NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2006-11-01
A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.
Damage localization of marine risers using time series of vibration signals
NASA Astrophysics Data System (ADS)
Liu, Hao; Yang, Hezhen; Liu, Fushun
2014-10-01
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
NASA Astrophysics Data System (ADS)
Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.
2018-01-01
Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.
NASA Astrophysics Data System (ADS)
Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei
2017-08-01
How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.
On-line damage detection in rotating machinery
NASA Astrophysics Data System (ADS)
Alkhalifa, Tareq Jawad
This work is concerned with a set of techniques to detect internal defects in uniform circular discs (rotors). An internal defect is intentionally manufactured in stereolithographic discs by a rapid prototyping process using cured resin SL 5170 material. The analysis and results presented here are limited to a uniform circular disc, with internal defects, mounted on a uniform flexible circular shaft. The setup is comprised of a Bently Nevada rotor kit connected to a data acquisition system. The rotor consists of a disc and shaft that is supported by journal bearings and is coupled to a motor by a rubber joint. Damage produces localized changes in the strain energy, which is quantified to characterize the damage. Based on previous research, the Strain Energy Damage Index (SEDI) is utilized to localize the damage due to strain energy differences between damaged and undamaged modes. To accomplish the objective, this work covers three types of analysis: finite element analysis, vibration analysis, and experimental modal analysis. Finite element analysis (using SDRC Ideas software) is performed to develop a multi-degree-of-freedom (MDOF) rotor system with internal damage, and its dynamic characteristics are investigated. The analysis is performed for two different types damage cases: radial damage and circular damage. Parametric study for radial damage and random noise to undamaged disc have been investigated to predict the effect of noise in the damage detection. The developed on-line damage detection technique for rotating equipment incorporates and couples both vibration analysis and experimental modal analysis. The dynamic investigation of the rotating discs (with and without defect) is conducted by vibration signal analysis (using proximity sensors, data acquisition and LabView). The vibration analysis provides a unique vibration signature for the damaged disc, which indicates the existence of the damage. The vibration data are acquired at different running speeds (1000, 2500, 5000 rpm). Then the dynamic investigation of non-rotating discs (with and without defect) is conducted by experimental modal analysis (using STAR software). While the vibration analysis detects and indicates the existence of damage while the disc is rotating, experimental modal analysis (using STAR and MATLAB software) provides the localization of damage through the modal parameters for a non-rotating disc. Both of the experimental diagnostic algorithms are based on measurement of the dynamic behavior of the damaged disc. The results are compared with the reference, or baseline, one, obtained initially for an undamaged disc. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2016-04-01
Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.
Vibration-based structural health monitoring of the aircraft large component
NASA Astrophysics Data System (ADS)
Pavelko, V.; Kuznetsov, S.; Nevsky, A.; Marinbah, M.
2017-10-01
In the presented paper there are investigated the basic problems of the local system of SHM of large scale aircraft component. Vibration-based damage detection is accepted as a basic condition, and main attention focused to a low-cost solution that would be attractive for practice. The conditions of small damage detection in the full scale structural component at low-frequency excitation were defined in analytical study and modal FEA. In experimental study the dynamic test of the helicopter Mi-8 tail beam was performed at harmonic excitation with frequency close to first natural frequency of the beam. The index of correlation coefficient deviation (CCD) was used for extraction of the features due to embedded pseudo-damage. It is shown that the problem of vibration-based detection of a small damage in the large scale structure at low-frequency excitation can be solved successfully.
NASA Astrophysics Data System (ADS)
Shi, Binkai; Qiao, Pizhong
2018-03-01
Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.
Manifold learning-based subspace distance for machinery damage assessment
NASA Astrophysics Data System (ADS)
Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang
2016-03-01
Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.
2017-02-01
Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.
A new scenario-based approach to damage detection using operational modal parameter estimates
NASA Astrophysics Data System (ADS)
Hansen, J. B.; Brincker, R.; López-Aenlle, M.; Overgaard, C. F.; Kloborg, K.
2017-09-01
In this paper a vibration-based damage localization and quantification method, based on natural frequencies and mode shapes, is presented. The proposed technique is inspired by a damage assessment methodology based solely on the sensitivity of mass-normalized experimental determined mode shapes. The present method differs by being based on modal data extracted by means of Operational Modal Analysis (OMA) combined with a reasonable Finite Element (FE) representation of the test structure and implemented in a scenario-based framework. Besides a review of the basic methodology this paper addresses fundamental theoretical as well as practical considerations which are crucial to the applicability of a given vibration-based damage assessment configuration. Lastly, the technique is demonstrated on an experimental test case using automated OMA. Both the numerical study as well as the experimental test case presented in this paper are restricted to perturbations concerning mass change.
NASA Astrophysics Data System (ADS)
Underwood, Sara; Koester, David; Adams, Douglas E.
2009-03-01
Fiberglass sandwich panels are tested to study a vibration-based method for locating damage in composite materials. This method does not rely on a direct comparison of the natural frequencies, mode shapes, or residues in the forced vibration response data. Specifically, a nonlinear system identification based method for damage detection is sought that reduces the sensitivity of damage detection results to changes in vibration measurements due to variations in boundary conditions, environmental conditions, and material properties of the panel. Damage mechanisms considered include a disbond between the core and face sheet and a crack within the core. A panel is excited by a skewed piezoelectric actuator over a broad frequency range while a three-dimensional scanning laser vibrometer measures the surface velocity of the panel along three orthogonal axes. The forced frequency response data measured using the scanning laser vibrometer at multiple excitation amplitudes is processed to identify areas of the panel that exhibit significant nonlinear response characteristics. It is demonstrated that these localized nonlinearities in the panel coincide with the damaged areas of the composite material. Because changes in the measured frequency response functions due to nonlinear distortions associated with the damage can be identified without comparing the vibration data to a reference (baseline) signature of the undamaged material, this vibration technique for damage detection in composite materials exhibits less sensitivity to variations in the underlying linear characteristics than traditional methods. It is also demonstrated that the damage at a given location can be classified as either due to a disbond or core crack because these two types of damage produce difference signatures when comparing the multi-amplitude frequency response functions.
Experimental and analytical study of water pipe's rupture for damage identification purposes
NASA Astrophysics Data System (ADS)
Papakonstantinou, Konstantinos G.; Shinozuka, Masanobu; Beikae, Mohsen
2011-04-01
A malfunction, local damage or sudden pipe break of a pipeline system can trigger significant flow variations. As shown in the paper, pressure variations and pipe vibrations are two strongly correlated parameters. A sudden change in the flow velocity and pressure of a pipeline system can induce pipe vibrations. Thus, based on acceleration data, a rapid detection and localization of a possible damage may be carried out by inexpensive, nonintrusive monitoring techniques. To illustrate this approach, an experiment on a single pipe was conducted in the laboratory. Pressure gauges and accelerometers were installed and their correlation was checked during an artificially created transient flow. The experimental findings validated the correlation between the parameters. The interaction between pressure variations and pipe vibrations was also theoretically justified. The developed analytical model explains the connection among flow pressure, velocity, pressure wave propagation and pipe vibration. The proposed method provides a rapid, efficient and practical way to identify and locate sudden failures of a pipeline system and sets firm foundations for the development and implementation of an advanced, new generation Supervisory Control and Data Acquisition (SCADA) system for continuous health monitoring of pipe networks.
Damage localization by statistical evaluation of signal-processed mode shapes
NASA Astrophysics Data System (ADS)
Ulriksen, M. D.; Damkilde, L.
2015-07-01
Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.
Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao
2018-07-01
Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes
Xu, W.; Zhu, W. D.; Smith, S. A.; ...
2016-03-18
While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Zhu, W. D.; Smith, S. A.
While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less
Wireless vibration monitoring for damage detection of highway bridges
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Gangone, Michael V.; Janoyan, Kerop D.; Jha, Ratneshwar
2008-03-01
The development of low-cost wireless sensor networks has resulted in resurgence in the development of ambient vibration monitoring methods to assess the in-service condition of highway bridges. However, a reliable approach towards assessing the health of an in-service bridge and identifying and localizing damage without a priori knowledge of the vibration response history has yet to be formulated. A two-part study is in progress to evaluate and develop existing and proposed damage detection schemes. The first phase utilizes a laboratory bridge model to investigate the vibration response characteristics induced through introduction of changes to structural members, connections, and support conditions. A second phase of the study will validate the damage detection methods developed from the laboratory testing with progressive damage testing of an in-service highway bridge scheduled for replacement. The laboratory bridge features a four meter span, one meter wide, steel frame with a steel and cement board deck composed of sheet layers to regulate mass loading and simulate deck wear. Bolted connections and elastomeric bearings provide a means for prescribing variable local stiffness and damping effects to the laboratory model. A wireless sensor network consisting of fifty-six accelerometers accommodated by twenty-eight local nodes facilitates simultaneous, real-time and high-rate acquisition of the vibrations throughout the bridge structure. Measurement redundancy is provided by an array of wired linear displacement sensors as well as a scanning laser vibrometer. This paper presents the laboratory model and damage scenarios, a brief description of the developed wireless sensor network platform, an overview of available test and measurement instrumentation within the laboratory, and baseline measurements of dynamic response of the laboratory bridge model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Comparative study of performance of neutral axis tracking based damage detection
NASA Astrophysics Data System (ADS)
Soman, R.; Malinowski, P.; Ostachowicz, W.
2015-07-01
This paper presents a comparative study of a novel SHM technique for damage isolation. The performance of the Neutral Axis (NA) tracking based damage detection strategy is compared to other popularly used vibration based damage detection methods viz. ECOMAC, Mode Shape Curvature Method and Strain Flexibility Index Method. The sensitivity of the novel method is compared under changing ambient temperature conditions and in the presence of measurement noise. Finite Element Analysis (FEA) of the DTU 10 MW Wind Turbine was conducted to compare the local damage identification capability of each method and the results are presented. Under the conditions examined, the proposed method was found to be robust to ambient condition changes and measurement noise. The damage identification in some is either at par with the methods mentioned in the literature or better under the investigated damage scenarios.
Vibration characteristics and damage detection in a suspension bridge
NASA Astrophysics Data System (ADS)
Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh
2016-08-01
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
Planetary Transmission Diagnostics
NASA Technical Reports Server (NTRS)
Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.
2004-01-01
This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the prediction error. The constrained adaptive lifting diagnostic algorithm is validated using data collected from the University of Maryland Transmission Test Rig and the results are discussed.
Identification of Bearing Failure Using Signal Vibrations
NASA Astrophysics Data System (ADS)
Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah
2018-04-01
Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.
Method development of damage detection in asymmetric buildings
NASA Astrophysics Data System (ADS)
Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy
2018-01-01
Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.
Multi-damage identification based on joint approximate diagonalisation and robust distance measure
NASA Astrophysics Data System (ADS)
Cao, S.; Ouyang, H.
2017-05-01
Mode shapes or operational deflection shapes are highly sensitive to damage and can be used for multi-damage identification. Nevertheless, one drawback of this kind of methods is that the extracted spatial shape features tend to be compromised by noise, which degrades their damage identification accuracy, especially for incipient damage. To overcome this, joint approximate diagonalisation (JAD) also known as simultaneous diagonalisation is investigated to estimate mode shapes (MS’s) statistically. The major advantage of JAD method is that it efficiently provides the common Eigen-structure of a set of power spectral density matrices. In this paper, a new criterion in terms of coefficient of variation (CV) is utilised to numerically demonstrate the better noise robustness and accuracy of JAD method over traditional frequency domain decomposition method (FDD). Another original contribution is that a new robust damage index (DI) is proposed, which is comprised of local MS distortions of several modes weighted by their associated vibration participation factors. The advantage of doing this is to include fair contributions from changes of all modes concerned. Moreover, the proposed DI provides a measure of damage-induced changes in ‘modal vibration energy’ in terms of the selected mode shapes. Finally, an experimental study is presented to verify the efficiency and noise robustness of JAD method and the proposed DI. The results show that the proposed DI is effective and robust under random vibration situations, which indicates that it has the potential to be applied to practical engineering structures with ambient excitations.
Health monitoring of pipeline girth weld using empirical mode decomposition
NASA Astrophysics Data System (ADS)
Rezaei, Davood; Taheri, Farid
2010-05-01
In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.
Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.
2003-01-01
A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less
Vibration Based Sun Gear Damage Detection
NASA Technical Reports Server (NTRS)
Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll
2013-01-01
Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.
Damage detection in rotating machinery by means of entropy-based parameters
NASA Astrophysics Data System (ADS)
Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr
2014-11-01
The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.
A Vibration-Based Strategy for Health Monitoring of Offshore Pipelines' Girth-Welds
Razi, Pejman; Taheri, Farid
2014-01-01
This study presents numerical simulations and experimental verification of a vibration-based damage detection technique. Health monitoring of a submerged pipe's girth-weld against an advancing notch is attempted. Piezoelectric transducers are bonded on the pipe for sensing or actuation purposes. Vibration of the pipe is excited by two means: (i) an impulsive force; (ii) using one of the piezoelectric transducers as an actuator to propagate chirp waves into the pipe. The methodology adopts the empirical mode decomposition (EMD), which processes vibration data to establish energy-based damage indices. The results obtained from both the numerical and experimental studies confirm the integrity of the approach in identifying the existence, and progression of the advancing notch. The study also discusses and compares the performance of the two vibration excitation means in damage detection. PMID:25225877
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.
In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
NASA Astrophysics Data System (ADS)
Avendaño-Valencia, Luis David; Fassois, Spilios D.
2017-07-01
The study focuses on vibration response based health monitoring for an operating wind turbine, which features time-dependent dynamics under environmental and operational uncertainty. A Gaussian Mixture Model Random Coefficient (GMM-RC) model based Structural Health Monitoring framework postulated in a companion paper is adopted and assessed. The assessment is based on vibration response signals obtained from a simulated offshore 5 MW wind turbine. The non-stationarity in the vibration signals originates from the continually evolving, due to blade rotation, inertial properties, as well as the wind characteristics, while uncertainty is introduced by random variations of the wind speed within the range of 10-20 m/s. Monte Carlo simulations are performed using six distinct structural states, including the healthy state and five types of damage/fault in the tower, the blades, and the transmission, with each one of them characterized by four distinct levels. Random vibration response modeling and damage diagnosis are illustrated, along with pertinent comparisons with state-of-the-art diagnosis methods. The results demonstrate consistently good performance of the GMM-RC model based framework, offering significant performance improvements over state-of-the-art methods. Most damage types and levels are shown to be properly diagnosed using a single vibration sensor.
Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets
Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.; ...
2018-04-05
Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. Here, in this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results showmore » that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μm when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Finally, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.« less
Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.
Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. Here, in this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results showmore » that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μm when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Finally, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.« less
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2003-01-01
A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)
2002-01-01
Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.
Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...
2014-05-01
In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less
Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda
2014-01-01
In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-01-01
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-04-21
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
Damage identification using inverse methods.
Friswell, Michael I
2007-02-15
This paper gives an overview of the use of inverse methods in damage detection and location, using measured vibration data. Inverse problems require the use of a model and the identification of uncertain parameters of this model. Damage is often local in nature and although the effect of the loss of stiffness may require only a small number of parameters, the lack of knowledge of the location means that a large number of candidate parameters must be included. This paper discusses a number of problems that exist with this approach to health monitoring, including modelling error, environmental effects, damage localization and regularization.
A procedure for damage detection and localization of framed buildings based on curvature variation
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Carlo Ponzo, Felice; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Domenico; Nigro, Antonella
2014-05-01
Structural Health Monitoring and Damage Detection are topics of current interest in civil, mechanical and aerospace engineering. Damage Detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature of the last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Structural damage exhibits its main effects in terms of stiffness and damping variation. As a consequence, a permanent dynamic monitoring system makes it possible to detect and, if suitably concentrated on the structure, to localize structural and non-structural damage occurred on the structure during a strong earthquake. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation (NDE) based on the variation of the dynamic behaviour of structures under seismic loads. Pandey et al. (1991) highlighted on the possibility to use the structural mode shapes to extract useful information for structural damage localization. In this paper a new procedure for damage detection on framed structures based on changes in modal curvature is proposed. The proposed approach is based on the use of Stockwell Transform, a special kind of integral transformation that become a powerful tool for nonlinear signal analysis and then to analyse the nonlinear behaviour of a general structure. Using this kind of approach, it is possible to use a band-variable filter (Ditommaso et al., 2012) to extract from a signal recorded on a structure (excited by an earthquake) the response related to a single mode of vibration for which the related frequency changes over time (if the structure is being damaged). İn general, by acting simultaneously in both frequency and time domain, it is possible to use the band-variable filter to extract the dynamic characteristics of a system that evolves over time. Aim of this paper is to show, through practical examples, how it is possible to identify and to localize damage on a structure comparing mode shapes and the related curvature variations over time. It is possible to demonstrate that mode curvature variation is strongly related with the damage occurred on a structure. This paper resumes the main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by different geometric configurations and designed for gravity loads only. The numerical campaign was conducted using both natural and artificial accelerograms compatible with the Italian code. The main results of experimental shaking table tests carried out on a steel framed model are also showed to confirm the effectiveness of the proposed procedure. REFERENCES Ditommaso R., Mucciarelli M., Ponzo F. C. (2012). Analysis of non-stationary structural systems by using a band-variable filter. Bulletin of Earthquake Engineering. Volume 10, Number 3, pp. 895-911. DOI: 10.1007/s10518-012-9338-y. Pandey AK, Biswas M, Samman MM (1991) "Damage detection from changes in curvature mode shapes", Journal of Sound and Vibration, Vol. 145: Issue 2, pp. 321-332.
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; ...
2014-12-31
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less
Application of a Subspace-Based Fault Detection Method to Industrial Structures
NASA Astrophysics Data System (ADS)
Mevel, L.; Hermans, L.; van der Auweraer, H.
1999-11-01
Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.
Two-stage damage diagnosis based on the distance between ARMA models and pre-whitening filters
NASA Astrophysics Data System (ADS)
Zheng, H.; Mita, A.
2007-10-01
This paper presents a two-stage damage diagnosis strategy for damage detection and localization. Auto-regressive moving-average (ARMA) models are fitted to time series of vibration signals recorded by sensors. In the first stage, a novel damage indicator, which is defined as the distance between ARMA models, is applied to damage detection. This stage can determine the existence of damage in the structure. Such an algorithm uses output only and does not require operator intervention. Therefore it can be embedded in the sensor board of a monitoring network. In the second stage, a pre-whitening filter is used to minimize the cross-correlation of multiple excitations. With this technique, the damage indicator can further identify the damage location and severity when the damage has been detected in the first stage. The proposed methodology is tested using simulation and experimental data. The analysis results clearly illustrate the feasibility of the proposed two-stage damage diagnosis methodology.
NASA Astrophysics Data System (ADS)
de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei
2016-11-01
The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a new one, which are compared in terms of their capability for damage identification. The experimental and numerical results show that the vibration-based damage methods combined to the metrics can be used in Structural Health Monitoring (SHM) systems to identify the damage in the structure.
Experimental validation of a damage detection approach on a full-scale highway sign support truss
NASA Astrophysics Data System (ADS)
Yan, Guirong; Dyke, Shirley J.; Irfanoglu, Ayhan
2012-04-01
Highway sign support structures enhance traffic safety by allowing messages to be delivered to motorists related to directions and warning of hazards ahead, and facilitating the monitoring of traffic speed and flow. These structures are exposed to adverse environmental conditions while in service. Strong wind and vibration accelerate their deterioration. Typical damage to this type of structure includes local fatigue fractures and partial loosening of bolted connections. The occurrence of these types of damage can lead to a failure in large portions of the structure, jeopardizing the safety of passing traffic. Therefore, it is important to have effective damage detection approaches to ensure the integrity of these structures. In this study, an extension of the Angle-between-String-and-Horizon (ASH) flexibility-based approach [32] is applied to locate damage in sign support truss structures at bay level. Ambient excitations (e.g. wind) can be considered as a significant source of vibration in these structures. Considering that ambient excitation is immeasurable, a pseudo ASH flexibility matrix constructed from output-only derived operational deflection shapes is proposed. A damage detection method based on the use of pseudo flexibility matrices is proposed to address several of the challenges posed in real-world applications. Tests are conducted on a 17.5-m long full-scale sign support truss structure to validate the effectiveness of the proposed method. Damage cases associated with loosened bolts and weld failures are considered. These cases are realistic for this type of structure. The results successfully demonstrate the efficacy of the proposed method to locate the two common forms of damage on sign support truss structures instrumented with a few accelerometers.
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
Damage assessment in a sandwich panel based on full-field vibration measurements
NASA Astrophysics Data System (ADS)
Seguel, F.; Meruane, V.
2018-03-01
Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.
DOT National Transportation Integrated Search
2010-07-01
The objective of this work was to develop a : low-cost portable damage detection tool to : assess and predict damage areas in highway : bridges. : The proposed tool was based on standard : vibration-based damage identification (VBDI) : techniques but...
A two-step FEM-SEM approach for wave propagation analysis in cable structures
NASA Astrophysics Data System (ADS)
Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert
2018-02-01
Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.
Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications
NASA Astrophysics Data System (ADS)
He, K.; Zhu, W. D.
2011-07-01
A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.
NASA Astrophysics Data System (ADS)
Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.
2016-04-01
This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.
Fatigue Damage Spectrum calculation in a Mission Synthesis procedure for Sine-on-Random excitations
NASA Astrophysics Data System (ADS)
Angeli, Andrea; Cornelis, Bram; Troncossi, Marco
2016-09-01
In many real-life environments, certain mechanical and electronic components may be subjected to Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic (sinusoidal) contributions, in particular sine tones due to some rotating parts of the system (e.g. helicopters, engine-mounted components,...). These components must be designed to withstand the fatigue damage induced by the “composed” vibration environment, and qualification tests are advisable for the most critical ones. In the case of an accelerated qualification test, a proper test tailoring which starts from the real environment (measured vibration signals) and which preserves not only the accumulated fatigue damage but also the “nature” of the excitation (i.e. sinusoidal components plus random process) is important to obtain reliable results. In this paper, the classic time domain approach is taken as a reference for the comparison of different methods for the Fatigue Damage Spectrum (FDS) calculation in case of Sine-on-Random vibration environments. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is proposed.
NASA Astrophysics Data System (ADS)
Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano
2017-11-01
The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.
Damage detection of an in-service condensation pipeline joint
NASA Astrophysics Data System (ADS)
Briand, Julie; Rezaei, Davood; Taheri, Farid
2010-04-01
The early detection of damage in structural or mechanical systems is of vital importance. With early detection, the damage may be repaired before the integrity of the system is jeopardized, resulting in monetary losses, loss of life or limb, and environmental impacts. Among the various types of structural health monitoring techniques, vibration-based methods are of significant interest since the damage location does not need to be known beforehand, making it a more versatile approach. The non-destructive damage detection method used for the experiments herein is a novel vibration-based method which uses an index called the EMD Energy Damage Index, developed with the aim of providing improved qualitative results compared to those methods currently available. As part of an effort to establish the integrity and limitation of this novel damage detection method, field testing was completed on a mechanical pipe joint on a condensation line, located in the physical plant of Dalhousie University. Piezoceramic sensors, placed at various locations around the joint were used to monitor the free vibration of the pipe imposed through the use of an impulse hammer. Multiple damage progression scenarios were completed, each having a healthy state and multiple damage cases. Subsequently, the recorded signals from the healthy and damaged joint were processed through the EMD Energy Damage Index developed in-house in an effort to detect the inflicted damage. The proposed methodology successfully detected the inflicted damages. In this paper, the effects of impact location, sensor location, frequency bandwidth, intrinsic mode functions, and boundary conditions are discussed.
