRS)
Rainbow, Marc E.; Somerville, Andrew
1996-01-01
Tests performed on NaS batteries are reported. The results of safety and abuse testing, shock and vibration tests, cell failure on warm-up, freeze thaw, overtemperature conditions, electrolyte fracture, overdischarge, and short circuit tests are presented along with GEO and LEO cycle tests and the status of the NaS cell flight tests.
NASA Technical Reports Server (NTRS)
Smith, Andrew; Harrison, Phil
2010-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the predicted and measured flight data. Future assessment will incorporate hybrid methods in VAOne analysis (i.e., boundary element methods, BEM and finite element methods, FEM). These hybrid methods will enable the ability to import NASTRAN models providing much more detailed modeling of the underlying beams and support structure of the ARES 1-X test vehicle. Measured acoustic data will be incorporated into these analyses to improve correlation for additional post flight analysis.
Environmental Testing of the NEXT PM1 Ion Engine
NASA Technical Reports Server (NTRS)
Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2008-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.
A six degree-of-freedom Lorentz vibration isolator with nonlinear controller
NASA Astrophysics Data System (ADS)
Fenn, Ralph C.
1992-05-01
The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.
Damage assessment in PRC and RC beams by dynamic tests
NASA Astrophysics Data System (ADS)
Capozucca, R.
2011-07-01
The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.
Design and application of a test rig for super-critical power transmission shafts
NASA Technical Reports Server (NTRS)
Darlow, M.; Smalley, A.
1979-01-01
The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.
Statistical correlation analysis for comparing vibration data from test and analysis
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.
1986-01-01
A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.
Materials characterization study of conductive flexible second surface mirrors
NASA Technical Reports Server (NTRS)
Levadou, F.; Bosma, S. J.; Paillous, A.
1981-01-01
The status of prequalification and qualification work on conductive flexible second surface mirrors is described. The basic material is FEP Teflon witn either aluminium or silver vacuum deposited reflectors. The top layer has been made conductive by deposition of layer of a indium oxide. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties, the electrostatic behavior of the materials under simulated substorm environment and electrical conductivity at low temperatures are characterized. The effects of simulated ultra violet and particles irradiation on electrical and thermo-optical properties of the materials are also presented.
A study of the durability of beryllium rocket engines. [space shuttle reaction control system
NASA Technical Reports Server (NTRS)
Paster, R. D.; French, G. C.
1974-01-01
An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
ATM test and integration. [Skylab Apollo Telescope Mount
NASA Technical Reports Server (NTRS)
Moore, J. W.; Mitchell, J. R.
1974-01-01
The test and checkout philosophy of the test program for the Skylab ATM module and the overall test flow including in-process, post-manufacturing, vibration, thermal vacuum, and prelaunch checkout activities are described. Capabilities and limitations of the test complex and its use of automation are discussed. Experiences with the organizational principle of using a dedicated test team for all checkout activities are reported. Material on the development of the ATM subsystems, the experimental program and the requirements of the scientific community, and the integration and verification of the complex systems/subsystems of the ATM are presented. The performance of the ATM test program in such areas as alignment, systems and subsystems, contamination control, and experiment operation is evaluated. The conclusions and recommendations resulting from the ATM test program are enumerated.
Active vibration control activities at the LaRC - Present and future
NASA Technical Reports Server (NTRS)
Newsom, J. R.
1990-01-01
The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.
Braided Composite Technologies for Rotorcraft Structures
NASA Technical Reports Server (NTRS)
Jessie, Nathan
2015-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Braided Composite Technologies for Rotorcraft Structures
NASA Technical Reports Server (NTRS)
Jessie, Nathan
2014-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Optimized Non-Obstructive Particle Damping (NOPD) Treatment for Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Panossian, H.
2008-01-01
Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach whereby metallic or non-metallic particles in spherical or irregular shapes, of heavy or light consistency, and even liquid particles are placed inside cavities or attached to structures by an appropriate means at strategic locations, to absorb vibration energy. The objective of the work described herein is the development of a design optimization procedure and discussion of test results for such a NOPD treatment on honeycomb (HC) composite structures, based on finite element modeling (FEM) analyses, optimization and tests. Modeling and predictions were performed and tests were carried out to correlate the test data with the FEM. The optimization procedure consisted of defining a global objective function, using finite difference methods, to determine the optimal values of the design variables through quadratic linear programming. The optimization process was carried out by targeting the highest dynamic displacements of several vibration modes of the structure and finding an optimal treatment configuration that will minimize them. An optimal design was thus derived and laboratory tests were conducted to evaluate its performance under different vibration environments. Three honeycomb composite beams, with Nomex core and aluminum face sheets, empty (untreated), uniformly treated with NOPD, and optimally treated with NOPD, according to the analytically predicted optimal design configuration, were tested in the laboratory. It is shown that the beam with optimal treatment has the lowest response amplitude. Described below are results of modal vibration tests and FEM analyses from predictions of the modal characteristics of honeycomb beams under zero, 50% uniform treatment and an optimal NOPD treatment design configuration and verification with test data.
Bench Test of the Vibration Compensation Interferometer for EAST Tokamak
NASA Astrophysics Data System (ADS)
Li, Gongshun; Yang, Yao; Liu, Haiqing; Jie, Yinxian; Zou, Zhiyong; Wang, Zhengxing; Zeng, Long; Wei, Xuechao; Li, Weiming; Lan, Ting; Zhu, Xiang; Liu, Yukai; Gao, Xiang
2016-02-01
A visible laser-based vibration compensation interferometer has recently been designed for the EAST tokamak and the bench test has been finished. The system was optimized for its installation on EAST. The value of the final optical power before the detectors without plasma has been calculated from the component bench test result, which is quite close to the measured value. A nanometer level displacement (of the order of the laser's wavelength) has been clearly measured by a modulation of piezoelectric ceramic unit, proving the system's capability. supported by the National Magnetic Confinement Fusion Program of China (Nos. 2014GB106002, 2014GB106003, 2014GB106004) and National Natural Science Foundation of China (Nos. 11105184, 11375237, 11505238)
Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza
2003-01-01
Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.
Space simulation facilities providing a stable thermal vacuum facility
NASA Technical Reports Server (NTRS)
Tellalian, Martin L.
1990-01-01
CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Tiemessen, Ivo J H; Hulshof, Carel T J; Frings-Dresen, Monique H W
2009-12-01
An effective intervention program aiming to reduce whole body vibration (WBV) exposure at work will reduce the number of low back complaints in the near future. An evaluation study with a controlled pretest-post-test design. Nine companies and 126 drivers were included in the study. Cluster randomization on company level divided the drivers and their employers in an intervention group and a "care-as-usual" group. At baseline (T0) and intervention program was implemented and evaluated after 7 months (T1). The main outcome measure was WBV exposure. Process measures included knowledge, attitude, and (intended) behavior towards reduction of WBV exposure for the drivers and knowledge and WBV policy for the employers. At T1, no significant reduction was found in WBV exposure within both groups compared with T0. Probably due to poor to moderate compliance, the intervention program was not effective in reducing the WBV exposure on group level but small reductions in WBV exposure are possible when intervention compliance is high. Copyright 2009 Wiley-Liss, Inc.
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.
2008-01-01
All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).
Mahieu, Nele N; Witvrouw, Erik; Van de Voorde, Danny; Michilsens, Diny; Arbyn, Valérie; Van den Broecke, Wouter
2006-01-01
Several groups have undertaken studies to evaluate the physiologic effects of whole-body vibration (WBV). However, the value of WBV in a training program remains unknown. To investigate whether a WBV program results in a better strength and postural control performance than an equivalent exercise program performed without vibration. Randomized, controlled trial. Laboratory. Thirty-three Belgian competitive skiers (ages = 9-15 years). Subjects were assigned to either the WBV group or the equivalent resistance (ER) group for 6 weeks of training at 3 times per week. Isokinetic plantar and dorsiflexion peak torque, isokinetic knee flexion and extension peak torque, explosive strength (high box test), and postural control were assessed before and after the training period. Both training programs significantly improved isokinetic ankle and knee muscle strength and explosive strength. Moreover, the increases in explosive strength and in plantar-flexor strength at low speed were significantly higher in the WBV group than in the ER group after 6 weeks. However, neither WBV training nor ER training seemed to have an effect on postural control. A strength training program that includes WBV appears to have additive effects in young skiers compared with an equivalent program that does not include WBV. Therefore, our findings support the hypothesis that WBV training may be a beneficial supplementary training technique in strength programs for young athletes.
NASA Technical Reports Server (NTRS)
1979-01-01
During NASA's Apollo program, it was necessary to subject the mammoth Saturn V launch vehicle to extremely forceful vibrations to assure the moonbooster's structural integrity in flight. Marshall Space Flight Center assigned vibration testing to a contractor, the Scientific Services and Systems Group of Wyle Laboratories, Norco, California. Wyle-3S, as the group is known, built a large facility at Huntsville, Alabama, and equipped it with an enormously forceful shock and vibration system to simulate the liftoff stresses the Saturn V would encounter. Saturn V is no longer in service, but Wyle-3S has found spinoff utility for its vibration facility. It is now being used to simulate earthquake effects on various kinds of equipment, principally equipment intended for use in nuclear power generation. Government regulations require that such equipment demonstrate its ability to survive earthquake conditions. In upper left photo, Wyle3S is preparing to conduct an earthquake test on a 25ton diesel generator built by Atlas Polar Company, Ltd., Toronto, Canada, for emergency use in a Canadian nuclear power plant. Being readied for test in the lower left photo is a large circuit breaker to be used by Duke Power Company, Charlotte, North Carolina. Electro-hydraulic and electro-dynamic shakers in and around the pit simulate earthquake forces.
Application of the Life Safety Code to a Historic Test Stand
NASA Technical Reports Server (NTRS)
Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.
2011-01-01
NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact. An effort was launched to thoroughly evaluate the applicable life safety requirements, examine the context in which they were derived, and determine a means by which the TS4550 modifications could be made within budget and on schedule, while still providing the occupants with appropriate levels of safety.
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.
1989-01-01
Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.
49 CFR 178.819 - Vibration test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...
49 CFR 178.819 - Vibration test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...
49 CFR 178.819 - Vibration test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...
49 CFR 178.819 - Vibration test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...
49 CFR 178.819 - Vibration test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...
The influence of computer-generated path on the robot’s effector stability of motion
NASA Astrophysics Data System (ADS)
Foit, K.; Banaś, W.; Gwiazda, A.; Ćwikła, G.
2017-08-01
The off-line trajectory planning is often carried out due to economical and practical reasons: the robot is not excluded from the production process and the operator could benefit from testing programs in the virtual environment. On the other hand, the dedicated off-line programming and simulation software is often limited in features and is intended to roughly check the program. It should be expected that the arm of the real robot’s manipulator will realize the trajectory in different manner: the acceleration and deceleration phases may trigger the vibrations of the kinematic chain that could affect the precision of effector positioning and degrade the quality of process realized by the robot. The purpose of this work is the analysis of the selected cases, when the robot’s effector has been moved along the programmed path. The off-line generated, test trajectories have different arrangement of points: such approach has allowed evaluating the time needed to complete the each of the tasks, as well as measuring the level of the vibration of the robot’s wrist. All tests were performed without the load. The conclusions of the experiment may be useful during the trajectory planning in order to avoid the critical configuration of points.
Self Diagnostic Accelerometer Testing on the C-17 Aircraft
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.
NASA Technical Reports Server (NTRS)
Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.
1992-01-01
Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.
Space Shuttle External Tank Project status
NASA Technical Reports Server (NTRS)
Davis, R. M.
1980-01-01
The External Tank Project is reviewed with emphasis on the DDT&E and production phases and the lightweight tank development. It is noted that the DDT&E phase is progressing well with the structural and ground vibration test article programs complete, the propulsion test article program progressing well, and the component qualification and verification testing 92% complete. New tools and facilities are being brought on line to support the increased build rate for the production phase. The lightweight tank, which will provide additional payload in orbit, is progressing to schedule with first delivery in early 1982.
High force vibration testing with wide frequency range
Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn
2013-04-02
A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.
Development of a nondestructive vibration technique for bond assessment of Space Shuttle tiles
NASA Technical Reports Server (NTRS)
Moslehy, Faissal A.
1994-01-01
This final report describes the achievements of the above titled project. The project is funded by NASA-KSC (Grant No. NAG 10-0117) for the period of 1 Jan. to 31 Dec. 1993. The purpose of this project was to develop a nondestructive, noncontact technique based on 'vibration signature' of tile systems to quantify the bond conditions of the thermal protection system) tiles of Space Shuttle orbiters. The technique uses a laser rapid scan system, modal measurements, and finite element modeling. Finite element models were developed for tiles bonded to both clamped and deformable integrated skin-stringer orbiter mid-fuselage. Results showed that the size and location of a disbonded tile can be determined from frequency and mode shape information. Moreover, a frequency response survey was used to quickly identify the disbonded tiles. The finite element results were compared with experimentally determined frequency responses of a 17-tile test panel, where a rapidscan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results was realized. An inverse solution for single-tile assemblies was also derived and is being implemented into a computer program that can interact with the modal testing software. The output of the program displays the size and location of disbond. This program has been tested with simulated input (i.e., finite element data), and excellent agreement between predicted and simulated disbonds was shown. Finally, laser vibration imaging and acoustic emission techniques were shown to be well suited for detecting and monitoring the progressive damage in Graphite/Epoxy composite materials.
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.
2005-01-01
This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.
NASA Technical Reports Server (NTRS)
Roskam, J.
1983-01-01
The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.
Vibration syndrome in chipping and grinding workers.
1984-10-01
A clear conclusion from these studies is that vibration syndrome occurs in chipping and grinding workers in this country and that earlier reports that it may not exist were probably inaccurate. The careful selection of exposed and control groups for analysis strengthens the observed association between vibration syndrome and the occupational use of pneumatic chipping hammers and grinding tools. In the foundry populations studied the vibration syndrome was severe, with short latencies and high prevalences of the advanced stages. The shipyard population did not display this pattern. This difference can be attributed to variations in work practices but the more important factor seems to be the effect of incentive work schedules. Comparisons of groups of hourly and incentive workers from the shipyard and within foundry populations consistently demonstrated that incentive work was associated with increased severity of vibration syndrome. Excessive vibration levels were measured on chipping and grinding tools. Of the factors studied, reduction of throttle level decreased the vibration levels measured on chipping hammers. For grinders, the working condition of the tool affected the measured vibration acceleration levels. Grinders receiving average to poor maintenance showed higher vibration levels. The results of objective clinical testing did not yield tests with diagnostic properties. To date, the clinical judgment of the physician remains the primary focus of the diagnosis of vibration syndrome. A number of actions can be taken to prevent vibration syndrome. Preplacement medical examinations can identify workers predisposed to or experiencing Raynaud's phenomenon or disease. Informing employees and employers about the signs, symptoms, and consequences of vibration syndrome can encourage workers to report the condition to their physicians promptly. Engineering approaches to preventing vibration syndrome include increased quality control on castings to reduce finishing time and automation of the finishing process. Tool manufacturers can contribute by modifying or redesigning tools to reduce vibration. The technology to reduce vibration from hand tools exists but the engineering application is difficult. Vibration from chain saws has been reduced through changes in design and some companies have begun to redesign jackhammers, scalers, grinders, and chipping hammers. As these become available, purchasers can encourage manufacturers by selecting tools with antivibration characteristics. Vibration from tools currently in use can be controlled by periodically scheduled inspection and maintenance programs for vibrating tools.(ABSTRACT TRUNCATED AT 400 WORDS)
Fiberoptic characteristics for extreme operating environments
NASA Technical Reports Server (NTRS)
Delcher, R. C.
1992-01-01
Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.
Coupled rotor/airframe vibration analysis
NASA Technical Reports Server (NTRS)
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G. (Compiler)
1993-01-01
The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.
Vibration detection of component health and operability
NASA Technical Reports Server (NTRS)
Baird, B. C.
1975-01-01
In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.
NASA Astrophysics Data System (ADS)
Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing
2013-03-01
In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.
Evaluation of human response to structural vibration induced by sonic boom
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Czech, J.
1992-01-01
This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.
NASA Astrophysics Data System (ADS)
Yu, Haoyu S.; Fiedler, Lucas J.; Alecu, I. M.; Truhlar, Donald G.
2017-01-01
We present a Python program, FREQ, for calculating the optimal scale factors for calculating harmonic vibrational frequencies, fundamental vibrational frequencies, and zero-point vibrational energies from electronic structure calculations. The program utilizes a previously published scale factor optimization model (Alecu et al., 2010) to efficiently obtain all three scale factors from a set of computed vibrational harmonic frequencies. In order to obtain the three scale factors, the user only needs to provide zero-point energies of 15 or 6 selected molecules. If the user has access to the Gaussian 09 or Gaussian 03 program, we provide the option for the user to run the program by entering the keywords for a certain method and basis set in the Gaussian 09 or Gaussian 03 program. Four other Python programs, input.py, input6, pbs.py, and pbs6.py, are also provided for generating Gaussian 09 or Gaussian 03 input and PBS files. The program can also be used with data from any other electronic structure package. A manual of how to use this program is included in the code package.
14 CFR 33.83 - Vibration test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...
NASA Shuttle Logistics Depot (NSLD) - The application of ATE
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack
1990-01-01
The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.
Computer Programs (Turbomachinery)
NASA Technical Reports Server (NTRS)
1978-01-01
NASA computer programs are extensively used in design of industrial equipment. Available from the Computer Software Management and Information Center (COSMIC) at the University of Georgia, these programs are employed as analysis tools in design, test and development processes, providing savings in time and money. For example, two NASA computer programs are used daily in the design of turbomachinery by Delaval Turbine Division, Trenton, New Jersey. The company uses the NASA splint interpolation routine for analysis of turbine blade vibration and the performance of compressors and condensers. A second program, the NASA print plot routine, analyzes turbine rotor response and produces graphs for project reports. The photos show examples of Delaval test operations in which the computer programs play a part. In the large photo below, a 24-inch turbine blade is undergoing test; in the smaller photo, a steam turbine rotor is being prepared for stress measurements under actual operating conditions; the "spaghetti" is wiring for test instrumentation
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1985-01-01
A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Self diagnostic accelerometer ground testing on a C-17 aircraft engine
NASA Astrophysics Data System (ADS)
Tokars, Roger P.; Lekki, John D.
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Flow induced vibrations in the SSME injector heads
NASA Technical Reports Server (NTRS)
Lepore, Frank A.
1991-01-01
A description is given of the flowfield in the Space Shuttle Main Engine (SSME) powerhead, the mechanisms which control flow-induced vibrations, and previous experimental work. An in-depth description is given of the development phase of the program , which includes the analysis, design, and fabrication of liquid oxygen (LOX) posts models used in the experimental phase, as well as test facilities, equipment, and procedures used. Also covered is the experimental data analysis, which includes overall steady state powerhead flowfield as well as the high frequency response of the LOX posts.
49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Procedure for Base-level Vibration Testing C... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three... platform. 4. Immediately following the period of vibration, each package shall be removed from the platform...
49 CFR 178.985 - Vibration test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...
NASA Technical Reports Server (NTRS)
Heffer, R.
1998-01-01
The purpose of this report is to present a qualification level vibration testing performed on the S/N 202, EOS AMSU-A1 Instrument was vibration tested to qualification levels per the Ref. 1 shop order. The instrument withstood the 8 g sine sweep test, the 7.5 Grms random vibration test, and the 18.75 g sine burst test in each of the three orthogonal axes. Some loss of transmissibility, however, is seen in the lower reflector after Z-axis random vibration. The test sequence was not without incidence. Failure of Channel 7 in the Limited Performance Test (LPT) performed after completion of the 1 st (X-axis) axis vibration sequence, required replacement of the DRO and subsequent re-testing of the instrument. The post-vibration comprehensive performance test (CPT) was successfully run after completion of the three axes of vibration with the replacement component installed in the instrument. Passing the CPT signified the successful completion of the S/N 202 A1 qualification vibration testing.
Noncontact Electromagnetic Vibration Source
NASA Technical Reports Server (NTRS)
Namkung, Min; Fulton, James P.; Wincheski, Buzz A.
1994-01-01
Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.
Analysis of crack initiation and growth in the high level vibration test at Tadotsu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.
1993-08-01
The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less
10.2 Thermal-Structural Testing
NASA Technical Reports Server (NTRS)
Hudson, Larry D.
2008-01-01
Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading a) Thermal-structural mission cycling for re-entry and hypersonic cruise conditions; b) High-temperature modal survey to study the effect of heating on mode shapes, natural frequencies and damping. Supports NASA ARMD Hypersonics Material & Structures Program. Partners: NASA Dryden / Langley / Glenn, Lockheed-Martin, Materials Research & Design, GE CCP Test Phases - Phase 1: Acoustic-Vibration Testing (LaRC) completed - Phase 2: Thermal-Mechanical Testing (DFRC) in assembly - Phase 3: Mechanical Testing (DFRC) in assembly
An Infrared Spectral Radiance Code for the Auroral Thermosphere (AARC)
1987-11-24
Program Description and Usage 136 3,1 Main Modules 136 3.2 Input, Output, and Program Communication 138 3.2.1 Input of User-Defined Program Control ...a test date set with which to compare the model predic- tions. Secondly, a number of theoretical papers are available describing some of the basic...necessary since secondary electrons aro a very important source of molecular nitrogen in vibrationally excited states [N2(v)), and the N2 (v) controls
Ground test for vibration control demonstrator
NASA Astrophysics Data System (ADS)
Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.
2016-09-01
In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.
Braz Júnior, Donato S; Dornelas de Andrade, Arméle; Teixeira, Andrei S; Cavalcanti, Cléssyo A; Morais, André B; Marinho, Patrícia EM
2015-01-01
Background Exercise intolerance is a common development in patients with chronic obstructive pulmonary disease (COPD). There is little data on the use of an isolated program using vibration platform training on functional capacity in these patients, which is an area that deserves investigation. Aim To investigate the effect of training on a vibrating platform (whole-body vibration [WBV]) on functional performance and quality of life of subjects with COPD. Methods A randomized controlled crossover pilot study with eleven subjects with COPD (forced expiratory volume in 1 second [FEV1]% predicted =14.63±11.14; forced vital capacity [FVC]% predicted =48.84±15.21; FEV1/FVC =47.39±11.63) underwent a 12-week WBV training program. Participants were randomized into the intervention group (IG) undergoing three sessions per week for a total of 12 weeks and control group (CG) without intervention. We evaluated the 6-minute walk test (6MWT), distance walked (DW), duration of the walk (TW), and index of perceived exertion (IPE), quality of life using St George’s Respiratory Questionnaire (SGRQ) and developed a 12-week program of training on a vibrating platform. Results The mean age was 62.91±8.82 years old (72.7% male). The DW increased at the end of training with a difference between groups of 75 m; all domains of the SGRQ improved at the end of training. The effect size Cohen’s d ranged from small to large for all the measured results. Conclusion These preliminary results suggest that WBV may potentially be a safe and feasible way to improve functional capacity in the 6MWT of patients with COPD undergoing a training program on the vibrating platform as well as in all domains of the SGRQ quality of life. However, further studies with a larger number of patients are needed to establish the long-term effect on functional capacity and quality of life in these patients. PMID:25624756
A research program to reduce interior noise in general aviation airplanes. [test methods and results
NASA Technical Reports Server (NTRS)
Roskam, J.; Muirhead, V. U.; Smith, H. W.; Peschier, T. D.; Durenberger, D.; Vandam, K.; Shu, T. C.
1977-01-01
Analytical and semi-empirical methods for determining the transmission of sound through isolated panels and predicting panel transmission loss are described. Test results presented include the influence of plate stiffness and mass and the effects of pressurization and vibration damping materials on sound transmission characteristics. Measured and predicted results are presented in tables and graphs.
49 CFR 178.985 - Vibration test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...
49 CFR 178.985 - Vibration test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...
30 CFR 27.39 - Tests to determine resistance to vibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...
49 CFR 178.985 - Vibration test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...
30 CFR 27.39 - Tests to determine resistance to vibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...
30 CFR 27.39 - Tests to determine resistance to vibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...
30 CFR 27.39 - Tests to determine resistance to vibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...
49 CFR 178.985 - Vibration test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...
The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) Program: A government overview
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
LaRC, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work was performed by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program was made to identify those accomplishments and contributions which may be ascribed to the program. The purpose is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.
Measurement and Simulation of Low Frequency Impulse Noise and Ground Vibration from Airblasts
NASA Astrophysics Data System (ADS)
Hole, L. R.; Kaynia, A. M.; Madshus, C.
1998-07-01
This paper presents numerical simulations of low frequency ground vibration and dynamic overpressure in air using two different numerical models. Analysis is based on actual recordings during blast tests at Haslemoen test site in Norway in June 1994. It is attempted to use the collected airblast-induced overpressures and ground vibrations in order to asses the applicability of the two models. The first model is a computer code which is based on a global representation of ground and atmospheric layers, a so-called Fast Field Program (FFP). A viscoelastic and a poroelastic version of this model is used. The second model is a two-dimensionalmoving-loadformulation for the propagation of airblast over ground. The poroelastic FFP gives the most complete and realistic reproduction of the processes involved, including decay of peak overpressure amplitude and dominant frequency of signals with range. It turns out that themoving-loadformulation does not provide a complete description of the physics involved when the speed of sound in air is different from the ground wavespeeds.
Identification and proposed control of helicopter transmission noise at the source
NASA Technical Reports Server (NTRS)
Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.
1987-01-01
Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.
Identification and proposed control of helicopter transmission noise at the source
NASA Technical Reports Server (NTRS)
Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.; Coy, John J.
1988-01-01
Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.
Fixed Base Modal Survey of the MPCV Orion European Service Module Structural Test Article
NASA Technical Reports Server (NTRS)
Winkel, James P.; Akers, J. C.; Suarez, Vicente J.; Staab, Lucas D.; Napolitano, Kevin L.
2017-01-01
Recently, the MPCV Orion European Service Module Structural Test Article (E-STA) underwent sine vibration testing using the multi-axis shaker system at NASA GRC Plum Brook Station Mechanical Vibration Facility (MVF). An innovative approach using measured constraint shapes at the interface of E-STA to the MVF allowed high-quality fixed base modal parameters of the E-STA to be extracted, which have been used to update the E-STA finite element model (FEM), without the need for a traditional fixed base modal survey. This innovative approach provided considerable program cost and test schedule savings. This paper documents this modal survey, which includes the modal pretest analysis sensor selection, the fixed base methodology using measured constraint shapes as virtual references and measured frequency response functions, and post-survey comparison between measured and analysis fixed base modal parameters.
The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC
NASA Technical Reports Server (NTRS)
Brinkman, P. W.; Kretz, D.
1992-01-01
The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.
Microgravity Active Vibration Isolation System on Parabolic Flights
NASA Astrophysics Data System (ADS)
Dong, Wenbo; Pletser, Vladimir; Yang, Yang
2016-07-01
The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the parabolic flight campaign.
Ribot-Ciscar, Edith; Aimonetti, Jean-Marc; Azulay, Jean-Philippe
2017-12-15
The present study investigates whether proprioceptive training, based on kinesthetic illusions, can help in re-educating the processing of muscle proprioceptive input, which is impaired in patients with Parkinson's disease (PD). The processing of proprioceptive input before and after training was evaluated by determining the error in the amplitude of voluntary dorsiflexion ankle movement (20°), induced by applying a vibration on the tendon of the gastrocnemius-soleus muscle (a vibration-induced movement error). The training consisted of the subjects focusing their attention upon a series of illusory movements of the ankle. Eleven PD patients and eleven age-matched control subjects were tested. Before training, vibration reduced dorsiflexion amplitude in controls by 4.3° (P<0.001); conversely, vibration was inefficient in PD's movement amplitude (reduction of 2.1°, P=0.20). After training, vibration significantly reduced the estimated movement amplitude in PD patients by 5.3° (P=0.01). This re-emergence of a vibration-induced error leads us to conclude that proprioceptive training, based on kinesthetic illusions, is a simple means for re-educating the processing of muscle proprioceptive input in PD patients. Such complementary training should be included in rehabilitation programs that presently focus on improving balance and motor performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental test program for superconducting materials and devices
NASA Technical Reports Server (NTRS)
Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren
1991-01-01
This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.
Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.;
2016-01-01
In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.
NASA Technical Reports Server (NTRS)
Huff, Edward M.; Barszcz, Eric; Turner, Irem Y.; Lewicki, David; Decker, Harry; Norvig, Peter (Technical Monitor)
1999-01-01
As part of a cooperative research program between NASA Ames Research Center, NASA Glenn Research Center, and the U.S. Army Laboratories, a series of experiments are being performed on the 500 HP OH-58a Transmission Test Rig at NASA Glenn Research Center. The findings reported in this paper were drawn from Phase 1 of a two-phase experiment, and are focused on the vibration response of an undamaged pinion gear and planetary system operating in situ in the transmission test rig. Phase 2 of the experiment, which is reported elsewhere, introduced a seeded fault into the pinion gear and tracked its progress in real-time. Based on methods presented here, further experimental research will be conducted to examine planetary system faults.
Benefits of Spacecraft Level Vibration Testing
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kern, Dennis L.
2015-01-01
NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.
Designing and Building to ``Impossible'' Tolerances for Vibration Sensitive Equipment
NASA Astrophysics Data System (ADS)
Hertlein, Bernard H.
2003-03-01
As the precision and production capabilities of modern machines and factories increase, our expectations of them rise commensurately. Facility designers and engineers find themselves increasingly involved with measurement needs and design tolerances that were almost unthinkable a few years ago. An area of expertise that demonstrates this very clearly is the field of vibration measurement and control. Magnetic Resonance Imaging, Semiconductor manufacturing, micro-machining, surgical microscopes — These are just a few examples of equipment or techniques that need an extremely stable vibration environment. The challenge to architects, engineers and contractors is to provide that level of stability without undue cost or sacrificing the aesthetics and practicality of a structure. In addition, many facilities have run out of expansion room, so the design is often hampered by the need to reuse all or part of an existing structure, or to site vibration-sensitive equipment close to an existing vibration source. High resolution measurements and nondestructive testing techniques have proven to be invaluable additions to the engineer's toolbox in meeting these challenges. The author summarizes developments in this field over the last fifteen years or so, and lists some common errors of design and construction that can cost a lot of money in retrofit if missed, but can easily be avoided with a little foresight, an appropriate testing program and a carefully thought out checklist.
Distributed control using linear momentum exchange devices
NASA Technical Reports Server (NTRS)
Sharkey, J. P.; Waites, Henry; Doane, G. B., III
1987-01-01
MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.
49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Procedure for Base-level Vibration Testing C Appendix C to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three...
49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Procedure for Base-level Vibration Testing C Appendix C to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three...
Rønnestad, Bent R
2004-11-01
The purpose of this investigation was to compare the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men. The subjects were 14 recreationally resistance-trained men (age, 21-40 years) and the intervention period consisted of 5 weeks. After the initial testing, subjects were randomly assigned to either the "squat whole body vibration" (SWBV) group (n = 7), which performed squats on a vibration platform on a Smith Machine, or the "squat"(S) group (n = 7), which performed conventional squats with no vibrations on a Smith Machine. Testing was performed at the beginning and the end of the study and consisted of 1 repetition maximum (1RM) in squat and maximum jump height in countermovement jump (CMJ). A modified daily undulating periodization program was used during the intervention period in both groups. Both groups trained at the same percentage of 1RM in squats (6-10RM). After the intervention, CMJ performance increased significantly only in the SWBV (p < 0.01), but there was no significant difference between groups in relative jump height increase (p = 0.088). Both groups showed significant increases in 1RM performance in squats (p < 0.01). Although there was a trend toward a greater relative strength increase in the SWBV group, it did not reach a significant level. In conclusion, the preliminary results of this study point toward a tendency of superiority of squats performed on a vibration platform compared with squats without vibrations regarding maximal strength and explosive power as long as the external load is similar in recreationally resistance-trained men.
The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: A government overview
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1993-01-01
NASA-Langley, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work has been done by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program has been made to identify those accomplishments and contributions which may be ascribed to the program. The purpose of this paper is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.
Centaur liquid oxygen boost pump vibration test
NASA Technical Reports Server (NTRS)
Tang, H. M.
1975-01-01
The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.
Fabrication and Vibration Results of 30-cm Pyrolytic Graphite Ion Optics
NASA Technical Reports Server (NTRS)
DePano, Michael K.; Hart, Stephen L.; Hanna, Andrew A.; Schneider, Analyn C.
2004-01-01
Boeing Electron Dynamic Devices, Inc. is currently developing pyrolytic graphite (PG) grids designed to operate on 30-cm NSTAR-type thrusters for the Carbon Based Ion Optics (CBIO) program. The PG technology effort of the CBIO program aims to research PG as a flightworthy material for use in dished ion optics by designing, fabricating, and performance testing 30-cm PG grids. As such, PG grid fabrication results will be discussed as will PG design considerations and how they must differ from the NSTAR molybdenum grid design. Surface characteristics and surface processing of PG will be explored relative to effects on voltage breakdown. Part of the CBIO program objectives is to understand the erosion of PG due to Xenon ion bombardment. Discussion of PG and CC sputter yields will be presented relative to molybdenum. These sputter yields will be utilized in the life modeling of carbon-based grids. Finally, vibration results of 30-cm PG grids will be presented and compared to a first-order model generated at Boeing EDD. Performance testing results of the PG grids will not be discussed in this paper as it has yet to be completed.
Vibration Testing of Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey
2003-01-01
The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III
2011-01-01
NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.
An integrated draft gear model with the consideration of wagon body structural characteristics
NASA Astrophysics Data System (ADS)
Chang, Gao; Liangliang, Yang; Weihua, Ma; Min, Zhang; Shihui, Luo
2018-03-01
With the increase of railway wagon axle load and the growth of marshalling quantity, the problem caused by impact and vibration of vehicles is increasingly serious, which leads to the damage of vehicle structures and the components. In order to improve the reliability of longitudinal connection model for vehicle impact tests, a new railway wagon longitudinal connection model was developed to simulate and analyse vehicle impact tests. The new model is based on characteristics of longitudinal force transmission for vehicles and parts. In this model, carbodies and bogies were simplified to a particle system that can vibrate in the longitudinal direction, which corresponded to a stiffness-damping vibration system. The model consists of three sub-models, that is, coupler and draft gear sub-model, centre plate sub-model and carbody structure sub-model. Compared with conventional draft gear models, the new model was proposed with geometrical and mechanical relations of friction draft gears considered and with behaviours of sticking, sliding and impact between centre plate and centre bowl added. Besides, virtual springs between discrete carbodies were built to describe the structural deformation of carbody. A computation program for longitudinal dynamics based on vehicle impact tests was accomplished to simulate. Comparisons and analyses regarding the train dynamics outputs and vehicle impact tests were conducted. Simulation results indicate that the new wagon longitudinal connection model can provide a practical application environment for wagons, and the outputs of vehicle impact tests agree with those of field tests. The new model can also be used to study on longitudinal vibrations of different vehicles, of carbody and bogie, and of carbody itself.
Computer program to simulate Raman scattering
NASA Technical Reports Server (NTRS)
Zilles, B.; Carter, R.
1977-01-01
A computer program is described for simulating the vibration-rotation and pure rotational spectrum of a combustion system consisting of various diatomic molecules and CO2 as a function of temperature and number density. Two kinds of spectra are generated: a pure rotational spectrum for any mixture of diatomic and linear triatomic molecules, and a vibrational spectrum for diatomic molecules. The program is designed to accept independent rotational and vibrational temperatures for each molecule, as well as number densities.
NASA Technical Reports Server (NTRS)
Keegan, W. B.
1974-01-01
In order to produce cost effective environmental test programs, the test specifications must be realistic and to be useful, they must be available early in the life of a program. This paper describes a method for achieving such specifications for subsystems by utilizing the results of a statistical analysis of data acquired at subsystem mounting locations during system level environmental tests. The paper describes the details of this statistical analysis. The resultant recommended levels are a function of the subsystems' mounting location in the spacecraft. Methods of determining this mounting 'zone' are described. Recommendations are then made as to which of the various problem areas encountered should be pursued further.
Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan
2014-01-01
Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.
Spielmanns, Marc; Boeselt, Tobias; Gloeckl, Rainer; Klutsch, Anja; Fischer, Henrike; Polanski, Henryk; Nell, Christoph; Storre, Jan H; Windisch, Wolfram; Koczulla, Andreas R
2017-03-01
The objective of this study was to investigate the benefits of a low-volume out-patient whole-body vibration training (WBVT) program on exercise capacity in comparison with a calisthenics training program in subjects with COPD. In this single-center randomized controlled trial, 29 subjects with mild to severe COPD were randomized to WBVT or to calisthenics training, including relaxation and breathing retraining in combination with calisthenics exercises. Both groups equally exercised for a duration of 3 months with 2 sessions of 30 min/week. Outcome parameters were 6-min walk distance (6MWD, primary outcome), 5-repetition sit-to-stand test, leg press peak force, Berg balance scale, St George Respiratory Questionnaire, and COPD assessment test. Twenty-seven subjects completed the study (WBVT, n = 14; calisthenics training program, n = 13). Baseline characteristics between groups were comparable. Subjects in the WBVT group significantly improved median (interquartile range) 6MWD (+105 [45.5-133.5] m, P = .001), sit-to-stand test (-2.3 [-3.1 to -1.3] s, P = .001), peak force (28.7 [16.7-33.3] kg, P = .001), and Berg balance scale (1.5 [0.0-4.0] points, P = .055). Changes in 6MWD, sit-to-stand test, and leg press peak force were also found to be significantly different between groups in favor of the WBVT group. Only the between-group difference of the COPD assessment test score was in favor of the calisthenics training group ( P = .02). A low-volume WBVT program resulted in significantly and clinically relevant larger improvements in exercise capacity compared with calisthenics exercises in subjects with mild to severe COPD. (ClinicalTrials.gov registration DRKS9706.). Copyright © 2017 by Daedalus Enterprises.
A micro-vibration generated method for testing the imaging quality on ground of space remote sensing
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Wu, Qingwen
2018-03-01
In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.
Validation of Force Limited Vibration Testing at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Rice, Chad; Buehrle, Ralph D.
2003-01-01
Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-04-01
The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.
NASA Technical Reports Server (NTRS)
King, H. J.
1974-01-01
The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.
aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra
NASA Astrophysics Data System (ADS)
Ramirez-Cuesta, A. J.
2004-03-01
In Inelastic Neutron Scattering Spectroscopy, the neutron scattering intensity is plotted versus neutron energy loss giving a spectrum that looks like an infrared or a Raman spectrum. Unlike IR or Raman, INS does not have selection rules, i.e. all transitions are in principle observable. This particular characteristic makes INS a test bed for Density Functional Theory calculations of vibrational modes. aCLIMAX is the first user friendly program, within the Windows environment, that uses the output of normal modes to generate the calculated INS of the model molecule, making a lot easier to establish a connection between theory and experiment. Program summaryTitle of program: aCLIMAX 4.0.1 Catalogue identifier: ADSW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems: Windows 95 onwards, except Windows ME where it does not work Programming language used: Visual Basic Memory requirements: 64 MB No. of processors: 1 Has the code been parallelized: No No. of bytes in distributed program, including test data, etc.: 2 432 775 No. of lines in distributed program, including test data, etc.: 17 998 Distribution format: tar gzip file Nature of physical problem: Calculation of the Inelastic Neutron Scattering Spectra from DFT calculations of the vibrational density of states for molecules. Method of solution: INS spectral intensity calculated from normal modes analysis. Isolated molecule approximation. Typical time of running: From few seconds to few minutes depending on the size of the molecule. Unusual features of the program: Special care has to be taken in the case of computers that have different regional options than the English speaking countries, the decimal separator has to be set as "." (dot) instead of the usual "," (comma) that most countries use.
The effects of low-frequency vibrations on hepatic profile of blood
NASA Astrophysics Data System (ADS)
Damijan, Z.
2008-02-01
Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of bilirubin level [umol/l] in blood serum from 14.05 to 9.70 for 82% of participants, the probability level being p = 0.000041.
77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... technical amendment, the FAA clarified aircraft engine vibration test requirements in the airworthiness... amendment, the FAA intended to clarify vibration test requirements in Sec. 33.83 of 14 Code of Federal... read as follows: Sec. 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish...
TESTING OF A 20-METER SOLAR SAIL SYSTEM
NASA Technical Reports Server (NTRS)
Gaspar, J. L.; Behun, V.; Mann, T.; Murphy D.; Macy, B.
2005-01-01
This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program1-3. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance4. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods were evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
TESTING OF A 20-METER SOLAR SAIL SYSTEM
NASA Technical Reports Server (NTRS)
Gaspar, Jim L.; Behun, Vaughan; Mann, Troy; Murphy, Dave; Macy, Brian
2005-01-01
This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods are evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
Seminar on Understanding Digital Control and Analysis in Vibration Test Systems
NASA Technical Reports Server (NTRS)
1975-01-01
The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.
2004-04-15
The business end of a Second Stage (S-II) slowly emerges from the shipping container as workers prepare to transport the Saturn V component to the testing facility at MSFC. The Second Stage (S-II) underwent vibration and engine firing tests. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
X-ray metal film filters at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.
1989-01-01
Thin aluminum foil filters have been evaluated at cryogenic temperatures. The results of the test program, including cold cycling and vibration testing, indicate that these filters are fully successful at cryogenic temperatures and can provide the high X-ray transmittance and high background rejection required for the blocking filters which are being developed for the X-Ray Spectrometer, one of the focal plane instruments on the Advanced X-Ray Astrophysics Facility.
NASA Astrophysics Data System (ADS)
Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu
2016-03-01
This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.
Structure design and enviromental test of BGO calorimeter for satellite DAMPE
NASA Astrophysics Data System (ADS)
Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin
2016-07-01
The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
Investigation of Concrete Floor Vibration Using Heel-Drop Test
NASA Astrophysics Data System (ADS)
Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd
2018-04-01
In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.
Application of NASTRAN to propeller-induced ship vibration
NASA Technical Reports Server (NTRS)
Liepins, A. A.; Conaway, J. H.
1975-01-01
An application of the NASTRAN program to the analysis of propeller-induced ship vibration is presented. The essentials of the model, the computational procedure, and experience are described. Desirable program enhancements are suggested.
In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture
NASA Technical Reports Server (NTRS)
Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.
2002-01-01
Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.
Differential effect of muscle vibration on intracortical inhibitory circuits in humans
Rosenkranz, Karin; Rothwell, John C
2003-01-01
Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m.), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits. PMID:12821723
Internal rotor friction instability
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Multiple direction vibration fixture
Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.
1991-01-01
An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.
NASTRAN applications to aircraft propulsion systems
NASA Technical Reports Server (NTRS)
White, J. L.; Beste, D. L.
1975-01-01
The use of NASTRAN in propulsion system structural integration analysis is described. Computer support programs for modeling, substructuring, and plotting analysis results are discussed. Requirements on interface information and data exchange by participants in a NASTRAN substructure analysis are given. Static and normal modes vibration analysis results are given with comparison to test and other analytical results.
Gear Tooth Wear Detection Algorithm
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.
2015-01-01
Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta; Kvaternik, Raymond G.
1991-01-01
A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.
Environmental Test Program for the Mars Exploration Rover Project
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; VanVelzer, Paul L.
2004-01-01
On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.
Mechanical system diagnostics using vibration testing techniques
NASA Technical Reports Server (NTRS)
Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.
1990-01-01
The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.
Application of higher harmonic blade feathering for helicopter vibration reduction
NASA Technical Reports Server (NTRS)
Powers, R. W.
1978-01-01
Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.
Vibration sensibility testing in the workplace. Day-to-day reliability.
Rosecrance, J C; Cook, T M; Satre, D L; Goode, J D; Schroder, M J
1994-09-01
Loss of vibration sensibility has been suggested as an early indicator of peripheral compression neuropathy, including carpal tunnel syndrome. Although vibration sensibility has been used frequently to evaluate carpal tunnel syndrome, the day-to-day reliability of vibration measurements in an industrial population measured at the workplace has not been assessed. Vibration sensibility testing was performed at the university ergonomics laboratory on 50 volunteers (100 hands) and at a newspaper company on 50 workers (100 hands). Vibration perception and disappearance thresholds were measured on two occasions separated by 3 to 5 days. Student's t tests indicated no significant differences between the first and second tests or between the two groups. Pearson product-moment correlations for test-retest reliability were lower in the industry group but were relatively high despite the less than optimal testing conditions. Our findings suggest that vibration sensibility measurements are reliable from day to day not only in the laboratory but also in the workplace.
Engineering evaluation of SSME dynamic data from engine tests and SSV flights
NASA Technical Reports Server (NTRS)
1986-01-01
An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.
Next-generation avionics packaging and cooling 'test results from a prototype system'
NASA Astrophysics Data System (ADS)
Seals, J. D.
The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.