Damage Identification of Piles Based on Vibration Characteristics
Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen
2014-01-01
A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062
A modal H∞-norm-based performance requirement for damage-tolerant active controller design
NASA Astrophysics Data System (ADS)
Genari, Helói F. G.; Mechbal, Nazih; Coffignal, Gérard; Nóbrega, Eurípedes G. O.
2017-04-01
Damage-tolerant active control (DTAC) is a recent research area that encompasses control design methodologies resulting from the application of fault-tolerant control methods to vibration control of structures subject to damage. The possibility of damage occurrence is not usually considered in the active vibration control design requirements. Damage changes the structure dynamics, which may produce unexpected modal behavior of the closed-loop system, usually not anticipated by the controller design approaches. A modal H∞ norm and a respective robust controller design framework were recently introduced, and this method is here extended to face a new DTAC strategy implementation. Considering that damage affects each vibration mode differently, this paper adopts the modal H∞ norm to include damage as a design requirement. The basic idea is to create an appropriate energy distribution over the frequency range of interest and respective vibration modes, guaranteeing robustness, damage tolerance, and adequate overall performance, taking into account that it is common to have previous knowledge of the structure regions where damage may occur during its operational life. For this purpose, a structural health monitoring technique is applied to evaluate modal modifications caused by damage. This information is used to create modal weighing matrices, conducting to the modal H∞ controller design. Finite element models are adopted for a case study structure, including different damage severities, in order to validate the proposed control strategy. Results show the effectiveness of the proposed methodology with respect to damage tolerance.
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
NASA Astrophysics Data System (ADS)
Xu, Tengfei; Castel, Arnaud
2016-04-01
In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2017-04-01
The increasing demand for carbon neutral energy in a challenging economic environment is a driving factor for erecting ever larger wind turbines in harsh environments using novel wind turbine blade (WTBs) designs characterized by high flexibilities and lower buckling capacities. To counteract resulting increasing of operation and maintenance costs, efficient structural health monitoring systems can be employed to prevent dramatic failures and to schedule maintenance actions according to the true structural state. This paper presents a novel methodology for classifying structural damages using vibrational responses from a single sensor. The method is based on statistical classification using Bayes' theorem and an advanced statistic, which allows controlling the performance by varying the number of samples which represent the current state. This is done for multivariate damage sensitive features defined as partial autocorrelation coefficients (PACCs) estimated from vibrational responses and principal component analysis scores from PACCs. Additionally, optimal DSFs are composed not only for damage classification but also for damage detection based on binary statistical hypothesis testing, where features selections are found with a fast forward procedure. The method is applied to laboratory experiments with a small scale WTB with wind-like excitation and non-destructive damage scenarios. The obtained results demonstrate the advantages of the proposed procedure and are promising for future applications of vibration-based structural health monitoring in WTBs.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2018-02-01
To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.
Finite element model updating and damage detection for bridges using vibration measurement.
DOT National Transportation Integrated Search
2013-12-01
In this report, the results of a study on developing a damage detection methodology based on Statistical Pattern Recognition are : presented. This methodology uses a new damage sensitive feature developed in this study that relies entirely on modal :...
Structural damage identification using damping: a compendium of uses and features
NASA Astrophysics Data System (ADS)
Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.
2017-04-01
The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.
Application of higher order SVD to vibration-based system identification and damage detection
NASA Astrophysics Data System (ADS)
Chao, Shu-Hsien; Loh, Chin-Hsiung; Weng, Jian-Huang
2012-04-01
Singular value decomposition (SVD) is a powerful linear algebra tool. It is widely used in many different signal processing methods, such principal component analysis (PCA), singular spectrum analysis (SSA), frequency domain decomposition (FDD), subspace identification and stochastic subspace identification method ( SI and SSI ). In each case, the data is arranged appropriately in matrix form and SVD is used to extract the feature of the data set. In this study three different algorithms on signal processing and system identification are proposed: SSA, SSI-COV and SSI-DATA. Based on the extracted subspace and null-space from SVD of data matrix, damage detection algorithms can be developed. The proposed algorithm is used to process the shaking table test data of the 6-story steel frame. Features contained in the vibration data are extracted by the proposed method. Damage detection can then be investigated from the test data of the frame structure through subspace-based and nullspace-based damage indices.
NASA Astrophysics Data System (ADS)
Ren, W. X.; Lin, Y. Q.; Fang, S. E.
2011-11-01
One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.
Distributed bearing fault diagnosis based on vibration analysis
NASA Astrophysics Data System (ADS)
Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani
2016-01-01
Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Oh, Byung Kwan
2018-03-01
This paper presents a new approach for the damage detection of building structures under ambient excitation based on the inherent modal characteristics. In this study, without the extraction of modal parameters widely utilized in the previous studies on damage detection, a new index called the modal participation ratio (MPR), which is a representative value of the modal response extracted from dynamic responses measured in ambient vibration tests, is proposed to evaluate the change of the system of a structure according to the reduction of the story stiffness. The relationship between the MPR, representing a modal contribution for a specific mode and degree of freedom in buildings, and the story stiffness damage factor (SSDF), representing the extent of reduction in the story stiffness, is analyzed in various damage scenarios. From the analyses with three examples, several rules for the damage localization of building structures are found based on the characteristics of the MPR variation for the first mode subject to change in the SSDF. In addition, a damage severity function, derived from the relationship between the MPR for the first mode in the lowest story and the SSDF, is constructed to identify the severity of story stiffness reduction. Furthermore, the locations and severities of multiple damages are identified via the superposition of the presented damage severity functions. The presented method was applied to detect damage in a three-dimensional reinforced concrete (RC) structure.
Study on influence of vibration behavior of composite material damage by holography
NASA Astrophysics Data System (ADS)
Guo, Linfeng; Zhao, Zhimin; Gao, Mingjuan; Zhuang, Xianzhong
2006-01-01
Composite material has been applied widely in aeronautics, astronautics and some other fields due to their high strength, light weight and antifatigue and etc. But in the application, composite material may be destroyed or damaged, which may have impact on its further applications. Therefore, study on the influence of behavior of composite material damage becomes a hot research. In this paper, the common composite material for aircraft is used as the test object, and a study is conducted to investigate the influence of vibration behavior of composite material damage. The authors adopt the method of light-carrier wave and time-average holography. Compared the interference fringes of composite materials before and after damage, the width of the interference fringes of hologram of the damaged composite material is narrower than that of the fringes before. It means that the off-plane displacement of each point on the test object is larger than before. Based on the elastic mechanics theory, the off-plane displacement is inverse to the bending stiffness, and the bending stiffness of the test object will decrease after it is damaged. In other words, the vibration property of the composite material changes after damages occur. The research results of the paper show that the results accord with the analysis of theory.
Vibration fatigue using modal decomposition
NASA Astrophysics Data System (ADS)
Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.
Seismic damage to structures in the M s6.5 Ludian earthquake
NASA Astrophysics Data System (ADS)
Chen, Hao; Xie, Quancai; Dai, Boyang; Zhang, Haoyu; Chen, Hongfu
2016-03-01
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the `strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.
PEELUKHANA, Srikara V.; GOENKA, Shilpi; KIM, Brian; KIM, Jay; BHATTACHARYA, Amit; STRINGER, Keith F.; BANERJEE, Rupak K.
2015-01-01
To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s2, for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D). PMID:25843564
NASA Astrophysics Data System (ADS)
Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.
2017-05-01
Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.
Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna
NASA Astrophysics Data System (ADS)
He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang
2018-03-01
The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.
Damage of composite structures: Detection technique, dynamic response and residual strength
NASA Astrophysics Data System (ADS)
Lestari, Wahyu
2001-10-01
Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.
On-the-spot damage detection methodology for highway bridges.
DOT National Transportation Integrated Search
2010-07-01
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of...
Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance
NASA Technical Reports Server (NTRS)
Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.
2004-01-01
In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.
System identification of a tied arch bridge using reference-based wireless sensor networks
NASA Astrophysics Data System (ADS)
Hietbrink, Colby; Whelan, Matthew J.
2012-04-01
Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.
Nonlinear dynamics and health monitoring of 6-DOF breathing cracked Jeffcott rotor
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans; Yao, Wei
2015-04-01
Jeffcott rotor is employed to study the nonlinear vibration characteristics of breathing cracked rotor system and explore the possibility of further damage identification. This paper is an extension work of prior study based on 4 degree-of-freedom Jeffcott rotor system. With consideration of disk tilting and gyroscopic effect, 6-dof EOM is derived and the crack model is established using SERR (strain energy release rate) in facture mechanics. Same as the prior work, the damaged stiffness matrix is updated by computing the instant crack closure line through Zero Stress Intensity Factor method. The breathing crack area is taken as a variable to analyze the breathing behavior in terms of eccentricity phase and shaft speed. Furthermore, the coupled vibration among lateral, torsional and longitudinal d.o.f is studied under torsional/axial excitation. The final part demonstrates the possibility of using vibration signal of damaged system for the crack diagnosis and health monitoring.
NASA Astrophysics Data System (ADS)
Ettemeyer, Andreas; Schreiber, Dietmar; Voelzer, W.
1996-08-01
Ductile cast iron containers for transportation and deposition of radioactive waste have to be designed carefully in order to avoid unacceptable damages and leakages in case of an accident. Therefore various calculation and experimental methods are used during development and licensing of the containers. Besides others the container has to suffer severe impacts (e.g. falling from a height of several meters onto a concrete base). The level of strains must not exceed a value which would adversely affect the package in such a way that it would fail to meet the applicable requirements. In practice complex events such as drop tests are very difficult to calculate. Both the position of Maximum stress and the time of its occurrence are not easy to be predicted with the method of FEM. The uncertainty of the material modelling for plastic deformations by dynamic loading rates is the limiting factor. Therefore holography as an integral measuring technique in combination with strain gauge techniques were used to fit the FEM. By using the FEM calculations in the case of licensing, the FE and the material model have to be verified. The verification of the FE model has to be done by comparison of the local maxima measured by strain gauges and by comparison of the vibration modes. These vibration modes we take from holographic measurements. In this paper we explain container vibrations after impact analyzed with holographic measurements, FEM calculations and the comparison of the results. The comparison of the local maxima (strain gauges/FEM) is reported earlier.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.; Cantwell, W. J.
2003-08-01
This paper reports the use of a plastic fibre sensor for detecting impact damage in carbon fibre epoxy cantilever beams by monitoring their damping response under free vibration loading conditions. The composite beams were impacted at impact energies up to 8 J. The residual strengths and stiffnesses of the damaged laminates were measured in order to relate reductions in their mechanical properties to changes in their damping characteristics. Here, optical fibre sensors were surface bonded to carbon fibre composite beams which were subjected to free vibration tests to monitor their dynamic response. In the second part of this study, Ni-Ti shape memory alloy (SMA) wires were employed to control and modify the damping response of a composite beam. The SMA wires were initially trained to obtain the desired shape when activated. Here, the trained SMA wires were heated locally using a nickel/chromium wire that was wrapped around the trained region of the SMA. By using this method to activate the SMA wire (as opposed to direct electrical heating), it is possible to obtain localized actuation without heating the entire length of the wire. This procedure minimizes any damage to the host material that may result from local heat transfer between the SMA wire and the composite structure. In addition, the reduction in power requirements to achieve SMA activation permits the use of small-size power packs which can in turn lead to a potential weight reduction in weight-critical applications. The findings of this study demonstrate that a trained SMA offers a superior damping capability to that exhibited by an 'as-supplied' flat-annealed wire.
Predicting remaining life by fusing the physics of failure modeling with diagnostics
NASA Astrophysics Data System (ADS)
Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.
2004-03-01
Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.
Kojima, Tsuyoshi; Van Deusen, Mark; Jerome, W. Gray; Garrett, C. Gaelyn; Sivasankar, M. Preeti; Novaleski, Carolyn K.; Rousseau, Bernard
2014-01-01
Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes) and magnitude-doses (control, modal intensity phonation, or raised intensity phonation) of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure. PMID:24626217
Bende, Attila; Bogdan, Diana; Muntean, Cristina M; Morari, Cristian
2011-12-01
We present an ab initio study of the vibrational properties of cytosine and guanine in the Watson-Crick and Hoogsteen base pair configurations. The results are obtained by using two different implementations of the DFT method. We assign the vibrational frequencies to cytosine or to guanine using the vibrational density of states. Next, we investigate the importance of anharmonic corrections for the vibrational modes. In particular, the unusual anharmonic effect of the H(+) vibration in the case of the Hoogsteen base pair configuration is discussed.
Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiaolu; Steele, Ryan P., E-mail: ryan.steele@utah.edu
This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behavedmore » spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.« less
Analysis of cracked RC beams under vibration
NASA Astrophysics Data System (ADS)
Capozucca, R.; Magagnini, E.
2017-05-01
Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.
NASA Astrophysics Data System (ADS)
Wodecki, Jacek; Michalak, Anna; Zimroz, Radoslaw
2018-03-01
Harsh industrial conditions present in underground mining cause a lot of difficulties for local damage detection in heavy-duty machinery. For vibration signals one of the most intuitive approaches of obtaining signal with expected properties, such as clearly visible informative features, is prefiltration with appropriately prepared filter. Design of such filter is very broad field of research on its own. In this paper authors propose a novel approach to dedicated optimal filter design using progressive genetic algorithm. Presented method is fully data-driven and requires no prior knowledge of the signal. It has been tested against a set of real and simulated data. Effectiveness of operation has been proven for both healthy and damaged case. Termination criterion for evolution process was developed, and diagnostic decision making feature has been proposed for final result determinance.
Vaxenburg, Roman; Wyche, Isis; Svoboda, Karel; Efros, Alexander L.
2018-01-01
Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks. PMID:29584719
NASA Astrophysics Data System (ADS)
Felipe-Sesé, Luis; Díaz, Francisco A.
2018-02-01
The recent improvement in accessibility to high speed digital cameras has enabled three dimensional (3D) vibration measurements employing full-field optical techniques. Moreover, there is a need to develop a cost-effective and non-destructive testing method to quantify the severity of damages arising from impacts and thus, enhance the service life. This effect is more interesting in composite structures since possible internal damage has low external manifestation. Those possible damages have been previously studied experimentally by using vibration testing. Namely, those analyses were focused on variations in the modal frequencies or, more recently, mode shapes variations employing punctual accelerometers or vibrometers. In this paper it is presented an alternative method to investigate the severity of damage on a composite structure and how the damage affects to its integrity through the analysis of the full field modal behaviour. In this case, instead of punctual measurements, displacement maps are analysed by employing a combination of FP + 2D-DIC during vibration experiments in an industrial component. In addition, to analyse possible mode shape changes, differences between damaged and undamaged specimens are studied by employing a recent methodology based on Adaptive Image Decomposition (AGMD) procedure. It will be demonstrated that AGMD Image decomposition procedure, which decompose the displacement field into shape descriptors, is capable to detect and quantify the differences between mode shapes. As an application example, the proposed approach has been evaluated on two large industrial components (car bonnets) made of short-fibre reinforced composite. Specifically, the evolution of normalized AGMD shape descriptors has been evaluated for three different components with different damage levels. Results demonstrate the potential of the presented approach making it possible to measure the severity of a structural damage by evaluating the mode shape based in the analysis of its shape descriptors.
Vibration-Based Data Used to Detect Cracks in Rotating Disks
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Baaklini, George Y.
2004-01-01
Rotor health monitoring and online damage detection are increasingly gaining the interest of aircraft engine manufacturers. This is primarily due to the fact that there is a necessity for improved safety during operation as well as a need for lower maintenance costs. Applied techniques for the damage detection and health monitoring of rotors are essential for engine safety, reliability, and life prediction. Recently, the United States set the ambitious goal of reducing the fatal accident rate for commercial aviation by 80 percent within 10 years. In turn, NASA, in collaboration with the Federal Aviation Administration, other Federal agencies, universities, and the airline and aircraft industries, responded by developing the Aviation Safety Program. This program provides research and technology products needed to help the aerospace industry achieve their aviation safety goal. The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center is currently developing propulsion-system-specific technologies to detect damage prior to catastrophe under the propulsion health management task. Currently, the NDE group is assessing the feasibility of utilizing real-time vibration data to detect cracks in turbine disks. The data are obtained from radial blade-tip clearance and shaft-clearance measurements made using capacitive or eddy-current probes. The concept is based on the fact that disk cracks distort the strain field within the component. This, in turn, causes a small deformation in the disk's geometry as well as a possible change in the system's center of mass. The geometric change and the center of mass shift can be indirectly characterized by monitoring the amplitude and phase of the first harmonic (i.e., the 1 component) of the vibration data. Spin pit experiments and full-scale engine tests have been conducted while monitoring for crack growth with this detection methodology. Even so, published data are extremely limited, and the basic foundation of the methodology has not been fully studied. The NDE group is working on developing this foundation on the basis of theoretical modeling as well as experimental data by using the newly constructed subscale spin system shown in the preceding photograph. This, in turn, involved designing an optimal sub-scale disk that was meant to represent a full-scale turbine disk; conducting finite element analyses of undamaged and damaged disks to define the disk's deformation and the resulting shift in center of mass; and creating a rotordynamic model of the complete disk and shaft assembly to confirm operation beyond the first critical concerning the subscale experimental setup. The finite element analysis data, defining the center of mass shift due to disk damage, are shown. As an example, the change in the center of mass for a disk spinning at 8000 rpm with a 0.963-in. notch was 1.3 x 10(exp -4) in. The actual vibration response of an undamaged disk as well as the theoretical response of a cracked disk is shown. Experiments with cracked disks are continuing, and new approaches for analyzing the captured vibration data are being developed to better detect damage in a rotor. In addition, the subscale spin system is being used to test the durability and sensitivity of new NDE sensors that focus on detecting localized damage. This is designed to supplement the global response of the crack-detection methodology described here.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
Self-irradiation damage to the local structure of plutonium and plutonium intermetallics
NASA Astrophysics Data System (ADS)
Booth, C. H.; Jiang, Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.
2013-03-01
The effect of self-irradiation damage on the local structure of δ-Pu, PuAl2, PuGa3, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa5. In contrast, δ-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a δ-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of δ-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in δ-Pu as a network former.
Shilpapriya, Mangalampally; Jayanthi, Mungara; Reddy, Venumbaka Nilaya; Sakthivel, Rajendran; Selvaraju, Girija; Vijayakumar, Poornima
2015-01-01
Pain is highly subjective and it is neurologically proven that stimulation of larger diameter fibers - e.g., using appropriate coldness, warmth, rubbing, pressure or vibration - can close the neural "gate" so that the central perception of itch and pain is reduced. This fact is based upon "gate control" theory of Melzack and Wall. The present study was carried out to investigate the effects of vibration stimuli on pain experienced during local anesthetic injections. Thirty patients aged 6-12 years old of both the genders with Frankel's behavior rating scale as positive and definitely positive requiring bilateral local anesthesia injections for dental treatment were included in the split-mouth cross over design. Universal pain assessment tool was used to assess the pain with and without vibration during the administration of local anesthesia and the results obtained were tabulated and statistically analyzed. Local anesthetic administration with vibration resulted in significantly less pain (P = 0.001) compared to the injections without the use of vibe. The results suggest that vibration can be used as an effective method to decrease pain during dental local anesthetic administration.
Health Monitoring System for Composite Structures
NASA Technical Reports Server (NTRS)
Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.
1996-01-01
An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis
NASA Astrophysics Data System (ADS)
Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin
2012-10-01
In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
Impact of low-frequency sound on historic structures
NASA Astrophysics Data System (ADS)
Sutherland, Louis C.; Horonjeff, Richard D.
2005-09-01
In common usage, the term soundscape usually refers to portions of the sound spectrum audible to human observers, and perhaps more broadly other members of the animal kingdom. There is, however, a soundscape regime at the low end of the frequency spectrum (e.g., 10-25 Hz), which is inaudible to humans, where nonindigenous sound energy may cause noise-induced vibrations in structures. Such low frequency components may be of sufficient magnitude to pose damage risk potential to historic structures and cultural resources. Examples include Anasazi cliff and cave dwellings, and pueblo structures of vega type roof construction. Both are susceptible to noise induced vibration from low-frequency sound pressures that excite resonant frequencies in these structures. The initial damage mechanism is usually fatigue cracking. Many mechanisms are subtle, temporally multiphased, and not initially evident to the naked eye. This paper reviews the types of sources posing the greatest potential threat, their low-frequency spectral characteristics, typical structural responses, and the damage risk mechanisms involved. Measured sound and vibration levels, case history studies, and conditions favorable to damage risk are presented. The paper concludes with recommendations for increasing the damage risk knowledge base to better protect these resources.
DOT National Transportation Integrated Search
2014-07-01
This report presents a vibration : - : based damage : - : detection methodology that is capable of effectively capturing crack growth : near connections and crack re : - : initiation of retrofitted connections. The proposed damage detection algorithm...
NASA Astrophysics Data System (ADS)
Clément, A.; Laurens, S.
2011-07-01
The Structural Health Monitoring of civil structures subjected to ambient vibrations is very challenging. Indeed, the variations of environmental conditions and the difficulty to characterize the excitation make the damage detection a hard task. Auto-regressive (AR) models coefficients are often used as damage sensitive feature. The presented work proposes a comparison of the AR approach with a state-space feature formed by the Jacobian matrix of the dynamical process. Since the detection of damage can be formulated as a novelty detection problem, Mahalanobis distance is applied to track new points from an undamaged reference collection of feature vectors. Data from a concrete beam subjected to temperature variations and damaged by several static loading are analyzed. It is observed that the damage sensitive features are effectively sensitive to temperature variations. However, the use of the Mahalanobis distance makes possible the detection of cracking with both of them. Early damage (before cracking) is only revealed by the AR coefficients with a good sensibility.
Quantification of Gear Tooth Damage by Optimal Tracking of Vibration Signatures
NASA Technical Reports Server (NTRS)
Choy, F. K.; Veillette, R. J.; Polyshchuk, V.; Braun, M. J.; Hendricks, R. C.
1996-01-01
This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system. The procedure developed in this study can be applied as a part of either an onboard machine health-monitoring system or a health diagnostic system used during regular maintenance. As the developed methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or special modification of operating parameters is required during the diagnostic process. The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a time-varying mesh stiffness parameter for which the model output approximates the measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage. The procedure was applied to a data set generated artificially and to another obtained experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-monitoring system.
Structural kinematics based damage zone prediction in gradient structures using vibration database
NASA Astrophysics Data System (ADS)
Talha, Mohammad; Ashokkumar, Chimpalthradi R.
2014-05-01
To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.
NASA Astrophysics Data System (ADS)
Yoo, David; Tang, J.