Wang, Pu; Yang, Xiaotian; Yang, Yonghong; Yang, Lin; Zhou, Yujing; Liu, Chuan; Reinhardt, Jan D; He, Chengqi
2015-10-01
To assess the effects of whole body vibration for pain, stiffness and physical functions in patients with knee osteoarthritis. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Physiotherapy Evidence Database (PEDro) and EMBASE (up to October 2014) to identify relevant randomized controlled trials. The outcome measures were pain, stiffness and physical functions. Two investigators identified eligible studies and extracted data independently. The PEDro score was used to evaluate the methodological quality of the selected studies. Standard mean differences (SMDs) and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed using the I(2) test. A total of five randomized controlled trials involving 170 patients with knee osteoarthritis met the inclusion criteria. Only four studies involving 144 patients were deemed to be good quality trials (PEDro score = 6-7). Meta-analysis revealed that whole body vibration has a significant treatment effect in Western Ontario and McMaster Universities index physical function score (SMD = -0.72 points, 95% CI = -1.14 to -0.30, P = 0.0008), 12 weeks whole body vibration improved the 6-minute walk test (SMD 1.15 m, 95% CI 0.50 to 1.80, P = 0.0006) and balance (SMD = -0.78 points, 95% CI -1.40 to -0.16, P = 0.01). Whole body vibration was not associated with a significant reduction in Western Ontario and McMaster Universities index pain and stiffness score. Eight-week and 12-week whole body vibration is beneficial for improving physical functions in patients with knee osteoarthritis and could be included in rehabilitation programs. © The Author(s) 2014.
14 CFR 33.43 - Vibration test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...
14 CFR 33.83 - Vibration test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs, spacers...
14 CFR 33.83 - Vibration test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs, spacers...
14 CFR 33.43 - Vibration test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...
14 CFR 33.83 - Vibration test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs, spacers...
14 CFR 33.43 - Vibration test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...
Research on simultaneous impact of hand-arm and whole-body vibration.
Kowalski, Piotr; Zając, Jacek
2012-01-01
This article presents the results of laboratory tests on the combined effect of whole-body vibration (WBV) and hand-arm vibration (HAV). The reactions of subjects exposed to various combinations of vibration were recorded. The vibrotactile perception threshold (VPT) test identified changes caused by exposure to vibration. Ten male subjects met the criteria of the study. There were 4 series of tests: a reference test and tests after exposure to HAV, WBV, and after simultaneous exposure to HAV and WBV. An analysis of the results (6000 ascending and descending VPTs) showed that the changes in VPTs were greatest after simultaneous exposure to both kinds of vibration. The increase in VPT, for all stimulus frequencies, was then higher than after exposure to HAV or WBV only.
Jones, Margaret T
2014-09-01
The purpose was to examine the effects of progressive-overload, whole-body vibration (WBV) training on strength and power as part of a 15-week periodized, strength training (ST) program. Eighteen collegiate women athletes with ≥1 year of ST and no prior WBV training participated in the crossover design. Random assignment to 1 of the 2 groups followed pretests of seated medicine ball throw (SMBT), single-leg hop for distance (LSLH, RSLH), countermovement jump (CMJ), 3 repetition maximum (3RM) front squat (FS), pull-up (PU), and 3RM bench press (BP). Whole-body vibration was two 3-week phases of dynamic and static hold body weight exercises administered 2 d·wk in ST sessions throughout the 15-week off-season program. Total WBV exposure was 6 minutes broken into 30-second bouts with 60-second rest (1:2 work-to-relief ratio). Exercises, frequency, and amplitude progressed in intensity from the first 3-week WBV training to the second 3-week phase. Repeated-measures analysis of variances were used to analyze the SMBT, CMJ, LSLH, RSLH, FS, PU, and BP tests. Alpha level was p ≤ 0.05. Front squat, LSLH, and RSLH increased (p = 0.001) from pre- to posttest; FS increased from mid- to posttest. Pull-up increased (p = 0.008) from pre- to posttest. Seated medicine ball throw and BP showed a trend of increased performance from pre- to posttest (p = 0.11). Two 3-week phases of periodized, progressive-overload WBV + ST training elicited gains in strength and power during a 15-week off-season program. Greatest improvements in performance tests occurred in the initial WBV phase. Implementing WBV in conjunction with ST appears to be more effective in the early phases of training.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1974-01-01
A bearing damper, operating on the support flexure of a pivoted pad in a tilting-pad type gas-lubricated journal bearing, has been designed, built, and tested under externally-applied random vibrations. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10-Kwe turbogenerator had previously been subjected in the MTI Vibration Test Laboratory to external random vibrations, and vibration response data had been recorded and analyzed for amplitude distribution and frequency content at a number of locations in the machine. Based on data from that evaluation, a piston-type damper was designed and developed for each of the two flexibly-supported journal bearing pads (one in each of the two three-pad bearings). A modified BRU, with dampers installed, has been re-tested under random vibration conditions. Root-mean-square vibration amplitudes were determined from the test data, and displacement power spectral density analyses have been performed. Results of these data reduction efforts have been compared with vibration tolerance limits. Results of the tests indicate significant reductions in vibration levels in the bearing gas-lubricant films, particularly in the rigidly-mounted pads. The utility of the gas-lubricated damper for limiting rotor-bearing system vibrations in high-speed turbomachinery has thus been demonstrated.
Vibration Testing of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.
2000-01-01
The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Vibration Platform Training in Women at Risk for Symptomatic Knee Osteoarthritis
Segal, Neil A.; Glass, Natalie A.; Shakoor, Najia; Wallace, Robert
2013-01-01
Objective To determine whether a platform exercise program with vibration is more effective than the platform exercise alone for improving lower limb muscle strength and power in women age 45-60 with risk factors for knee osteoarthritis (OA). Design Randomized, controlled study Setting Academic center Participants 48 women age 45-60 years old with risk factors for knee OA (history of knee injury or surgery or BMI≥25kg/m2). Interventions Subjects were randomized to a twice weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises) on either a vertically vibrating (35Hz, 2mm), or a non-vibrating platform. Main Outcome Measurements The main outcome measures included change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. Results 39 out of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly due to lack of time. There were no intergroup differences in age, BMI, or activity level. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0±69.7 W in the vibration group (p<.0001) and 58.2±96.2 W in the control group (p=0.0499), but did not differ between groups (p=0.2262). Stair climb power improved by 53.4±64.7 W in the vibration group (p=0.0004) and 55.7±83.3 W in the control group (p=0.0329), but did not differ between groups (p=0.9272). Conclusions Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than participation in the exercise program without vibration. PMID:22981005
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.
2002-01-01
This progress report focuses on the use of the STructural Analysis RoutineS suite program, SOLIDS, input for the AeroStructures Test Wing. The AeroStructures Test Wing project as a whole is described. The use of the SOLIDS code to find the mode shapes of a structure is discussed. The frequencies, and the structural dynamics to which they relate are examined. The results of the CFD predictions are compared to experimental data from a Ground Vibration Test.
Force Limited Vibration Testing
NASA Technical Reports Server (NTRS)
Scharton, Terry; Chang, Kurng Y.
2005-01-01
This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test data. A simple two degree of freedom system is shown and the governing equations for basic force limiting results for this system are reviewed. The design and results of the shuttle vibration forces (SVF) experiments are reviewed. The Advanced Composition Explorer (ACE) also was used to validate force limiting. Test instrumentation and supporting equipment are reviewed including piezo-electric force transducers, signal processing and conditioning systems, test fixtures, and vibration controller systems. Several examples of force limited vibration testing are presented with some results.
14 CFR 33.83 - Vibration test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.83 Section 33.83 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine...
33 CFR 159.103 - Vibration test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Vibration test. 159.103 Section 159.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device...
A new compound control method for sine-on-random mixed vibration test
NASA Astrophysics Data System (ADS)
Zhang, Buyun; Wang, Ruochen; Zeng, Falin
2017-09-01
Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.
Portable Life Support Stretcher Unit (PLSSU) Environmental Tests: Preproduction Model.
1982-06-01
fixture was taken out by fluttering of the castering wheels since the securing straps were too soft to transmit the motion. At higher frequencies, it was...5 3.3 Proof Tests . . . 6 3.4 Vibration Tests . . . 9 3.4.1 General . . . 9 3.4.2 Pretest Inspection . . . 12 3.4.3 Vertical Vibration on Wheels ...14 3.4.4 Horizontal Vibration on Wheels . . . 15 3.4.5 Horizontal Vibration with Handle Suspension . . . 16 3.4.6 Vertical Vibration with Handle
Vibration and acoustic testing of TOPEX/Poseidon satellite
NASA Technical Reports Server (NTRS)
Boatman, Dave; Scharton, Terry; Hershfeld, Donald; Larkin, Paul
1992-01-01
The satellite was subjected to a 1.5G swept sine vibration test and a 146 dB overall level acoustic test, in accordance with Ariane launch vehicle requirements, at the NASA Goddard Space Flight Center. Extensive pretest analysis of the sine test was conducted to plan the input notching and to justify vibration testing the satellite only in the longitudinal axis. A unique measurement system was utilized to determine the six components of interface force between the shaker and the satellite in the sine vibration test. The satellite was heavily instrumented in both the sine vibration and acoustic test in order to insure that the launch loads were enveloped with appropriate margin and that satellite responses did not exceed the compatibilities of the structure and equipment. The test specification, objectives, instrumentation, and test results are described herein.
Force Limited Vibration Testing Monograph
NASA Technical Reports Server (NTRS)
Scharton, Terry D.
1997-01-01
The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.
Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng
2016-01-01
The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...
NASA Astrophysics Data System (ADS)
Borovkov, Alexei I.; Avdeev, Ilya V.; Artemyev, A.
1999-05-01
In present work, the stress, vibration and buckling finite element analysis of laminated beams is performed. Review of the equivalent single-layer (ESL) laminate theories is done. Finite element algorithms and procedures integrated into the original FEA program system and based on the classical laminated plate theory (CLPT), first-order shear deformation theory (FSDT), third-order theory of Reddy (TSDT-R) and third- order theory of Kant (TSDT-K) with the use of the Lanczos method for solving of the eigenproblem are developed. Several numerical tests and examples of bending, free vibration and buckling of multilayered and sandwich beams with various material, geometry properties and boundary conditions are solved. New effective higher-order hierarchical element for the accurate calculation of transverse shear stress is proposed. The comparative analysis of results obtained by the considered models and solutions of 2D problems of the heterogeneous anisotropic elasticity is fulfilled.
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
CM-2 Environmental / Modal Testing of Spacehab Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.
NASA Astrophysics Data System (ADS)
Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.
2018-01-01
Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.
Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Garza, Frederico R.
2001-01-01
A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.
Active Piezoelectric Vibration Control of Subscale Composite Fan Blades
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas
2012-01-01
As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.
Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras
2017-10-01
ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V. G.; Milton Franklin Benial, A.
2014-08-01
The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis.
NASA Technical Reports Server (NTRS)
1973-01-01
The proceedings of a conference on NASA Structural Analysis (NASTRAN) to analyze the experiences of users of the program are presented. The subjects discussed include the following: (1) statics and buckling, (2) vibrations and dynamics, (3) substructing, (4) new capability, (5) user's experience, and (6) system experience. Specific applications of NASTRAN to spacecraft, aircraft, nuclear power plants, and materials tests are reported.
Bellows flow-induced vibrations
NASA Technical Reports Server (NTRS)
Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.
1983-01-01
The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
49 CFR 178.608 - Vibration standard.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...
49 CFR 178.608 - Vibration standard.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...
49 CFR 178.608 - Vibration standard.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...
49 CFR 178.608 - Vibration standard.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...
49 CFR 178.608 - Vibration standard.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.
1990-01-01
The data are reproduced from NSBEO-1-67, which contains some preliminary results of the test program, and from NASA-Langley working papers 259 and 288 which are now out of print. Included are sample acceleration and strain recordings from F-104, B-58, and XB-70 sonic boom exposures, along with tabulations of the maximum acceleration and strain values measured for each one of about 130 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
2014-01-01
Background Mechanical loads induced through muscle contraction, vibration, or compressive forces are thought to modulate tissue plasticity. With the emergence of regenerative medicine, there is a need to understand the optimal mechanical environment (vibration, load, or muscle force) that promotes cellular health. To our knowledge no mechanical system has been proposed to deliver these isolated mechanical stimuli in human tissue. We present the design, performance, and utilization of a new technology that may be used to study localized mechanical stimuli on human tissues. A servo-controlled vibration and limb loading system were developed and integrated into a single instrument to deliver vibration, compression, or muscle contractile loads to a single limb (tibia) in humans. The accuracy, repeatability, transmissibility, and safety of the mechanical delivery system were evaluated on eight individuals with spinal cord injury (SCI). Findings The limb loading system was linear, repeatable, and accurate to less than 5, 1, and 1 percent of full scale, respectively, and transmissibility was excellent. The between session tests on individuals with spinal cord injury (SCI) showed high intra-class correlations (>0.9). Conclusions All tests supported that therapeutic loads can be delivered to a lower limb (tibia) in a safe, accurate, and measureable manner. Future collaborations between engineers and cellular physiologists will be important as research programs strive to determine the optimal mechanical environment for developing cells and tissues in humans. PMID:24894666
Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Oswald, Fred B.; Townsend, Dennis P.; Coy, John J.
1990-01-01
The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near term research plans in the gear noise, vibration, and diagnostics area.
Flexible Animation Computer Program
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.
1990-01-01
FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.; Dompka, R. V.
1987-01-01
The AH-1G NASTRAN finite element model (FEM) is described and the correlations with measured data that were conducted to verify the model are summarized. Comparisons of the AH-1G NASTRAN FEM calculations with measured data include the following: (1) fuselage and tailboom static load deflection (stiffness) testing, (2) airframe ground vibration testing (0-30 H<), (3) airframe flight vibration testing (main rotor, 2,4, and 6/rev), and (4) tailboom effective skin static testing. A description of the modeling rationale and techniques used to develop the NASTRAN FEM is presented in conjunction with all previous correlation work. In general, the correlations show good agreement between analysis and test in stiffness and vibration response through 15 to 20 Hz. For higher frequencies (equal to or greater than 4/rev (21.6 Hz)), the vibration responses generally did not agree well. Also, the lateral (2/rev (10.8 Hz)) flight vibration responses were much lower in the FEM than test, indicating that there is a significant excitation source other than at the main rotor hub that is affecting the lateral vibrations, such as downwash impingement on the vertical tail.
Particle damping applied research on mining dump truck vibration control
NASA Astrophysics Data System (ADS)
Song, Liming; Xiao, Wangqiang; Guo, Haiquan; Yang, Zhe; Li, Zeguang
2018-05-01
Vehicle vibration characteristics has become an important evaluation indexes of mining dump truck. In this paper, based on particle damping technology, mining dump truck vibration control was studied by combining the theoretical simulation with actual testing, particle damping technology was successfully used in mining dump truck cab vibration control. Through testing results analysis, with a particle damper, cab vibration was reduced obviously, the methods and basis were provided for vehicle vibration control research and particle damping technology application.
CM-2 Environmental/Modal Testing of SPACEHAB Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.
Bifilar analysis users manual, volume 2
NASA Technical Reports Server (NTRS)
Cassarino, S. J.
1980-01-01
The digital computer program developed to study the vibration response of a coupled rotor/bifilar/airframe coupled system is described. The theoretical development of the rotor/airframe system equations of motion is provided. The fuselage and bifilar absorber equations of motion are discussed. The modular block approach used in the make-up of this computer program is described. The input data needed to run the rotor and bifilar absorber analyses is described. Sample output formats are presented and discussed. The results for four test cases, which use the major logic paths of the computer program, are presented. The overall program structure is discussed in detail. The FORTRAN subroutines are described in detail.
NPS Solar Cell Array Tester Cubesat Flight Testing and Integration
2014-09-01
with current (I). P V I (2.1) This is significant because the battery discharge test will not lineup perfectly with Figure 12...accordance with the charging procedures [13]. 3. NPS-SCAT Power Budget A power budget analysis was performed to determine if the NPS-SCAT is self...using procedures developed by Marissa Brummitt, and with the assistance of Adam Hill, NPS-SCAT Program Manager. 1. ELaNa IV Random Vibration Levels
The History of a Decision: A Standard Vibration Test Method for Qualification
Rizzo, Davinia; Blackburn, Mark
2017-01-01
As Mil-Std-810G and subsequent versions have included multiple degree of freedom vibration test methodologies, it is important to understand the history and factors that drove the original decision in Mil-Std-810 to focus on single degree of freedom (SDOF) vibration testing. By assessing the factors and thought process of early Mil-Std-810 vibration test methods, it enables one to better consider the use of multiple degree of freedom testing now that it is feasible with today’s technology and documented in Mil-Std-810. This paper delves into the details of the decision made in the 1960s for the SDOF vibration testing standards in Mil-Std-810more » beyond the limitations of technology at the time. We also consider the implications for effective test planning today considering the advances in test capabilities and improvements in understanding of the operational environment.« less
The History of a Decision: A Standard Vibration Test Method for Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Davinia; Blackburn, Mark
As Mil-Std-810G and subsequent versions have included multiple degree of freedom vibration test methodologies, it is important to understand the history and factors that drove the original decision in Mil-Std-810 to focus on single degree of freedom (SDOF) vibration testing. By assessing the factors and thought process of early Mil-Std-810 vibration test methods, it enables one to better consider the use of multiple degree of freedom testing now that it is feasible with today’s technology and documented in Mil-Std-810. This paper delves into the details of the decision made in the 1960s for the SDOF vibration testing standards in Mil-Std-810more » beyond the limitations of technology at the time. We also consider the implications for effective test planning today considering the advances in test capabilities and improvements in understanding of the operational environment.« less
Adaptive structures flight experiments
NASA Astrophysics Data System (ADS)
Martin, Maurice
The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.
Adaptive Structures Flight Experiments
NASA Technical Reports Server (NTRS)
Martin, Maurice
1992-01-01
The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.
[Programs for better health of individuals exposed to increased occupational risk].
Poteriaeva, E L; Nesina, I A; Liutkevich, A A; Tepliakov, G V; Egorova, L S
2010-01-01
The article deals with problems of optimizing sanatorium-and-spa programs to better health in workers exposed to vibration, through using panto-magnesium pearl baths. Examinations covered 49 individuals exposed to local vibration at work, who underwent health programs including magnetotherapy, manual massage and exercise therapy. The authors conclude that maximal effect of improved life quality was seen after panto-magnesium gas baths course auxiliary to the programs.
Research on Vibration Test in Urban Indoor Substation
NASA Astrophysics Data System (ADS)
Ma, Yuchao; Mo, Juan; Xu, Jin; Fan, Baozhen
2018-01-01
The problem of vibration and noise of urban indoor substations has becoming more and more socially concerned.The urban indoor substation of 110kV and its conjoined buildings were taken as the research object and the vibration tests of the transformer and each floor slab were respectively carried out.The sound vibration characteristics and sound transmission rules of the urban indoor substation were obtained through the time-frequency analysis and coherence analysis of the test data. The vibration spectrum of transformer body was mainly 100Hz together with its multiplying factors and the vibration characteristics of the floor slab were basically the same as those of the transformer body. it is crucial to control the vibration and noise transmission in the equipment floor of the urban indoor substation.
Vibration platform training in women at risk for symptomatic knee osteoarthritis.
Segal, Neil A; Glass, Natalie A; Shakoor, Najia; Wallace, Robert
2013-03-01
To determine whether a platform exercise program with vibration is more effective than platform exercise alone for improving lower limb muscle strength and power in women ages 45 to 60 with risk factors for knee osteoarthritis (OA). Randomized, controlled study. Academic center. A total of 48 women ages 45-60 years with risk factors for knee OA (a history of knee injury or surgery or body mass index ≥25 kg/m(2)). Subjects were randomly assigned to a twice-weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises, step-ups, and lunges) on either a vertically vibrating platform (35 Hz, 2 mm) or a nonvibrating platform. Change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. A total of 39 of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly because of a lack of time. No intergroup differences in age, body mass index, or activity level existed. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0 ± 69.7 W in the vibration group (P < .0001) and 58.2 ± 96.2 W in the control group (P = .0499) but did not differ between groups (P = .2262). Stair climb power improved by 53.4 ± 64.7 W in the vibration group (P = .0004) and 55.7 ± 83.3 W in the control group (P = .0329) but did not differ between groups (P = .9272). Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, the addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than did participation in the exercise program without vibration. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sopher, R.; Twomey, W. J.
1990-01-01
NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.
46 CFR 162.050-37 - Vibration test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Vibration test. 162.050-37 Section 162.050-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-37 Vibration test. (a...
Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics
NASA Technical Reports Server (NTRS)
Steven Snyder, John; Brophy, John R.
2004-01-01
Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.
A New Large Vibration Test Facility Concept for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug
2014-01-01
The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.
NASA Technical Reports Server (NTRS)
Meer, David W.; Lewandowski, Edward J.
2010-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.
NASA Astrophysics Data System (ADS)
Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.
2014-10-01
The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.
Impact Testing and Simulation of Composite Airframe Structures
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II
2014-01-01
Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.
Structural damping results from vibration tests of straight piping sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, A.G.; Thinnes, G.L.
EG and G Idaho is assisting the USNRC and the Pressure Vessel Research Committee in supporting a final position on revised damping values for structural analyses of nuclear piping systems. As part of this program, a series of vibrational tests on 76-mm and 203-mm (3-in. amd 8-in.) Schedule 40 carbon steel piping was conducted to determine the changes in structural damping due to various parametric effects. The 10-m (33-ft) straight sections of piping were rigidly supported at the ends. Spring, rod, and constant force hangers, as well as a sway brace and snubbers were included as intermediate supports. Excitation wasmore » provided by low-force level hammer inpacts, a hydraulic shaker, and a 445-kN (50-ton) overhead crane. Data was recorded using acceleration, strain, and displacement time histories. This paper presents results from the testing showing the effect of stress level and type of supports on structural damping in piping.« less
ISE structural dynamic experiments
NASA Technical Reports Server (NTRS)
Lock, Malcolm H.; Clark, S. Y.
1988-01-01
The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.
A comparison of whole-body vibration and resistance training on total work in the rotator cuff.
Hand, Jason; Verscheure, Susan; Osternig, Louis
2009-01-01
Whole-body vibration machines are a relatively new technology being implemented in the athletic setting. Numerous authors have examined the proposed physiologic mechanisms of vibration therapy and performance outcomes. Changes have mainly been observed in the lower extremity after individual exercises, with minimal attention to the upper extremity and resistance training programs. To examine the effects of a novel vibration intervention directed at the upper extremity as a precursor to a supervised, multijoint dynamic resistance training program. Randomized controlled trial. National Collegiate Athletic Association Division IA institution. Thirteen female student-athletes were divided into the following 2 treatment groups: (1) whole-body vibration and resistance training or (2) resistance training only. Participants in the vibration and resistance training group used an experimental vibration protocol of 2 x 60 seconds at 4 mm and 50 Hz, in a modified push-up position, 3 times per week for 10 weeks, just before their supervised resistance training session. Isokinetic total work measurements of the rotator cuff were collected at baseline and at week 5 and week 10. No differences were found between the treatment groups (P > .05). However, rotator cuff output across time increased in both groups (P < .05). Although findings did not differ between the groups, the use of whole-body vibration as a precursor to multijoint exercises warrants further investigation because of the current lack of literature on the topic. Our results indicate that indirectly strengthening the rotator cuff using a multijoint dynamic resistance training program is possible.
NASA Technical Reports Server (NTRS)
Davis, M. W.
1984-01-01
A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.
NASA Technical Reports Server (NTRS)
Dodge, W. G.
1968-01-01
Computer program determines the forced vibration in three dimensional space of a multiple degree of freedom beam type structural system. Provision is made for the longitudinal axis of the analytical model to change orientation at any point along its length. This program is used by industries in which structural design dynamic analyses are performed.
NASA Technical Reports Server (NTRS)
1974-01-01
A feasibility unit suitable for use as a voice recorder on the space shuttle was developed. A modification, development, and test program is described. A LM-DSEA recorder was modified to achieve the following goals: (1) redesign case to allow in-flight cartridge change; (2) time code change from LM code to IRIG-B 100 pps code; (3) delete cold plate requirements (also requires deletion of long-term thermal vacuum operation at 0.00001 MMHg); (4) implement track sequence reset during cartridge change; (5) reduce record time per cartridge because of unavailability of LM thin-base tape; and (6) add an internal Vox key circuit to turn on/off transport and electronics with voice data input signal. The recorder was tested at both the LM and shuttle vibration levels. The modified recorder achieved the same level of flutter during vibration as the DSEA recorder prior to modification. Several improvements were made over the specification requirements. The high manufacturing cost is discussed.
Untangling the Herman-infrared spectra of nitrogen atmospheric-pressure dielectric-barrier discharge
NASA Astrophysics Data System (ADS)
Čermák, Peter; Annušová, Adriana; Rakovský, Jozef; Martišovitš, Viktor; Veis, Pavel
2018-05-01
This study presents the first application of the N2 Herman-infrared (HIR) ro-vibrational model for the metrology of the atmospheric-pressure dielectric-barrier discharge. Our recent findings of suitable conditions for observation of the unperturbed HIR system (Annušová et al Contrib. Plasma Phys. 2017) gave us the opportunity to develop and test a numerical representation of this complex system composed of 75 branches. Commonly, the HIR covers a part of the near infrared spectra (690–850 nm) with its bands mixed with the N2 first positive system (1PS), which hinders applications of these systems for optical metrology of the discharge. In this work, we present a complex ro-vibrational model of the 1PS and HIR systems, which allowed us to untangle their spectra and retrieve the rotational temperature and vibrational populations of the systems for the first time. The latter was achieved by coupling the PGHOPHER simulation package with molecular constants obtained from high-resolution experiments. To test the model, the results and precision were compared to the retrievals based on the models of the NO γ and N2 second positive systems using the LIFBASE and SPECAIR programs, respectively.
Development and testing of an active boring bar for increased chatter immunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
Recent advances in smart materials have renewed interest in the development of improved manufacturing processes featuring sensing, processing, and active control. In particular, vibration suppression in metal cutting has received much attention because of its potential for enhancing part quality while reducing the time and cost of production. Although active tool clamps have been recently demonstrated, they are often accompanied by interfacing issues that limit their applicability to specific machines. Under the auspices of the Laboratory Directed Research and Development program, the project titled {open_quotes}Smart Cutting Tools for Precision Manufacturing{close_quotes} developed an alternative approach to active vibration control in machining.more » Using the boring process as a vehicle for exploration, a commercially available tool was modified to incorporate PZT stack actuators for active suppression of its bending modes. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on many machines. Cutting tests conducted on a horizontal lathe fitted with a hardened steel workpiece verify that the actively damped boring bar yields significant vibration reduction and improved surface finishes as compared to an unmodified tool.« less
Vibrational energy distribution analysis (VEDA): scopes and limitations.
Jamróz, Michał H
2013-10-01
The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations
NASA Astrophysics Data System (ADS)
Jamróz, Michał H.
2013-10-01
The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.
Method and apparatus for determining material structural integrity
Pechersky, Martin
1996-01-01
A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Sathe, V G; Milton Franklin Benial, A
2014-08-14
The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
1967-01-01
This photo shows the Saturn V first stage being lowered to the ground following a successful test to determine the effects of continual vibrations simulating the effects of an actual launch. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Gerhardsson, Lars; Gillström, Lennart; Hagberg, Mats
2014-01-01
Exposure to hand-held vibrating tools may cause the hand-arm vibration syndrome (HAVS). The aim was to study the test-retest reliability of hand and muscle strength tests, and tests for the determination of thermal and vibration perception thresholds, which are used when investigating signs of neuropathy in vibration exposed workers. In this study, 47 vibration exposed workers who had been investigated at the department of Occupational and Environmental Medicine in Gothenburg were compared with a randomized sample of 18 unexposed subjects from the general population of the city of Gothenburg. All participants passed a structured interview, answered several questionnaires and had a physical examination including hand and finger muscle strength tests, determination of vibrotactile (VPT) and thermal perception thresholds (TPT). Two weeks later, 23 workers and referents, selected in a randomized manner, were called back for the same test-procedures for the evaluation of test-retest reliability. The test-retest reliability after a two week interval expressed as limits of agreement (LOA; Bland-Altman), intra-class correlation coefficients (ICC) and Pearson correlation coefficients was excellent for tests with the Baseline hand grip, Pinch-grip and 3-Chuck grip among the exposed workers and referents (N = 23: percentage of differences within LOA 91 - 100%; ICC-values ≥0.93; Pearson r ≥0.93). The test-retest reliability was also excellent (percentage of differences within LOA 96-100 %) for the determination of vibration perception thresholds in digits 2 and 5 bilaterally as well as for temperature perception thresholds in digits 2 and 5, bilaterally (percentage of differences within LOA 91 - 96%). For ICC and Pearson r the results for vibration perception thresholds were good for digit 2, left hand and for digit 5, bilaterally (ICC ≥ 0.84; r ≥0.85), and lower (ICC = 0.59; r = 0.59) for digit 2, right hand. For the latter two indices the test-retest reliability for the determination of temperature thresholds was lower and showed more varying results. The strong test-retest reliability for hand and muscle strength tests as well as for the determination of VPTs makes these procedures useful for diagnostic purposes and follow-up studies in vibration exposed workers.
Substrate-borne vibrational signals in intraspecific communication of GWSS
USDA-ARS?s Scientific Manuscript database
Exploitation of vibrational signals for suppressing glassy-winged sharpshooter (GWSS) populations in citrus orchards and vineyards could prove to be a useful tool. However, existing knowledge of GWSS vibrational communication is insufficient to implement a management program for this pest in Califor...
Effect of bit wear on hammer drill handle vibration and productivity.
Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David
2017-08-01
The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramey, G. ED; Jenkins, Robert C.
1994-01-01
The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
NASA Technical Reports Server (NTRS)
Messaro. Semma; Harrison, Phillip
2010-01-01
Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.
Investigation of empirical damping laws for the space shuttle
NASA Technical Reports Server (NTRS)
Bernstein, E. L.
1973-01-01
An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.
Optimised Environmental Test Approaches in the GOCE Project
NASA Astrophysics Data System (ADS)
Ancona, V.; Giordano, P.; Casagrande, C.
2004-08-01
The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is dedicated to measuring the Earth's gravity field and modelling the geoid with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme and is scheduled for launch in 2006. The program is managed by a consortium of European companies: Alenia Spazio, the prime contractor, Astrium GmbH, the platform responsible, Alcatel Space Industries and Laben, suppliers of the main payloads, respectively the Electrostatic Gravity Gradiometer (EGG) and the Satellite to Satellite Tracking Instrument (SSTI), actually a precise GPS receiver. The GOCE Assembly Integration and Verification (AIV) approach is established and implemented in order to demonstrate to the customer that the satellite design meets the applicable requirements and to qualify and accept from lower level up to system level. The driving keywords of "low cost" and "short schedule" program, call for minimizing the development effort by utilizing off-the-shelf equipment combined with a model philosophy lowering the number of models to be used. The paper will deal on the peculiarities of the optimized environmental test approach in the GOCE project. In particular it introduces the logic of the AIV approach and describe the foreseen tests at system level within the SM environmental test campaign, outlining the Quasi Static test performed in the frame of the SM sine vibration tests, and the PFM environmental test campaign pinpointing the deletion of the Sine Vibration test on PFM model. Furthermore the paper highlights how the Model and Test Effectiveness Database (MATD) can be utilized for the prediction of the new space projects like GOCE Satellite.
Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter
2013-07-01
To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (p<0.001) in the VIB-group and 18.5 (31.5%) (p<0.001) in the BAL-group by the end of the nine-month intervention period, but no differences were seen between the two groups (p=0.45). Balance tests performed on the Leonardo device did not show any significantly different responses between the two groups after nine months (p≥0.09). Strength training combined with either proprioceptive training or whole-body vibration was associated with improvements in some, but not all, measures of postural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Negreira, J.; Trollé, A.; Jarnerö, K.; Sjökvist, L.-G.; Bard, D.
2015-03-01
In timber housing constructions, vibrations can be a nuisance for inhabitants. Notably, the vibrational response of wooden floor systems is an issue in need of being dealt with more adequately in the designing of such buildings. Studies addressing human response to vibrations are needed in order to be able to better estimate what level of vibrations in dwellings can be seen as acceptable. In the present study, measurements on five different wooden floors were performed in a laboratory environment at two locations in Sweden (SP in Växjö and LU in Lund). Acceleration measurements were carried out while a person either was walking on a particular floor or was seated in a chair placed there as the test leader was walking on the floor. These participants filled out a questionnaire regarding their perception and experiencing of the vibrations in question. Independently of the subjective tests, several static and dynamic characteristics of the floors were determined through measurements. The ultimate aim was to develop indicators of human response to floor vibrations, specifically those regarding vibration acceptability and vibration annoyance, their being drawn based on relationships between the questionnaire responses obtained and the parameter values determined on the basis of the measurements carried out. To that end, use was made of multilevel regression. Although the sample of floors tested was small, certain clear trends could be noted. The first eigenfrequency (calculated in accordance with Eurocode 5) and Hu and Chui's criterion (calculated from measured quantities) proved to be the best indicators of vibration annoyance, and the Maximum Transient Vibration Value (computed on the basis of the accelerations experienced by the test subjects) to be the best indicator of vibration acceptability.
An observational study of the effect of vibration on the caking of suspensions in oily vehicles.
Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G
2016-11-30
An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Exploitation of vibrational signals for suppressing glassy-winged sharpshooter (GWSS) populations could prove to be a useful tool. However, existing knowledge on GWSS vibrational communication is insufficient to implement a management program for this pest in California. Therefore, the objective of ...
Structural, vibrational spectroscopic and quantum chemical studies on indole-3-carboxaldehyde
NASA Astrophysics Data System (ADS)
Premkumar, R.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin
2017-05-01
The potential energy surface (PES) scan was performed for indole-3-carboxaldehyde (ICA) and the most stable optimized conformer was predicted using DFT/B3LYP method with 6-31G basis set. The vibrational frequencies of ICA were theoretically calculated by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The vibrational spectra were experimentally recorded by Fourier transform-infrared (FT-IR) and Fourier transform-Raman spectrometer (FT-Raman). The computed vibrational frequencies were scaled by scaling factors to yield a good agreement with observed vibrational frequencies. The theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of potential energy distribution (PED) calculation using VEDA 4.0 program. The molecular interaction, stability and intramolecular charge transfer of ICA were studied using frontier molecular orbitals (FMOs) analysis and Mulliken atomic charge distribution shows the distribution of the atomic charges. The presence of intramolecular charge transfer was studied using natural bond orbital (NBO) analysis.
Force Limited Vibration Test of HESSI Imager
NASA Technical Reports Server (NTRS)
Amato, Deborah; Pankow, David; Thomsen, Knud
2000-01-01
The High Energy Solar Spectroscopic Imager (HESSI) is a solar x-ray and gamma-ray observatory scheduled for launch in November 2000. Vibration testing of the HESSI imager flight unit was performed in August 1999. The HESSI imager consists of a composite metering tube, two aluminum trays mounted to the tube on titanium flexure mounts, and nine modulation grids mounted on each tray. The vibration tests were acceleration controlled and force limited, in order to prevent overtesting. The force limited strategy reduced the shaker force and notched the acceleration at resonances. The test set-up, test levels, and results are presented. The development of the force limits is also discussed. The imager successfully survived the vibration testing.
Orthogonal system of fractural and integrated diagnostic features in vibration analysis
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Boychenko, S. N.
2017-08-01
The paper presents the results obtained in the studies of the orthogonality of the vibration diagnostic features system comprising the integrated features, particularly - root mean square values of vibration acceleration, vibration velocity, vibration displacement and fractal feature (Hurst exponent). To diagnose the condition of the equipment by the vibration signal, the orthogonality of the vibration diagnostic features is important. The fact of orthogonality shows that the system of features is not superfluous and allows the maximum coverage of the state space of the object being diagnosed. This, in turn, increases reliability of the machinery condition monitoring results. The studies were carried out on the models of vibration signals using the programming language R.
NASA Technical Reports Server (NTRS)
Thompson, Shelby; Holden, Kritina; Ebert, Douglas; Root, Phillip; Adelstein, Bernard; Jones, Jeffery
2009-01-01
The primary objective of the Short Duration Bioastronautics Investigation (SDBI) 1904 was to determine visual performance limits during Shuttle operational vibration and g-loads, specifically through the determination of minimal usable font sizes using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under the extreme g- and vibration conditions of launch. Existing data on shuttle vibration magnitude and frequency is incomplete and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data have been collected. Previous work by NASA on the effects of vibration and linear g-loads on human performance was conducted during the Gemini era, but these experiments were performed using displays and controls that are dramatically different than current concepts being considered by the Constellation Program. Recently, three investigations of visual performance under vibration have been completed at NASA Ames Research Center: the first examining whole-body vibration, the second employing whole-body vibration coupled with a sustained g-load, and a third examining the effects of peak versus extended duration vibration. However, all of these studies were conducted using only a single x-axis direction (eyeballs in/out). Estimates of thrust oscillations from the Constellation Ares-I first stage are driving the need for realistic human performance requirements. SDBI 1904 was an opportunity to address the need for requirements by conducting a highly focused and applied evaluation in a relevant spaceflight environment. The SDBI was a companion effort to Detailed Test Objective (DTO) 695, which measured shuttle seat accelerations (vibration) during ascent. Data from the SDBI will serve an important role in interpreting the DTO vibration data. Both SDBI 1904 and DTO 695 were low impact with respect to flight resources, and combined, they represent an efficient and focused problem solving approach. This project provided (a) immediate data for developing preliminary human performance vibration requirements; (b) flight validated inputs for ongoing and future ground-based research; and (c) preliminary information related to Orion display format design.
NASA Technical Reports Server (NTRS)
Jackola, Arthur S.; Hartjen, Gary L.
1992-01-01
The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.
NASA Technical Reports Server (NTRS)
Lameris, J.; Stevenson, S.; Streeter, B.
1982-01-01
The application of fiber reinforced composite materials, such as graphite epoxy and Kevlar, for secondary or primary structures developing in the commercial airplane industry was investigated. A composite panel program was initiated to study the effects of some of the parameters that affect noise reduction of these panels. The fiber materials and the ply orientation were chosen to be variables in the test program. It was found that increasing the damping characteristics of a structural panel will reduce the vibration amplitudes at resonant frequencies with attendant reductions in sound reduction. Test results for a dynamic absorber, a tuned damper, are presented and evaluated.
Gearbox vibration diagnostic analyzer
NASA Technical Reports Server (NTRS)
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
Substructure program for analysis of helicopter vibrations
NASA Technical Reports Server (NTRS)
Sopher, R.
1981-01-01
A substructure vibration analysis which was developed as a design tool for predicting helicopter vibrations is described. The substructure assembly method and the composition of the transformation matrix are analyzed. The procedure for obtaining solutions to the equations of motion is illustrated for the steady-state forced response solution mode, and rotor hub load excitation and impedance are analyzed. Calculation of the mass, damping, and stiffness matrices, as well as the forcing function vectors of physical components resident in the base program code, are discussed in detail. Refinement of the model is achieved by exercising modules which interface with the external program to represent rotor induced variable inflow and fuselage induced variable inflow at the rotor. The calculation of various flow fields is discussed, and base program applications are detailed.
Underground coal mine instrumentation and test
NASA Technical Reports Server (NTRS)
Burchill, R. F.; Waldron, W. D.
1976-01-01
The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.
Wireless Sensor Applications in Extreme Aeronautical Environments
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2013-01-01
NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.
NASA Astrophysics Data System (ADS)
Ideguchi, Tsuyoshi; Yoshida, Ryujyu; Ooshima, Keita
We examined how test subject impressions of music changed when artificial vibrations were incorporated as constituent elements of a musical composition. In this study, test subjects listened to several music samples in which different types of artificial vibration had been incorporated and then subjectively evaluated any resulting changes to their impressions of the music. The following results were obtained: i) Even if rhythm vibration is added to a silent component of a musical composition, it can effectively enhance musical fitness. This could be readily accomplished when actual sounds that had been synchronized with the vibration components were provided beforehand. ii) The music could be listened to more comfortably by adding not only a natural vibration extracted from percussion instruments but also artificial vibration as tactile stimulation according to intentional timing. Furthermore, it was found that the test subjects' impression of the music was affected by a characteristic of the artificial vibration. iii) Adding vibration to high-frequency areas can offer an effective and practical way of enhancing the appeal of a musical composition. iv) The movement sensations of sound and vibration could be experienced when the strength of the sound and vibration are modified in turn. These results suggest that the intentional application of artificial vibration could result in a sensitivity amplification factor on the part of a listener.
von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A
2011-01-01
We determined whether the effect of exercise on bone mineral density (BMD) and falls can be enhanced by whole body vibration (WBV). In summary, the multi-purpose exercise training was effective to increase lumbar BMD but added WBV did not enhance this effect. However, falls were lowest in the exercise program combined with WBV. WBV is a new approach to reduce the risk of osteoporotic fractures. In the "Erlangen Longitudinal Vibration Study" (ELVIS), we investigated whether WBV enhances the effect of multifunctional exercise on BMD and falls. One hundred fifty-one postmenopausal women (68.5 ± 3.1 years) were randomly assigned to a: (1) conventional training group (TG); (2) conventional training group including vibration (TGV); and (3) wellness control group (CG). TG conducted an exercise program consisting of 20 min dancing aerobics, 5 min balance training, 20 min functional gymnastics, and 15 min dynamic leg-strength training on vibration plates (without vibration) twice a week. TGV performed an identical exercise regimen with vibration (25-35 Hz) during the leg-strengthening sequence. CG performed a low-intensity wellness program. BMD was measured at the hip and lumbar spine at baseline and follow-up using the DXA method. Falls were recorded daily via the calendar method. After 18 months, an increase in BMD at the lumbar spine was observed in both training groups (TGV: +1.5% vs. TG: +2.1%). The difference between the TG and the CG (1.7%) was significant. At the hip no changes were determined in either group. The fall frequency was significantly lower in TGV (0.7 falls/person) compared with CG (1.5), whereas the difference between TG (0.96) and CG was not significant. A multifunctional training program had a positive impact on lumbar BMD. The application of vibration did not enhance these effects. However, only the training including WBV affected the number of falls significantly.
Sonic fatigue testing of an advanced composite aileron
NASA Technical Reports Server (NTRS)
Soovere, J.
1982-01-01
The sonic fatigue test program to verify the design of the composite inboard aileron for the L-1011 airplane is described. The composite aileron is fabricated from graphite/epoxy minisandwich covers which are attached to graphite/epoxy front spar and ribs, and to an aluminum rear spar with fasteners. The program covers the development of random fatigue data by means of coupon testing and modal studies on a representative section of the composite aileron, culminating in the accelerated sonic fatigue proof test. The composite aileron sustained nonlinear panel vibration during the proof test without failure. Viscous damping coefficients as low as 0.4% were measured on the panels. The effects of moisture conditioning and elevated temperature on the random fatigue life of both undamaged and impact damaged coupons were investigated. The combination of impact damage, moisture, and a 180 F temperature could reduce the random fatigue life by 50%.
PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra
NASA Astrophysics Data System (ADS)
Sibaev, Marat; Crittenden, Deborah L.
2016-06-01
The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Warnaar, D. B.; Ling, B. J. AEHERSTROM, C. l. afkennedy, d
1986-01-01
A computer program is described which is especially suited for making vibration and buckling calculations for prestressed lattice structures that might be used for space application. Structures having repetitive geometry are treated in a very efficient manner. Detailed instructions for data input are given along with several example problems illustrating the use and capability of the program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameka, H.F.; Jensen, J.O.
1993-05-01
This report presents the computed optimized geometry and vibrational IR and Raman frequencies of the V-agent VX. The computations are performed with the Gaussian 90 Program Package using 6-31G* basis sets. We assign the vibrational frequencies and correct each frequency by multiplying it with a previously derived 6-31G* correction factor. The result is a computer-generated prediction of the IR and Raman spectra of VX. This study was intended as a blind test of the utility of IR spectral prediction. Therefore, we intentionally did not look at experimental data on the IR and Raman spectra of VX.... IR Spectra, VX, Ramanmore » spectra, Computer predictions.« less
Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih
2013-04-01
In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
NASA Technical Reports Server (NTRS)
Kogut, J.; Larduinat, E.
1985-01-01
The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.
Performance Investigation of a Full-Scale Hybrid Composite Bull Gear
NASA Technical Reports Server (NTRS)
Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott
2016-01-01
Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.
Performance Investigation of a Full-Scale Hybrid Composite Bull Gear
NASA Technical Reports Server (NTRS)
LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott
2016-01-01
Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.
NASA Technical Reports Server (NTRS)
Scharton, Terry D.
1995-01-01
The intent of this paper is to make a case for developing and conducting vibration tests which are both realistic and practical (a question of tailoring versus standards). Tests are essential for finding things overlooked in the analyses. The best test is often the most realistic test which can be conducted within the cost and budget constraints. Some standards are essential, but the author believes more in the individual's ingenuity to solve a specific problem than in the application of standards which reduce problems (and technology) to their lowest common denominator. Force limited vibration tests and base-drive modal tests are two examples of realistic, but practical testing approaches. Since both of these approaches are relatively new, a number of interesting research problems exist, and these are emphasized herein.