2017-04-01
Since weakly-coupled bladed disks are highly sensitive to the presence of uncertainties, they can easily undergo vibration localization. When vibration localization occurs, vibration modes of bladed disk become dramatically different from those under the perfectly periodic condition, and the dynamic response under engine-order excitation is drastically amplified. In previous studies, it is investigated that amplified vibration response can be suppressed by connecting piezoelectric circuitry into individual blades to induce the damped absorber effect, and localized vibration modes can be alleviated by integrating piezoelectric circuitry network. Delocalization of vibration modes and vibration suppression of bladed disk, however, require different optimal set of circuit parameters. In this research, multi-objective optimization approach is developed to enable finding the best circuit parameters, simultaneously achieving both objectives. In this way, the robustness and reliability in bladed disk can be ensured. Gradient-based optimizations are individually developed for mode delocalization and vibration suppression, which are then integrated into multi-objective optimization framework.
Vibration mode analysis of the proton exchange membrane fuel cell stack
NASA Astrophysics Data System (ADS)
Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.
2016-11-01
Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.
NASA Astrophysics Data System (ADS)
Angeli, Andrea; Cornelis, Bram; Troncossi, Marco
2018-03-01
In many real life environments, mechanical and electronic systems are subjected to vibrations that may induce dynamic loads and potentially lead to an early failure due to fatigue damage. Thus, qualification tests by means of shakers are advisable for the most critical components in order to verify their durability throughout the entire life cycle. Nowadays the trend is to tailor the qualification tests according to the specific application of the tested component, considering the measured field data as reference to set up the experimental campaign, for example through the so called "Mission Synthesis" methodology. One of the main issues is to define the excitation profiles for the tests, that must have, besides the (potentially scaled) frequency content, also the same damage potential of the field data despite being applied for a limited duration. With this target, the current procedures generally provide the test profile as a stationary random vibration specified by a Power Spectral Density (PSD). In certain applications this output may prove inadequate to represent the nature of the reference signal, and the procedure could result in an unrealistic qualification test. For instance when a rotating part is present in the system the component under analysis may be subjected to Sine-on-Random (SoR) vibrations, namely excitations composed of sinusoidal contributions superimposed to random vibrations. In this case, the synthesized test profile should preserve not only the induced fatigue damage but also the deterministic components of the environmental vibration. In this work, the potential advantages of a novel procedure to synthesize SoR profiles instead of PSDs for qualification tests are presented and supported by the results of an experimental campaign.
NASA Astrophysics Data System (ADS)
Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian
2015-04-01
Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.
Wong-McSweeney, D; Woodcock, J S; Peris, E; Waddington, D C; Moorhouse, A T; Redel-Macías, M D
2016-10-15
The aim of this paper is to investigate the use of different self-reported measures for assessing the human response to environmental vibration from the construction of an urban LRT (Light Rapid Transit) system. The human response to environmental stressors such as vibration and noise is often expressed in terms of exposure-response relationships that describe annoyance as a function of the magnitude of the vibration. These relationships are often the basis of noise and vibration policy and the setting of limit values. This paper examines measures other than annoyance by expressing exposure-response relationships for vibration in terms of self-reported concern about property damage and acceptability. The exposure-response relationships for concern about property damage and for acceptability are then compared with those for annoyance. It is shown that concern about property damage occurs at vibration levels well below those where there is any risk of damage. Earlier research indicated that concern for damage is an important moderator of the annoyance induced. Acceptability, on the other hand, might be influenced by both annoyance and concern, as well as by other considerations. It is concluded that exposure-response relationships expressing acceptability as a function of vibration exposure could usefully complement existing relationships for annoyance in future policy decisions regarding environmental vibration. The results presented in this paper are derived from data collected through a socio-vibration survey (N=321) conducted for the construction of an urban LRT in the United Kingdom. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamoorthy, Sripriya; Zhang, Yuan; Jacques, Steven
In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.
Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete
NASA Astrophysics Data System (ADS)
Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren
2018-03-01
Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.
Review of Vibration-Based Helicopters Health and Usage Monitoring Methods
2001-04-05
FM4, NA4, NA4*, NB4 and NB48* (Polyshchuk et al., 1998). The Wigner - Ville distribution ( WVD ) is a joint time-frequency signal analysis. The WVD is one...signal processing methodologies that are of relevance to vibration based damage detection (e.g., Wavelet Transform and Wigner - Ville distribution ) will be...operation cost, reduce maintenance flights, and increase flight safety. Key Words: HUMS; Wavelet Transform; Wigner - Ville distribution ; O&S; Machinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolben, H.; Wehling, H.J.
Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.
NASA Astrophysics Data System (ADS)
Mustapha, S.; Braytee, A.; Ye, L.
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
Natural frequency changes due to damage in composite beams
NASA Astrophysics Data System (ADS)
Negru, I.; Gillich, G. R.; Praisach, Z. I.; Tufoi, M.; Gillich, N.
2015-07-01
Transversal cracks in structures affect their stiffness as well as the natural frequency values. This paper presents a research performed to find the way how frequencies of sandwich beams change by the occurrence of damage. The influence of the locally stored energy, for ten transverse vibration modes, on the frequency shifts is derived from a study regarding the effect of stiffness decrease, realized by means of the finite element analysis. The relation between the local value of the bending moment and the frequency drop is exemplified by a concrete case. It is demonstrated that a reference curve representing the damage severity exists whence any frequency shift is derivable in respect to damage depth and location. This curve is obtained, for isotropic and multi-layer beams as well, from the stored energy (i.e. stiffness decrease), and is similar to that attained using the stress intensity factor in fracture mechanics. Also, it is proved that, for a given crack, irrespective to its depth, the frequency drop ratio of any two transverse modes is similar. This permitted separating the effect of damage location from that of its severity and to define a Damage Location Indicator as a sequence of squared of the normalized mode shape curvatures.
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman
2018-05-01
Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition, having proper lighting while working with high-speed cameras can be an issue, therefore image enhancement and contrast manipulation has also been performed to enhance the raw images. Ultimately, the extracted resonant frequencies and operational deflection shapes are used to detect the presence of damage, demonstrating the feasibility of implementing non-contact video measurements to perform realistic structural damage detection.
On-Line Database of Vibration-Based Damage Detection Experiments
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Doebling, Scott W.; Kholwad, Tina D.
2000-01-01
This paper describes a new, on-line bibliographic database of vibration-based damage detection experiments. Publications in the database discuss experiments conducted on actual structures as well as those conducted with simulated data. The database can be searched and sorted in many ways, and it provides photographs of test structures when available. It currently contains 100 publications, which is estimated to be about 5-10% of the number of papers written to date on this subject. Additional entries are forthcoming. This database is available for public use on the Internet at the following address: http://sdbpappa-mac.larc.nasa.gov. Click on the link named "dd_experiments.fp3" and then type "guest" as the password. No user name is required.
Experimental validation of a structural damage detection method based on marginal Hilbert spectrum
NASA Astrophysics Data System (ADS)
Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh
2017-04-01
Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.
Monitoring Engine Vibrations And Spectrum Of Exhaust
NASA Technical Reports Server (NTRS)
Martinez, Carol L.; Randall, Michael R.; Reinert, John W.
1991-01-01
Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).
Hahn, Seungsoo
2016-10-28
The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.
Fuller, Joel T; Thomson, Rebecca L; Howe, Peter R C; Buckley, Jonathan D
2015-07-01
The purpose of this study was to determine if vibration therapy is more effective than the standard treatment of stretching and massage for improving recovery of muscle strength and reducing muscle soreness after muscle damage induced by eccentric exercise. A randomized, single-blinded parallel intervention trial design was used. Research laboratory. Fifty untrained men aged 18 to 30 years completed the study. Participants performed 100 maximal eccentric muscle actions (ECCmax) of the right knee extensor muscles. For the next 7 days, 25 participants applied cycloidal vibration therapy to the knee extensors twice daily and 25 participants performed stretching and sports massage (SSM) twice daily. Changes in markers of muscle damage [peak isometric torque (PIT), serum creatine kinase (CK), and serum myoglobin (Mb)], muscle soreness (visual analog scale), and inflammation [serum C-reactive protein (CRP)] were assessed. After ECCmax, there was no difference in recovery of PIT and muscle soreness or serum CK, Mb, and CRP levels between vibration and SSM groups (P > 0.28). Cycloidal vibration therapy is no more effective than the standard practice of stretching and massage to promote muscle recovery after the performance of muscle-damaging exercise. Prescription of vibration therapy after maximal exercise involving eccentric muscle damage did not alleviate signs and symptoms of muscle damage faster than the standard prescription of stretching and massage.
Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.
A flexural crack model for damage detection in reinforced concrete structures
NASA Astrophysics Data System (ADS)
Hamad, W. I.; Owen, J. S.; Hussein, M. F. M.
2011-07-01
The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour.
A real time neural net estimator of fatigue life
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1990-01-01
A neural network architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopumps blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high-frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines.
Spiral Bevel Pinion Crack Detection in a Helicopter Gearbox
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Lewicki, David G.
2003-01-01
The vibration resulting from a cracked spiral bevel pinion was recorded and analyzed using existing Health and Usage Monitoring System (HUMS) techniques. A tooth on the input pinion to a Bell OH-58 main rotor gearbox was notched and run for an extended period at severe over-torque condition to facilitate a tooth fracture. Thirteen vibration-based diagnostic metrics were calculated throughout the run. After 101.41 hours of run time, some of the metrics indicated damage. At that point a visual inspection did not reveal any damage. The pinion was then run for another 12 minutes until a proximity probe indicated that a tooth had fractured. This paper discusses the damage detection effectiveness of the different metrics and a comparison of effects of the different accelerometer locations.
Experiment on the concrete slab for floor vibration evaluation of deteriorated building
NASA Astrophysics Data System (ADS)
Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.
2014-08-01
Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).
NASA Astrophysics Data System (ADS)
Sugino, C.; Erturk, A.
2018-05-01
Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from locally resonant metastructures without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, integrating energy harvesters into a locally resonant metastructure enables a new potential for multifunctional locally resonant metastructures that can host self-powered sensors.
Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi
2008-01-01
Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less
Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria
ERIC Educational Resources Information Center
Titze, Ingo R.; Hunter, Eric J.
2015-01-01
Purpose: School-teachers have become a benchmark population for the study of occupational voice use. A decade of vibration-dose studies on the teacher population allows a comparison to be made between specific dose measures for eventual assessment of damage risk. Method: Vibration dosimetry is reformulated with the inclusion of collision stress.…
A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2000-01-01
Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.
Damage assessment in reinforced concrete using nonlinear vibration techniques
NASA Astrophysics Data System (ADS)
Van Den Abeele, K.; De Visscher, J.
2000-07-01
Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.
Method of recognizing the high-speed railway noise barriers based on the distance image
NASA Astrophysics Data System (ADS)
Ma, Le; Shao, Shuangyun; Feng, Qibo; Liu, Bingqian; Kim, Chol Ryong
2016-10-01
The damage or lack of the noise barriers is one of the important hidden troubles endangering the safety of high-speed railway. In order to obtain the vibration information of the noise barriers, the online detection systems based on laser vision were proposed. The systems capture images of the laser stripe on the noise barriers and export data files containing distance information between the detection systems on the train and the noise barriers. The vibration status or damage of the noise barriers can be estimated depending on the distance information. In this paper, we focused on the method of separating the area of noise barrier from the background automatically. The test results showed that the proposed method is in good efficiency and accuracy.
Real-time Mesoscale Visualization of Dynamic Damage and Reaction in Energetic Materials under Impact
NASA Astrophysics Data System (ADS)
Chen, Wayne; Harr, Michael; Kerschen, Nicholas; Maris, Jesus; Guo, Zherui; Parab, Niranjan; Sun, Tao; Fezzaa, Kamel; Son, Steven
Energetic materials may be subjected to impact and vibration loading. Under these dynamic loadings, local stress or strain concentrations may lead to the formation of hot spots and unintended reaction. To visualize the dynamic damage and reaction processes in polymer bonded energetic crystals under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar and a light gas gun. Controlled compressive loading was applied on PBX specimens with a single or multiple energetic crystal particles and impact-induced damage and reaction processes were captured using the high speed X-ray imaging setup. Impact velocities were systematically varied to explore the critical conditions for reaction. At lower loading rates, ultrasonic exercitations were also applied to progressively damage the crystals, eventually leading to reaction. AFOSR, ONR.
NASA Astrophysics Data System (ADS)
Jiang, Hao
A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.
Detection of Ballast Damage by In-Situ Vibration Measurement of Sleepers
NASA Astrophysics Data System (ADS)
Lam, H. F.; Wong, M. T.; Keefe, R. M.
2010-05-01
Ballasted track is one of the most important elements of railway transportation systems worldwide. Owing to its importance in railway safety, many monitoring and evaluation methods have been developed. Current railway track monitoring systems are comprehensive, fast and efficient in testing railway track level and alignment, rail gauge, rail corrugation, etc. However, the monitoring of ballast condition still relies very much on visual inspection and core tests. Although extensive research has been carried out in the development of non-destructive methods for ballast condition evaluation, a commonly accepted and cost-effective method is still in demand. In Hong Kong practice, if abnormal train vibration is reported by the train operator or passengers, permanent way inspectors will locate the problem area by track geometry measurement. It must be pointed out that visual inspection can only identify ballast damage on the track surface, the track geometry deficiencies and rail twists can be detected using a track gauge. Ballast damage under the sleeper loading area and the ballast shoulder, which are the main factors affecting track stability and ride quality, are extremely difficult if not impossible to be detected by visual inspection. Core test is a destructive test, which is expensive, time consuming and may be disruptive to traffic. A fast real-time ballast damage detection method that can be implemented by permanent way inspectors with simple equipment can certainly provide valuable information for engineers in assessing the safety and riding quality of ballasted track systems. The main objective of this paper is to study the feasibility in using the vibration characteristics of sleepers in quantifying the ballast condition under the sleepers, and so as to explore the possibility in developing a handy method for the detection of ballast damage based on the measured vibration of sleepers.
The segmentation of Thangka damaged regions based on the local distinction
NASA Astrophysics Data System (ADS)
Xuehui, Bi; Huaming, Liu; Xiuyou, Wang; Weilan, Wang; Yashuai, Yang
2017-01-01
Damaged regions must be segmented before digital repairing Thangka cultural relics. A new segmentation algorithm based on local distinction is proposed for segmenting damaged regions, taking into account some of the damaged area with a transition zone feature, as well as the difference between the damaged regions and their surrounding regions, combining local gray value, local complexity and local definition-complexity (LDC). Firstly, calculate the local complexity and normalized; secondly, calculate the local definition-complexity and normalized; thirdly, calculate the local distinction; finally, set the threshold to segment local distinction image, remove the over segmentation, and get the final segmentation result. The experimental results show that our algorithm is effective, and it can segment the damaged frescoes and natural image etc.
Detection of damage in welded structure using experimental modal data
NASA Astrophysics Data System (ADS)
Abu Husain, N.; Ouyang, H.
2011-07-01
A typical automotive structure could contain thousands of spot weld joints that contribute significantly to the vehicle's structural stiffness and dynamic characteristics. However, some of these joints may be imperfect or even absent during the manufacturing process and they are also highly susceptible to damage due to operational and environmental conditions during the vehicle lifetime. Therefore, early detection and estimation of damage are important so necessary actions can be taken to avoid further problems. Changes in physical parameters due to existence of damage in a structure often leads to alteration of vibration modes; thus demonstrating the dependency between the vibration characteristics and the physical properties of structures. A sensitivity-based model updating method, performed using a combination of MATLAB and NASTRAN, has been selected for the purpose of this work. The updating procedure is regarded as parameter identification which aims to bring the numerical prediction to be as closely as possible to the measured natural frequencies and mode shapes data of the damaged structure in order to identify the damage parameters (characterised by the reductions in the Young's modulus of the weld patches to indicate the loss of material/stiffness at the damage region).
A novel nonlinear damage resonance intermodulation effect for structural health monitoring
NASA Astrophysics Data System (ADS)
Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele
2017-04-01
This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai
2016-01-01
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578
Damage-free vibrational spectroscopy of biological materials in the electron microscope.
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; ...
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
Damage-free vibrational spectroscopy of biological materials in the electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rez, Peter; Aoki, Toshihiro; March, Katia
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane
NASA Astrophysics Data System (ADS)
Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin
2013-02-01
A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.
Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.
Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations
2017-01-01
This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431
Phase editing as a signal pre-processing step for automated bearing fault detection
NASA Astrophysics Data System (ADS)
Barbini, L.; Ompusunggu, A. P.; Hillis, A. J.; du Bois, J. L.; Bartic, A.
2017-07-01
Scheduled maintenance and inspection of bearing elements in industrial machinery contributes significantly to the operating costs. Savings can be made through automatic vibration-based damage detection and prognostics, to permit condition-based maintenance. However automation of the detection process is difficult due to the complexity of vibration signals in realistic operating environments. The sensitivity of existing methods to the choice of parameters imposes a requirement for oversight from a skilled operator. This paper presents a novel approach to the removal of unwanted vibrational components from the signal: phase editing. The approach uses a computationally-efficient full-band demodulation and requires very little oversight. Its effectiveness is tested on experimental data sets from three different test-rigs, and comparisons are made with two state-of-the-art processing techniques: spectral kurtosis and cepstral pre- whitening. The results from the phase editing technique show a 10% improvement in damage detection rates compared to the state-of-the-art while simultaneously improving on the degree of automation. This outcome represents a significant contribution in the pursuit of fully automatic fault detection.
Smart accelerometer. [vibration damage detection
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.
A bio-inspired structural health monitoring system based on ambient vibration
NASA Astrophysics Data System (ADS)
Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang
2010-11-01
A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.
An enhancement to the NA4 gear vibration diagnostic parameter
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.
1994-01-01
A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.
Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures
NASA Astrophysics Data System (ADS)
Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald
2007-03-01
Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.
Detecting Structural Failures Via Acoustic Impulse Responses
NASA Technical Reports Server (NTRS)
Bayard, David S.; Joshi, Sanjay S.
1995-01-01
Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.
A new mode of acoustic NDT via resonant air-coupled emission
NASA Astrophysics Data System (ADS)
Solodov, Igor; Dillenz, Alexander; Kreutzbruck, Marc
2017-06-01
Resonant modes of non-destructive testing (NDT) which make use of local damage resonance (LDR) have been developed recently and demonstrated a significant increase in efficiency and sensitivity of hybrid inspection techniques by laser vibrometry, ultrasonic thermography, and shearography. In this paper, a new fully acoustic version of resonant NDT is demonstrated for defects in composite materials relevant to automotive and aviation applications. This technique is based on an efficient activation of defect vibrations by using a sonic/ultrasonic wave matched to a fundamental LDR frequency of the defect. On this condition, all points of the faulty area get involved in synchronous out-of-plane vibrations which produce a similar in-phase wave motion in ambient air. This effect of resonant air-coupled emission results in airborne waves emanating from the defect area, which can be received by a commercial microphone (low LDR frequency) or an air-coupled ultrasonic transducer (high frequency LDR). A series of experiments confirm the feasibility of both contact and non-contact versions of the technique for NDT and imaging of simulated and realistic defects (impacts, delaminations, and disbonds) in composites.
Effects of Bone Vibrator Position on Auditory Spatial Perception Tasks.
McBride, Maranda; Tran, Phuong; Pollard, Kimberly A; Letowski, Tomasz; McMillan, Garnett P
2015-12-01
This study assessed listeners' ability to localize spatially differentiated virtual audio signals delivered by bone conduction (BC) vibrators and circumaural air conduction (AC) headphones. Although the skull offers little intracranial sound wave attenuation, previous studies have demonstrated listeners' ability to localize auditory signals delivered by a pair of BC vibrators coupled to the mandibular condyle bones. The current study extended this research to other BC vibrator locations on the skull. Each participant listened to virtual audio signals originating from 16 different horizontal locations using circumaural headphones or BC vibrators placed in front of, above, or behind the listener's ears. The listener's task was to indicate the signal's perceived direction of origin. Localization accuracy with the BC front and BC top positions was comparable to that with the headphones, but responses for the BC back position were less accurate than both the headphones and BC front position. This study supports the conclusion of previous studies that listeners can localize virtual 3D signals equally well using AC and BC transducers. Based on these results, it is apparent that BC devices could be substituted for AC headphones with little to no localization performance degradation. BC headphones can be used when spatial auditory information needs to be delivered without occluding the ears. Although vibrator placement in front of the ears appears optimal from the localization standpoint, the top or back position may be acceptable from an operational standpoint or if the BC system is integrated into headgear. © 2015, Human Factors and Ergonomics Society.
Hydrogen species motion in piezoelectrics: A quasi-elastic neutron scattering study
NASA Astrophysics Data System (ADS)
Alvine, K. J.; Tyagi, M.; Brown, C. M.; Udovic, T. J.; Jenkins, T.; Pitman, S. G.
2012-03-01
Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen-powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here quasi-elastic neutron scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by exposure to high-pressure gaseous hydrogen (≈17 MPa). Neutron vibrational spectroscopy (NVS) studies of the hydrogen-enhanced vibrational modes are presented as well. Results are discussed in the context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate.
NASA Astrophysics Data System (ADS)
He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin
2017-03-01
When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.
Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea
2017-10-01
The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi
2017-08-01
Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shouguang; Li, Qiang; Zou, Hua
2016-05-01
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load-time histories is then deduced. Measured data from the Beijing-Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load-time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.
Inferring Gear Damage from Oil-Debris and Vibration Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula
2006-01-01
A system for real-time detection of surface-fatigue-pitting damage to gears for use in a helicopter transmission is based on fuzzy-logic used to fuse data from sensors that measure oil-borne debris, referred to as "oil debris" in the article, and vibration signatures. A system to detect helicopter-transmission gear damage is beneficial because the power train of a helicopter is essential for propulsion, lift, and maneuvering, hence, the integrity of the transmission is critical to helicopter safety. To enable detection of an impending transmission failure, an ideal diagnostic system should provide real-time monitoring of the "health" of the transmission, be capable of a high level of reliable detection (with minimization of false alarms), and provide human users with clear information on the health of the system without making it necessary for them to interpret large amounts of sensor data.
Analysis of real-time vibration data
Safak, E.
2005-01-01
In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.
Low Head, Vortex Induced Vibrations River Energy Converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernitsas, Michael B.; Dritz, Tad
2006-06-30
Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing andmore » utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.« less
PDC bits break ground with advanced vibration mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-01
Advancements in PDC bit technology have resulted in the identification and characterization of different types of vibrational modes that historically have limited PDC bit performance. As a result, concepts have been developed that prevent the initiation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit performance. As a result, concepts have been developed that prevent the imitation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit,more » thereby improving its performance. This improved understanding of the complex forces affecting bit performance is driving bit customization for specific drilling programs.« less
Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin
2014-01-01
This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.
A physiological frequency-position map of the chinchilla cochlea.