Propellant Expulsion in Unmanned Spacecraft
1966-07-01
29 19. Experimental WAC Corporal piston tank .. ......... . 33 20. Three piston tank designs used in the Corporal program ..... 34 21...propellant. The only universal F. Filling seal at this writing is a metal bellows. Usually, piston tank assemblies are filled by a vacuum technique...externally gener- Piston tank assemblies are subjected to essentially the ated loads due to shock and vibration may be the sever- same tests as bladders. 31
A method for experimental modal separation
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1977-01-01
A method is described for the numerical simulation of multiple-shaker modal survey testing using simulated experimental data to optimize the shaker force-amplitude distribution for the purpose of isolating individual modes of vibration. Inertia, damping, stiffness, and model data are stored on magnetic disks, available by direct access to the interactive FORTRAN programs which perform all computations required by this relative force amplitude distribution method.
Concorde noise-induced building vibrations: John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.
49 CFR 178.803 - Testing and certification of IBCs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2 5 X Stacking 7 X 7 X 7 X... X Righting 2 5 X Tear 5 X 1 Flexible IBCs must be capable of withstanding the vibration test. 2 This... each test. 6 The vibration test may be performed in another order for IBCs manufactured and tested...
49 CFR 178.803 - Testing and certification of IBCs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2,5 X Stacking 7 X 7 X 7 X... X Righting 2,5 X Tear 5 X 1 Flexible IBCs must be capable of withstanding the vibration test. 2 This... each test. 6 The vibration test may be performed in another order for IBCs manufactured and tested...
49 CFR 178.803 - Testing and certification of IBCs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2 5 X Stacking 7 X 7 X 7 X... X Righting 2 5 X Tear 5 X 1 Flexible IBCs must be capable of withstanding the vibration test. 2 This... each test. 6 The vibration test may be performed in another order for IBCs manufactured and tested...
Analysis and control of the vibration of doubly fed wind turbine
NASA Astrophysics Data System (ADS)
Yu, Manye; Lin, Ying
2017-01-01
The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.
Vibration and noise analysis of a gear transmission system
NASA Technical Reports Server (NTRS)
Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.
1993-01-01
This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.
System transmits mechanical vibration into hazardous environment
NASA Technical Reports Server (NTRS)
Armstrong, D. G.; Gaal, A. E.
1965-01-01
Vibration transducers are tested in a hazardous environment using a single axis transmission system with an electromagnetic shaker table and vibrating wires which drive identical rocker arms, one in the test cell and the other outside. This system can be modified for a multiaxis configuration.
Research on the design of fixture for motor vibration test
NASA Astrophysics Data System (ADS)
Shen, W. X.; Ma, W. S.; Zhang, L. W.
2018-03-01
The vibration reliability of the new energy automobile motor plays a very important role in driving safety, so it is very important to test the vibration durability of the motor. In the vibration test process, the fixture is very important, simulated road spectrum signal vibration can be transmitted without distortion to the motor through the fixture, fixture design directly affect the result of vibration endurance test. On the basis of new energy electric vehicle motor concrete structure, Two fixture design and fixture installation schemes for lateral cantilever type and base bearing type are put forward in this article, the selection of material, weighting process, middle alignment process and manufacturing process are summarized.The modal analysis and frequency response calculation of the fixture are carried out in this design, combine with influence caused by fixture height and structure profile on response frequency, the response frequency of each order of the fixture is calculated, then ultimately achieve the purpose of guiding the design.
Dual-Actuator Active Vibration-Control System
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel
1994-01-01
Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.
Asynchronous vibration problem of centrifugal compressor
NASA Technical Reports Server (NTRS)
Fujikawa, T.; Ishiguro, N.; Ito, M.
1980-01-01
An unstable asynchronous vibration problem in a high pressure centrifugal compressor and the remedial actions against it are described. Asynchronous vibration of the compressor took place when the discharge pressure (Pd) was increased, after the rotor was already at full speed. The typical spectral data of the shaft vibration indicate that as the pressure Pd increases, pre-unstable vibration appears and becomes larger, and large unstable asynchronous vibration occurs suddenly (Pd = 5.49MPa). A computer program was used which calculated the logarithmic decrement and the damped natural frequency of the rotor bearing systems. The analysis of the log-decrement is concluded to be effective in preventing unstable vibration in both the design stage and remedial actions.
A Comparison of Whole-Body Vibration and Resistance Training on Total Work in the Rotator Cuff
Hand, Jason; Verscheure, Susan; Osternig, Louis
2009-01-01
Abstract Context: Whole-body vibration machines are a relatively new technology being implemented in the athletic setting. Numerous authors have examined the proposed physiologic mechanisms of vibration therapy and performance outcomes. Changes have mainly been observed in the lower extremity after individual exercises, with minimal attention to the upper extremity and resistance training programs. Objective: To examine the effects of a novel vibration intervention directed at the upper extremity as a precursor to a supervised, multijoint dynamic resistance training program. Design: Randomized controlled trial. Setting: National Collegiate Athletic Association Division IA institution. Patients or Other Participants: Thirteen female student-athletes were divided into the following 2 treatment groups: (1) whole-body vibration and resistance training or (2) resistance training only. Intervention(s): Participants in the vibration and resistance training group used an experimental vibration protocol of 2 × 60 seconds at 4 mm and 50 Hz, in a modified push-up position, 3 times per week for 10 weeks, just before their supervised resistance training session. Main Outcome Measure(s): Isokinetic total work measurements of the rotator cuff were collected at baseline and at week 5 and week 10. Results: No differences were found between the treatment groups (P > .05). However, rotator cuff output across time increased in both groups (P < .05). Conclusions: Although findings did not differ between the groups, the use of whole-body vibration as a precursor to multijoint exercises warrants further investigation because of the current lack of literature on the topic. Our results indicate that indirectly strengthening the rotator cuff using a multijoint dynamic resistance training program is possible. PMID:19771284
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramsey, G. ED; Jenkins, Robert C.
1995-01-01
This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.
McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher
2013-01-01
Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.
Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump
NASA Astrophysics Data System (ADS)
Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng
2017-06-01
In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.
System level mechanical testing of the Clementine spacecraft
NASA Technical Reports Server (NTRS)
Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter
1994-01-01
This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.
Safety and Abuse Testing of Energizer LiFeS2 AA Cells
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Baldwin, Laura; Bragg, Bobby J.
2003-01-01
The LiFeS2 test program was part of the study on state-of-the-art batteries/cells available in the commercial market. It was carried out in an effort to replace alkaline AA cells for Shuttle and Station applications. A large number of alkaline cells are used for numerous Shuttle and Station applications as loose cells. Other government agencies reported good performance and abuse tolerance of the AA LiFeS2 cells. In this study, only abuse testing was performed on the cells to determine their tolerance. The tests carried out were over-discharge, external short circuit, heat-to-vent, vibration and drop.
Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien
2016-03-23
Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician's dominant hand.
30 CFR 75.211 - Roof testing and scaling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...
30 CFR 75.211 - Roof testing and scaling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...
30 CFR 75.211 - Roof testing and scaling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...
30 CFR 75.211 - Roof testing and scaling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...
von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A
2012-02-01
We examined whether the effect of multipurpose exercise can be enhanced by whole-body vibration (WBV). One hundred and fifty-one post-menopausal women (68.5 ± 3.1 years) were randomly assigned to three groups: (1) a training group (TG); (2) training including vibration (VTG); and (3) a wellness control group (CG). TG and VTG performed the same training program twice weekly (60 min), consisting of aerobic and strength exercises, with the only difference that leg strength exercises (15 min) were performed with (VTG) or without (TG) vibration. CG performed a low-intensity "wellness" program. At baseline and after 18 months, body composition was determined using dual-X-ray-absorptiometry. Maximum isometric strength was determined for the legs and the trunk region. Leg power was measured by countermovement jumps using a force-measuring plate. In the TG lean body mass, total body fat, and abdominal fat were favorably affected, but no additive effects were generated by the vibration stimulus. However, concerning muscle strength and power, there was a tendency in favor of the VTG. Only vibration training resulted in a significant increase of leg and trunk flexion strength compared with CG. In summary, WBV embedded in a multipurpose exercise program showed minor additive effects on body composition and neuromuscular performance. © 2010 John Wiley & Sons A/S.
NASA Technical Reports Server (NTRS)
Badgley, R. H.; Fleming, D. P.; Smalley, A. J.
1975-01-01
A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.
A Quadruped Micro-Robot Based on Piezoelectric Driving
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-01-01
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964
A Quadruped Micro-Robot Based on Piezoelectric Driving.
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-03-07
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.
Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam
NASA Technical Reports Server (NTRS)
Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson
2018-01-01
Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.
Force limits measured on a space shuttle flight
NASA Technical Reports Server (NTRS)
Scharton, T.
2000-01-01
The random vibration forces between a payload and the sidewall of the space shuttle have been measured in flight and compared with the force specifications used in ground vibration tests. The flight data are in agreement with a semi-empirical method, which is widely used to predict vibration test force limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Jiang, Hao
The first portion of this report provides a detailed description of fiscal year (FY) 2015 test result corrections and analysis updates based on FY 2016 updates to the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) program methodology, which is used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal conditions of transport (NCT). The CIRFT consists of a U-frame test setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages connecting to a universal testing machine. The curvature SNF rod bending is obtained through a three-point deflection measurementmore » method. Three linear variable differential transformers (LVDTs) are clamped to the side connecting plates of the U-frame and used to capture deformation of the rod. The second portion of this report provides the latest CIRFT data, including data for the hydride reorientation test. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNF samples into a single zone. A detailed examination revealed that, at the same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), LMK, and mixed uranium-plutonium oxide (MOX). Just looking at the strain, LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The third portion of this report provides finite element analysis (FEA) dynamic deformation simulation of SNF assemblies . In a horizontal layout under NCT, the fuel assembly’s skeleton, which is formed by guide tubes and spacer grids, is the primary load bearing apparatus carrying and transferring vibration loads within an SNF assembly. These vibration loads include interaction forces between the SNF assembly and the canister basket walls. Therefore, the integrity of the guide tubes and spacer grids critically affects the vibration intensity of the fuel assembly during transport and must be considered when developing the multipurpose purpose canister (MPC) design for safe SNF transport.« less
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.
A New Approach in Force-Limited Vibration Testing of Flight Hardware
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Kern, Dennis L.
2012-01-01
The force-limited vibration test approaches discussed in NASA-7004C were developed to reduce overtesting associated with base shake vibration tests of aerospace hardware where the interface responses are excited coherently. This handbook outlines several different methods of specifying the force limits. The rationale for force limiting is based on the disparity between the impedances of typical aerospace mounting structures and the large impedances of vibration test shakers when the interfaces in general are coherently excited. Among these approaches, the semi-empirical method is presently the most widely used method to derive the force limits. The inclusion of the incoherent excitation of the aerospace structures at mounting interfaces has not been accounted for in the past and provides the basis for more realistic force limits for qualifying the hardware using shaker testing. In this paper current methods for defining the force limiting specifications discussed in the NASA handbook are reviewed using data from a series of acoustic and vibration tests. A new approach based on considering the incoherent excitation of the structural mounting interfaces using acoustic test data is also discussed. It is believed that the new approach provides much more realistic force limits that may further remove conservatism inherent in shaker vibration testing not accounted for by methods discussed in the NASA handbook. A discussion on using FEM/BEM analysis to obtain realistic force limits for flight hardware is provided.
Frequency-Domain Identification Of Aeroelastic Modes
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1991-01-01
Report describes flight measurements and frequency-domain analyses of aeroelastic vibrational modes of wings of XV-15 tilt-rotor aircraft. Begins with description of flight-test methods. Followed by brief discussion of methods of analysis, which include Fourier-transform computations using chirp z transformers, use of coherence and other spectral functions, and methods and computer programs to obtain frequencies and damping coefficients from measurements. Includes brief description of results of flight tests and comparisions among various experimental and theoretical results. Ends with section on conclusions and recommended improvements in techniques.
Xu, Lin; Cardinale, Marco; Rabotti, Chiara; Beju, Bogdan; Mischi, Massimo
2016-03-01
Vibration exercise (VE) has been suggested as an effective method to improve strength and power capabilities. However, the underlying mechanisms in response to VE are still unclear. A pulley-like VE system, characterized by sinusoidal force applications has been developed and tested for proof of concept in a previous study. The aim of this study was to evaluate the effects of such force modulation on elbow flexors strength and compare it with conventional methods. Forty subjects were randomly divided into 4 groups of 10: the vibration group (VG), the no-vibration group (NVG), the dumbbell group (DG), and the control group (CG). Biceps curl exercises were used to train the elbow flexors 2 times a week for 8 weeks. Subjects in the VG were trained using a ramp-up baseline with superimposed 30 Hz sinusoidal vibration whereas the subjects in the NVG were trained using the same baseline but without vibration. Subjects in the DG were trained using dumbbells, and the subjects in the CG were not trained. The isometric break force (IBF) and 1 repetition maximum (1RM) of the subject's dominant arm were assessed before and after the 8-week training period. The VG achieved 1RM improvement (22.7%) larger than the NVG (10.8%) and comparable with the DG (22.3%). Differences in IBF gains following the training period among the training groups were found to be not significant. Our results support the inclusion of the proposed VE in strength training programs aimed at improving dynamic strength on the elbow flexors.
NASA Astrophysics Data System (ADS)
Kim, Hongjin; Park, Chan Il; Lee, Sun Ho; Kim, Yoon Young
2013-02-01
This work aims to investigate a possibility of non-contact vibration modal testing for bending and torsional motions of cylindrical bodies such as pipes. Here, a transducer operated by the electromagnetic acoustic coupling principle is newly devised. Depending on vibration modes, bending or torsional, different magnetic circuit configurations are employed to fabricate the transducer. The main characteristic of the proposed transducer is non-contact vibration generation in a test specimen without any mechanical movement of the actuating unit. It can be also used as a non-contact sensing unit if necessary. The validity and the performance of the proposed non-contact modal testing method are checked with several experiments.
A survey of experiments and experimental facilities for control of flexible structures
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.
1989-01-01
This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.
Used fuel rail shock and vibration testing options analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.
2014-09-25
The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data thatmore » are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.« less
Research on mining truck vibration control based on particle damping
NASA Astrophysics Data System (ADS)
Liming, Song; Wangqiang, Xiao; Zeguang, Li; Haiquan, Guo; Zhe, Yang
2018-03-01
More and more attentions were got by people about the research on mining truck driving comfort. As the vibration transfer terminal, cab is one of the important part of mining truck vibration control. In this paper, based on particle damping technology and its application characteristics, through the discrete element modeling, DEM & FEM coupling simulation and analysis, lab test verification and actual test in the truck, particle damping technology was successfully used in driver’s seat base of mining truck, cab vibration was reduced obviously, meanwhile applied research and method of particle damping technology in mining truck vibration control were provided.
A Resonant Damping Study Using Piezoelectric Materials
NASA Technical Reports Server (NTRS)
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
Space power demonstrator engine, phase 1
NASA Technical Reports Server (NTRS)
1987-01-01
The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.
NASA Technical Reports Server (NTRS)
Green, C.
1971-01-01
Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.
Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System
2007-08-01
Department of Aerospace S~and Mechanical Engineering I 20070904056 I EXPERIMENTS IN SOUND AND STRUCTURAL VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED...SOUND AND STRUCTURAL * VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED PROPULSION SYSTEM FINAL TECHNICAL REPORT Prepared by: Scott C. Morris Assistant...Vibration Using Air - 5b. GRANT NUMBER Analog Model Ducted Propulsion Systems N00014-1-0522 5C. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
PVAST Propeller Vibration and Strength Analysis Program Version 7.3 User’s Manual
2001-03-01
Copy No: ___ _ PVAST Propeller Vibration and Strength Analysis Program Version 7.3 User’s Manual Koko ,T S, Palmeter, M F, Chernuka, M.W. MARTEC...34St name, rruddle mittal If rruhtary, show rank, e g. Doe, Maj. John E.) Koko ,T.S., Palmeter, M.F., Chernuka, M.W. DATE OF PUBLICATION (month and
Examining the Usefulness of ISO 10819 Anti-Vibration Glove Certification.
Budd, Diandra; House, Ron
2017-03-01
Anti-vibration gloves are commonly worn to reduce hand-arm vibration exposure from work with hand-held vibrating tools when higher priority and more effective controls are unavailable. For gloves to be marketed as 'anti-vibration' they must meet the vibration transmissibility criteria described in the International Organization for Standardization (ISO) standard 10819 (2013). Several issues exist with respect to the methodology used for glove testing as well as the requirements for glove design and composition in ISO 10819 (2013). The true usefulness of anti-vibration gloves at preventing hand-arm vibration syndrome (HAVS) is controversial, given that their performance is dependent on tool vibration characteristics and the anthropometrics of workers in real working conditions. The major risk associated with the use of anti-vibration gloves is that it will give employees and employers a false sense of protection against the negative effects of hand-transmitted vibration. This commentary examines the limitations of the current international standards for anti-vibration glove testing and certification, thereby calling into question the degree of protection that anti-vibration gloves provide against HAVS, and cautioning users to consider both their benefits and potential drawbacks on a case-by-case basis. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions
McDowell, Thomas W.; Dong, Ren G.; Welcome, Daniel E.; Xu, Xueyan S.; Warren, Christopher
2015-01-01
Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand–arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction. PMID:24160755
Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Townsend, Dennis P.; Oswald, Fred B.; Decker, Harry J.
1992-01-01
A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings.
Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao
2014-12-01
Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.
Ground vibration test results of a JetStar airplane using impulsive sine excitation
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Voracek, David F.
1989-01-01
Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.
Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)
2001-01-01
A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.
Method and apparatus for determining material structural integrity
Pechersky, M.J.
1994-01-01
Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
NASA Technical Reports Server (NTRS)
Lundebjerg, Kristen
2016-01-01
The Energy Test System's Area (ESTA) provides test capabilities and facilities to develop, evaluate or certify hardware in support of human spaceflight. The branch has a few different technical areas including pyrotechnics, batteries, electrical systems, power systems, propulsion and fluids. I will be mainly worked in the propulsion and fluids area. The tests/activities include testing the fluid and energy conversion systems that are required for the exploration and development of space. This group includes function and vibration tests, as well as thermal and vacuum tests. I was trained and certified as an ESTA test director in order to work on tests and sub tests with my mentor as well as the rest of the ESTA team. As a test director, I had the responsibility and authority for planning, developing, safety, execution and reporting on assigned test programs.
Giorgos, Paradisis; Elias, Zacharogiannis
2007-01-01
The aim of this study was to investigate the effect of 6 wk of whole body vibration (WBV) training on sprint running kinematics and explosive strength performance. Twenty-four volunteers (12 women and 12 men) participated in the study and were randomised (n = 12) into the experimental and control groups. The WBV group performed a 6-wk program (16-30 min·d-1, 3 times a week) on a vibration platform. The amplitude of the vibration platform was 2.5 mm and the acceleration was 2.28 g. The control group did not participate in any training. Tests were performed Pre and post the training period. Sprint running performance was measured during a 60 m sprint where running time, running speed, step length and step rate were calculated. Explosive strength performance was measured during a counter movement jump (CMJ) test, where jump height and total number of jumps performed in a period of 30 s (30CVJT). Performance in 10 m, 20 m, 40 m, 50 m and 60 m improved significantly after 6 wk of WBV training with an overall improvement of 2.7%. The step length and running speed improved by 5.1% and 3.6%, and the step rate decreased by 3.4%. The countermovement jump height increased by 3.3%, and the explosive strength endurance improved overall by 7.8%. The WBV training period of 6 wk produced significant changes in sprint running kinematics and explosive strength performance. Key pointsWBV training.Sprint running kinematics.Explosive strength performance PMID:24149223
NASA Astrophysics Data System (ADS)
Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı
2015-01-01
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
In the present study, the experimental and theoretical vibrational spectra of 5-bromo-2'-deoxyuridine were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF) and density functional B3LYP method with 6-31G(d), 6-31G(d,p), 6-311++G(d) and 6-311++G(d,p) basis sets by Gaussian program, for the first time. The assignments of vibrational frequencies were performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and theoretical vibrational frequencies are compared with the corresponding experimental data and they were seen to be in a good agreement with the each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.
Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations.
Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih
2013-04-15
In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found. Copyright © 2013 Elsevier B.V. All rights reserved.
Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı
2015-01-25
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found. Copyright © 2014 Elsevier B.V. All rights reserved.
A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.
Apollo experience report: Command and service module communications subsystem
NASA Technical Reports Server (NTRS)
Lattier, E. E., Jr.
1974-01-01
The development of spacecraft communications hardware from design to operation is described. Programs, requirements, specifications, and design approaches for a variety of functions (such as voice, telemetry, television, and antennas) are reviewed. Equipment environmental problems such as vibration, extreme temperature variation, and zero gravity are discussed. A review of the development of managerial techniques used in refining the roles of prime and subcontractors is included. The hardware test program is described in detail as it progressed from breadboard design to manned flight system evaluations. Finally, a series of actions is recommended to managers of similar projects to facilitate administration.
Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility
NASA Technical Reports Server (NTRS)
Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.
2016-01-01
The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.
Hand function in workers with hand-arm vibration syndrome.
Cederlund, R; Isacsson, A; Lundborg, G
1999-01-01
Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.
A Sled-Mounted Vibroseis Seismic Source for Geological Studies in Antarctica
NASA Astrophysics Data System (ADS)
Speece, M. A.; Luyendyk, B. P.; Harwood, D. M.; Powell, R. D.; Wilson, D. S.; Pekar, S. F.; Tulaczyk, S. M.; Rack, F. R.
2013-12-01
Given the success of recent vibrator seismic source (vibroseis) tests in Antarctica, we propose the purchase of a large vibroseis for dedicated use by United States Antarctic Program (USAP) projects in Antarctica. Long seismic reflection profiles across Antarctica can be accomplished efficiently by pulling a sled-mounted vibrator that in turn pulls a snow streamer of gimbaled geophones. A baseplate or pad in the center of the sled will be lowered to the ground and support most of the weight of the vibrator assembly while an actuator vibrates the ground at each source location. The vibroseis will be moved to remote locations using over-ice/snow traverses given the increased reliance on traversing for supplying remote sites in Antarctica. Total vibrator hold-down weight when fully assembled will be ~66,000 lbs. Other design features include a 475 HP Caterpillar C15 diesel engine for the hydraulic power unit. The new vibrator will use an INOVA P-wave vibrator system: new Model PLS-362 actuator with up to 60,000 lbs of peak force and frequency limit of 5 Hz to 250Hz. Antarctic research objectives that could be impacted by the use of a vibrator include: (1) mapping of sub-ice stratigraphic sequences for drilling for paleoclimate information, e.g. the deep sedimentary basins of West Antarctica (Ross and Ronne-Filchner Ice Shelves and related divides); (2) correlating offshore and onshore seismic data and complementing airborne geophysical surveys to help determine Antarctica's geologic history; (3) identifying ice-bedrock interface properties and exploring grounding-line processes for ice dynamics; (4) exploring subglacial lakes and water-routing systems; and, (5) investigating the physical properties of ice sheets. An Antarctic Vibroseis Advisory Committee (AVAC) will promote the use of the vibroseis capability among Antarctic geophysical, geological, glaciological and related scientists and groups by encouraging and facilitating the development and submission of proposals by individual scientists and larger groups of scientists, and by facilitating training for potential users, including graduate students and early career scientists.
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon
1990-01-01
A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.
NASA Technical Reports Server (NTRS)
Cox, T. H.; Gilyard, G. B.
1986-01-01
The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.
Remote vibration monitoring system using wireless internet data transfer
NASA Astrophysics Data System (ADS)
Lemke, John
2000-06-01
Vibrations from construction activities can affect infrastructure projects in several ways. Within the general vicinity of a construction site, vibrations can result in damage to existing structures, disturbance to people, damage to sensitive machinery, and degraded performance of precision instrumentation or motion sensitive equipment. Current practice for monitoring vibrations in the vicinity of construction sites commonly consists of measuring free field or structural motions using velocity transducers connected to a portable data acquisition unit via cables. This paper describes an innovative way to collect, process, transmit, and analyze vibration measurements obtained at construction sites. The system described measures vibration at the sensor location, performs necessary signal conditioning and digitization, and sends data to a Web server using wireless data transmission and Internet protocols. A Servlet program running on the Web server accepts the transmitted data and incorporates it into a project database. Two-way interaction between the Web-client and the Web server is accomplished through the use of a Servlet program and a Java Applet running inside a browser located on the Web client's computer. Advantages of this system over conventional vibration data logging systems include continuous unattended monitoring, reduced costs associated with field data collection, instant access to data files and graphs by project team members, and the ability to remotely modify data sampling schemes.
F/A-18 1/9th scale model tail buffet measurements
NASA Technical Reports Server (NTRS)
Martin, C. A.; Glaister, M. K.; Maclaren, L. D.; Meyn, L. A.; Ross, J.
1991-01-01
Wind tunnel tests were carried out on a 1/9th scale model of the F/A-18 at high angles of attack to investigate the characteristics of tail buffet due to bursting of the wing leading edge extension (LEX) vortices. The tests were carried out at the Aeronautical Research Laboratory low-speed wind tunnel facility and form part of a collaborative activity with NASA Ames Research Center, organized by The Technical Cooperative Program (TTCP). Information from the program will be used in the planning of similar collaborative tests, to be carried out at NASA Ames, on a full-scale aircraft. The program covered the measurement of unsteady pressures and fin vibration for cases with and without the wing LEX fences fitted. Fourier transform methods were used to analyze the unsteady data, and information on the spatial and temporal content of the vortex burst pressure field was obtained. Flow visualization of the vortex behavior was carried out using smoke and a laser light sheet technique.
Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda
2014-01-01
In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467
Cherng, John G; Eksioglu, Mahmut; Kizilaslan, Kemal
2009-03-01
This paper presents a systematic design approach, which is the result of years of research effort, to ergonomic re-design of rivet tools, i.e. rivet hammers and bucking bars. The investigation was carried out using both ergonomic approach and mechanical analysis of the rivet tools dynamic behavior. The optimal mechanical design parameters of the re-designed rivet tools were determined by Taguchi method. Two ergonomically re-designed rivet tools with vibration damping/isolation mechanisms were tested against two conventional rivet tools in both laboratory and field tests. Vibration characteristics of both types of tools were measured by laboratory tests using a custom-made test fixture. The subjective field evaluations of the tools were performed by six experienced riveters at an aircraft repair shop. Results indicate that the isolation spring and polymer damper are very effective in reducing the overall level of vibration under both unweighted and weighted acceleration conditions. The mass of the dolly head and the housing played a significant role in the vibration absorption of the bucking bars. Another important result was that the duct iron has better vibration reducing capability compared to steel and aluminum for bucking bars. Mathematical simulation results were also consistent with the experimental results. Overall conclusion obtained from the study was that by applying the design principles of ergonomics and by adding vibration damping/isolation mechanisms to the rivet tools, the vibration level can significantly be reduced and the tools become safer and user friendly. The details of the experience learned, design modifications, test methods, mathematical models and the results are included in the paper.
Adaptive-passive vibration control systems for industrial applications
NASA Astrophysics Data System (ADS)
Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.
2015-04-01
Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.
Lee, Kyoungjin; Lee, Seungwon; Song, Changho
2013-12-01
Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy. Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 × 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training. The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed the postural sway and one leg stance (OLS) for static balance; Berg balance scale (BBS), timed up-and-go (TUG) test, and functional reach test (FRT) for dynamic balance; five-times-sit-to-stand (FTSTS) test for muscle strength; and HbA1c for predicting the progression of diabetes. Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05). Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.
TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom
2013-01-01
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study ismore » to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,« less
Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.
Heislbetz, Sandra; Rauhut, Guntram
2010-03-28
A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.
NASA Astrophysics Data System (ADS)
Kamesh, D.; Pandiyan, R.; Ghosal, Ashitava
2012-03-01
Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control.
Vibration characteristics of the Transrapid TR08 Maglev System
DOT National Transportation Integrated Search
2002-03-01
As part of the Federal Railroad Administration's (FRA) Magnetic Levitation Transportation Technology Deployment Program, the technical report has been prepared to charaterize the vibration associated with the operation of the Transrapid International...
Yang, Feng; Finlayson, Marcia; Bethoux, Francois; Su, Xiaogang; Dillon, Loretta; Maldonado, Hector M
2018-03-01
The purpose of this study was to systematically examine the effect of an 8-week controlled whole-body vibration training on improving fall risk factors and the bone mineral density among people with multiple sclerosis (PwMS). This study adopted a single group pre-test-post-test design. Twenty-five PwMS (50.3 years SD 14.1) received vibration training on a side-alternating vibration platform. Each training session was repeated three times every week for 8 weeks. Prior to and following the 8-week training course, a battery of fall risk factors were evaluated: the body balance, functional mobility, muscle strength, range of motion, and fear of falling. Bone density at both calcanei was also assessed. Twenty-two participants completed the study. Compared with pre-test, almost all fall risk factors and the bone density measurement were significantly improved at post-test, with moderate to large effect sizes varying between 0.571 and 1.007. The 8-week vibration training was well accepted by PwMS and improved their fall risk factors. The important findings of this study were that vibration training may increase the range of motion of ankle joints on the sagittal plane, lower the fear of falling, and improve bone density. IMPLICATIONS FOR REHABILITATION An 8-week vibration training course could be well-accepted by people with multiple sclerosis (MS). Vibration training improves the risk factors of falls in people living with MS. Vibration training could be a promising rehabilitation intervention in individuals with MS.
Zheglova, A V; Fedina, I N
The article presents scientific evidence showing the relevance and importance of addressing the issues of improvement of methods and approaches to the implementation of routine inspections of the working population, particularly the workers of vibration-dangerous occupations; the studied interrelationships between the exposure dose of vibration and noise will allow to include these investigations in a program of regular medical examinations of employees to detect early changes in the body of workers exposed to the vibration-dangerous impact.
Vibrations of Bladed Disk Assemblies
1991-03-29
34, Contract Report to Gas Trubines, General Motors Corp., Indianapolis (31 pages). 3 Afolabi, D., 1982, "Some Vibration Characteristics of an Aeroengine ...10. SOUACIOFPUNOiNG NO. Bolling Air Force Base PROGRAM 0mo.0aC-r TASK "o mW Washington, D.C. 20332-6448 1 LFAANT NO. No. N. O Vibrations of Bladed Disk...identfy by loC* n u r) 011LO . 0.ou* sum G. Blade vibrations , singularity theory, singular perturbation analysis, mode localization iS. AST.OACT
The Potential Neural Mechanisms of Acute Indirect Vibration
2011-01-01
There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s) of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR), which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz) which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz). Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s) are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s) and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s) occur during and post-vibration. Key points There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception, but little attention has been given to the neural mechanism(s) of acute indirect vibration. Current findings suggest that acute vibration exposure may cause a neural response, but there is little consensus on identifying which neural mechanism(s) are specifically responsible. This is due to a number of studies using various vibration testing protocols (i.e.varying frequencies, amplitudes, durations, and methods of application). Spinal reflexes, muscle tuning and neuromuscular aspects and central motor command are all viable neuromechanical factors that may contribute at different stages to transiently increasing muscular performance. Additional research is encouraged to determine when (pre, during and post) the different neural mechanism(s) respond to direct and indirect vibration stimuli. PMID:24149291
Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility
1991-10-09
Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CAP,JEROME S.
2000-08-24
Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learnedmore » including both things that went well and things that should/could have been done differently.« less
Simulation of the dynamic environment for missile component testing: Demonstration
NASA Technical Reports Server (NTRS)
Chang, Kurng Y.
1989-01-01
The problems in defining a realistic test requirement for missile and space vehicle components can be classified into two categories: (1) definition of the test environment representing the expected service condition, and (2) simulation of the desired environment in the test laboratory. Recently, a new three-dimensional (3-D) test facility was completed at the U.S. Army Harry Diamond Laboratory (HDL) to simulate triaxial vibration input to a test specimen. The vibration test system is designed to support multi-axial vibration tests over the frequency range of 5 to 2000 Hertz. The availability of this 3-D test system motivates the development of new methodologies addressing environmental definition and simulation.
Smart helicopter rotor with active blade tips
NASA Astrophysics Data System (ADS)
Bernhard, Andreas Paul Friedrich
2000-10-01
The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.
Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.
Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien
2008-07-01
Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p<0.01), although post hoc tests revealed that differences between most individual models were not significant (p>0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (p<0.01). Points on the head of the handpiece showed greater vibration displacement amplitudes than points along the body (p<0.01). Although no single measurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.
EFFECTOF ISOLATION WALL USING SCRAP TIRE ON GROUND VIBRATION REDUCTION
NASA Astrophysics Data System (ADS)
Kashimoto, Takahiko; Kashimoto, Yusuke; Hayakawa, Kiyoshi; Matsui, Tamotsu; Fujimoto, Hiroaki
Some countermeasure methods against the environmental ground vibration caused by some traffic vibrations have been proposed so far. The authors have developed a new type ground vibration isolation wall using scrap tire, and evaluated its effectiveness on the ground vibration reduction by full scale field tests. In this paper, the authors discussed and examined the effectiveness of the developed countermeasure method by two field tests. The one concerns on the effect of scrap tire as soft material of vibration isolation wall, and the other on the effect of the developed countermeasure method practically applied in a residential area close to monorail traffic. As the results, it was elucidated that the ground vibration of 2-3 dB was reduced in case of two times volume of the soft material, the conversion ratio of the vibration energy of the soft material to the kinetic energy was higher than that of the core material of PHC pile, the vibration acceleration of 0.19 - 1.26 gal was reduced by the developed countermeasure method in case of the monorail traffic, and the vibration reduction measured behind the isolation wall agreed well with the proposed theoretical value, together with confirming the effectiveness of the ground vibration isolation wall using scrap tire as the countermeasure method against the environmental ground vibration.
Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers
NASA Astrophysics Data System (ADS)
Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.
1989-01-01
Several planned United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) space systems such as Space Based Radar (SBR), Space Based Laser (SBL), and Space Station, pose serious vibration and control issues. Their low system mass combined with their large size, precision pointing/shape control and rapid retargetting requirements, will result in an unprecedented degree of interaction between the system controller and the modes of vibration of the structure. The resulting structural vibrations and/or those caused by foreign objects impacting the space structure could seriously degrade system performance, making it virtually impossible for passive structural systems to perform their missions. Therefore an active vibration control system which will sense these natural and spurious vibrations, evaluate them and dampen them out is required. This active vibration control system must be impervious to the space environment and electromagnetic interference, have very low weight, and in essence become part of the structure itself. The concept of smart structures meets these criteria. Smart structures is defined as the embedment of sensors, actuators, and possibly microprocessors in the material which forms the structure, a concept that is particularly applicable to advanced composites. These sensors, actuators, and microprocessors will work interactively to sense, evaluate, and dampen those vibrations which pose a threat to large flexible space systems (LSS). The sensors will also be capable of sensing any degradation to the structure. The Air Force Astronautics Laboratory (AFAL) has been working in the area of dynamics and control of LSS for the past five years. Several programs involving both contractual and in-house efforts to develop sensors and actuators for controlling LSS have been initiated. Presently the AFAL is developing a large scale laboratory which will have the capacity of performing large angle retargetting manuevers and vibration analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.
NASA Technical Reports Server (NTRS)
Silas, C.; Brindeu, L.; Grosanu, I.; Cioara, T.
1974-01-01
For compacting concretes in building, vibrating beams are used. The vibrations are generated by inertial vibrators, and the beam is normally displaced by the operator by means of a handle that is elastically fastened to the beam by means of rubber pads. Considered are vibrations transmitted to the operator, taking into account the beam's shock vibration motions. The steady state motion of a dynamic beam pattern is studied, and results of experimental tests with existing equipment are presented.
The multi-axis vibration environment and man.
Lovesey, E J
1970-12-01
Many investigations into the effects of vibration on man have been performed since Mallock's first study of London Underground vibrations in 1902. The vibration research has tended to be confined to the vertical (heave) axis, yet recent experiments have indicated that low frequency vibration along the lateral (sway) axis has a greater adverse effect upon comfort and performance. Measurements of the vibration environments in current forms of transport including motor vehicles, hovercraft and aircraft etc have shown that appreciable quantities of vibration along all three axes exist. Further vibration research should consider the effects of multi-axis vibrations upon man rather than limit tests to single axis vibration.
Vibration Control of Deployable Astromast Boom: Preliminary Experiments
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Hamilton, David A.
1994-01-01
This paper deals with the dynamic characterization of a flexible aerospace solar boom. The modeling issues and sine dwell vibration testing to determine natural frequencies and mode shapes of a continuous-longer on deployable ASTROMAST lattice boom are discussed. The details of the proof-of-concept piezoelectric active vibration experiments on a simple cantilever beam to control its vibrations are presented. The control parameters like voltage to the controller crystal and its location are investigated, to determine the effectiveness of control element to suppress selected resonant vibrations of the test specimen. Details of this experiment and plans for its future adaptation to the prototype structure are also discussed.
Experiment on the concrete slab for floor vibration evaluation of deteriorated building
NASA Astrophysics Data System (ADS)
Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.
2014-08-01
Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).
16 CFR 1211.5 - General testing parameters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 1211.4(c) for compliance with the Standard for Safety for Tests for Safety-Related Controls Employing... vibration level of 5g is to be used for the Vibration Test. (6) When a Computational Investigation is... tested. (8) The Endurance test is to be conducted concurrently with the Operational test. The control...
16 CFR § 1211.5 - General testing parameters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... covered by § 1211.4(c) for compliance with the Standard for Safety for Tests for Safety-Related Controls... vibration level of 5g is to be used for the Vibration Test. (6) When a Computational Investigation is... tested. (8) The Endurance test is to be conducted concurrently with the Operational test. The control...
16 CFR 1211.5 - General testing parameters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 1211.4(c) for compliance with the Standard for Safety for Tests for Safety-Related Controls Employing... vibration level of 5g is to be used for the Vibration Test. (6) When a Computational Investigation is... tested. (8) The Endurance test is to be conducted concurrently with the Operational test. The control...
16 CFR 1211.5 - General testing parameters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 1211.4(c) for compliance with the Standard for Safety for Tests for Safety-Related Controls Employing... vibration level of 5g is to be used for the Vibration Test. (6) When a Computational Investigation is... tested. (8) The Endurance test is to be conducted concurrently with the Operational test. The control...
Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System
NASA Technical Reports Server (NTRS)
Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi
1996-01-01
Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.
Klarner, A; von Stengel, S; Kemmler, W; Kladny, B; Kalender, W
2011-10-01
The effects of different types of whole body vibration (WBV) training on neuromuscular performance and body composition were determined in postmenopausal women. In the Erlangen Longitudinal Vibration Study II (ELVIS-II-Study) 108 postmenopausal women between 60 and 75 years of age (average 65.8 ± 3.5 years) were randomly assigned to one of three groups: two WBV training-groups (n = 36 each), each performing an identical program thrice a week for 15 min on two different types of vibration plates for one year: 1. vertical vibrating, 35 Hz, 1.7 mm (VG); 2. rotational vibrating 12.5 Hz, 12 mm (RG). A control group (n = 36) conducted a low intensity gymnastic and relaxation program. Muscular strength and power were assessed, body composition was determined by Dual-energy X-ray absorptiometry (DXA), and pain intensity was assessed by a questionnaire. Maximum leg strength (VG: 24.4 %; RG: 26.6 %; KG: 6.2 %; p < 0.001) and maximum trunk flexion strength (VG: 12.2 %; RG: 11.5 %; KG: -5.5 %; p = 0.01) significantly increased in both vibration groups. No changes were found for body composition parameters (lean body mass, appendicular muscle mass, fat mass). Pain intensity in the big joints (p < 0.05) decreased in both vibration groups, in the lumbar spine region this was not significant. There was no difference between vibration types. No vibration-related side effects were observed. The study results suggest that WBV might be an alternative to classic training contents to increase maximum strength and reduce pain. © Georg Thieme Verlag KG Stuttgart · New York.
CSI flight experiment projects of the Naval Research Laboratory
NASA Technical Reports Server (NTRS)
Fisher, Shalom
1993-01-01
The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.
CSI flight experiment projects of the Naval Research Laboratory
NASA Astrophysics Data System (ADS)
Fisher, Shalom
1993-02-01
The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.
SLS Scale Model Acoustic Test Liftoff Results and Comparisons
NASA Technical Reports Server (NTRS)
Houston, Janice; Counter, Douglas; Giacomoni, Clothilde
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.
Technology development and demonstration of a low thrust resistojet thruster
NASA Technical Reports Server (NTRS)
Pfeifer, G. R.
1972-01-01
Three thrusters were fabricated to definitized thruster drawings using new rhenium vapor deposition technology. Two of the thrusters were operated using ammonia as propellant and one was operated using hydrogen propellant for performance determination. All demonstrated consistent operational specific impulse performance while demonstrating thermal performance better than the development units from which they evolved. Two of the thrusters were subjected to environmental structural testing including vibration, acceleration and shock loading to specifications. Both of the thrusters subjected to the environmental tests passed all required tests. The third, spare, thruster was introduced into the life test portion of the program. Two thrusters were then subjected to a life cycling test program under typical spacecraft operating power levels. During the life test sequence, the hydrogen thruster accrued 720 operating life test cycles, more than 370 on-off cycles and 365 hours of powered up time. The ammonia accrued approximately 380 on-off cycles and 392.2 on time hours of operation during the 720 cycling hour test. Both thrusters completed the scheduled operational life test in reasonably good condition, structurally integral and capable of indefinite further operation.
Dynamic analysis for shuttle design verification
NASA Technical Reports Server (NTRS)
Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.
1972-01-01
Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.
Concorde noise-induced building vibrations John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.
1978-01-01
The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics.
Vibrational response analysis of tires using a three-dimensional flexible ring-based model
NASA Astrophysics Data System (ADS)
Matsubara, Masami; Tajiri, Daiki; Ise, Tomohiko; Kawamura, Shozo
2017-11-01
Tire vibration characteristics influence noise, vibration, and harshness. Hence, there have been many investigations of the dynamic responses of tires. In this paper, we present new formulations for the prediction of tire tread vibrations below 150 Hz using a three-dimensional flexible ring-based model. The ring represents the tread including the belt, and the springs represent the tire sidewall stiffness. The equations of motion for lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests. Unlike most studies of flexible ring models, which mainly discussed radial and circumferential vibration, this study presents steady response functions concerning not only radial and circumferential but also lateral vibration using the three-dimensional flexible ring-based model. The results of impact tests described confirm the theoretical findings. The results show reasonable agreement with the predictions.
NASA Technical Reports Server (NTRS)
Schoenster, J. A.; Pierce, H. B.
1975-01-01
The results of a study into the environmental vibrations of a payload mounted on the Nike rocket launch vehicle were presented. Data were obtained during the flight acceptance test of the payload, the firing of the total vehicle in a special test stand, and the powered and unpowered flights of the vehicle. The vibrational response of the structure was measured. Data were also obtained on the fluctuating pressure on the outside surface of the vehicle and inside the forward and after ends of the rocket chamber. A comparison of the data from the three test conditions indicated that external pressure fluctuations were the major source of vibrations in the payload area, and pressure fluctuations within the rocket motor were the major source of vibrations contiguous to the payload area.
Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit
NASA Technical Reports Server (NTRS)
Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira
1991-01-01
The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.
Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report
NASA Technical Reports Server (NTRS)
Santiago-Bond, Jo; Captain, Janine
2015-01-01
The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2014-01-01
During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.
NASA Astrophysics Data System (ADS)
Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca
2018-02-01
The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.
NASA Technical Reports Server (NTRS)
Erickson, G. J.
1964-01-01
The goal of this contract was to determine the g environment under which the GC159C Gas-Bearing Spinmotor (GBSM) could reliably operate. This was fulfilled by building and testing of four GBSM's, a test fixture, and a "dummy" gyro. The test program was divided into two phases when a gas bearing improvement was required to withstand JPL shock requirement of 200 g. Phase I determined existing g capabilities and performance of the GC159C GBSM and gimbal-case structure. Phase II increased GBSM capability to meet required JPL g environments. Life tests were run on two GBSM's which were shocked at a high level to obtain bearing contact while rotating at their operating speed of 23,000 rpm. A third (nonoperating) GBSM was exposed to JPL maximum shock levels, and a fourth (nonoperating) GBSM was exposed to random vibration. Both nonoperating GBSM's were then subjected to life testing.
A Method for Implementing Force-Limited Vibration Control
NASA Technical Reports Server (NTRS)
Worth, Daniel B.
1997-01-01
NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.
National Transonic Facility model and model support vibration problems
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.
1990-01-01
Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.
Seeger, Nicole; Lange, Sigrid; Klein, Sandra
2015-08-01
Dissolution testing is an in vitro procedure which is widely used in quality control (QC) of solid oral dosage forms and, given that real biorelevant test conditions are applied, can also be used as a predictive tool for the in vivo performance of such formulations. However, if a dissolution method is intended to be used for such purposes, it has to deliver results that are only determined by the quality of the test product, but not by other variables. In the recent past, more and more questions were arising on how to address the effects of vibration on dissolution test results. The present study was performed to screen for the correlation of prednisone dissolution of USP Prednisone Tablets RS with vibration caused by a commercially available vibration source as well as to investigate how drug release from a range of immediate release formulations containing class 1-4 drugs of the biopharmaceutical classification scheme is affected by vibration when performing dissolution experiments at different agitation rates. Results of the present study show that the dissolution process of oral drug formulations can be affected by vibration. However, it also becomes clear that the degree of which a certain level of vibration impacts dissolution is strongly dependent on several factors such as drug properties, formulation parameters, and the design of the dissolution method. To ensure the establishment of robust and predictive dissolution test methods, the impact of variation should thus be considered in method design and validation.