Müller, Marcus; Hoidis, Silvi; Smolders, Jean W T
2010-09-01
Accumulating evidence indicates that mammalian cochlear frequency-position maps (location of maximum vibration of the basilar membrane as a function of frequency) depend on the physiological condition of the inner ear. Cochlear damage desensitizes the ear, after the damage the original location of maximum vibration is tuned to a lower sound frequency. This suggests that frequency-position maps, derived from such desensitized ears, are shifted to lower frequencies, corresponding to a shift of the basilar membrane vibration pattern towards the base for a given stimulus frequency. To test this hypothesis, we re-mapped the cochlear frequency-position map in the chinchilla. We collected frequency-position data from chinchillas in normal physiological condition ("physiological map") and compared these to data previously established from sound overexposed ears ("anatomical map"). The characteristic frequency (CF) of neurons in the cochlear nucleus was determined. Horse-radish peroxidase (HRP) or biocytin (BCT) were injected iontophoretically to trace auditory nerve fibers towards their innervation site in the organ of Corti. The relationship between distance from the base (d, percent) and frequency (f, kHz) was described best by a simple exponential function: d = 61.2 - 42.2 x log(f). The slope of the function was 2.55 mm/octave. Compared to the "anatomical map", the "physiological map" was shifted by about 0.3 octaves to higher frequencies corresponding to a shift of the basilar membrane vibration pattern of 0.8 mm towards the apex for a given stimulus frequency. Our findings affirm that frequency-position maps in the mammalian cochlea depend on the condition of the inner ear. Damage-induced desensitization in mammalian inner ears results in similar shifts of CF (about 0.5 octaves) but different shifts of the maximum of the vibration pattern towards the base at given frequencies, dependent on the mapping constant of the species, longer basilar membranes showing a larger basal shift. Furthermore, the results substantiate the notion that "crowding" at lower frequencies appears to be a specialization rather than a general feature. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Vibration monitoring via nano-composite piezoelectric foam bushings
NASA Astrophysics Data System (ADS)
Bird, Evan T.; Merrell, A. Jake; Anderson, Brady K.; Newton, Cory N.; Rosquist, Parker G.; Fullwood, David T.; Bowden, Anton E.; Seeley, Matthew K.
2016-11-01
Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the present work, we investigated their utility as self-sensing bushings on machinery. These sensors were found to accurately detect both the amplitude and frequency of typical machine vibrations. The bushings could potentially save time and money over other vibration sensing mechanisms, while simultaneously providing a potential control input that could be utilized for correcting vibrational imbalance.
DOT National Transportation Integrated Search
2011-06-01
Damage to structures due to vibrations from pile driving operations is of great concern to engineers. This : research has stemmed from the need to address potential damage to concrete-filled pipe piles and recently : placed concrete structures that c...
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI s), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm
NASA Astrophysics Data System (ADS)
Neri, P.
2017-05-01
Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.
Investigation of Sideband Index Response to Prototype Gear Tooth Damage
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2013-01-01
The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
NASA Technical Reports Server (NTRS)
Ricles, James M.
1991-01-01
Spacecraft are susceptible to structural damage over their operating life from impact, environmental loads, and fatigue. Structural damage that is not detected and not corrected may potentially cause more damage and eventually catastrophic structural failure. NASA's current fleet of reusable spacecraft, namely the Space Shuttle, has been flown on several missions. In addition, configurations of future NASA space structures, e.g. Space Station Freedom, are larger and more complex than current structures, making them more susceptible to damage as well as being more difficult to inspect. Consequently, a reliable structural damage detection capability is essential to maintain the flight safety of these structures. Visual inspections alone can not locate impending material failure (fatigue cracks, yielding); it can only observe post-failure situations. An alternative approach is to develop an inspection and monitoring system based on vibration characterization that assesses the integrity of structural and mechanical components. A methodology for detecting structural damage is presented. This methodology is based on utilizing modal test data in conjunction with a correlated analytical model of the structure to: (1) identify the structural dynamic characteristics (resonant frequencies and mode shapes) from measurements of ambient motions and/or force excitation; (2) calculate modal residual force vectors to identify the location of structural damage; and (3) conduct a weighted sensitivity analysis in order to assess the extent of mass and stiffness variations, where structural damage is characterized by stiffness reductions. The approach is unique from other existing approaches in that varying system mass and stiffness, mass center locations, the perturbation of both the natural frequencies and mode shapes, and statistical confidence factors for structural parameters and experimental instrumentation are all accounted for directly.
NASA Technical Reports Server (NTRS)
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
NASA Astrophysics Data System (ADS)
Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard
2015-03-01
Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.
Time domain nonlinear SMA damper force identification approach and its numerical validation
NASA Astrophysics Data System (ADS)
Xin, Lulu; Xu, Bin; He, Jia
2012-04-01
Most of the currently available vibration-based identification approaches for structural damage detection are based on eigenvalues and/or eigenvectors extracted from vibration measurements and, strictly speaking, are only suitable for linear system. However, the initiation and development of damage in engineering structures under severe dynamic loadings are typical nonlinear procedure. Studies on the identification of restoring force which is a direct indicator of the extent of the nonlinearity have received increasing attention in recent years. In this study, a date-based time domain identification approach for general nonlinear system was developed. The applied excitation and the corresponding response time series of the structure were used for identification by means of standard least-square techniques and a power series polynomial model (PSPM) which was utilized to model the nonlinear restoring force (NRF). The feasibility and robustness of the proposed approach was verified by a 2 degree-of-freedoms (DOFs) lumped mass numerical model equipped with a shape memory ally (SMA) damper mimicking nonlinear behavior. The results show that the proposed data-based time domain method is capable of identifying the NRF in engineering structures without any assumptions on the mass distribution and the topology of the structure, and provides a promising way for damage detection in the presence of structural nonlinearities.
Evaluation of Standard Gear Metrics in Helicopter Flight Operation
NASA Technical Reports Server (NTRS)
Mosher, M.; Pryor, A. H.; Huff, E. M.
2002-01-01
Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the sense that the rpm, torque and forces on the gear have been held steady. For gears used in a dynamic environment such as that occurring in aircraft, the rpm, torque and forces on the gear are constantly changing. The authors have measured significant variation in rpm and torque in the transmissions of helicopters in controlled steady flight conditions flown by highly proficient test pilots. Statistical analyses of the data taken in flight show significant nonstationarity in the vibration measurements. These deviations from stationarity may increase false alarms in gear monitoring during aircraft flight. In the proposed paper, the authors will study vibration measurements made in flight on an AH- 1 Cobra and an OH-58C Kiowa helicopters. The primary focus will be the development of a methodology to assess the impact of nonstationarity on false alarms. Issues to be addressed include how time synchronous averages are constructed from raw data as well as how lack of stationarity effects the behavior of single value metrics. Emphasis will be placed on the occurrence of false alarms with the use of standard metrics. In order to maintain an acceptable level of false alarms in the flight environment, this study will also address the determination of appropriate threshold levels, which may need to be higher than for test rigs.
Experimental research on crack detection in pipes based on Fiber Bragg grating
NASA Astrophysics Data System (ADS)
Cai, Lin; Wei, Qin; Yu, Zhaoxiang; Lu, Ming; Li, Xiaowei
2017-11-01
Crack is one of the primary faults in pipes, and its detection is a significant measure to ensure the safety of pipes. The feasibility of circumferential crack detection in pipes on the basis of fiber Bragg grating (FBG) detection technology is discussed through experimental research. Crack is formed on the surface of a metal pipe, the circumferential length of crack is one index of the damage degree. In the experiments, both electronic vibration sensor and FBG strain sensors are used to collect response signals of impulse excitation in different damage degrees. Furthermore, the characteristics of damage detection are analysed in both frequency domain and time domain. First, the natural frequencies are compared between practical and simulated results in different damage degrees of pipes; second, the multi-fractal detrended fluctuation analysis (MFDFA) is applied to acquire the singular values α as the characteristic parameter. The experimental results indicate that FBG strain sensors can perceive the impulse response of the pipe and change in different damage degrees effectively, like the vibration sensor. And both the natural frequency and the singular value are sensitive to increasing length of crack, they are able to distinguish different degrees of crack on the pipe.
NASA Astrophysics Data System (ADS)
Cevasco, A.; Isella, L.; Pasta, M.; Podestà, S.; Resemini, S.
2003-04-01
On October 31st, 2002 and on November 1st, 2002 two moderate size earthquakes (Ml = 5.4 at 11.32 local time and Ml = 5.3 at 16.08 local time) occurred in Molise region, Southern Italy. Ripabottoni (CB), is one of the towns that suffered major damages. The observation of the damage caused by the earthquake to the monumental heritage has confirmed, yet again, how churches represent a typology of building which is particularly vulnerable to seismic actions. Moreover, we noticed how, in many cases, the intrinsic vulnerability was increased as a result of the recent retrofitting intervention, incompatible with the original behaviour of the construction. Roofs remade in r.c. or in steel, the insertion of very thick r.c. tie-beams, the creation of r.c. floors, have led, as partly already observed after the 1997 Umbria-Marches earthquake, to an increase both in the force of the seismic shocks (as a consequence of the greater weight) and in deformations incompatible with the natural vibration-mode of the masonry walls. An emblematic case is that of the churches of Ripabottoni, S. Croce di Magliana and S. Giuliano di Puglia, which have demonstrated damage mechanisms connected with the cracking and collapse of the vaults (owing to their limited thickness and the lack of tie rods) and with the crushing and shearing of the masonry pillars in the churches with more than one nave. Besides, in order to analyse damage effects a temporary seismic/accelerometric local network was installed. The comparison of collected data with surface geology indicates the presence of important local effects. In particular the evaluation of the strong motion records, in Ripabottoni, has allowed a first interpretation of the crushing mechanisms of many masonry pillars
Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration
NASA Technical Reports Server (NTRS)
Irvine, T.
2016-01-01
Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.
Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection
2017-09-01
Sensitivity-based finite element model updating and structural damage detection has been limited by the number of modes available in a vibration test and...increase the number of modes and corresponding sensitivity data by artificially constraining the structure under test, producing a large number of... structural modifications to the measured data, including both springs-to-ground and mass modifications. This is accomplished with frequency domain
Vibrations of Bladed Disk Assemblies
1991-03-29
34, Contract Report to Gas Trubines, General Motors Corp., Indianapolis (31 pages). 3 Afolabi, D., 1982, "Some Vibration Characteristics of an Aeroengine ...10. SOUACIOFPUNOiNG NO. Bolling Air Force Base PROGRAM 0mo.0aC-r TASK "o mW Washington, D.C. 20332-6448 1 LFAANT NO. No. N. O Vibrations of Bladed Disk...identfy by loC* n u r) 011LO . 0.ou* sum G. Blade vibrations , singularity theory, singular perturbation analysis, mode localization iS. AST.OACT
NASA Astrophysics Data System (ADS)
Singh, Jaskaran; Darpe, A. K.; Singh, S. P.
2018-02-01
Local damage in rolling element bearings usually generates periodic impulses in vibration signals. The severity, repetition frequency and the fault excited resonance zone by these impulses are the key indicators for diagnosing bearing faults. In this paper, a methodology based on over complete rational dilation wavelet transform (ORDWT) is proposed, as it enjoys a good shift invariance. ORDWT offers flexibility in partitioning the frequency spectrum to generate a number of subbands (filters) with diverse bandwidths. The selection of the optimal filter that perfectly overlaps with the bearing fault excited resonance zone is based on the maximization of a proposed impulse detection measure "Temporal energy operated auto correlated kurtosis". The proposed indicator is robust and consistent in evaluating the impulsiveness of fault signals in presence of interfering vibration such as heavy background noise or sporadic shocks unrelated to the fault or normal operation. The structure of the proposed indicator enables it to be sensitive to fault severity. For enhanced fault classification, an autocorrelation of the energy time series of the signal filtered through the optimal subband is proposed. The application of the proposed methodology is validated on simulated and experimental data. The study shows that the performance of the proposed technique is more robust and consistent in comparison to the original fast kurtogram and wavelet kurtogram.
Transmission Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.
2004-01-01
A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics
NASA Technical Reports Server (NTRS)
Steven Snyder, John; Brophy, John R.
2004-01-01
Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.
Damage assessment in PRC and RC beams by dynamic tests
NASA Astrophysics Data System (ADS)
Capozucca, R.
2011-07-01
The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.
Analytical and Experimental Vibration Analysis of a Faulty Gear System.
1994-10-01
Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
NASA Astrophysics Data System (ADS)
Naseralavi, S. S.; Salajegheh, E.; Fadaee, M. J.; Salajegheh, J.
2014-06-01
This paper presents a technique for damage detection in structures under unknown periodic excitations using the transient displacement response. The method is capable of identifying the damage parameters without finding the input excitations. We first define the concept of displacement space as a linear space in which each point represents displacements of structure under an excitation and initial condition. Roughly speaking, the method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering this novel geometrical viewpoint, an equation called kernel parallelization equation (KPE) is derived for damage detection under unknown periodic excitations and a sensitivity-based algorithm for solving KPE is proposed accordingly. The method is evaluated via three case studies under periodic excitations, which confirm the efficiency of the proposed method.
Shell-NASA Vibration-Based Damage Characterization
NASA Technical Reports Server (NTRS)
Rollins, John M.
2014-01-01
This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.
Gearbox vibration diagnostic analyzer
NASA Technical Reports Server (NTRS)
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
Ultrasonic technique for imaging tissue vibrations: preliminary results.
Sikdar, Siddhartha; Beach, Kirk W; Vaezy, Shahram; Kim, Yongmin
2005-02-01
We propose an ultrasound (US)-based technique for imaging vibrations in the blood vessel walls and surrounding tissue caused by eddies produced during flow through narrowed or punctured arteries. Our approach is to utilize the clutter signal, normally suppressed in conventional color flow imaging, to detect and characterize local tissue vibrations. We demonstrate the feasibility of visualizing the origin and extent of vibrations relative to the underlying anatomy and blood flow in real-time and their quantitative assessment, including measurements of the amplitude, frequency and spatial distribution. We present two signal-processing algorithms, one based on phase decomposition and the other based on spectral estimation using eigen decomposition for isolating vibrations from clutter, blood flow and noise using an ensemble of US echoes. In simulation studies, the computationally efficient phase-decomposition method achieved 96% sensitivity and 98% specificity for vibration detection and was robust to broadband vibrations. Somewhat higher sensitivity (98%) and specificity (99%) could be achieved using the more computationally intensive eigen decomposition-based algorithm. Vibration amplitudes as low as 1 mum were measured accurately in phantom experiments. Real-time tissue vibration imaging at typical color-flow frame rates was implemented on a software-programmable US system. Vibrations were studied in vivo in a stenosed femoral bypass vein graft in a human subject and in a punctured femoral artery and incised spleen in an animal model.
Research on vibration signal analysis and extraction method of gear local fault
NASA Astrophysics Data System (ADS)
Yang, X. F.; Wang, D.; Ma, J. F.; Shao, W.
2018-02-01
Gear is the main connection parts and power transmission parts in the mechanical equipment. If the fault occurs, it directly affects the running state of the whole machine and even endangers the personal safety. So it has important theoretical significance and practical value to study on the extraction of the gear fault signal and fault diagnosis of the gear. In this paper, the gear local fault as the research object, set up the vibration model of gear fault vibration mechanism, derive the vibration mechanism of the gear local fault and analyzes the similarities and differences of the vibration signal between the gear non fault and the gears local faults. In the MATLAB environment, the wavelet transform algorithm is used to denoise the fault signal. Hilbert transform is used to demodulate the fault vibration signal. The results show that the method can denoise the strong noise mechanical vibration signal and extract the local fault feature information from the fault vibration signal..
NASA Astrophysics Data System (ADS)
Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek
2017-02-01
This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.
[Constitutional factors of resistance to the effects of local vibration].
Shalaurov, A V; Shchedrina, A G
1989-01-01
The study directed at the improvement of vibration disease prevention shows that not only functional, but also constitutional and somatotypologic body characteristics should be taken into account in predicting resistance to the impact of local occupational vibration. Such approach is specified by the fact that the relation of the main body components affects the amount of the zone of tissues and organs involved into vibration process. The study of 300 assemblerriveters and metal workers engaged in mechanical assembly shows that workers with elevated content of fat tissue and relatively small amount of osteal and muscular tissue, i.e., representatives of the abdominal somatype, are most resistant to local vibration. When the content of osteal and muscular components increases and that of the fat one decreases (thoracic somatotype), resistance to local vibration experiences a significant decline. The dimensions of skin and fat folds of upper extremities are greatly correlated to local vibration resistance.
NASA Astrophysics Data System (ADS)
Rahmawati, P.; Prajitno, P.
2018-04-01
Vibration monitoring is a measurement instrument used to identify, predict, and prevent failures in machine instruments[6]. This is very needed in the industrial applications, cause any problem with the equipment or plant translates into economical loss and they are mostly monitored component off-line[2]. In this research, a system has been developed to detect the malfunction of the components of Shimizu PS-128BT water pump machine, such as capacitor, bearing and impeller by online measurements. The malfunction components are detected by taking vibration data using a Micro-Electro-Mechanical System(MEMS)-based accelerometer that are acquired by using Raspberry Pi microcomputer and then the data are converted into the form of Relative Power Ratio(RPR). In this form the signal acquired from different components conditions have different patterns. The collected RPR used as the base of classification process for recognizing the damage components of the water pump that are conducted by Artificial Neural Network(ANN). Finally, the damage test result will be sent via text message using GSM module that are connected to Raspberry Pi microcomputer. The results, with several measurement readings, with each reading in 10 minutes duration for each different component conditions, all cases yield 100% of accuracies while in the case of defective capacitor yields 90% of accuracy.
Development of a Novel Technology for Label Free DNA Sequencing
2012-05-21
of the C-H bond stretch vibrations in the planes of the corresponding DNA bases , and in the higher-frequency side, sequence-identifier region is...composed of the N-H bond stretch vibrations in the planes of the corresponding DNA bases . In addition, the sequence-identifier dividing region almost...regions are localized at the corresponding DNA bases and exhibit a definable dependence on the sequence form of the codons under study. Final
Application of Steinberg vibration fatigue model for structural verification of space instruments
NASA Astrophysics Data System (ADS)
García, Andrés; Sorribes-Palmer, Félix; Alonso, Gustavo
2018-01-01
Electronic components in spaceships are subjected to vibration loads during the ascent phase of the launcher. It is important to verify by tests and analysis that all parts can survive in the most severe load cases. The purpose of this paper is to present the methodology and results of the application of the Steinberg's fatigue model to estimate the life of electronic components of the EPT-HET instrument for the Solar Orbiter space mission. A Nastran finite element model (FEM) of the EPT-HET instrument was created and used for the structural analysis. The methodology is based on the use of the FEM of the entire instrument to calculate the relative displacement RDSD and RMS values of the PCBs from random vibration analysis. These values are used to estimate the fatigue life of the most susceptible electronic components with the Steinberg's fatigue damage equation and the Miner's cumulative fatigue index. The estimations are calculated for two different configurations of the instrument and three different inputs in order to support the redesign process. Finally, these analytical results are contrasted with the inspections and the functional tests made after the vibration tests, concluding that this methodology can adequately predict the fatigue damage or survival of the electronic components.
A real time neural net estimator of fatigue life
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1990-01-01
A neural net architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the Intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopump blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines. This neural net estimator of fatigue life is seen as the enabling technology to achieve component life prognosis, and therefore would be an important part of life extending control for reusable rocket engines.
Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle
NASA Astrophysics Data System (ADS)
Ma, Menglin; Wang, Chengqiang; Deng, Hai
2017-06-01
According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.
NASA Astrophysics Data System (ADS)
Upegui Botero, F. M.; Rojas Mercedes, N.; Huerta-Lopez, C.; Martinez-Cruzado, J. A.; Suárez, L.; Lopez, A. M.; Huerfano Moreno, V.
2013-12-01
Earthquake effects are frequently quantified by the energy liberated at the source, and the degree of damage produced in urban areas. The damage of historic events such as the Mw=8.3, September 19, 1985 Mexico City Earthquake was dominated by the amplification of seismic waves due to local site conditions. The assessment of local site effects can be carried out with site response analyses in order to determine the properties of the subsoil such as the dominant period, and the Vs30. The evaluation of the aforementioned properties is through the analysis of ground motion. However, in locations with low seismicity, the most convenient method to assess the site effect is the analysis of ambient vibration measurements. The Spatial Auto Correlation method (SPAC) can be used to determine a Vs30 model from ambient vibration measurements using a triangular array of sensors. Refraction Microtremor (ReMi) considers the phase velocity of the Rayleigh waves can be separated of apparent velocities; the aim of the ReMI method is to obtain the Vs30 model. The HVSR technique or Nakamura's method has been adopted to obtain the resonant frequency of the site from the calculation of ratio between the Fourier amplitude spectra or PSD spectrum of the horizontal and vertical components of ambient vibration. The aim of this work is to compare the results using different techniques to assess local site conditions in the urban area of Santo Domingo, Dominican Republic. The data used was collected during the Pan-American Advance Studies Institute (PASI), Workshop held in Santo Domingo, Dominican Republic from July 14 to 25, 2013. The PASI was sponsored by IRIS Consortium, NSF and DOE. Results obtained using SPAC, and ReMi, show a comparable model of surface waves velocities. In addition to the above, the HVSR method is combined with the stiffness matrices method for layered soils to calculate a model of velocities and the predominant period on the site. As part of this work a comparison with geological and geotechnical data on the studied sites was carried out. The advantages and limitations of each procedure are discussed in detail. HVSR Results
NASA Astrophysics Data System (ADS)
Loutas, T. H.; Bourikas, A.
2017-12-01
We revisit the optimal sensor placement of engineering structures problem with an emphasis on in-plane dynamic strain measurements and to the direction of modal identification as well as vibration-based damage detection for structural health monitoring purposes. The approach utilized is based on the maximization of a norm of the Fisher Information Matrix built with numerically obtained mode shapes of the structure and at the same time prohibit the sensorization of neighbor degrees of freedom as well as those carrying similar information, in order to obtain a satisfactory coverage. A new convergence criterion of the Fisher Information Matrix (FIM) norm is proposed in order to deal with the issue of choosing an appropriate sensor redundancy threshold, a concept recently introduced but not further investigated concerning its choice. The sensor configurations obtained via a forward sequential placement algorithm are sub-optimal in terms of FIM norm values but the selected sensors are not allowed to be placed in neighbor degrees of freedom providing thus a better coverage of the structure and a subsequent better identification of the experimental mode shapes. The issue of how service induced damage affects the initially nominated as optimal sensor configuration is also investigated and reported. The numerical model of a composite sandwich panel serves as a representative aerospace structure upon which our investigations are based.
Normalized spectral damage of a linear system over different spectral loading patterns
NASA Astrophysics Data System (ADS)
Kim, Chan-Jung
2017-08-01
Spectral fatigue damage is affected by different loading patterns; the damage may be accumulated in a different manner because the spectral pattern has an influence on stresses or strains. The normalization of spectral damage with respect to spectral loading acceleration is a novel solution to compare the accumulated fatigue damage over different spectral loading patterns. To evaluate the sensitivity of fatigue damage over different spectral loading cases, a simple notched specimen is used to conduct a uniaxial vibration test for two representative spectral patterns-random and harmonic-between 30 and 3000 Hz. The fatigue damage to the simple specimen is analyzed for different spectral loading cases using the normalized spectral damage from the measured response data for both acceleration and strain. The influence of spectral loading patterns is discussed based on these analyses.
Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken
2014-03-03
This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.
Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria
Hunter, Eric J.
2015-01-01
Purpose Schoolteachers have become a benchmark population for the study of occupational voice use. A decade of vibration-dose studies on the teacher population allows a comparison to be made between specific dose measures for eventual assessment of damage risk. Method Vibration dosimetry is reformulated with the inclusion of collision stress. Two methods of estimating amplitude of vocal-fold vibration are compared to capture variations in vocal intensity. Energy loss from collision is added to the energy-dissipation dose. An equal-energy-dissipation criterion is defined and used on the teacher corpus as a potential-damage risk criterion. Results Comparison of time-, cycle-, distance-, and energy-dose calculations for 57 teachers reveals a progression in information content in the ability to capture variations in duration, speaking pitch, and vocal intensity. The energy-dissipation dose carries the greatest promise in capturing excessive tissue stress and collision but also the greatest liability, due to uncertainty in parameters. Cycle dose is least correlated with the other doses. Conclusion As a first guide to damage risk in excessive voice use, the equal-energy-dissipation dose criterion can be used to structure trade-off relations between loudness, adduction, and duration of speech. PMID:26172434
Effects on Diagnostic Parameters After Removing Additional Synchronous Gear Meshes
NASA Technical Reports Server (NTRS)
Decker, Harry J.
2003-01-01
Gear cracks are typically difficult to diagnose with sufficient time before catastrophic damage occurs. Significant damage must be present before algorithms appear to be able to detect the damage. Frequently there are multiple gear meshes on a single shaft. Since they are all synchronous with the shaft frequency, the commonly used synchronous averaging technique is ineffective in removing other gear mesh effects. Carefully applying a filter to these extraneous gear mesh frequencies can reduce the overall vibration signal and increase the accuracy of commonly used vibration metrics. The vibration signals from three seeded fault tests were analyzed using this filtering procedure. Both the filtered and unfiltered vibration signals were then analyzed using commonly used fault detection metrics and compared. The tests were conducted on aerospace quality spur gears in a test rig. The tests were conducted at speeds ranging from 2500 to 5000 revolutions per minute and torques from 184 to 228 percent of design load. The inability to detect these cracks with high confidence results from the high loading which is causing fast fracture as opposed to stable crack growth. The results indicate that these techniques do not currently produce an indication of damage that significantly exceeds experimental scatter.
Clamped seismic metamaterials: ultra-low frequency stop bands
NASA Astrophysics Data System (ADS)
Achaoui, Y.; Antonakakis, T.; Brûlé, S.; Craster, R. V.; Enoch, S.; Guenneau, S.
2017-06-01
The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1-10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0-30 Hz.
Design and analysis of compound flexible skin based on deformable honeycomb
NASA Astrophysics Data System (ADS)
Zou, Tingting; Zhou, Li
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
NASA Astrophysics Data System (ADS)
Rainieri, Carlo; Fabbrocino, Giovanni
2015-08-01
In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.
Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge
2015-11-02
Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. Copyright © 2015 Elsevier B.V. All rights reserved.
Acoustic emission localization based on FBG sensing network and SVR algorithm
NASA Astrophysics Data System (ADS)
Sai, Yaozhang; Zhao, Xiuxia; Hou, Dianli; Jiang, Mingshun
2017-03-01
In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm×500 mm×2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.
Aircraft noise effects on cultural resources: Recommendation and rationale for further research
NASA Astrophysics Data System (ADS)
Hanson, Carl E.; King, Kenneth W.; Eagan, Mary Ellen; Horonjeff, Richard D.
1993-05-01
The results are ultimately used to estimate the potential for damage to a wide variety of cultural resources from operations of commercial helicopters. Comparison of measured vibration levels with criteria for damage based on structural velocities will provide a family of restrictions on aircraft operations in the vicinity of sensitive structures. Such restrictions could take the form of minimum separation distances and prohibited maneuvers for helicopters. The results of the study would be presented in a report as a set of recommended procedures for helicopter operations to avoid damage to prehistoric, historic, sensitive, and conventional structures.
The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.
Custer, Lisa; Peer, Kimberly S; Miller, Lauren
2017-05-01
Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2009-03-01
In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN-8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified.
Multi-frequency local wavenumber analysis and ply correlation of delamination damage.
Juarez, Peter D; Leckey, Cara A C
2015-09-01
Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method. Published by Elsevier B.V.
Vibration Testing of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.
2000-01-01
The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration
Wang, Pu; Rajian, Justin R.; Cheng, Ji-Xin
2013-01-01
The quantized vibration of chemical bonds provides a way of imaging target molecules in a complex tissue environment. Photoacoustic detection of harmonic vibrational transitions provides an approach to visualize tissue content beyond the ballistic photon regime. This method involves pulsed laser excitation of overtone transitions in target molecules inside a tissue. Fast relaxation of the vibrational energy into heat results in a local temperature rise on the order of mK and a subsequent generation of acoustic waves detectable with an ultrasonic transducer. In this perspective, we review recent advances that demonstrate the advantages of vibration-based photoacoustic imaging and illustrate its potential in diagnosing cardiovascular plaques. An outlook into future development of vibrational photoacoustic endoscopy and tomography is provided. PMID:24073304
NASA Astrophysics Data System (ADS)
Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2012-08-01
Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)], 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0 represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes.
Research on local resonance and Bragg scattering coexistence in phononic crystal
NASA Astrophysics Data System (ADS)
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong
2017-04-01
Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.
Consistent assignment of the vibrations of symmetric and asymmetric meta-disubstituted benzenes
NASA Astrophysics Data System (ADS)
Kemp, David J.; Tuttle, William D.; Jones, Florence M. S.; Gardner, Adrian M.; Andrejeva, Anna; Wakefield, Jonathan C. A.; Wright, Timothy G.
2018-04-01
The assignment of vibrational structure in spectra gives valuable insights into geometric and electronic structure changes upon electronic excitation or ionization; particularly when such information is available for families of molecules. We give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of sets of meta-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. As in our earlier work on monosubstituted benzenes (Gardner and Wright, 2011), para-disubstituted benzenes (Andrejeva et al., 2016), and ortho-disubstituted benzenes (Tuttle et al., 2018), we conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. Instead, we label the phenyl-ring-localized modes consistently based upon the Mulliken (Herzberg) method for the modes of meta-difluorobenzene (mDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers obtained from the same force-field while varying the mass of the substituent, we are able to follow the evolving modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric meta-dihalobenzenes, meta-xylene and resorcinol (meta-dihydroxybenzene); and the asymmetric meta-dihalobenzenes, meta-halotoluenes, meta-halophenols and meta-cresol. In the symmetrically-substituted species, we find two pairs of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents; however, when at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.
Detection of Internal Delamination in Composite Mono Leaf Spring based on Vibration Characteristics
NASA Astrophysics Data System (ADS)
Jamadar, Nagendra Iranna; Kivade, S. B.
2017-06-01
Structural health monitoring (SHM) is one of the non destructive evaluations universally accepted to detect defect or damage in composite structures. The paper deals with detection of inter laminar delamination problems in composite mono leaf spring during service conditions by vibration techniques. The delamination detection is crucial issue as it leads to catastrophic failure. The vibration parameters such as natural frequency and modes shapes are evaluated for healthy and delaminated spring. It has been observed that some mode shapes are found to be more sensitive to the delaminated region. The presence, location and severity of delamination are simulated and validated by experimental modal analysis for both the spring and found closer approximation with each other.
Characterisation of vibration input to flywheel used on urban bus
NASA Astrophysics Data System (ADS)
Wang, L.; Kanarachos, S.; Christensen, J.
2016-09-01
Vibration induced from road surface has an impact on the durability and reliability of electrical and mechanical components attached on the vehicle. There is little research published relevant to the durability assessment of a flywheel energy recovery system installed on city and district buses. Relevant international standards and legislations were reviewed and large discrepancy was found among them, in addition, there are no standards exclusively developed for kinetic energy recovery systems on vehicles. This paper describes the experimentation of assessment of road surface vibration input to the flywheel on a bus as obtained at the MIRA Proving Ground. Power density spectra have been developed based on the raw data obtained during the experimentation. Validation of this model will be carried out using accelerated life time tests that will be carried out on a shaker rig using an accumulated profile based on the theory of fatigue damage equivalence in time and frequency domain aligned with the model predictions.
Reducing Secondary Insults in Traumatic Brain Injury
2015-03-01
from external stimuli ( vibration , noise ) and from acceleration and deceleration forces. During transport, Critical Care Air transport Team crews...provide excess noise and vibration during flight. Hearing protection for patients and flight crew is required to avoid damage. Vibration experi- enced...decelerative forces. In addition, the noise , vibration , and patient agitation associated with the tactical takeoff and land- ing of military cargo
A Flexure-Guided Piezo Drill for Penetrating the Zona Pellucida of Mammalian Oocytes.
Johnson, Wesley; Dai, Changsheng; Liu, Jun; Wang, Xian; Luu, Devin K; Zhang, Zhuoran; Ru, Changhai; Zhou, Chao; Tan, Min; Pu, Huayan; Xie, Shaorong; Peng, Yan; Luo, Jun; Sun, Yu
2018-03-01
Mammalian oocytes such as mouse oocytes have a highly elastic outer membrane, zona pellucida (ZP) that cannot be penetrated without significantly deforming the oocyte, even with a sharp micropipette. Piezo drill devices leverage lateral and axial vibration of the micropipette to accomplish ZP penetration with greatly reduced oocyte deformation. However, existing piezo drills all rely on a large lateral micropipette vibration amplitude ( 20 ) and a small axial vibration amplitude (0.1 ). The very large lateral vibration amplitude has been deemed to be necessary for ZP penetration although it also induces larger oocyte deformation and more oocyte damage. This paper reports on a new piezo drill device that uses a flexure guidance mechanism and a systematically designed pulse train with an appropriate base frequency. Both simulation and experimental results demonstrate that a small lateral vibration amplitude (e.g., 2 ) and an axial vibration amplitude as large as 1.2 were achieved. Besides achieving 100% effectiveness in the penetration of mouse oocytes (n = 45), the new piezo device during ZP penetration induced a small oocyte deformation of 3.4 versus larger than 10 using existing piezo drill devices.
Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi
2017-10-26
A novel approach is presented to assess chemical similarity based the local vibrational mode analysis developed by Konkoli and Cremer. The local mode frequency shifts are introduced as similarity descriptors that are sensitive to any electronic structure change. In this work, 59 different monosubstituted benzenes are compared. For a subset of 43 compounds, for which experimental data was available, the ortho-/para- and meta-directing effect in electrophilic aromatic substitution reactions could be correctly reproduced, proving the robustness of the new similarity index. For the remaining 16 compounds, the directing effect was predicted. The new approach is broadly applicable to all compounds for which either experimental or calculated vibrational frequency information is available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Liangjun; Zheng, Yujun, E-mail: yzheng@sdu.edu.cn
In the present study, the dynamical behaviors of tripartite entanglement of vibrations in triatomic molecules are studied based on the Lie algebraic models of molecules. The dynamical behaviors of tripartite entanglement of the local mode molecule H{sub 2}O and normal mode molecule NO{sub 2} are comparatively studied for different initial states by employing the general concurrence. Our results show that the dynamics of tripartite entanglement are relied on the dynamics of intramolecular energy distribution. The local mode molecule is more suitable to construct the tripartite entangled states. Also, the greater degree of tripartite entanglement can be obtained if the stretchingmore » vibration is first excited. These results shed new light on the understanding of quantum multipartite entanglement of vibrations in the polyatomic molecules.« less
NASA Astrophysics Data System (ADS)
Florio, L. A.; Harnoy, A.
2011-06-01
In this study, a unique combination of a vibrating plate and a cross-flow passage is proposed as a means of enhancing natural convection cooling. The enhancement potential was estimated based on numerical studies involving a representative model which includes a short, transversely oscillating plate, placed over a transverse cross-flow opening in a uniformly heated vertical channel wall dividing two adjacent vertical channels. The resulting velocity and temperature fields are analyzed, with the focus on the local thermal effects near the opening. The simulation indicates up to a 50% enhancement in the local heat transfer coefficient for vibrating plate amplitudes of at least 30% of the mean clearance space and frequencies of over 82 rad/s.
Tuned mass damper for integrally bladed turbine rotor
NASA Technical Reports Server (NTRS)
Marra, John J. (Inventor)
1994-01-01
The invention is directed to a damper ring for damping the natural vibration of the rotor blades of an integrally bladed rocket turbine rotor. The invention consists of an integral damper ring which is fixed to the underside of the rotor blade platform of a turbine rotor. The damper ring includes integral supports which extend radially outwardly therefrom. The supports are located adjacent to the base portion and directly under each blade of the rotor. Vibration damping is accomplished by action of tuned mass damper beams attached at each end to the supports. These beams vibrate at a predetermined frequency during operation. The vibration of the beams enforce a local node of zero vibratory amplitude at the interface between the supports and the beam. The vibration of the beams create forces upon the supports which forces are transmitted through the rotor blade mounting platform to the base of each rotor blade. When these forces attain a predetermined design frequency and magnitude and are directed to the base of the rotor blades, vibration of the rotor blades is effectively counteracted.
Kouroussis, G; Pauwels, N; Brux, P; Conti, C; Verlinden, O
2014-06-01
Nowadays, damage potentially caused by passing train in dense cities is of increasing concern and restricts improvement to the interconnection of various public transport offers. Although experimental studies are common to quantify the effects of noise and vibration on buildings and on people, their reach is limited since the causes of vibrations can rarely be deduced from data records. This paper presents the numerical calculations that allow evaluating the main contributions of railway-induced ground vibrations in the vicinity of buildings. The reference case is the Brussels Region and, more particularly, the T2000 tram circulating in Brussels city. Based on a pertinent selection of the vibration assessment indicators and a numerical prediction approach, various results are presented and show that the free-field analysis is often improperly used in this kind of analysis as the interaction of soil and structure is required. Calculated high ground vibrations stem from singular rail surface defects. The use of resilient wheels is recommended in order to reduce the ground-borne noise and vibration to permissible values. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.
2005-01-01
Impedance-based structural-health-monitoring uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure. Each individual patch behaves as both an actuator of the surrounding structural area as well as a sensor of the structural response. The size of the excited area varies with the geometry and material composition of the structure, and an active patch is driven by a sinusoidal voltage sweep. When a PZT patch is subjected to an electric field, it produces a mechanical strain; and when it is stressed, it produces an electric charge. Since the patch is bonded to the structure, driving a patch deforms and vibrates the structure. The structure then produces a localized dynamic response. This structural system response is transferred back to the PZT patch, which in turn produces an electrical response. The electromechanical impedance method is based on the principle of electromechanical coupling between the active sensor and the structure, which allows researchers to assess local structural dynamics directly by interrogating a distributed sensor array. Because of mechanical coupling between the sensor and the host structure, this mechanical effect is picked up by the sensor and, through electromechanical coupling inside the active element, is reflected in electrical impedance measured at the sensor s terminals.
Damage detection of engine bladed-disks using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
Fang, X.; Tang, J.
2006-03-01
The timely detection of damage in aero-engine bladed-disks is an extremely important and challenging research topic. Bladed-disks have high modal density and, particularly, their vibration responses are subject to significant uncertainties due to manufacturing tolerance (blade-to-blade difference or mistuning), operating condition change and sensor noise. In this study, we present a new methodology for the on-line damage detection of engine bladed-disks using their vibratory responses during spin-up or spin-down operations which can be measured by blade-tip-timing sensing technique. We apply a principle component analysis (PCA)-based approach for data compression, feature extraction, and denoising. The non-model based damage detection is achieved by analyzing the change between response features of the healthy structure and of the damaged one. We facilitate such comparison by incorporating the Hotelling's statistic T2 analysis, which yields damage declaration with a given confidence level. The effectiveness of the method is demonstrated by case studies.
DOT National Transportation Integrated Search
1983-12-01
This report provides a comprehensive review of the state-of-the-art in the prediction and control of groundborne noise and vibration. Various types of impact criteria are reviewed for groundborne noise and vibration, building damage, and soil settlem...
Extended Kalman filtering for the detection of damage in linear mechanical structures
NASA Astrophysics Data System (ADS)
Liu, X.; Escamilla-Ambrosio, P. J.; Lieven, N. A. J.
2009-09-01
This paper addresses the problem of assessing the location and extent of damage in a vibrating structure by means of vibration measurements. Frequency domain identification methods (e.g. finite element model updating) have been widely used in this area while time domain methods such as the extended Kalman filter (EKF) method, are more sparsely represented. The difficulty of applying EKF in mechanical system damage identification and localisation lies in: the high computational cost, the dependence of estimation results on the initial estimation error covariance matrix P(0), the initial value of parameters to be estimated, and on the statistics of measurement noise R and process noise Q. To resolve these problems in the EKF, a multiple model adaptive estimator consisting of a bank of EKF in modal domain was designed, each filter in the bank is based on different P(0). The algorithm was iterated by using the weighted global iteration method. A fuzzy logic model was incorporated in each filter to estimate the variance of the measurement noise R. The application of the method is illustrated by simulated and real examples.
NASA Technical Reports Server (NTRS)
Tartakovskiy, B. D.; Dubner, A. B.
1973-01-01
A method is proposed for determining vibroacoustic characteristics from the results of measurements of the distribution of vibrational energy in a structure. The method is based on an energy model of a structure studied earlier. Equations are written to describe the distribution of vibrational energy in a hypothetical diffuse energy state in structural elements.
Analytical and experimental vibration analysis of a faulty gear system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-10-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Analytical and experimental vibration analysis of a faulty gear system
NASA Astrophysics Data System (ADS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-10-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Analytical and Experimental Vibration Analysis of a Faulty Gear System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.
1994-01-01
A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
Investigation of Data Fusion Applied to Health Monitoring of Wind Turbine Drive train Components
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Sheng, Shuangwen
2011-01-01
The research described was performed on diagnostic tools used to detect damage to dynamic mechanical components in a wind turbine gearbox. Different monitoring technologies were evaluated by collecting vibration and oil debris data from tests performed on a "healthy" gearbox and a damaged gearbox in a dynamometer test stand located at the National Renewable Energy Laboratory. The damaged gearbox tested was removed from the field after experiencing component damage due to two losses of oil events and was retested under controlled conditions in the dynamometer test stand. Preliminary results indicate oil debris and vibration can be integrated to assess the health of the wind turbine gearbox.
Cao, Hongrui; Niu, Linkai; He, Zhengjia
2012-01-01
Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.
2014-01-01
Summary Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR) are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis. PMID:25551056
On the classification of normalized natural frequencies for damage detection in cantilever beam
NASA Astrophysics Data System (ADS)
Dahak, Mustapha; Touat, Noureddine; Benseddiq, Noureddine
2017-08-01
The presence of a damage on a beam causes changes in the physical properties, which introduce flexibility, and reduce the natural frequencies of the beam. Based on this, a new method is proposed to locate the damage zone in a cantilever beam. In this paper, the cantilever beam is discretized into a number of zones, where each zone has a specific classification of the first four normalized natural frequencies. The damaged zone is distinguished by only the classification of the normalized frequencies of the structure. In the case when the damage is symmetric to the vibration node, we use the unchanged natural frequency as a second information to obtain a more accurate location. The effectiveness of the proposed method is shown by a numerical simulation with ANSYS software and experimental investigation of a cantilever beam with different damage.
Detection of Non-Symmetrical Damage in Smart Plate-Like Structures
NASA Technical Reports Server (NTRS)
Blanks, H. T.; Emeric, P. R.
1998-01-01
A two-dimensional model for in-plane vibrations of a cantilever plate with a non-symmetrical damage is used in the context of defect identification in materials with piezoelectric ceramic patches bonded to their surface. These patches can act both as actuators and sensors in a self-analyzing fashion, which is a characteristic of smart materials. A Galerkin method is used to approximate the dynamic response of these structures. The natural frequency shifts due to the damage are estimated numerically and compared to experimental data obtained from tests on cantilever aluminum plate-like structures damaged at different locations with defects of different depths. The damage location and extent are determined by an enhanced least square identification method. Efficacy of the frequency shift based algorithms is demonstrated using experimental data.
Cochlear Damages Caused by Vibration Exposure
Moussavi Najarkola, Seyyed Ali; Khavanin, Ali; Mirzaei, Ramazan; Salehnia, Mojdeh; Muhammadnejad, Ahad
2013-01-01
Background Many industrial devices have an excessive vibration which can affect human body systems. The effect of vibration on cochlear histology has been as a debatable problem in occupational health and medicine. Objectives Due to limitation present in human studies, the research was conducted to survey the influence of vibration on cochlear histology in an animal model. Materials and Methods Twelve albino rabbits were experimented as: Vibration group (n = 6; exposed to 1.0 m.s-2 r.m.s vertical whole-body vibration at 4 - 8 Hz for 8 hours per day during 5 consecutive days) versus Control group (n = 6; the same rabbits without vibration exposure). After finishing the exposure scenario, all rabbits were killed by CO2 inhalation; their cochleae were extracted and fixed in 10% formaldehyde for 48 hours, decalcified by 10% nitric acid for 24 hours. Specimens were dehydrated, embedded, sectioned 5 µm thick and stained with Hematoxylin and Eosin for light microscopy observations. Results Severely hydropic degenerated and vacuolated inner hair cells (IHCs) were observed in vibration group compared to the control group. Inter and intracellular edema was appeared in supporting cells (SC). Nuclei of outer hair cells (OHCs) seemed to be pyknotic. Slightly thickened basilar membrane (BM) was probably implied to inter cellular edematous. Tectorial Membrane (TM) was not affected pathologically. Conclusions Whole-body vibration could cause cochlear damages in male rabbits, though vibration-induced auditory functional effects might be resulted as subsequent outcome of prolonged high level vibration exposures. PMID:24616783
NASA Technical Reports Server (NTRS)
Kashangaki, Thomas A. L.
1992-01-01
This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.
Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization
NASA Technical Reports Server (NTRS)
Ross, Richard W.
2006-01-01
Detection of damage due to foreign object impact is an important factor in the development of new aerospace vehicles. Acoustic waves generated on impact can be detected using a set of piezoelectric transducers, and the location of impact can be determined by triangulation based on the differences in the arrival time of the waves at each of the sensors. These sensors generate electrical signals in response to mechanical motion resulting from the impact as well as from natural vibrations. Due to electrical noise and mechanical vibration, accurately determining these time differentials can be challenging, and even small measurement inaccuracies can lead to significant errors in the computed damage location. Wavelet transforms are used to analyze the signals at multiple levels of detail, allowing the signals resulting from the impact to be isolated from ambient electromechanical noise. Data extracted from these transformed signals are input to an artificial neural network to aid in identifying the moment of impact from the transformed signals. By distinguishing which of the signal components are resultant from the impact and which are characteristic of noise and normal aerodynamic loads, the time differentials as well as the location of damage can be accurately assessed. The combination of wavelet transformations and neural network processing results in an efficient and accurate approach for passive in-flight detection of foreign object damage.