The Efficacy of Anti-vibration Gloves
Hewitt, Sue; Dong, Ren; McDowell, Tom; Welcome, Daniel
2016-01-01
Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand–arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented. PMID:27582615
Spielmanns, Marc; Gloeckl, Rainer; Gropp, Jana Marie; Nell, Christoph; Koczulla, Andreas Rembert; Boeselt, Tobias; Storre, Jan Hendrik; Windisch, Wolfram
2017-01-01
Background The aim of the study was to investigate whether whole-body vibration training (WBVT) can be applied beneficially within an outpatient low frequency exercise program. Methods In a prospective, controlled, randomized study, WBVT effectiveness and safety were investigated in COPD stage II-IV patients undergoing a 3-month training program. Participants took part in a 90-min circuit training once a week. On top patients were randomized to either perform squats with WBVT, or without (conventional training group (CTG)). Before and after the intervention, a sit-to-stand test (STST), a 6-min walk test (6-MWT), the COPD assessment test (CAT), and the chronic respiratory disease questionnaire (CRQ) were evaluated. Results Twenty-eight out of 55 patients completed the study (n = 12 WBTV, n = 16 CTG). The STST time remained nearly constant for the CTG (Δ -0.8 ± 3.1 s) and the WBVT (Δ 1.4 ± 3.2 s; P = 0.227), respectively. Similarly, for both WBVT and CTG, the 6-min walk distance remained unchanged (Δ 7 ± 55 m vs. 9 ± 45 m, P = 0.961). In three out of four categories, the CRQ scores showed a significant improvement within WBVT, and in one category when comparing across groups. The CAT score dropped by -0.8 ± 2.9 points within CTG and by 2.4 ± 2.7 points within WBVT (P = 0.105). There were no adverse events related to WBVT. Conclusion The implementation of WBVT in the context of an outpatient low frequency exercise program did not significantly improve the patients’ exercise capacity. An improvement in CAT and partially in CRQ was shown within WBVT. However, regarding the high dropout rate (49%), these results must be interpreted with caution. PMID:28392859
Sub-Scale Testing and Development of the J-2X Fuel Turbopump Inducer
NASA Technical Reports Server (NTRS)
Sargent, Scott R.; Becht, David G.
2011-01-01
In the early stages of the J-2X upper stage engine program, various inducer configurations proposed for use in the fuel turbopump (FTP) were tested in water. The primary objectives of this test effort were twofold. First, to obtain a more comprehensive data set than that which existed in the Pratt & Whitney Rocketdyne (PWR) historical archives from the original J-2S program, and second, to supplement that data set with information regarding the cavitation induced vibrations for both the historical J-2S configuration as well as those tested for the J-2X program. The J-2X FTP inducer, which actually consists of an inducer stage mechanically attached to a kicker stage, underwent 4 primary iterations utilizing sub-scaled test articles manufactured and tested in PWR's Engineering Development Laboratory (EDL). The kicker remained unchanged throughout the test series. The four inducer configurations tested retained many of the basic design features of the J-2S inducer, but also included variations on leading edge blade thickness and blade angle distribution, primarily aimed at improving suction performance at higher flow coefficients. From these data sets, the effects of the tested design variables on hydrodynamic performance and cavitation instabilities were discerned. A limited comparison of impact to the inducer efficiency was determined as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatchell, Brian K.; Mauss, Fredrick J.; Amaya, Ivan A.
Military missiles are exposed to many sources of mechanical vibration that can affect system reliability, safety, and mission effectiveness. The U. S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC) has been developing missile health monitoring systems to assess and improve reliability, reduce life cycle costs, and increase system readiness. One of the most significant exposures to vibration occurs when the missile is being carried by a helicopter or other aviation platform, which is a condition known as captive carry. Recording the duration of captive carry exposure during the missile’s service life can enable the implementation of predictivemore » maintenance and resource management programs. Since the vibration imparted by each class of helicopter varies in frequency and amplitude, tracking the vibration exposure from each helicopter separately can help quantify the severity and harmonic content of the exposure. Under the direction of AMRDEC staff, engineers at the Pacific Northwest National Laboratory have developed a Captive Carry Health Monitor (CCHM) for the Hellfire II missile. The CCHM is an embedded usage monitoring device installed on the outer skin of the Hellfire II missile to record the cumulative hours the host missile has been in captive carry mode. To classify the vibration by class of helicopter, the CCHM analyzes the amplitude and frequency content of the vibration with the Goertzel algorithm to detect the presence of distinctive rotor harmonics. Cumulative usage data are accessible in theater from an external display; monthly usage histograms are accessible through an internal download connector. This paper provides an overview of the CCHM electrical and package design, describes field testing and data analysis techniques used to monitor captive carry identify and the class of helicopter, and discusses the potential application of missile health and usage data for real-time reliability analysis and fleet management.« less
TMC Behavior Modeling and Life Prediction Under Multiaxial Stresses
NASA Technical Reports Server (NTRS)
Merrick, H. F.; Aksoy, S. Z.; Costen, M.; Ahmad, J.
1998-01-01
The goal of this program was to manufacture and burst test small diameter SCS-6/Ti-6Al-4V composite rings for use in the design of an advanced titanium matrix composite (TMC) impeller. The Textron Specialty Metals grooved foil-fiber process was successfully used to make high quality TMC rings. A novel spin test arbor with "soft touch" fingers to retain the TMC ring was designed and manufactured. The design of the arbor took into account its use for cyclic experiments as well as ring burst tests. Spin testing of the instrumented ring was performed at ambient, 149C (300F), and 316C (600F) temperatures. Assembly vibration was encountered during spin testing but this was overcome through simple modification of the arbor. A spin-to-burst test was successfully completed at 316C (600F). The rotational speed of the TMC ring at burst was close to that predicted. In addition to the spin test program, a number of SCS-6/Ti-6Al-4V test panels were made. Neat Ti-6Al-4V panels also were made.
Disk Crack Detection for Seeded Fault Engine Test
NASA Technical Reports Server (NTRS)
Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)
2004-01-01
Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.
NASA Technical Reports Server (NTRS)
Edighoffer, H. H.
1979-01-01
A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.
Hologram interferometry in automotive component vibration testing
NASA Astrophysics Data System (ADS)
Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.
1993-02-01
An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.
A novel vibration sensor based on phase grating interferometry
NASA Astrophysics Data System (ADS)
Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei
2017-05-01
Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.
The Shock and Vibration Digest. Volume 15, Number 3
1983-03-01
High Temperature Gas-Cooled Reactor Core with Block-type Fuel (2nd Report: An Analytical Method of Two-dmentmnal Vibration of Interacting CohunM) T...Computer-aided techniquei, Detign techniquei A wite of computer programs hat been developed which allow« advanced fatigue analyiit procedures to be...valuei with those developed by bearing analysis computer programs were used to formulate an understanding of the mechanisms that induce ball skidding
The Effect of Whole-Body Vibration on Lower-Body Resistance Detraining in College-Age Women
ERIC Educational Resources Information Center
Lindsay, Keston G.; Nichols, David L.; Davis, Ronald W.; Marshall, David D.
2018-01-01
Purpose: This study explored the effect of whole-body vibration (WBV) using accelerations of 2.56 "g" to 7.68 "g" on lower-body detraining. Methods: All participants (N = 20) were trained using a lower-body resistance-training program for 30 min twice per week from Week 0 to Week 6. At the end of the program, they were randomly…
Transducer senses displacements of panels subjected to vibration
NASA Technical Reports Server (NTRS)
Pea, R. O.
1965-01-01
Inductive vibration sensor measures the surface displacement of nonferrous metal panels subjected to vibration or flutter. This transducer does not make any physical contact with the test panel when measuring.
Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Huff, Edward M.
2001-01-01
Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.
Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation
NASA Technical Reports Server (NTRS)
Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.
2011-01-01
The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.
Shock and vibration technology with applications to electrical systems
NASA Technical Reports Server (NTRS)
Eshleman, R. L.
1972-01-01
A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.
NASA Technical Reports Server (NTRS)
Collins, J. Scott; Johnson, Eric R.
1989-01-01
Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.
Piezoelectric pushers for active vibration control of rotating machinery
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.; Kascak, Albert F.
1988-01-01
The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.
Piezoelectric pushers for active vibration control of rotating machinery
NASA Technical Reports Server (NTRS)
Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.
1989-01-01
The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.
Blade Vibration Measurement System for Unducted Fans
NASA Technical Reports Server (NTRS)
Marscher, William
2014-01-01
With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.
Structural dynamics of shroudless, hollow fan blades with composite in-lays
NASA Technical Reports Server (NTRS)
Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.
1982-01-01
Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.
NASA Technical Reports Server (NTRS)
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Health Monitoring System for Composite Structures
NASA Technical Reports Server (NTRS)
Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.
1996-01-01
An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.
Miniature Long-life Space Cryocoolers
NASA Technical Reports Server (NTRS)
Tward, E.
1993-01-01
TRW has designed, built, and tested a miniature integral Stirling cooler and a miniature pulse tube cooler intended for long-life space application. Both efficient, low-vibration coolers were developed for cooling IR sensors to temperatures as low as 50 K on lightsats. The vibrationally balanced nonwearing design Stirling cooler incorporates clearance seals maintained by flexure springs for both the compressor and the drive displacer. The design achieved its performance goal of 0.25 W at 65 K for an input power to the compressor of 12 W. The cooler recently passed launch vibration tests prior to its entry into an extended life test and its first scheduled flight in 1995. The vibrationally balanced, miniature pulse tube cooler intended for a 10-year long-life space application incorporates a flexure bearing compressor vibrationally balanced by a motor-controlled balancer and a completely passive pulse tube cold head.
Towards identifying the dynamics of sliding by acoustic emission and vibration
NASA Astrophysics Data System (ADS)
Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2016-11-01
The results of experiments with high load and sliding speed sliding conditions on tribologically mated pairs such as steel 1045/steel 1045 (test 1), steel 1045/basalt (test 2) and Hadfield steel/basalt (test 3) have been carried out in order to identify their response in terms of the acoustic emission and vibration signals. The steel to rock and rock to steel transfer has been revealed by examining the worn surfaces of both steel and rock samples with the use of laser scanning microscopy. The AE signal characteristics have been determined for the tribological pairs studied. The dynamics of sliding has been evaluated by measuring the vibration accelerations. Relationship between wear mode and either acoustic emission signal or vibration signal has been established. The minimal vibration oscillations amplitude and acoustic emission signal energy have been found out in sliding Hadfield steel/basalt pair.
Quantifying and managing uncertainty in operational modal analysis
NASA Astrophysics Data System (ADS)
Au, Siu-Kui; Brownjohn, James M. W.; Mottershead, John E.
2018-03-01
Operational modal analysis aims at identifying the modal properties (natural frequency, damping, etc.) of a structure using only the (output) vibration response measured under ambient conditions. Highly economical and feasible, it is becoming a common practice in full-scale vibration testing. In the absence of (input) loading information, however, the modal properties have significantly higher uncertainty than their counterparts identified from free or forced vibration (known input) tests. Mastering the relationship between identification uncertainty and test configuration is of great interest to both scientists and engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing this challenge beyond the current state-of-the-art that are mostly concerned with identification algorithms, this work obtains closed form analytical expressions for the identification uncertainty (variance) of modal parameters that fundamentally explains the effect of test configuration. Collectively referred as 'uncertainty laws', these expressions are asymptotically correct for well-separated modes, small damping and long data; and are applicable under non-asymptotic situations. They provide a scientific basis for planning and standardization of ambient vibration tests, where factors such as channel noise, sensor number and location can be quantitatively accounted for. The work is reported comprehensively with verification through synthetic and experimental data (laboratory and field), scientific implications and practical guidelines for planning ambient vibration tests.
VIBRATION TESTING OF RESILIENT PACKAGE CUSHIONING MATERIALS
government and industry. Testing equipment which meets tentative ASTM requirements was developed. Preliminary tests were conducted on a resilient expanded ... polystyrene foam (in 3 densities) and a polyether urethane foam (in one density). When vibrated under static loads known to provide optimum shock
Evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration.
Griffin, M J
1998-05-01
A method of evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration is proposed. The glove isolation effectiveness was calculated from: (a) the measured transmissibility of a glove, (b) the vibration spectrum on the handle of a specific tool (or class of tools), and (c) the frequency weighting indicating the degree to which different frequencies of vibration cause injury. With previously reported tool vibration spectra and glove transmissibilities (from 10-1000 Hz), the method was used to test 10 gloves with 20 different powered tools. The frequency weighting for hand-transmitted vibration advocated in British standard 6842 (1987) and international standard 5349 (1986) greatly influences the apparent isolation effectiveness of gloves. With the frequency weighting, the gloves had little effect on the transmission of vibration to the hand from most of the tools. Only for two or three tools (those dominated by high frequency vibration) did any glove provide useful attenuation. Without the frequency weighting, some gloves showed useful attenuation of the vibration on most powered tools. In view of the uncertain effect of the vibration frequency in the causation of disorders from hand-transmitted vibration, it is provisionally suggested that the wearing of a glove by the user of a particular vibratory tool could be encouraged if the glove reduces the transmission of vibration when it is evaluated without the frequency weighting and does not increase the vibration when it is evaluated with the frequency weighting. A current international standard for the measurement and evaluation of the vibration transmitted by gloves can classify a glove as an antivibration glove when it provides no useful attenuation of vibration, whereas a glove providing useful attenuation of vibration on a specific tool can fail the test.
Modal simulation of gearbox vibration with experimental correlation
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.
1992-01-01
A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.
NASA Astrophysics Data System (ADS)
Angeli, Andrea; Cornelis, Bram; Troncossi, Marco
2018-03-01
In many real life environments, mechanical and electronic systems are subjected to vibrations that may induce dynamic loads and potentially lead to an early failure due to fatigue damage. Thus, qualification tests by means of shakers are advisable for the most critical components in order to verify their durability throughout the entire life cycle. Nowadays the trend is to tailor the qualification tests according to the specific application of the tested component, considering the measured field data as reference to set up the experimental campaign, for example through the so called "Mission Synthesis" methodology. One of the main issues is to define the excitation profiles for the tests, that must have, besides the (potentially scaled) frequency content, also the same damage potential of the field data despite being applied for a limited duration. With this target, the current procedures generally provide the test profile as a stationary random vibration specified by a Power Spectral Density (PSD). In certain applications this output may prove inadequate to represent the nature of the reference signal, and the procedure could result in an unrealistic qualification test. For instance when a rotating part is present in the system the component under analysis may be subjected to Sine-on-Random (SoR) vibrations, namely excitations composed of sinusoidal contributions superimposed to random vibrations. In this case, the synthesized test profile should preserve not only the induced fatigue damage but also the deterministic components of the environmental vibration. In this work, the potential advantages of a novel procedure to synthesize SoR profiles instead of PSDs for qualification tests are presented and supported by the results of an experimental campaign.
Chan, Kwan-Shan; Liu, Chin-Wei; Chen, Tien-Wen; Weng, Ming-Cheng; Huang, Mao-Hsiung; Chen, Chia-Hsin
2012-12-01
To investigate the effects of a single session of whole body vibration training on ankle plantarflexion spasticity and gait performance in chronic stroke patients. Randomized controlled trial. Rehabilitation unit in university hospital. Thirty subjects with chronic stroke were randomized into either a control group (n = 15) or a group receiving a single session of whole body vibration (n = 15). The intervention group was actually treated with whole body vibration while the control group was treated with placebo treatment. The spastic changes were measured clinically and neurophysiologically. Subjective evaluation of ankle spasticity was performed via a visual analogue scale. Gait performances were evaluated by the timed up and go test, 10-meter walk test and cadence. A forceplate was used for measuring foot pressure. The changes between whole body vibration and control groups were significantly different in Modified Ashworth Scale (1.33, 95% confidence interval (CI) = 1.06~1.60). The H (max)/M (max) ratio (0.14, 95% CI = 0.01~0.26) and visual analogue scale (1.87, 95% CI = 1.15~2.58) were significantly decreased. Whole body vibration could significantly improve gait velocity, timed up and go test (6.03, 95% CI = 3.17~8.89) and 10-meter walk test (1.99, 95% CI = 0.11~3.87). The uneven body weight posture on bilateral feet was also improved after vibration. These results suggest that a single session of whole body vibration training can reduce ankle plantarflexion spasticity in chronic stroke patients, thereby potentially increasing ambulatory capacity.
Whole body vibration in helicopters: risk assessment in relation to low back pain.
Kåsin, Jan Ivar; Mansfield, Neil; Wagstaff, Anthony
2011-08-01
Helicopter pilots are exposed to whole body vibration (WBV) in their working environment. WBV has been associated with low back pain (LBP) and helicopter pilots have a high prevalence for LBP compared with other professions. The aim of this study was to develop a test protocol for measuring helicopters with ISO 2631-1 and to perform a whole body vibration risk assessment based on the European Vibration Directive in a number of commonly used military and civilian helicopters. Both absolute values and individual difference in current helicopter types are of interest in order to evaluate the possible role of vibration in LBP in helicopter pilots. In operationally relevant maneuvers, six helicopters were tested. In order to standardize measurements, each continuous flight was split into 15 separate maneuvers. A model of a working day exposure pattern was used to calculate A(8) vibration magnitudes for each helicopter. The vibration A(8) exposure estimates ranged from 0.32-0.51 m x s(-2) during an 8-h working day A(8). This compares with EU and ISO lower bounds risk criteria of 0.5 and 0.43 m x s(-2) A(8), respectively. Despite the vibration levels being relatively low, helicopter pilots report a high incidence of LBP. It is possible that helicopter pilot postures increase the risk of LBP when combined with WBV. The test protocol used in this study could be generally applied for other rotary winged aircraft testing to allow for comparison of WBV results. Data from different flight phases could be used to model different exposure profiles.
Characterization of vibration transfer paths in nose gearboxes of an AH-64 Apache
NASA Astrophysics Data System (ADS)
Islam, A. K. M. Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris
2014-03-01
Health monitoring of rotorcraft components, which is currently being performed by Health and Usage Monitoring Systems (HUMS) through analyzing vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. Vibration diagnostic algorithms in HUMS analyze vibration signatures associated with faults and quantify them as condition indicators (CI) to predict component behavior. Vibration transfer paths (VTP) play important roles in CI response and are characterized by frequency response functions (FRF) derived from vibration signatures of dynamic mechanical components of a helicopter. With an objective to investigate the difference in VTP of a component in a helicopter and test stand, and to relate that to the CI response, VTP measurements were recorded from 0-50 kHz under similar conditions in the left and right nose gearboxes (NGBs) of an AH-64 Apache and an isolated left NGB in a test stand at NASA Glenn Research Center. The test fixture enabled the application of measured torques - common during an actual operation. Commercial and lab piezo shakers, and an impact hammer were used in both systems to collect the vibration response using two types of commercially available accelerometers under various test conditions. The FRFs of both systems were found to be consistent, and certain real-world installation and maintenance issues, such as sensor alignments, locations and installation torques, had minimal effect on the VTP. However, gear vibration transfer path dynamics appeared to be somewhat dependent on presence of oil, and the lightly-damped ring gear produced sharp and closer transfer path resonances.
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
Dynamic (Vibration) Testing: Design-Certification of Aerospace System
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin K.
2010-01-01
Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.
Riolfi, A; Princivalle, A; Romeo, L; Caramaschi, P; Perbellini, L
2008-02-01
To report some notable aspects regarding thermometric response to cold test in black African subjects compared with Caucasians: both groups comprised persons exposed to hand-arm vibration and controls. An overall sample of 48 workers was examined in order to study their blood circulation in hand fingers: a control group of 12 healthy Caucasian workers never exposed before to hand-arm vibration; 12 Caucasian workers exposed for several years to vibrating tools and affected by occupational Raynaud's phenomenon; 12 healthy black African workers exposed to hand-arm vibration for almost 3 years; and 12 healthy black African workers never exposed to hand-arm vibration. Computerized skin thermometry was performed and thermometric curves were analyzed according to thermometric interpretation criteria such as the area-over-curve (AOC), the fifth minute of recovery/baseline temperature ratio (5REC/BT) and the temperature at the tenth minute of recovery (10REC) after cold test. Thermometric parameters in Caucasian subjects confirmed the basis of the existing literature in controls (basal finger temperature higher than 32 degrees C and complete recovery to the initial temperature after the cold test) and also in patients with Raynaud's phenomenon (basal temperature often lower than control subjects and slow recovery of finger temperature after cold test). Statistically significant difference was found between healthy Caucasians and healthy black subjects in all the parameters tested: healthy black subjects showed values of AOC and 10REC suggesting almost constantly lower finger temperatures during the thermometry test. Black people, both exposed and non-exposed to hand-arm vibration showed thermometric parameters suggesting poor blood microcirculation, which seems even poorer than in Caucasian people complaining Raynaud's phenomenon. Our chronothermometric tests suggest some significant interethnic differences in peripheral microcirculation, which seems rather poor in black African subjects in comparison with Caucasians.
NASA Technical Reports Server (NTRS)
Williams, F. W.; Anderson, M. S.; Kennedy, D.; Butler, R.; Aston, G.
1990-01-01
A computer program which is designed for efficient, accurate buckling and vibration analysis and optimum design of composite panels is described. The capabilities of the program are given along with detailed user instructions. It is written in FORTRAN 77 and is operational on VAX, IBM, and CDC computers and should be readily adapted to others. Several illustrations of the various aspects of the input are given along the example problems illustrating the use and application of the program.
Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor
NASA Technical Reports Server (NTRS)
Adams, D. W.
1972-01-01
Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.
Build 3 of an Accelerated Mission Test of a TF41 with Block 76 Hardware.
1979-12-01
Temperature and Calculated Turbine 28 Stator Inlet Temperature Time History 7 ACU/DCU Time Checks 31 8 Oil Consumption Between Fills 32 9 Overall Oil...Consumption 33 10 Engine Vibration History 36 11 Corrected "A" Cycle Performance Trends 33 12 Corrected "A" Cycle Performance Trends 39 13 Corrected...records of engine histories during actual flight. An extensive program of pilot interviews 12 0 Li) 05 ____ ____ ___ ____ ____ ___ ____ ____ __ F
1971-06-01
The Apollo Telescope Mount (ATM), one of four major components comprising the Skylab, was designed and developed by the Marshall Space Flight Center. In this image, the ATM is shown undergoing horizontal vibration testing in a vibration test unit.
Dynamic Capability of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Goodnight, Thomas W.; Hughes, William O.; McNelis, Mark E.