NASA Astrophysics Data System (ADS)
Bhowmick, Somnath; B, Renjith; Mishra, Manoj K.; Sarma, Manabendra
2012-08-01
Effect of electron correlation on single strand breaks (SSBs) induced by low energy electron (LEE) has been investigated in a fragment excised from a DNA, viz., 2'-deoxycytidine-3'-monophosphate [3'-dCMPH] molecule in gas phase at DFT-B3LYP/6-31+G(d) accuracy level and using local complex potential based time dependent wave packet (LCP-TDWP) approach. The results obtained, in conjunction with our earlier investigation, show the possibility of SSB at very low energy (0.15 eV) where the LEE transfers from π* to σ* resonance state which resembles a SN2 type mechanism. In addition, for the first time, an indication of quantum mechanical tunneling in strand breaking is seen from the highest anionic bound vibrational state (χ5), which may have a substantial role during DNA damage.
NASA Technical Reports Server (NTRS)
Kaul, Upender K. (Inventor)
2009-01-01
Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
An analytical method for free vibration analysis of functionally graded beams with edge cracks
NASA Astrophysics Data System (ADS)
Wei, Dong; Liu, Yinghua; Xiang, Zhihai
2012-03-01
In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.
Centaur liquid oxygen boost pump vibration test
NASA Technical Reports Server (NTRS)
Tang, H. M.
1975-01-01
The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.
NASA Astrophysics Data System (ADS)
Xu, Roger; Stevenson, Mark W.; Kwan, Chi-Man; Haynes, Leonard S.
2001-07-01
At Ford Motor Company, thrust bearing in drill motors is often damaged by metal chips. Since the vibration frequency is several Hz only, it is very difficult to use accelerometers to pick up the vibration signals. Under the support of Ford and NASA, we propose to use a piezo film as a sensor to pick up the slow vibrations of the bearing. Then a neural net based fault detection algorithm is applied to differentiate normal bearing from bad bearing. The first step involves a Fast Fourier Transform which essentially extracts the significant frequency components in the sensor. Then Principal Component Analysis is used to further reduce the dimension of the frequency components by extracting the principal features inside the frequency components. The features can then be used to indicate the status of bearing. Experimental results are very encouraging.
Vaulina, E N; Kostina, L N
1975-01-01
The influence of dynamic factors (vibration and linear acceleration) on the rate of chromosome aberrations in Crepis capillaris was studied. The vibrational process simulated was similar in its characteristics to that occurring at the launch of spaceships. In combination with linear acceleration it caused a statistically significant increase in the rate of chromosome aberrations compared with the control (R=7.70). The dynamic factors modified the effect of radiation damage induced by acute gamma-irradiation (3 krad). Pre-radiation treatment with vibration and acceleration on the seeds caused a significant decrease (R=10.23) of the effect of radiation damage, from 15.57% to 9.74%. The post-radiation treatment of C. capillaris seeds with the dynamic factors did not change the rate of chromosome aberrations significantly (from 15.57% to 15.90%).
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Mookerjee, P.; Bar-Shalom, Y.
1983-01-01
Effect of nonlinearity on convergence of the local linear and global linear adaptive controllers is evaluated. A nonlinear helicopter vibration model is selected for the evaluation which has sufficient nonlinearity, including multiple minimum, to assess the vibration reduction capability of the adaptive controllers. The adaptive control algorithms are based upon a linear transfer matrix assumption and the presence of nonlinearity has a significant effect on algorithm behavior. Simulation results are presented which demonstrate the importance of the caution property in the global linear controller. Caution is represented by a time varying rate weighting term in the local linear controller and this improves the algorithm convergence. Nonlinearity in some cases causes Kalman filter divergence. Two forms of the Kalman filter covariance equation are investigated.
Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris
2013-01-01
Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.
Blast vibration damage to water supply well - water quality and quantity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheson, G.M.; Miller, D.K.
1997-05-01
Possible impacts to the water quality and production capacity of ground water supply wells by blasting is a common cause of complaints for blasting contractors, mining companies, and local regulatory authorities. The major complaints of changes in well water quality include; turbidity; discolored water (red, brown, black, yellow and milky water), and nitrate and/or coliform contamination. The major complaints for changes in well water production capacity include: loss of quantity production, air in water and/or water lines, damage to pump, and damage to well screen or borehole. The review of research and common causes of these problems indicates that mostmore » of these complaints are not related to blasting and can be shown to be related to either environmental factors, poor well construction, or wells whose elements required repair or replacement prior to blasting. The paper reviews each of the complaints cited and provides the probable causes of the observed condition and discusses their relation to blasting.« less
NASA Astrophysics Data System (ADS)
Noh, Hae Young; Kiremidjian, Anne S.
2011-04-01
This paper introduces a data compression method using the K-SVD algorithm and its application to experimental ambient vibration data for structural health monitoring purposes. Because many damage diagnosis algorithms that use system identification require vibration measurements of multiple locations, it is necessary to transmit long threads of data. In wireless sensor networks for structural health monitoring, however, data transmission is often a major source of battery consumption. Therefore, reducing the amount of data to transmit can significantly lengthen the battery life and reduce maintenance cost. The K-SVD algorithm was originally developed in information theory for sparse signal representation. This algorithm creates an optimal over-complete set of bases, referred to as a dictionary, using singular value decomposition (SVD) and represents the data as sparse linear combinations of these bases using the orthogonal matching pursuit (OMP) algorithm. Since ambient vibration data are stationary, we can segment them and represent each segment sparsely. Then only the dictionary and the sparse vectors of the coefficients need to be transmitted wirelessly for restoration of the original data. We applied this method to ambient vibration data measured from a four-story steel moment resisting frame. The results show that the method can compress the data efficiently and restore the data with very little error.
Damage detection of structures with detrended fluctuation and detrended cross-correlation analyses
NASA Astrophysics Data System (ADS)
Lin, Tzu-Kang; Fajri, Haikal
2017-03-01
Recently, fractal analysis has shown its potential for damage detection and assessment in fields such as biomedical and mechanical engineering. For its practicability in interpreting irregular, complex, and disordered phenomena, a structural health monitoring (SHM) system based on detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA) is proposed. First, damage conditions can be swiftly detected by evaluating ambient vibration signals measured from a structure through DFA. Damage locations can then be determined by analyzing the cross correlation of signals of different floors by applying DCCA. A damage index is also proposed based on multi-scale DCCA curves to improve the damage location accuracy. To verify the performance of the proposed SHM system, a four-story numerical model was used to simulate various damage conditions with different noise levels. Furthermore, an experimental verification was conducted on a seven-story benchmark structure to assess the potential damage. The results revealed that the DFA method could detect the damage conditions satisfactorily, and damage locations can be identified through the DCCA method with an accuracy of 75%. Moreover, damage locations can be correctly assessed by the damage index method with an improved accuracy of 87.5%. The proposed SHM system has promising application in practical implementations.
Piezosurgical osteotomy for harvesting intraoral block bone graft
Lakshmiganthan, Mahalingam; Gokulanathan, Subramanium; Shanmugasundaram, Natarajan; Daniel, Rajkumar; Ramesh, Sadashiva B.
2012-01-01
The use of ultrasonic vibrations for the cutting of bone was first introduced two decades ago. Piezoelectric surgery is a minimally invasive technique that lessens the risk of damage to surrounding soft tissues and important structures such as nerves, vessels, and mucosa. It also reduces damage to osteocytes and permits good survival of bony cells during harvesting of bone. Grafting with intraoral bone blocks is a good way to reconstruct severe horizontal and vertical bone resorption in future implants sites. The piezosurgery system creates an effective osteotomy with minimal or no trauma to soft tissue in contrast to conventional surgical burs or saws and minimizes a patient's psychological stress and fear during osteotomy under local anesthesia. The purpose of this article is to describe the harvesting of intraoral bone blocks using the piezoelectric surgery device. PMID:23066242
NASA Astrophysics Data System (ADS)
Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick
2017-12-01
This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.
Gerhardsson, Lars; Balogh, Istvan; Hambert, Per-Arne; Hjortsberg, Ulf; Karlsson, Jan-Erik
2005-01-01
The aim of the present study was to compare the development of vibration white fingers (VWF) in workers in relation to different ways of exposure estimation, and their relationship to the standard ISO 5349, annex A. Nineteen vibration exposed (grinding machines) male workers completed a questionnaire followed by a structured interview including questions regarding their estimated hand-held vibration exposure. Neurophysiological tests such as fractionated nerve conduction velocity in hands and arms, vibrotactile perception thresholds and temperature thresholds were determined. The subjective estimation of the mean daily exposure-time to vibrating tools was 192 min (range 18-480 min) among the workers. The estimated mean exposure time calculated from the consumption of grinding wheels was 42 min (range 18-60 min), approximately a four-fold overestimation (Wilcoxon's signed ranks test, p<0.001). Thus, objective measurements of the exposure time, related to the standard ISO 5349, which in this case were based on the consumption of grinding wheels, will in most cases give a better basis for adequate risk assessment than self-exposure assessment.
First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka
2007-04-01
We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.
Structural-change localization and monitoring through a perturbation-based inverse problem.
Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa
2014-11-01
Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.
Process Produces Low-Secondary-Electron-Emission Surfaces
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.; Roman, R. F.
1986-01-01
Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.
Static and vibrational properties of equiatomic Na-based binary alloys
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2007-09-01
The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.
Statistical lamb wave localization based on extreme value theory
NASA Astrophysics Data System (ADS)
Harley, Joel B.
2018-04-01
Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.
Analysis of crack initiation and growth in the high level vibration test at Tadotsu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.
1993-08-01
The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less
Design of laser monitoring and sound localization system
NASA Astrophysics Data System (ADS)
Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang
2013-08-01
In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.
Surface acoustic wave (SAW) vibration sensors.
Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz
2011-01-01
In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures
NASA Astrophysics Data System (ADS)
Ochoa-Ricoux, Juan Pedro
A recently introduced nonlocal peridynamic theory removes the obstacles present in classical continuum mechanics that limit the prediction of crack initiation and growth in materials. It is also applicable at different length scales. This study presents an alternative approach for the derivation of peridynamic equations of motion based on the principle of virtual work. It also presents solutions for the longitudinal vibration of a bar subjected to an initial stretch, propagation of a pre-existing crack in a plate subjected to velocity boundary conditions, and crack initiation and growth in a plate with a circular cutout. Furthermore, damage growth in composites involves complex and progressive failure modes. Current computational tools are incapable of predicting failure in composite materials mainly due to their mathematical structure. However, the peridynamic theory removes these obstacles by taking into account non-local interactions between material points. Hence, an application of the peridynamic theory to predict how damage propagates in fiber reinforced composite materials subjected to mechanical and thermal loading conditions is presented. Finally, an analysis approach based on a merger of the finite element method and the peridynamic theory is proposed. Its validity is established through qualitative and quantitative comparisons against the test results for a stiffened composite curved panel with a central slot under combined internal pressure and axial tension. The predicted initial and final failure loads, as well as the final failure modes, are in close agreement with the experimental observations. This proposed approach demonstrates the capability of the PD approach to assess the durability of complex composite structures.
Minimizing the effects of pile driving vibrations : research spotlight.
DOT National Transportation Integrated Search
2013-11-01
Engineers must take care that the vibrations from pile driving : operations during bridge construction do not damage underground : utilities or cause settlement in the foundations of nearby structures. : In this project, researchers developed a simpl...
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.
Remote vibration monitoring system using wireless internet data transfer
NASA Astrophysics Data System (ADS)
Lemke, John
2000-06-01
Vibrations from construction activities can affect infrastructure projects in several ways. Within the general vicinity of a construction site, vibrations can result in damage to existing structures, disturbance to people, damage to sensitive machinery, and degraded performance of precision instrumentation or motion sensitive equipment. Current practice for monitoring vibrations in the vicinity of construction sites commonly consists of measuring free field or structural motions using velocity transducers connected to a portable data acquisition unit via cables. This paper describes an innovative way to collect, process, transmit, and analyze vibration measurements obtained at construction sites. The system described measures vibration at the sensor location, performs necessary signal conditioning and digitization, and sends data to a Web server using wireless data transmission and Internet protocols. A Servlet program running on the Web server accepts the transmitted data and incorporates it into a project database. Two-way interaction between the Web-client and the Web server is accomplished through the use of a Servlet program and a Java Applet running inside a browser located on the Web client's computer. Advantages of this system over conventional vibration data logging systems include continuous unattended monitoring, reduced costs associated with field data collection, instant access to data files and graphs by project team members, and the ability to remotely modify data sampling schemes.
Time-frequency vibration analysis for the detection of motor damages caused by bearing currents
NASA Astrophysics Data System (ADS)
Prudhom, Aurelien; Antonino-Daviu, Jose; Razik, Hubert; Climente-Alarcon, Vicente
2017-02-01
Motor failure due to bearing currents is an issue that has drawn an increasing industrial interest over recent years. Bearing currents usually appear in motors operated by variable frequency drives (VFD); these drives may lead to common voltage modes which cause currents induced in the motor shaft that are discharged through the bearings. The presence of these currents may lead to the motor bearing failure only few months after system startup. Vibration monitoring is one of the most common ways for detecting bearing damages caused by circulating currents; the evaluation of the amplitudes of well-known characteristic components in the vibration Fourier spectrum that are associated with race, ball or cage defects enables to evaluate the bearing condition and, hence, to identify an eventual damage due to bearing currents. However, the inherent constraints of the Fourier transform may complicate the detection of the progressive bearing degradation; for instance, in some cases, other frequency components may mask or be confused with bearing defect-related while, in other cases, the analysis may not be suitable due to the eventual non-stationary nature of the captured vibration signals. Moreover, the fact that this analysis implies to lose the time-dimension limits the amount of information obtained from this technique. This work proposes the use of time-frequency (T-F) transforms to analyse vibration data in motors affected by bearing currents. The experimental results obtained in real machines show that the vibration analysis via T-F tools may provide significant advantages for the detection of bearing current damages; among other, these techniques enable to visualise the progressive degradation of the bearing while providing an effective discrimination versus other components that are not related with the fault. Moreover, their application is valid regardless of the operation regime of the machine. Both factors confirm the robustness and reliability of these tools that may be an interesting alternative for detecting this type of failure in induction motors.
Wong, Sing Wan; Cheung, Brian Chun Ho; Pang, Bruce Tak Keung; Kwong, Ateline; Chung, Anna; Lee, Kenneth Ka Ho; Mak, Arthur Fut Tak
2017-04-11
Deep tissue pressure ulcers, a serious clinical challenge originating in the muscle layer, are hardly detectable at the beginning. The challenge apparently occurs in aged subjects more frequently. As the ulcer propagates to the skin surface, it becomes very difficult to manage and can lead to fatal complications. Preventive measures are thus highly desirable. Although the complex pathological mechanisms have not been fully understood, prolonged and excessive physical challenges and oxidative stress are believed to be involved in the ulcer development. Previous reports have demonstrated that oxidative stress could compromise the mechanical properties of muscle cells, making them easier to be damaged when physical challenges are introduced. In this study, we used senescence accelerated (SAMP8) mice and its control breed (SAMR1) to examine the protective effects of intermittent vibration on aged and control muscle tissues during prolonged epidermal compression under 100mmHg for 6h. Results showed that an application of 35Hz, 0.25g intermittent vibration during compression decreased the compression-induced muscle breakdown in SAMP8 mice, as indicated histologically in terms of number of interstitial nuclei. The fact that no significant difference in muscle damage could be established in the corresponding groups in SAMR1 mice suggests that SAMR1 mice could better accommodate the compression insult than SAMP8 mice. Compression-induced oxidative damage was successfully curbed using intermittent vibration in SAMP8 mice, as indicated by 8-OHdG. A possible explanation is that the anti-oxidative defense could be maintained with intermittent vibration during compression. This was supported by the expression level of PGC-1-alpha, catalase, Gpx-1 and SOD1. Our data suggested intermittent vibration could serve as a preventive measure for deep tissue ulcer, particularly in aged subjects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Passive Vibration Control of Airborne Equipment using a Circular Steel Ring
NASA Technical Reports Server (NTRS)
Ellison, Joseph; Ahmadi, Goodarz; Kehoe, Mike
1997-01-01
Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration environments. Passive isolation is the simplest means to achieve this goal. The system used here consists of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the acceleration response spectra at the top of the ring are computed. An experiment is performed to identify the natural frequencies and modal damping of the circular ring. Comparison is made between the analytical and experimental results and good agreement is observed. The ring response is also evaluated with a concentrated mass attached to the top of the ring. The effectiveness of the ring in isolating the equipment from base excitation is studied. The acceleration response spectra of a single degree of freedom system attached to the top of the ring are evaluated and the results are compared with those exposed directly to the base excitation. It is shown that a properly designed ring could effectively protect the avionics from possible damaging excitation levels.
Lesnicki, Dominika; Sulpizi, Marialore
2018-06-13
What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
14 CFR 25.1707 - System separation: EWIS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... installed to ensure adequate physical separation and electrical isolation so that damage to circuits... ensure adequate physical separation and electrical isolation so that a fault in any one airplane power... minimize potential for abrasion/chafing, vibration damage, and other types of mechanical damage. ...
The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao
2008-05-15
A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less
Liao, Zhipeng; Elekdag-Turk, Selma; Turk, Tamer; Grove, Johnathan; Dalci, Oyku; Chen, Junning; Zheng, Keke; Ali Darendeliler, M; Swain, Michael; Li, Qing
2017-07-26
The aim of this study is to investigate the biomechanics for orthodontic tooth movement (OTM) subjected to concurrent single-tooth vibration (50Hz) with conventional orthodontic force application, via a clinical study and computational simulation. Thirteen patients were recruited in the clinical study, which involved distal retraction of maxillary canines with 1.5N (150g) force for 12weeks. In a split mouth study, vibration and non-vibration sides were randomly assigned to each subject. Vibration of 50Hz, of approximately 0.2N (20g) of magnitude, was applied on the buccal surface of maxillary canine for the vibration group. A mode-based steady-state dynamic finite element analysis (FEA) was conducted based on an anatomically detailed model, complying with the clinical protocol. Both the amounts of space closure and canine distalization of the vibration group were significantly higher than those of the control group, as measured intra-orally or on models (p<0.05). Therefore it is indicated that a 50Hz and 20g single-tooth vibration can accelerate maxillary canine retraction. The volume-average hydrostatic stress (VHS) in the periodontal ligament (PDL) was computationally calculated to be higher with vibration compared with the control group for maxillary teeth and for both linguo-buccal and mesial-distal directions. An increase in vibratory frequency further amplified the PDL response before reaching a local natural frequency. An amplification of PDL response was also shown to be induced by vibration based on computational simulation. The vibration-enhanced OTM can be described by mild, vigorous and diminishing zones among which the mild zone is considered to be clinically beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solenoid valve design minimizes vibration and sliding wear problem
NASA Technical Reports Server (NTRS)
Gillon, W. A., Jr.
1968-01-01
Two-way cryogenic solenoid valve resists damage from vibration and metallic interfacial sliding. The new system features a flat-faced armature guided by a flexure disk which eliminates sliding surfaces and is less subject to contamination and wear.
Seismic damage diagnosis of a masonry building using short-term damping measurements
NASA Astrophysics Data System (ADS)
Kouris, Leonidas Alexandros S.; Penna, Andrea; Magenes, Guido
2017-04-01
It is of considerable importance to perform dynamic identification and detect damage in existing structures. This paper describes a new and practical method for damage diagnosis of masonry buildings requiring minimum computational effort. The method is based on the relative variation of modal damping and validated against experimental data from a full scale two storey shake table test. The experiment involves a building subjected to uniaxial vibrations of progressively increasing intensity at the facilities of EUCENTRE laboratory (Pavia, Italy) up to a near collapse damage state. Five time-histories are applied scaling the Montenegro (1979) accelerogram. These strong motion tests are preceded by random vibration tests (RVT's) which are used to perform modal analysis. Two deterministic methods are applied: the single degree of freedom (SDOF) assumption together with the peak-picking method in the discrete frequency domain and the Eigen realisation algorithm with data correlations (ERA-DC) in the discrete time domain. Regarding the former procedure, some improvements are incorporated to locate rigorously the natural frequencies and estimate the modal damping. The progressive evolution of the modal damping is used as a key indicator to characterise damage on the building. Modal damping is connected to the structural mass and stiffness. A square integrated but only with two components expression for proportional (classical) damping is proposed to fit better with the experimental measurements of modal damping ratios. Using this Rayleigh order formulation the contribution of each of the damping components is evaluated. The stiffness component coefficient is proposed as an effective index to detect damage and quantify its intensity.
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.
2017-08-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
NASA Astrophysics Data System (ADS)
Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei
2015-07-01
Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.
Streijger, Femke; Lee, Jae H T; Manouchehri, Neda; Melnyk, Angela D; Chak, Jason; Tigchelaar, Seth; So, Kitty; Okon, Elena B; Jiang, Shudong; Kinsler, Rachel; Barazanji, Khalid; Cripton, Peter A; Kwon, Brian K
2016-12-15
In the military environment, injured soldiers undergoing medical evacuation via helicopter or mine-resistant ambush-protected vehicle (MRAP) are subjected to vibration and shock inherent to the transport vehicle. We conducted the present study to assess the consequences of such vibration on the acutely injured spinal cord. We used a porcine model of spinal cord injury (SCI). After a T10 contusion-compression injury, animals were subjected to 1) no vibration (n = 7-8), 2) whole body vibration at frequencies and amplitudes simulating helicopter transport (n = 8), or 3) whole body vibration simulating ground transportation in an MRAP ambulance (n = 7). Hindlimb locomotor function (using Porcine Thoracic Injury Behavior Scale [PTIBS]), Eriochrome Cyanine histochemistry and biochemical analysis of inflammatory and neural damage markers were analyzed. Cerebrospinal fluid (CSF) expression levels for monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-8, and glial fibrillary acidic protein (GFAP) were similar between the helicopter or MRAP group and the unvibrated controls. Spared white/gray matter tended to be lower in the MRAP-vibrated animals than in the unvibrated controls, especially rostral to the epicenter. However, spared white/gray matter in the helicopter-vibrated group appeared normal. Although there was a relationship between the extent of sparing and the extent of locomotor recovery, no significant differences were found in PTIBS scores between the groups. In summary, exposures to vibration in the context of ground (MRAP) or aeromedical (helicopter) transportation did not significantly impair functional outcome in our large animal model of SCI. However, MRAP vibration was associated with increased tissue damage around the injury site, warranting caution around exposure to vehicle vibration acutely after SCI.
Damage identification of a TLP floating wind turbine by meta-heuristic algorithms
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.
2015-12-01
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution.
Yang, Ming; Szyc, Łukasz; Röttger, Katharina; Fidder, Henk; Nibbering, Erik T J; Elsaesser, Thomas; Temps, Friedrich
2011-05-12
N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).
NASA Astrophysics Data System (ADS)
Ahmed, Riaz; Mir, Fariha; Banerjee, Sourav
2017-08-01
The principal objective of this article is to categorically review and compare the state of the art vibration based energy harvesting approaches. To evaluate the contemporary methodologies with respect to their physics, average power output and operational frequencies, systematically divided and easy readable tables are presented followed by the description of the energy harvesting methods. Energy harvesting is the process of obtaining electrical energy from the surrounding vibratory mechanical systems through an energy conversion method using smart structures, like, piezoelectric, electrostatic materials. Recent advancements in low power electronic gadgets, micro electro mechanical systems, and wireless sensors have significantly increased local power demand. In order to circumvent the energy demand; to allow limitless power supply, and to avoid chemical waste from conventional batteries, low power local energy harvesters are proposed for harvesting energy from different ambient energy sources. Piezoelectric materials have received tremendous interest in energy harvesting technology due to its unique ability to capitalize the ambient vibrations to generate electric potential. Their crystalline configuration allows the material to convert mechanical strain energy into electrical potential, and vice versa. This article discusses the various approaches in vibration based energy scavenging where piezoelectric materials are employed as the energy conversion medium.
Optically Phase-Locked Electronic Speckle Pattern Interferometer (OPL-ESPI)
NASA Astrophysics Data System (ADS)
Moran, Steven E.; Law, Robert L.; Craig, Peter N.; Goldberg, Warren M.
1986-10-01
This report describes the design, theory, operation, and characteristics of the OPL-ESPI, which generates real time equal Doppler speckle contours of vibrating objects from unstable sensor platforms with a Doppler resolution of 30 Hz and a maximum tracking range of + or - 5 HMz. The optical phase locked loop compensates for the deleterious effects of ambient background vibration and provides the bases for a new ESPI video signal processing technique, which produces high contrast speckle contours. The OPL-ESPI system has local oscillator phase modulation capability, offering the potential for detection of vibrations with the amplitudes less than lambda/100.
ANN based Performance Evaluation of BDI for Condition Monitoring of Induction Motor Bearings
NASA Astrophysics Data System (ADS)
Patel, Raj Kumar; Giri, V. K.
2017-06-01
One of the critical parts in rotating machines is bearings and most of the failure arises from the defective bearings. Bearing failure leads to failure of a machine and the unpredicted productivity loss in the performance. Therefore, bearing fault detection and prognosis is an integral part of the preventive maintenance procedures. In this paper vibration signal for four conditions of a deep groove ball bearing; normal (N), inner race defect (IRD), ball defect (BD) and outer race defect (ORD) were acquired from a customized bearing test rig, under four different conditions and three different fault sizes. Two approaches have been opted for statistical feature extraction from the vibration signal. In the first approach, raw signal is used for statistical feature extraction and in the second approach statistical features extracted are based on bearing damage index (BDI). The proposed BDI technique uses wavelet packet node energy coefficients analysis method. Both the features are used as inputs to an ANN classifier to evaluate its performance. A comparison of ANN performance is made based on raw vibration data and data chosen by using BDI. The ANN performance has been found to be fairly higher when BDI based signals were used as inputs to the classifier.
Local vibrational modes of the water dimer - Comparison of theory and experiment
NASA Astrophysics Data System (ADS)
Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.
2012-12-01
Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.
NASA Astrophysics Data System (ADS)
Wan, Tao; Naoe, Takashi; Futakawa, Masatoshi
2016-01-01
A double-wall structure mercury target will be installed at the high-power pulsed spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Cavitation damage on the inner wall is an important factor governing the lifetime of the target-vessel. To monitor the structural integrity of the target vessel, displacement velocity at a point on the outer surface of the target vessel is measured using a laser Doppler vibrometer (LDV). The measured signals can be used for evaluating the damage inside the target vessel because of cyclic loading and cavitation bubble collapse caused by pulsed-beam induced pressure waves. The wavelet differential analysis (WDA) was applied to reveal the effects of the damage on vibrational cycling. To reduce the effects of noise superimposed on the vibration signals on the WDA results, analysis of variance (ANOVA) and analysis of covariance (ANCOVA), statistical methods were applied. Results from laboratory experiments, numerical simulation results with random noise added, and target vessel field data were analyzed by the WDA and the statistical methods. The analyses demonstrated that the established in-situ diagnostic technique can be used to effectively evaluate the structural response of the target vessel.
Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
2003-01-01
This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.
Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.
Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat
2014-09-01
Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako
2017-04-01
This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.
Structural impact response for assessing railway vibration induced on buildings
NASA Astrophysics Data System (ADS)
Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.
2018-03-01
Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.
Kalogerakis, Konstantinos S.; Matsiev, Daniel; Cosby, Philip C.; Dodd, James A.; Falcinelli, Stefano; Hedin, Jonas; Kutepov, Alexander A.; Noll, Stefan; Panka, Peter A.; Romanescu, Constantin; Thiebaud, Jérôme E.
2018-01-01
The question of whether mesospheric OH(υ) rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(υ) rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-υ) vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(υ) rotational population distributions. Rapid OH(high-υ) + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-υ) rotational distributions. The effective rotational temperatures of mesospheric OH(υ) are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. PMID:29503514
NASA Astrophysics Data System (ADS)
Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian
2013-01-01
Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.
Rotordynamic Analysis and Feasibility Study of a Disk Spin Test Facility for Rotor Health Monitoring
NASA Technical Reports Server (NTRS)
Sawicki, Jerzy T.
2005-01-01
Recently, National Aeronautics and Space Administration (NASA) initiated a program to achieve the significant improvement in aviation safety. One of the technical challenges is the design and development of accelerated experiments that mimic critical damage cases encountered in engine components. The Nondestructive Evaluation (NDE) Group at the NASA Glenn Research Center (GRC) is currently addressing the goal concerning propulsion health management and the development of propulsion system specific technologies intended to detect potential failures prior to catastrophe. For this goal the unique disk spin simulation system was assembled at NASA GRC, which allows testing of rotors with the spinning speeds up to 10K RPM, and at the elevated temperature environment reaching 540 C (1000 F). It is anticipated that the facility can be employed for detection of Low Cycle Fatigue disk cracking and further High Cycle Fatigue blade vibration. The controlled crack growth studies at room and elevated temperatures can be conducted on the turbine wheels, and various NDE techniques can be integrated and assessed as in-situ damage monitoring tools. Critical rotating parts in advanced gas turbine engines such as turbine disks frequently operate at high temperature and stress for long periods of time. The integrity of these parts must be proven by non-destructive evaluation (NDE) during various machining steps ranging from forging blank to finished shape, and also during the systematic overhaul inspections. Conventional NDE methods, however, have unacceptable limits. Some of these techniques are time-consuming and inconvenient for service aircraft testing. Almost all of these techniques require that the vicinity of the damage is known in advance. These experimental techniques can provide only local information and no indication of the structural strength at a component and/or system level. The shortcomings of currently available NDE methods lead to the requirement of new damage detection techniques that can provide global information on the rotating components/system, and, in addition, they do not require direct human access to the operating system. During this period of research considerable effort was directed towards the further development of experimental facility and development of the vibration-based crack detection methodology for rotating disks and shafts. A collection of papers and reports were written to describe the results of this work. The attached captures that effort and represents the research output during the grant period.
Vibration on board and health effects.
Jensen, Anker; Jepsen, Jørgen Riis
2014-01-01
There is only limited knowledge of the exposure to vibrations of ships' crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces on board. Anecdotal reports have related the development of "white feet" to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships' passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships' construction, but has limited value for the estimation of health risks because they express the vibration intensity differently that it is done in a medical context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackeprang, Kasper; Kjaergaard, Henrik G., E-mail: hgk@chem.ku.dk; Salmi, Teemu
We describe the vibrational transitions of the donor unit in water dimer with an approach that is based on a three-dimensional local mode model. We perform a perturbative treatment of the intermolecular vibrational modes to improve the transition wavenumber of the hydrogen bonded OH-stretching transition. The model accurately predicts the transition wavenumbers of the vibrations in water dimer compared to experimental values and provides a physical picture that explains the redshift of the hydrogen bonded OH-oscillator. We find that it is unnecessary to include all six intermolecular modes in the vibrational model and that their effect can, to a goodmore » approximation, be computed using a potential energy surface calculated at a lower level electronic structure method than that used for the unperturbed model.« less
NASA Astrophysics Data System (ADS)
Andrejeva, Anna; Gardner, Adrian M.; Tuttle, William D.; Wright, Timothy G.
2016-03-01
We give a description of the phenyl-ring-localized vibrational modes of the ground states of the para-disubstituted benzene molecules including both symmetric and asymmetric cases. In line with others, we quickly conclude that the use of Wilson mode labels is misleading and ambiguous; we conclude the same regarding the related ones of Varsányi. Instead we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of para-difluorobenzene (pDFB). Since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules, we apply the Mulliken labelling under C2v symmetry. By studying the variation of the vibrational wavenumbers with mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. Particularly interesting are pairs of vibrations that evolve from in- and out-of-phase motions in pDFB to more localized modes in asymmetric molecules. We consider the para isomers of the following: the symmetric dihalobenzenes, xylene, hydroquinone, the asymmetric dihalobenzenes, halotoluenes, halophenols and cresol.
On damage diagnosis for a wind turbine blade using pattern recognition
NASA Astrophysics Data System (ADS)
Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.
2014-03-01
With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.
NASA Astrophysics Data System (ADS)
Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello
2017-02-01
Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.
Ambient vibrations of unstable rock slopes - insights from numerical modeling
NASA Astrophysics Data System (ADS)
Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat
2017-04-01
The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.
NASA Astrophysics Data System (ADS)
Haji Hosseinloo, Ashkan; Ehteshami, Mohsen Mousavi
2017-10-01
Performance reliability and mechanical integrity are the main bottlenecks in mass commercialization of PEMFCs for applications with inherent harsh environment such as automotive and aerospace applications. Imparted shock and vibration to the fuel cell in such applications could bring about numerous issues including clamping torque loosening, gas leakage, increased electrical resistance, and structural damage and breakage. Here, we provide a comprehensive review and critique of the literature focusing on the effects of mechanically harsh environment on PEMFCs, and at the end, we suggest two main future directions in FC technology research that need immediate attention: (i) developing a generic and adequately accurate dynamic model of PEMFCs to assess the dynamic response of FC devices, and (ii) designing effective and robust shock and vibration protection systems based on the developed models in (i).
Vibration Signature Analysis of a Faulted Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.
A velocity-amplified electromagnetic energy harvester for small amplitude vibration
NASA Astrophysics Data System (ADS)
Klein, J.; Zuo, L.
2017-09-01
Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.
Logistical and Analytical Approach to a Failure Aboard the International Space Station
NASA Technical Reports Server (NTRS)
McDanels, Seve; Wright, M. Clara; Salazar, Victoria; Lubas, David; Tucker, Bryan
2009-01-01
The starboard Solar Alpha Rotary Joint (SARJ) from the International Space Station (ISS) began exhibiting off-nominal electrical demands and vibration. Examination by spacewalking astronauts revealed metallic debris contaminating the system and damage to the outboard race of the SARJ. Samples of the contamination were returned to Earth and analyzed. Excessive friction caused the nitride region of the 15-5 PH stainless steel race to spall, generating the debris and damaging the race surface. Excessive vibration and excess power was required to operate the system as a result.
NASA Astrophysics Data System (ADS)
Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo
2017-08-01
Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the rehabilitation of disused or aged osteoporosis.
Local thermal energy as a structural indicator in glasses.
Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran
2017-07-11
Identifying heterogeneous structures in glasses-such as localized soft spots-and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses-an intrinsic signature of glassy frustration-anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal [Formula: see text] density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field-a "softness field"-is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.
DOT National Transportation Integrated Search
1986-06-01
This study was undertaken to determine the magnitude of ground vibrations produced by traffic and/or construction blasting. Such information could provide a tool in defense of legal claims concerning physical damage to nearby properties. An engineeri...
Bearing damage assessment using Jensen-Rényi Divergence based on EEMD
NASA Astrophysics Data System (ADS)
Singh, Jaskaran; Darpe, A. K.; Singh, S. P.
2017-03-01
An Ensemble Empirical Mode Decomposition (EEMD) and Jensen Rényi divergence (JRD) based methodology is proposed for the degradation assessment of rolling element bearings using vibration data. The EEMD decomposes vibration signals into a set of intrinsic mode functions (IMFs). A systematic methodology to select IMFs that are sensitive and closely related to the fault is proposed in the paper. The change in probability distribution of the energies of the sensitive IMFs is measured through JRD which acts as a damage identification parameter. Evaluation of JRD with sensitive IMFs makes it largely unaffected by change/fluctuations in operating conditions. Further, an algorithm based on Chebyshev's inequality is applied to JRD to identify exact points of change in bearing health and remove outliers. The identified change points are investigated for fault classification as possible locations where specific defect initiation could have taken place. For fault classification, two new parameters are proposed: 'α value' and Probable Fault Index, which together classify the fault. To standardize the degradation process, a Confidence Value parameter is proposed to quantify the bearing degradation value in a range of zero to unity. A simulation study is first carried out to demonstrate the robustness of the proposed JRD parameter under variable operating conditions of load and speed. The proposed methodology is then validated on experimental data (seeded defect data and accelerated bearing life test data). The first validation on two different vibration datasets (inner/outer) obtained from seeded defect experiments demonstrate the effectiveness of JRD parameter in detecting a change in health state as the severity of fault changes. The second validation is on two accelerated life tests. The results demonstrate the proposed approach as a potential tool for bearing performance degradation assessment.
NASA Astrophysics Data System (ADS)
Luan, Huiqin; Huang, Yunfei; Li, Jian; Sun, Lianwen; Fan, Yubo
2018-04-01
Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic-pituitary-adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague-Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer's instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.
Needle tip localization using stylet vibration.
Harmat, Adam; Rohling, Robert N; Salcudean, Septimiu E
2006-09-01
Power Doppler ultrasound is used to localize the tip of a needle by detecting physical vibrations. Two types of vibrations are investigated, lateral and axial. The lateral vibrations are created by rotating a stylet, whose tip is slightly bent, inside a stationary cannula while the stylet is completely within the cannula. The minute deflection at the needle tip when rotated causes tissue motion. The axial vibration is induced by extending and retracting a straight stylet inside a stationary cannula. The stylet's tip makes contact with the tissue and causes it to move. The lateral vibration method was found to perform approximately the same under a variety of configurations (e.g., different insertion angles and depths) and better than the axial vibration method. Tissue stiffness affects the performance of the lateral vibration method, but good images can be obtained through proper tuning of the ultrasound machine.
Faster scanning and higher resolution: new setup for multilayer zone plate imaging
NASA Astrophysics Data System (ADS)
Osterhoff, Markus; Soltau, Jakob; Eberl, Christian; Krebs, Hans-Ulrich
2017-09-01
Hard x-ray imaging methods are routinely used in two and three spatial dimensions to tackle challenging scientific questions of the 21st century, e.g. catalytic processes in energy research and bio-physical experiments on the single-cell level [1-3]. Among the most important experimental techniques are scanning SAXS to probe the local orientation of filaments and fluorescence mapping to quantify the local composition. The routinely available spot size has been reduced to few tens of nanometres; but the real-space resolution of these techniques can degrade by (i) vibration or drift, and (ii) spreading of beam damage, especially for soft condensed matter on small length scales. We have recently developed new Multilayer Zone Plate (MZP) optics for focusing hard (14 keV) and very hard (60 keV to above 100 keV) x-rays down to spot sizes presumably on 5 or 10nm scale. Here we report on recent progress on a new MZP based sample scanner, and how to tackle beam damage spread. The Eiger detector synchronized to a piezo scanner enables to scan in a 2D continuous mode fields of view larger than 20μm squared, or for high resolution down to (virtual) pixel sizes of below 2nm, in about three minutes for 255×255 points (90 seconds after further improvements). Nano-SAXS measurements with more than one million real-space pixels, each containing a full diffraction image, can be carried out in less than one hour, as we have shown using a Siemens star test pattern.
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan
2016-04-22
The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.
NASA Astrophysics Data System (ADS)
Yao, Lei; Wang, Zhenpo; Ma, Jun
2015-10-01
This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.
Stacking fault energies of face-centered cubic concentrated solid solution alloys
Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen
2017-06-22
We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less
Stacking fault energies of face-centered cubic concentrated solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen
We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less
Detection of multiple damages employing best achievable eigenvectors under Bayesian inference
NASA Astrophysics Data System (ADS)
Prajapat, Kanta; Ray-Chaudhuri, Samit
2018-05-01
A novel approach is presented in this work to localize simultaneously multiple damaged elements in a structure along with the estimation of damage severity for each of the damaged elements. For detection of damaged elements, a best achievable eigenvector based formulation has been derived. To deal with noisy data, Bayesian inference is employed in the formulation wherein the likelihood of the Bayesian algorithm is formed on the basis of errors between the best achievable eigenvectors and the measured modes. In this approach, the most probable damage locations are evaluated under Bayesian inference by generating combinations of various possible damaged elements. Once damage locations are identified, damage severities are estimated using a Bayesian inference Markov chain Monte Carlo simulation. The efficiency of the proposed approach has been demonstrated by carrying out a numerical study involving a 12-story shear building. It has been found from this study that damage scenarios involving as low as 10% loss of stiffness in multiple elements are accurately determined (localized and severities quantified) even when 2% noise contaminated modal data are utilized. Further, this study introduces a term parameter impact (evaluated based on sensitivity of modal parameters towards structural parameters) to decide the suitability of selecting a particular mode, if some idea about the damaged elements are available. It has been demonstrated here that the accuracy and efficiency of the Bayesian quantification algorithm increases if damage localization is carried out a-priori. An experimental study involving a laboratory scale shear building and different stiffness modification scenarios shows that the proposed approach is efficient enough to localize the stories with stiffness modification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, S.; Guo, Y.
2015-03-01
Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lowermore » than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.« less
Vibration Based Crack Detection in a Rotating Disk. Part 2; Experimental Results
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Haase, Wayne C.; Baaklini, George
2005-01-01
This paper describes the experimental results concerning the detection of a crack in a rotating disk. The goal was to utilize blade tip clearance and shaft vibration measurements to monitor changes in the system's center of mass and/or blade deformation behaviors. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Here, a notch was used to simulate an actual crack. The vibration based experimental results failed to identify the existence of a notch when utilizing the approach described above, even with a rather large, circumferential notch (l.2 in.) located approximately mid-span on the disk (disk radius = 4.63 in. with notch at r = 2.12 in.). This was somewhat expected, since the finite element based results in Part 1 of this study predicted changes in blade tip clearance as well as center of mass shifts due to a notch to be less than 0.001 in. Therefore, the small changes incurred by the notch could not be differentiated from the mechanical and electrical noise of the rotor system. Although the crack detection technique of interest failed to identify the existence ofthe notch, the vibration data produced and captured here will be utilized in upcoming studies that will focus on different data mining techniques concerning damage detection in a disk.
The Evolution of Ih C_60 Vibrational Modes in Planar Polymerized C_60.
NASA Astrophysics Data System (ADS)
Adams, G. B.; Page, J. B.
2001-03-01
We have used first-principles local-orbital-based molecular dynamics(O.F. Sankey and D.J. Niklewski, Phys. Rev. B40), 3979 (1989). to simulate a wide variety of planar polymers of C_60, including the orthorhombic (O), tetrahedral (T), and rhombohedral (R) polymers which have been reported experimentally. It has been customary to assume that the vibrational modes of the polymers are moderately perturbed Ih C_60 vibrational modes.(See, for example V.A. Davydov et al.), Phys. Rev. B61, 11936 (2000) or V.C. Long et al., Phys. Rev. B 61, 13191 (2000). To test this assumption, we have expanded the polymer vibrational eigenvectors in the eigenvectors of Ih C_60, thus determining quantitatively the percentage contribution of each Ih C_60 mode to each polymer vibrational mode. We find that for many polymer modes the assumption is not justified. We report our results for selected Raman- and IR-active vibrational modes of the observed polymers.
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
NASA Astrophysics Data System (ADS)
Melentjev, Vladimir S.; Gvozdev, Alexander S.
2018-01-01
Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.
Forced responses on a radial turbine with nozzle guide vanes
NASA Astrophysics Data System (ADS)
Liu, Yixiong; Yang, Ce; Ma, Chaochen; Lao, DaZhong
2014-04-01
Radial turbines with nozzle guide vanes are widely used in various size turbochargers. However, due to the interferences with guide vanes, the blades of impellers are exposed to intense unsteady aerodynamic excitations, which cause blade vibrations and lead to high cycle failures (HCF). Moreover, the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions. Aiming to achieve a detail insight into vibration characteristics of radial flow turbine, a numerical method based on fluid structure interaction (FSI) is presented. Firstly, the unsteady aerodynamic loads are determined by computational fluid dynamics (CFD). And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform (FFT). Then, the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element (FE) method. Meanwhile, harmonic analyses, applying the pressure fluctuation from CFD, are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain. The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
Two-dimensional infrared spectral signature and hydration of the oxalate dianion
Kuroda, Daniel G.; Hochstrasser, Robin M.
2011-01-01
Ultrafast vibrational spectra of the aqueous oxalate ion in the region of its carboxylate asymmetric stretch modes show novel relaxation processes. Two-dimensional infrared vibrational echo spectra and the vibrational dynamics obtained from them along with measurements of the anisotropy decay provide a picture in which the localization of the oxalate vibrational excitation onto the carboxylate groups occurs in ∼450 fs. Molecular dynamics simulations are used to characterize the vibrational dynamics in terms of dihedral angle motion between the two carboxylate planes and solvation dynamics. The localization of the oxalate vibrational excitation onto the carboxylates is induced by the fluctuations in the carboxylate vibrational frequencies which are shown by theory and experiment to have a similar correlation time as the anisotropy decay. PMID:22128938
A compact ball screw based electromagnetic energy harvester for railroad application
NASA Astrophysics Data System (ADS)
Pan, Yu; Lin, Teng; Liu, Cheng; Yu, Jie; Zuo, Jianyong; Zuo, Lei
2018-03-01
To enable the smart technologies, such as the positive train controls, rail damage detection and track health monitoring on the railroad side, the electricity is required and in needed. In this paper, we proposed a novel ball-screw based electromagnetic energy harvester for railway track with mechanical-motion-rectifier (MMR) mechanism, to harvest the energy that usually dissipated and wasted during train induced track vibration. Ball screw based design reduces backlash during motion transmission, and MMR nonlinear characteristics with one way clutches makes the harvester convert the bi-direction track vibration into a generator's unidirectional rotation, which improves the transmission reliability and increases the energy harvesting efficiency. A systematic model combining train-rail-harvester was established to analyze the dynamic characteristic of the proposed railway energy, and lab and in-field tests were carried out to experimentally characterize the proposed energy harvester. In lab bench test showed the proposed harvester reached a 70% mechanical efficiency with a high sensitivity to the environment vibration. In filed test showed that a peak 7.8W phase power was achieved when a two marshaling type A metro train passed by with a 30 km/h.
Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.
Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods
NASA Technical Reports Server (NTRS)
Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.
2003-01-01
In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.
An automatic damage detection algorithm based on the Short Time Impulse Response Function
NASA Astrophysics Data System (ADS)
Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara
2016-04-01
Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. This approach helps to overcome the limitation derived from the use of techniques based on simple Fourier Transform that provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary behaviour. The main advantage derived from the use of the proposed approach for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency. The proposed methodology has been tested on numerical models of reinforced concrete structures designed for only gravity loads without and with the presence of infill panels. In order to verify the effectiveness of the proposed approach for the automatic evaluation of the fundamental frequency over time, the results of an experimental campaign of shaking table tests conducted at the seismic laboratory of University of Basilicata (SISLAB) have been used. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2015 - RS4 ''Seismic observatory of structures and health monitoring''. References Ditommaso, R., Mucciarelli, M., Ponzo, F.C. (2012) Analysis of non-stationary structural systems by using a band-variable filter. Bulletin of Earthquake Engineering. DOI: 10.1007/s10518-012-9338-y.