2000-01-01
The NASA John H. Glenn Research Center and the US Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. NASA Headquarters has recently identified the Stirling technology generator for potential use as the spacecraft power system for two of NASA's new missions, the Europa Orbiter and the Solar Probe missions (planned for launch in 2006 and 2007 respectively). As part of the development of this power system, a Stirling Technology Demonstration Convertor was vibration tested at NASA John H. Glenn Research Center to verify its survivability and capability of withstanding the harsh dynamic environment typically seen by the spacecraft when it is launched by an expendable launch vehicle. The Technology Demonstration Convertor was fully operational (producing power) during the random vibration testing. The output power of the convertor and other convertor performance indicators were measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges also were used to provide information on the dynamic characteristics of the Technology Demonstration Convertor and as an indication of any possible damage due to the vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling Technology Demonstration Convertor was extremely successful. The Technology Demonstration Convertor survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
DOT National Transportation Integrated Search
2015-03-01
Due to the low workability of slipform concrete mixtures, the science of rheology is not strictly applicable for such concrete. However, : the concept of rheological behavior may still be considered useful. A novel workability test method (Vibrating ...
A Vibration Isolation System for Use in a Large Thermal Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Hershfeld, Donald; VanCampen, Julie
2002-01-01
A thermal vacuum payload platform that is isolated from background vibration is required to support the development of future instruments for Hubble Space Telescope (HST) and the Next Generation Space Telescope (NGST) at the Goddard Space Flight Center (GSFC). Because of the size and weight of the thermal/vacuum facility in which the instruments are tested, it is not practical to isolate the entire facility externally. Therefore, a vibration isolation system has been designed and fabricated to be installed inside the chamber. The isolation system provides a payload interface of 3.05 m (10 feet) in diameter and is capable of supporting a maximum payload weight of 4536 kg (10,000 Lbs). A counterweight system has been included to insure stability of payloads having high centers of gravity. The vibration isolation system poses a potential problem in that leakage into the chamber could compromise the ability to maintain vacuum. Strict specifications were imposed on the isolation system design to minimize leakage. Vibration measurements, obtained inside the chamber, prior to installing the vibration isolation system, indicated levels in all axes of approximately 1 milli-g at about 20 Hz. The vibration isolation system was designed to provide a minimum attenuation of 40 dB to these levels. This paper describes the design and testing of this unique vibration isolation system. Problems with leakage and corrective methods are presented. Isolation performance results are also presented.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.
Coupled Facility/Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
Development of monofilar rotor hub vibration absorber
NASA Technical Reports Server (NTRS)
Duh, J.; Miao, W.
1983-01-01
A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.
Small form factor optical fiber connector evaluation for harsh environments
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.
2011-09-01
For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.
Volpe, Daniele; Giantin, Maria Giulia; Fasano, Alfonso
2014-01-01
Background Muscle spindles endings are extremely sensitive to externally applied vibrations, and under such circumstances they convey proprioceptive inflows to the central nervous system that modulate the spinal reflexes excitability or the muscle responses elicited by postural perturbations. The aim of this pilot study is to test the feasibility and effectiveness of a balance training program in association with a wearable proprioceptive stabilizer (Equistasi) that emits focal mechanical vibrations in patients with PD. Methods Forty patients with PD were randomly divided in two groups wearing an active or inactive device. All the patients received a 2-month intensive program of balance training. Assessments were performed at baseline, after the rehabilitation period (T1), and two more months after (T2). Posturographic measures were used as primary endpoint; secondary measures of outcome included the number of falls and several clinical scales for balance and quality of life. Results Both groups improved at the end of the rehabilitation period and we did not find significant between-group differences in any of the principal posturographic measures with the exception of higher sway area and limit of stability on the instrumental functional reach test during visual deprivation at T1 in the Equistasi group. As for the secondary outcome, we found an overall better outcome in patients enrolled in the Equistasi group: 1) significant improvement at T1 on Berg Balance Scale (+45.0%, p = .026), Activities-specific Balance Confidence (+83.7, p = .004), Falls Efficacy Scale (−33.3%, p = .026) and PDQ-39 (−48.8%, p = .004); 2) sustained improvement at T2 in terms of UPDRS-III, Berg Balance Scales, Time Up and Go and PDQ-39; 3) significant and sustained reduction of the falls rate. Conclusions This pilot trial shows that a physiotherapy program for training balance in association with focal mechanical vibration exerted by a wearable proprioceptive stabilizer might be superior than rehabilitation alone in improving patients’ balance. Trial Registration EudraCT 2013-003020-36 and ClinicalTrials.gov (number not assigned) PMID:25401967
SHOCK AND VIBRATION COMPUTER PROGRAMS. REVIEWS AND SUMMARIES
1975-01-01
hurricanes , special for- mulas nay have to be conaidered. Ice Ice load la usually specified by the thickness of the ice and by the ice- breaking force...Vibration Institute 5401 Katrine Downers Grove, Illinois 60515 Attn: Dr. Ronald. L. Eshleman, Director Critical Speeds ot a Rptor-Bearlng System...Instruction manual, and exanples. Contact: The Vibration Institute 5401 Katrine Downers Grove, 111. 60515 KOUTIMi MACHINSW 477 Attn; Dr. Ronald L
PDC bits break ground with advanced vibration mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-01
Advancements in PDC bit technology have resulted in the identification and characterization of different types of vibrational modes that historically have limited PDC bit performance. As a result, concepts have been developed that prevent the initiation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit performance. As a result, concepts have been developed that prevent the imitation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit,more » thereby improving its performance. This improved understanding of the complex forces affecting bit performance is driving bit customization for specific drilling programs.« less
NASA Technical Reports Server (NTRS)
Razzaq, Zia; Mykins, David W.
1987-01-01
Potential passive damping concepts for use in space structures are identified. The effectiveness of copper brush, wool swab, and silly putty in chamber dampers is investigated through natural vibration tests on a tubular aluminum member. The member ends have zero translation and possess partial rotational restraints. The silly putty in chamber dampers provide the maximum passive damping efficiency. Forced vibration tests are then conducted with one, two, and three damper chambers containing silly putty. Owing to the limitation of the vibrator used, the performance of these dampers could not be evaluated experimentally until the forcing function was disengaged. Nevertheless, their performance is evaluated through a forced dynamic finite element analysis conducted as a part of this investigation. The theoretical results based on experimentally obtained damping ratios indicate that the passive dampers are considerably more effective under member natural vibration than during forced vibration. Also, the maximum damping under forced vibration occurs at or near resonance.
Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building
Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo
2013-01-01
This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999
Train-induced field vibration measurements of ground and over-track buildings.
Zou, Chao; Wang, Yimin; Moore, James A; Sanayei, Masoud
2017-01-01
Transit-oriented development, such as metro depot and over-track building complexes, has expanded rapidly over the last 5years in China. Over-track building construction has the advantage of comprehensive utilization of land resources, ease of commuting to work, and provide funds for subway construction. But the high frequency of subway operations into and out of the depots can generate excessive vibrations that transmit into the over track buildings, radiate noise within the buildings, hamper the operation of vibration sensitive equipment, and adversely affect the living quality of the building occupants. Field measurements of vibration during subway operations were conducted at Shenzhen, China, a city of 10.62 million people in southern China. Considering the metro depot train testing line and throat area train lines were the main vibration sources, vibration data were captured in five measurement setups. The train-induced vibrations were obtained and compared with limitation of FTA criteria. The structure-radiated noise was calculated using measured vibration levels. The vertical vibration energy directly passed through the columns on both sides of track into the platform, amplifying vibration on the platform by up to 6dB greater than ground levels at testing line area. Vibration amplification around the natural frequency in the vertical direction of over-track building made the peak values of indoor floor vibration about 16dB greater than outdoor platform vibration. We recommend to carefully examining design of new over-track buildings within 40m on the platform over the throat area to avoid excessive vertical vibrations and noise. For both buildings, the measured vertical vibrations were less than the FTA limit. However, it is demonstrated that the traffic-induced high-frequency noise has the potential to annoy occupants on the upper floors. Copyright © 2016 Elsevier B.V. All rights reserved.
Low-noise, high-strength, spiral-bevel gears for helicopter transmissions
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.
1993-01-01
Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.
Eight weeks of local vibration training increases dorsiflexor muscle cortical voluntary activation.
Souron, Robin; Farabet, Adrien; Féasson, Léonard; Belli, Alain; Millet, Guillaume Y; Lapole, Thomas
2017-06-01
The aim of this study was to evaluate the effects of an 8-wk local vibration training (LVT) program on functional and corticospinal properties of dorsiflexor muscles. Forty-four young subjects were allocated to a training (VIB, n = 22) or control (CON, n = 22 ) group. The VIB group performed twenty-four 1-h sessions (3 sessions/wk) of 100-Hz vibration applied to the right tibialis anterior. Both legs were tested in each group before training (PRE), after 4 (MID) and 8 (POST) wk of training, and 2 wk after training (POST 2W ). Maximal voluntary contraction (MVC) torque was assessed, and transcranial magnetic stimulation (TMS) was used to evaluate cortical voluntary activation (VA TMS ), motor evoked potential (MEP), cortical silent period (CSP), and input-output curve parameters. MVC was significantly increased for VIB at MID for right and left legs [+7.4% ( P = 0.001) and +6.2% ( P < 0.01), respectively] and remained significantly greater than PRE at POST [+12.0% ( P < 0.001) and +10.1% ( P < 0.001), respectively]. VA TMS was significantly increased for right and left legs at MID [+4.4% ( P < 0.01) and +4.7% ( P < 0.01), respectively] and at POST [+4.9% ( P = 0.001) and +6.2% ( P = 0.001), respectively]. These parameters remained enhanced in both legs at POST 2W MEP and CSP recorded during MVC and input-output curve parameters did not change at any time point for either leg. Despite no changes in excitability or inhibition being observed, LVT seems to be a promising method to improve strength through an increase of maximal voluntary activation, i.e., neural adaptations. Local vibration may thus be further considered for clinical or aging populations. NEW & NOTEWORTHY The effects of a local vibration training program on cortical voluntary activation measured with transcranial magnetic stimulation were assessed for the first time in dorsiflexors, a functionally important muscle group. We observed that training increased maximal voluntary strength likely because of the strong and repeated activation of Ia spindle afferents during vibration training that led to changes in the cortico-motoneuronal pathway, as demonstrated by the increase in cortical voluntary activation. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Yang, Yanqiang; Zhu, Gangbei; Yan, Lin; Liu, Xiaosong; Yang's Ultrafast Spectroscopy Group Team
2017-06-01
Intramolecular vibrational energy redistribution (IVR) is important process in thermal decomposition, shock chemistry and photochemistry. Anti-Stokes Raman scattering is sensitive to the vibrational population in excited states because only vibrational excited states are responsible to the anti-Stokes Raman scattering, does not vibrational ground states. In this report, steady-state anti-Stokes Raman spectroscopy and broad band ultrafast coherent anti-Stokes Raman scattering (CARS) are performed. The steady-state anti-Stokes Raman spectroscopy shows temperature dependent of vibrational energy redistribution in vibrational excited-state molecule, and reveal that, in liquid nitrobenzene, with temperature increasing, vibrational energy is mainly redistributed in NO2 symmetric stretching mode, and phenyl ring stretching mode of νCC. For liquid nitromethane, it is found that, with temperature increasing, vibrational energy concentrate in CN stretching mode and methyl umbrella vibrational mode. In the broad band ultrafast CARS experiment, multiple vibrational modes are coherently excited to vibrational excited states, and the time-frequency resolved CARS spectra show the coincident IVR processes. This work is supported by the National Natural Science Foundation of China (Grant Numbers 21673211 and 11372053), and the Science Challenging Program (Grant Number JCKY2016212A501).
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
Influence of Combined Whole-Body Vibration Plus G-Loading on Visual Performance
NASA Technical Reports Server (NTRS)
Adelstein, Bernard D.; Beutter, Brent Robert; Kaiser, Mary K.; McCann, Robert S.; Stone, Leland S.; Anderson, Mark R.; Renema, Fritz; Paloski, William H.
2009-01-01
Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final 20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER) or response times (RT). Significant degradations in both ER and RT, however, were observed at 0.5 and 0.7 g for 10-pt, and at 0.7 g for 14-pt font displays. These objective performance measures were mirrored by participants' subjective ratings. Interestingly, we found that the impact of vibration on ER increased with distance from the center of the display, but only for vertical displacements. Furthermore, no significant ER or RT aftereffects were detected immediately following vibration, regardless of amplitude. Lastly, given that our reading task required no specialized spaceflight expertise, our finding that effects were not statistically distinct between our two groups is not surprising. The results from this empirical study provide initial guidance for evaluating the display readability trade-space between text-font size and vibration amplitude. However, the outcome of this work should be considered preliminary in nature for a number of reasons: 1. The single 12 Hz x-axis vibration employed was based on earlier load-cycle models of the induced TO environment at the end of Ares-I first stage flight. Recent analyses of TO mitigation designs suggest that significant concurrent off-axis vibration may also occur. 2. The shirtsleeve environment in which we tested fails to capture the full kinematic and dynamic complexity of the physical interface between crewmember and the still-to-bematured helmet-suit-seat designs, and the impact these will have for vibration transmission and consequent performance. 3. By examining performance in this reading and number processing task, we are only assessing readability, a first and necessary step that in itself does not directly address the performance of more sophisticated operational tasks such as vehicle-health monitoring or manual control of the vehicle.
Journal of Engineering Thermophysics (Selected Articles),
1983-05-20
A SURGE TEST OF A TWIN-SHAFT TURBOJET ENGINE ON GROUND TEST BED* Chiang Feng (Shengyang Aeroengine Company) ABSTRACT Instrument technique for...oscillogram for the static pressure behind the two compressors. This noise was analyzed and believed to have arisen from the vibrations of the rotating blades...booms are heard. The vibrational energy of the surge is enormous, especially in the range of 85-90% of rotational speed. One can feel the vibrations
The Shock and Vibration Bulletin. Part 3. Shock Testing, Shock Analysis
1974-08-01
APPROXIMATE TRANSFORMATION C.S. O’Hearne and J.W. Shipley, Martin Marietta Aerospace, Orlando, Florida LINEAR LUMPED-MASS MODELING TECHNIQUES FOR BLAST LOADED...Leppert, B.K. Wada, Jet Propulsion Laboratory, Pasadena, California, and R. Miyakawa, Martin - Marietta Aerospace, Denver, Colorado (assigned to the Jet...Wilmington, Delaware Vibration Testing and Analysis DEVELOPMENT OF SAM-D MISSILE RANDOM VIBRATION RESPONSE LOADS P.G. Hahn, Martin Marietta Aerospace
2006-08-21
Dynamic Testing of In-Situ Composite Floors and Evaluation of Vibration Serviceability Using the Finite Element Method By Anthony R. Barrett...Setareh Alfred L. Wicks 21 August 2006 Blacksburg, VA Keywords: vibration, floor, serviceability , walking, modal analysis, fundamental frequency...burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services
2003-11-17
KENNEDY SPACE CENTER, FLA. - The crawler transporter slowly moves the Mobile Launcher Platform (MLP), carrying a set of twin solid rocket boosters, along the crawlerway in support of engineering analysis vibration tests on the crawler and MLP. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.
Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1
2012-04-03
vehicle specification and/or the detailed test plan. This (half-round obstacle) accelerometer will be low-pass filtered ( post test ) at 30 Hz...Engineers TARADCOM Tank-Automotive Research and Development Command TOP Test Operations Procedure VDV Vibration Dose Value WBV Whole Body...
Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test
NASA Technical Reports Server (NTRS)
Fortenberry, J.; Brownlee, G. R.
1974-01-01
The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.
Vibration testing and analysis using holography
NASA Technical Reports Server (NTRS)
1971-01-01
Time average holography is useful in recording steady state vibrational mode patterns. Phase relationships under steady state conditions are measured with real time holography and special phase shifting techniques. Data from Michelson interferometer verify vibration amplitudes from holographic data.
Marcotte, Pierre; Beaugrand, Sylvie; Boutin, Jérôme; Larue, Christian
2010-01-01
Subway operators have complained about discomfort caused by whole-body vibration. To address this problem, a suspension seat with extensive ergonomic features has been adapted to the confined space of the subway operator cab. The suspension was modified from an existing suspension in order to reduce the dominant frequency of the subway vertical vibration (2.4 Hz). The suspension seat has been extensively tested on a vertical hydraulic shaker. These tests have shown that the SEAT value was lower for a higher vibration level, for higher subject weight, and for the suspension adjusted at median height. The seat also produces a lower SEAT value when there was a predominance of the 6 Hz vibration component. The horizontal seat adjustments had no influence on the suspension SEAT value. Removing the suspension damper also decreases the SEAT value for all the tested configurations. The final version of the suspension seat prototype was validated during normal subway operation with 19 different operators having weight in the 5th, 50th and 95th percentile of the operator population. Accelerations were measured with triaxial accelerometers at the seat cushion, above the suspension and on the floor. In addition to the vibration measurements, each operator was asked about his perceived discomfort from vibration exposure. Globally, the suspension seat attenuated the vertical vibration (SEAT values from 0.86 to 0.99), but discomfort due to amplification of the 2.4 Hz component occurred when the suspension height was adjusted at the minimum, even when the global weighted acceleration was lower (SEAT value < 1). These results suggest that in order to reduce the discomfort caused by whole-body vibration, the transmissibility of the seat should also be considered, in particular when there is a dominant frequency in the vibration spectra.
Saş, E Babur; Kurt, M; Can, M; Okur, S; İçli, S; Demiç, S
2014-12-10
The molecular structure and vibrations of 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MePIFA) were investigated by infrared and Raman spectroscopies, UV-Vis, (1)H and (13)C NMR spectroscopic techniques and NBO analysis. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. (1)H and (13)C NMR spectra and UV-Vis spectrum were recorded in DMSO solution. HOMO-LUMO analysis and molecular electrostatic potential (MEP) analysis were performed. The theoretical calculations for the molecular structure and spectroscopies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After the geometry of the molecule was optimized, vibration wavenumbers and fundamental vibration wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analysis were made using GaussSum 2.2 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saş, E. Babur; Kurt, M.; Can, M.; Okur, S.; İçli, S.; Demiç, S.
2014-12-01
The molecular structure and vibrations of 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MePIFA) were investigated by infrared and Raman spectroscopies, UV-Vis, 1H and 13C NMR spectroscopic techniques and NBO analysis. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H and 13C NMR spectra and UV-Vis spectrum were recorded in DMSO solution. HOMO-LUMO analysis and molecular electrostatic potential (MEP) analysis were performed. The theoretical calculations for the molecular structure and spectroscopies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After the geometry of the molecule was optimized, vibration wavenumbers and fundamental vibration wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analysis were made using GaussSum 2.2 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.
Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters
NASA Technical Reports Server (NTRS)
Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.
1976-01-01
Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.
[Hand-arm vibration syndrome in a nurse carrying out gypsum cutting operations].
Speziale, Martina; Picchiotti, E
2009-01-01
A professional nurse, employed mainly on gypsum cutting operations, developed a hand-arm vibration syndrome with Raynaud's phenomenon, neurosensitive disorders and impairment of the bone and joints apparatus of the hand and arm. The nurse underwent diagnostic investigations (cold test, X-ray of the upper limbs, blood tests); also the vibration levels transmitted from instrument were measured and the exposure times were established. Clinical investigations showed the presence of a hand-arm vibration syndrome with secondary Raynaud's phenomenon and environmental surveys revealed very high vibration levels, such as could be associated with the disease with a causal relationship. In the literature no reports exist of the vibration syndrome being associated with health care workers in orthopaedic departments. The case described in this study occurred because of peculiar organisational factors that most likely have never occurred in other hospitals or orthopaedic departments.
Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit
2012-01-01
There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.
Some space shuttle tile/strain-isolator-pad sinusoidal vibration tests
NASA Technical Reports Server (NTRS)
Miserentino, R.; Pinson, L. D.; Leadbetter, S. A.
1980-01-01
Vibration tests were performed on the tile/strain-isolator-pad system used as thermal protection for the space shuttle orbiter. Experimental data on normal and in-plane vibration response and damping properties are presented. Three test specimens exhibited shear type motion during failures that occurred in the tile near the tile/strain-isolator-pad bond-line. A dynamic instability is described which has large in-plane motion at a frequency one-half that of the nominal driving frequency. Analysis shows that this phenomenon is a parametric response.
Resolving Sensory Conflict: the Effect of Muscle Vibration on Postural Stability
NASA Technical Reports Server (NTRS)
Layne, Charles S.
1991-01-01
The otolith-tilt reinterpretation hypothesis (OTTR) proposes that the central nervous system adapts to weightlessness by reinterpreting all otolith input as linear motion. While interpreting otolith input exclusively as linear motion is functionally useful in space, it is maladaptive upon return to Earth. Astronauts have reported experiencing illusory sensations during head movement which contributes to postural instability. The effect is assessed of muscle vibration in combination with a variety of sensory conflicts on postural equilibrium. The equilibrium of six healthy subjects was tested using the EquiTest sensory test protocol, with and without the confounding influence of triceps surea vibration. The data were analyzed with repeated measures with vibration, vision status, and platform status as independent variables. All main effects and an interaction between the presence of vision and platform sway referencing were found to be significant. Overall, a 4.5 pct. decrease in postural stability was observed with vibration. The trend of the difference scores between conditions with and without vibration suggests that vibration is most destabilizing when the triceps surea is able to change length during postural sway (i.e., conditions with a fixed support surface). The impact of sway referencing vision was virtually identical to that of eye closure, providing compelling evidence that sway referencing 'nulls out' useful cues about subject sway.
Acute bone response to whole body vibration in healthy pre-pubertal boys.
Harrison, R; Ward, K; Lee, E; Razaghi, H; Horne, C; Bishop, N J
2015-06-01
The skeleton responds to mechanical stimulation. We wished to ascertain the magnitude and speed of the growing skeleton's response to a standardised form of mechanical stimulation, vibration. 36 prepubertal boys stood for 10 minutes in total on one of two vibrating platforms (high (>2 g) or low (<1 g) magnitude vibration) on either 1, 3 or 5 successive days (n=12 for each duration); 15 control subjects stood on an inactive platform. Blood samples were taken at intervals before and after vibration to measure bone formation (P1NP, osteocalcin) and resorption (CTx) markers as well as osteoprotegerin and sclerostin. There were no significant differences between platform and control groups in bone turnover markers immediately after vibration on days 1, 3 and 5. Combining platform groups, at day 8 P1NP increased by 25.1% (CI 12.3 to 38.0; paired t-test p=0.005) and bone resorption increased by 10.9% (CI 3.6 to 18.2; paired t-test p=0.009) compared to baseline. Osteocalcin, osteoprotogerin and sclerostin did not change significantly. The growing skeleton can respond quickly to vibration of either high or low magnitude. Further work is needed to determine the utility of such "stimulation-testing" in clinical practice.