Citizen sensors for SHM: use of accelerometer data from smartphones.
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-29
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shun-Li; Fu, Li; Chase, Zizwe A.
Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less
McCann, M R; Yeung, C; Pest, M A; Ratneswaran, A; Pollmann, S I; Holdsworth, D W; Beier, F; Dixon, S J; Séguin, C A
2017-05-01
Low-amplitude, high-frequency whole-body vibration (WBV) has been adopted for the treatment of musculoskeletal diseases including osteoarthritis (OA); however, there is limited knowledge of the direct effects of vibration on joint tissues. Our recent studies revealed striking damage to the knee joint following exposure of mice to WBV. The current study examined the effects of WBV on specific compartments of the murine tibiofemoral joint over 8 weeks, including microarchitecture of the tibia, to understand the mechanisms associated with WBV-induced joint damage. Ten-week-old male CD-1 mice were exposed to WBV (45 Hz, 0.3 g peak acceleration; 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. The knee joint was evaluated histologically for tissue damage. Architecture of the subchondral bone plate, subchondral trabecular bone, primary and secondary spongiosa of the tibia was assessed using micro-CT. Meniscal tears and focal articular cartilage damage were induced by WBV; the extent of damage increased between 4 and 8-week exposures to WBV. WBV did not alter the subchondral bone plate, or trabecular bone of the tibial spongiosa; however, a transient increase was detected in the subchondral trabecular bone volume and density. The lack of WBV-induced changes in the underlying subchondral bone suggests that damage to the articular cartilage may be secondary to the meniscal injury we detected. Our findings underscore the need for further studies to assess the safety of WBV in the human population to avoid long-term joint damage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Natural Frequencies Evaluation on Partially Damaged Building using Ambient Vibration Technique
NASA Astrophysics Data System (ADS)
Kamarudin, A. F.; Zainal Abidin, M. H.; Daud, M. E.; Noh, M. S. Md; Madun, A.; Ibrahim, A.; Matarul, J.; Mokhatar, S. N.
2018-04-01
Severe damages observed on the school blocks, roads, retaining walls and drainage within the compound of SMK Kundasang Sabah possibly due to the ground movements triggered by the Ranau earthquake in 1991. Ambient vibration measurements were carried on the remaining demolished 3-storey building which partially damaged in order to measure the predominant building frequencies using tri-axial 1 Hz seismometer sensors. Popular methods of Horizontal-to-vertical spectral ratios (HVSR) and Fourier amplitude spectra (FAS) were used to compute the ambient vibration wave fields of each building axes (Transverse or North-South (NS), Longitudinal or East-West (EW) and vertical) into Fourier spectra. Two main modes of translation and torsion were observed from the peaks frequencies obtained at 2.99 to 3.10 Hz (1st mode), 4.85 Hz (2nd mode) and 5.63 to 5.85 Hz (3rd mode). The building experiencing translation modes of bending and shear in the NS and EW directions. It could be seen when the amplitudes tends to increase when the floor are increased. Meanwhile, the torsional bending mode is expected to occur when the deformation amplitudes are found to be increasing horizontally, when moving into partially structural damaged section located on the East wing of building.
NASA Astrophysics Data System (ADS)
Kalkan, E.; Fletcher, J. B.; Ulusoy, H. S.; Baker, L. A.
2014-12-01
A 62-story residential tower in San Francisco—the tallest all-residential building in California—was recently instrumented by the USGS's National Strong Motion Project in collaboration with the Strong Motion Instrumentation Program of the California Geological Survey to monitor the motion of a tall building built with specifically engineered features (including buckling-restrained braces, outrigger columns and a tuned liquid damper) to reduce its sway from seismic and wind loads. This 641-ft tower has been outfitted with 72 uni-axial accelerometers, spanning through 26 different levels of the building. For damage detection and localization through structural health monitoring, we use local micro-earthquake and ambient monitoring (background noises) to define linear-elastic (undamaged) dynamic properties of the superstructure including its modal parameters (fundamental frequencies, mode shapes and modal damping values) and shear-wave propagation profile and wave attenuation inside the building, which need to be determined in advance of strong shaking. In order to estimate the baseline modal parameters, we applied a frequency domain decomposition method. Using this method, the first three bending modes in the reference east-west direction, the first two bending modes in the reference north-south direction, and the first two torsional modes were identified. The shear-wave propagation and wave attenuation inside the building were computed using deconvolution interferometry. The data used for analyses are from ambient vibrations having 20 minutes duration, and earthquake data from a local M4.5 event located just north east of Geyserville, California. We show that application of deconvolution interferometry to data recorded inside a building is a powerful technique for monitoring structural parameters, such as velocities of traveling waves, frequencies of normal modes, and intrinsic attenuation (i.e., damping). The simplicity and similarity of the deconvolved waveforms from ambient vibrations and a small magnitude event also suggest that a one-dimensional shear velocity model is sufficiently accurate to represent the wave propagation charactersistics inside the building.
Fortpied, Juliette; Wauters, Florence; Rochart, Christelle; Hermand, Philippe; Hoet, Bernard; Moniotte, Nicolas; Vojtek, Ivo
2018-01-01
ABSTRACT Accidental exposure of a vaccine containing an aluminum-salt adjuvant to temperatures below 0°C in the cold chain can lead to freeze damage. Our study evaluated the potential for freeze damage in a licensed aluminum-salt-containing protein-D-conjugated pneumococcal vaccine (PHiD-CV; Synflorix, GSK) in conditions that included static storage, single subzero-temperature excursions, and simulated air-freight transportation. Several parameters were assessed including freezing at subzero temperatures, aluminum-salt-particle size, antigen integrity and immunogenicity in the mouse. The suitability of the WHO's shake test for identifying freeze-damaged vaccines was also assessed. During subzero-temperature excursions, the mean temperatures at which PHiD-CV froze (−16.7°C to −18.1°C) appeared unaffected by the type of vaccine container (two-dose or four-dose vial, or single-dose syringe), vaccine batch, rotational agitation, or the rate of temperature decline (−0.5 to −10°C/hour). At constant subzero temperature and in simulated air-freight transportation, the freezing of PHiD-CV appeared to be promoted by vibration. At −5°C, no PHiD-CV sample froze in static storage (>1 month), whereas when subjected to vibration, a minority of samples froze (7/21, 33%) within 18 hours. At −8°C with vibration, nearly all (5/6, 83%) samples froze. In these vibration regimes, the shake test identified most samples that froze (10/12, 93%) except two in the −5°C regime. Nevertheless, PHiD-CV-antigen integrity appeared unaffected by freezing up to −20°C or by vibration. And although aluminum-salt-particle size was increased only by freezing at −20°C, PHiD-CV immunogenicity appeared only marginally affected by freezing at −20°C. Therefore, our study supports the use of the shake test to exclude freeze-damaged PHiD-CV in the field. PMID:29337646
USDA-ARS?s Scientific Manuscript database
Mate-seeking in Diaphorina citri Kuwayama, a vector of the economically damaging huanglongbing citrus disease, typically includes male-female duetting behaviors. First, the male calls by beating its wings at ca. 170-250 Hz, producing vibrations that are transmitted along the host tree branches to th...
NASA Astrophysics Data System (ADS)
Emile, Olivier; Emile, Janine
2016-12-01
Most of the vibrating mechanisms of optofluidic systems are based on local heating of membranes that induces liquid flow.We report here a new type of diaphragm pump in a liquid film based on the optical radiation pressure force. We modulate a low power laser that generates, at resonance, a symmetric vibration of a free standing soap film. The film lifetime strongly varies from 56 s at low power (2 mW) to 2 s at higher power (70 mW). Since the laser beam only acts mechanically on the interfaces, such a pump could be easily implemented on delicate microequipment on chips or in biological systems.
Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering
NASA Astrophysics Data System (ADS)
Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo
2011-01-01
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.
NASA Astrophysics Data System (ADS)
Döring, D.; Solodov, I.; Busse, G.
Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.
Computational Modeling System for Deformation and Failure in Polycrystalline Metals
2009-03-29
FIB/EHSD 3.3 The Voronoi Cell FEM for Micromechanical Modeling 3.4 VCFEM for Microstructural Damage Modeling 3.5 Adaptive Multiscale Simulations...accurate and efficient image-based micromechanical finite element model, for crystal plasticity and damage , incorporating real morphological and...topology with evolving strain localization and damage . (v) Development of multi-scaling algorithms in the time domain for compression and localization in
Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)
NASA Technical Reports Server (NTRS)
Clark, Robert; Cottter, Paul; Michalopoulos, Constantine
2013-01-01
This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.
Morphometric and mechanical characteristics of Equisetum hyemale stem enhance its vibration.
Zajączkowska, Urszula; Kucharski, Stanisław; Nowak, Zdzisław; Grabowska, Kamila
2017-04-01
The order of the internodes, and their geometry and mechanical characteristics influence the capability of the Equisetum stem to vibrate, potentially stimulating spore liberation at the optimum stress setting along the stem. Equisetum hyemale L. plants represent a special example of cellular solid construction with mechanical stability achieved by a high second moment of area and relatively high resistance against local buckling. We proposed the hypothesis that the order of E. hyemale L. stem internodes, their geometry and mechanical characteristics influence the capability of the stem to vibrate, stimulating spore liberation at the minimum stress setting value along the stem. An analysis of apex vibration was done based on videos presenting the behavior of an Equisetum clump filmed in a wind tunnel and also as a result of excitation by bending the stem by 20°. We compared these data with the vibrations of stems of the same size but deprived of the three topmost internodes. Also, we created a finite element model (FEM), upon which we have based the 'natural' stem vibration as a copy of the real object, 'random' with reshuffled internodes and 'uniform', created as one tube with the characters averaged from all internodes. The natural internode arrangement influences the frequency and amplitude of the apex vibration, maintaining an equal stress distribution in the stem, which may influence the capability for efficient spore spreading.
Analysis of Surface and Subsurface Damage Morphology in Rotary Ultrasonic Machining of BK7 Glass
NASA Astrophysics Data System (ADS)
Hong-xiang, Wang; Chu, Wang; Jun-liang, Liu; Shi, Gao; Wen-Jie, Zhai
2017-11-01
This paper investigates the formation process of surface/subsurface damage in the rotary ultrasonic machining of BK7 glass. The results show that during the milling using the end face of the tool, the cutting depth and the residual height between the abrasive grains constantly change with the high-frequency vibration, generating lots of cracks on both sides of the scratches. The high-frequency vibration accelerates the chips falling from the surface, so that the chips and thermal damage are reduced, causing the grinding surface quality better. A plastic deformation area is formed during the grinding, due to the non-uniform cutting force on the material surface, and the residual stress is produced in the deformation area, inducing the median/lateral cracks.
Bazewicz, Christopher G; Liskov, Melanie T; Hines, Kevin J; Brewer, Scott H
2013-08-01
We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN₃CH₂Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN₃CH₂Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN₃Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN₃CH₂Phe to different protein environments to be measured. The photostability of pN₃CH₂Phe was also measured relative to the photoreactive UAA, pN₃Phe.
Bagherian, Ali; Sheikhfathollahi, Mahmood
2016-01-01
Topical anesthesia has been widely advocated as an important component of atraumatic administration of intraoral local anesthesia. The aim of this study was to use direct observation of children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia. Forty-eight children participated in this randomized controlled clinical trial. They received two separate inferior alveolar nerve block or primary maxillary molar infiltration injections on contralateral sides of the jaws by both cotton-roll vibration (a combination of topical anesthesia gel, cotton roll, and vibration for physical distraction) and control (routine topical anesthesia) methods. Behavioral pain reactions of children were measured according to the author-developed face, head, foot, hand, trunk, and cry (FHFHTC) scale, resulting in total scores between 0 and 18. The total scores on the FHFHTC scale ranged between 0-5 and 0-10 in the cotton-roll vibration and control methods, respectively. The mean ± standard deviation values of total scores on FHFHTC scale were lower in the cotton-roll vibration method (1.21 ± 1.38) than in control method (2.44 ± 2.18), and this was statistically significant (P < 0.001). It may be concluded that the cotton-roll vibration method can be more helpful than the routine topical anesthesia in reducing behavioral pain reactions in children during local anesthesia administration.
NASA Astrophysics Data System (ADS)
Vainer, Yu. G.; Naumov, A. V.; Kador, L.
2008-06-01
The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.
Local thermal energy as a structural indicator in glasses
NASA Astrophysics Data System (ADS)
Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran
2017-07-01
Identifying heterogeneous structures in glasses—such as localized soft spots—and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses—an intrinsic signature of glassy frustration—anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal
NASA Astrophysics Data System (ADS)
Yagoda-Biran, G.; Hatzor, Y. H.
2013-12-01
Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a factor of up to 10. This result clearly illustrates the significance of incorporating local site effects when assessing the seismic hazard associated with specific regions in general, and particularly in cities where soft layers separate between the bedrock and the ground surface. The displaced block in Vault 21 in the Western Wall Tunnels.
Vibration-based health monitoring and model refinement of civil engineering structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, C.R.; Doebling, S.W.
1997-10-01
Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandiamore » National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.« less
Rubber-coated bellows improves vibration damping in vacuum lines
NASA Technical Reports Server (NTRS)
Hegland, D. E.; Smith, R. J.
1966-01-01
Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.
NASA Astrophysics Data System (ADS)
Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz
2018-02-01
This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.
Light-induced vibration in the hearing organ
Ren, Tianying; He, Wenxuan; Li, Yizeng; Grosh, Karl; Fridberger, Anders
2014-01-01
The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. PMID:25087606
Improved analysis of ground vibrations produced by man-made sources.
Ainalis, Daniel; Ducarne, Loïc; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges
2018-03-01
Man-made sources of ground vibration must be carefully monitored in urban areas in order to ensure that structural damage and discomfort to residents is prevented or minimised. The research presented in this paper provides a comparative evaluation of various methods used to analyse a series of tri-axial ground vibration measurements generated by rail, road, and explosive blasting. The first part of the study is focused on comparing various techniques to estimate the dominant frequency, including time-frequency analysis. The comparative evaluation of the various methods to estimate the dominant frequency revealed that, depending on the method used, there can be significant variation in the estimates obtained. A new and improved analysis approach using the continuous wavelet transform was also presented, using the time-frequency distribution to estimate the localised dominant frequency and peak particle velocity. The technique can be used to accurately identify the level and frequency content of a ground vibration signal as it varies with time, and identify the number of times the threshold limits of damage are exceeded. Copyright © 2017 Elsevier B.V. All rights reserved.
Towards a minimally invasive sampling tool for high resolution tissue analytical mapping
NASA Astrophysics Data System (ADS)
Gottardi, R.
2015-09-01
Multiple spatial mapping techniques of biological tissues have been proposed over the years, but all present limitations either in terms of resolution, analytical capacity or invasiveness. Ren et al (2015 Nanotechnology 26 284001) propose in their most recent work the use of a picosecond infrared laser (PIRL) under conditions of ultrafast desorption by impulsive vibrational excitation (DIVE) to extract small amounts of cellular and molecular components, conserving their viability, structure and activity. The PIRL DIVE technique would then work as a nanobiopsy with minimal damage to the surrounding tissues, which could potentially be applied for high resolution local structural characterization of tissues in health and disease with the spatial limit determined by the laser focus.
2015-05-01
fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF
NASA Astrophysics Data System (ADS)
Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.
2009-02-01
We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.
On experimental damage localization by SP2E: Application of H∞ estimation and oblique projections
NASA Astrophysics Data System (ADS)
Lenzen, Armin; Vollmering, Max
2018-05-01
In this article experimental damage localization based on H∞ estimation and state projection estimation error (SP2E) is studied. Based on an introduced difference process, a state space representation is derived for advantageous numerical solvability. Because real structural excitations are presumed to be unknown, a general input is applied therein, which allows synchronization and normalization. Furthermore, state projections are introduced to enhance damage identification. While first experiments to verify method SP2E have already been conducted and published, further laboratory results are analyzed here. Therefore, SP2E is used to experimentally localize stiffness degradations and mass alterations. Furthermore, the influence of projection techniques is analyzed. In summary, method SP2E is able to localize structural alterations, which has been observed by results of laboratory experiments.
Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P
2016-01-01
We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.
Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M.; Migliaccio, Gian M.; Grgantov, Zoran; Ardigò, Luca P.
2016-01-01
We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads. PMID:27378948
Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.
2012-01-01
In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
q Breathers in Finite Lattices: Nonlinearity and Weak Disorder
NASA Astrophysics Data System (ADS)
Ivanchenko, M. V.
2009-05-01
Nonlinearity and disorder are the recognized ingredients of the lattice vibrational dynamics, the factors that could be diminished, but never excluded. We generalize the concept of q breathers—periodic orbits in nonlinear lattices, exponentially localized in the linear mode space—to the case of weak disorder, taking the Fermi-Pasta-Ulan chain as an example. We show that these nonlinear vibrational modes remain exponentially localized near the central mode and stable, provided the disorder is sufficiently small. The instability threshold depends sensitively on a particular realization of disorder and can be modified by specifically designed impurities. Based on this sensitivity, an approach to controlling the energy flow between the modes is proposed. The relevance to other model lattices and experimental miniature arrays is discussed.
Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network
NASA Astrophysics Data System (ADS)
Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.
2006-06-01
The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.
On damage detection in wind turbine gearboxes using outlier analysis
NASA Astrophysics Data System (ADS)
Antoniadou, Ifigeneia; Manson, Graeme; Dervilis, Nikolaos; Staszewski, Wieslaw J.; Worden, Keith
2012-04-01
The proportion of worldwide installed wind power in power systems increases over the years as a result of the steadily growing interest in renewable energy sources. Still, the advantages offered by the use of wind power are overshadowed by the high operational and maintenance costs, resulting in the low competitiveness of wind power in the energy market. In order to reduce the costs of corrective maintenance, the application of condition monitoring to gearboxes becomes highly important, since gearboxes are among the wind turbine components with the most frequent failure observations. While condition monitoring of gearboxes in general is common practice, with various methods having been developed over the last few decades, wind turbine gearbox condition monitoring faces a major challenge: the detection of faults under the time-varying load conditions prevailing in wind turbine systems. Classical time and frequency domain methods fail to detect faults under variable load conditions, due to the temporary effect that these faults have on vibration signals. This paper uses the statistical discipline of outlier analysis for the damage detection of gearbox tooth faults. A simplified two-degree-of-freedom gearbox model considering nonlinear backlash, time-periodic mesh stiffness and static transmission error, simulates the vibration signals to be analysed. Local stiffness reduction is used for the simulation of tooth faults and statistical processes determine the existence of intermittencies. The lowest level of fault detection, the threshold value, is considered and the Mahalanobis squared-distance is calculated for the novelty detection problem.
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome.
Waugh, Stacey; Kashon, Michael L; Li, Shengqiao; Miller, Gerome R; Johnson, Claud; Krajnak, Kristine
2016-04-01
The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division.
Guaranteeing robustness of structural condition monitoring to environmental variability
NASA Astrophysics Data System (ADS)
Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François
2017-01-01
Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.
Samaitis, Vykintas; Mažeika, Liudas
2017-01-01
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924
Self-Developed Testing System for Determining the Temperature Behavior of Concrete.
Zhu, He; Li, Qingbin; Hu, Yu
2017-04-16
Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation.
Self-Developed Testing System for Determining the Temperature Behavior of Concrete
Zhu, He; Li, Qingbin; Hu, Yu
2017-01-01
Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation. PMID:28772778
The Alaska earthquake, March 27, 1964: lessons and conclusions
Eckel, Edwin B.
1970-01-01
One of the greatest earthquakes of all time struck south-central Alaska on March 27, 1964. Strong motion lasted longer than for most recorded earthquakes, and more land surface was dislocated, vertically and horizontally, than by any known previous temblor. Never before were so many effects on earth processes and on the works of man available for study by scientists and engineers over so great an area. The seismic vibrations, which directly or indirectly caused most of the damage, were but surface manifestations of a great geologic event-the dislocation of a huge segment of the crust along a deeply buried fault whose nature and even exact location are still subjects for speculation. Not only was the land surface tilted by the great tectonic event beneath it, with resultant seismic sea waves that traversed the entire Pacific, but an enormous mass of land and sea floor moved several tens of feet horizontally toward the Gulf of Alaska. Downslope mass movements of rock, earth, and snow were initiated. Subaqueous slides along lake shores and seacoasts, near-horizontal movements of mobilized soil (“landspreading”), and giant translatory slides in sensitive clay did the most damage and provided the most new knowledge as to the origin, mechanics, and possible means of control or avoidance of such movements. The slopes of most of the deltas that slid in 1964, and that produced destructive local waves, are still as steep or steeper than they were before the earthquake and hence would be unstable or metastable in the event of another great earthquake. Rockslide avalanches provided new evidence that such masses may travel on cushions of compressed air, but a widely held theory that glaciers surge after an earthquake has not been substantiated. Innumerable ground fissures, many of them marked by copious emissions of water, caused much damage in towns and along transportation routes. Vibration also consolidated loose granular materials. In some coastal areas, local subsidence was superimposed on regional tectonic subsidence to heighten the flooding damage. Ground and surface waters were measurably affected by the earthquake, not only in Alaska but throughout the world. Expectably, local geologic conditions largely controlled the extent of structural damage, whether caused directly by seismic vibrations or by secondary effects such as those just described. Intensity was greatest in areas underlain by thick saturated unconsolidated deposits, least on indurated bedrock or permanently frozen ground, and intermediate on coarse well-drained gravel, on morainal deposits, or on moderately indurated sedimentary rocks. Local and even regional geology also controlled the distribution and extent of the earthquake's effects on hydrologic systems. In the conterminous United States, for example, seiches in wells and bodies of surface water were controlled by geologic structures of regional dimension. Devastating as the earthquake was, it had many long-term beneficial effects. Many of these were socioeconomic or engineering in nature; others were of scientific value. Much new and corroborative basic geologic and hydrologic information was accumulated in the course of the earthquake studies, and many new or improved investigative techniques were developed. Chief among these, perhaps, were the recognition that lakes can be used as giant tiltmeters, the refinement of methods for measuring land-level changes by observing displacements of barnacles and other sessile organisms, and the relating of hydrology to seismology by worldwide study of hydroseisms in surface-water bodies and in wells. The geologic and hydrologic lessons learned from studies of the Alaska earthquake also lead directly to better definition of the research needed to further our understanding of earthquakes and of how to avoid or lessen the effects of future ones. Research is needed on the origins and mechanisms of earthquakes, on crustal structure, and on the generation of tsunamis and local waves. Better earthquake-hazard maps, based on improved knowledge of regional geology, fault behavior, and earthquake mechanisms, are needed for the entire country. Their preparation will require the close collaboration of engineers, seismologists, and geologists. Geologic maps of all inhabited places in earthquake-prone parts of the country are also needed by city planners and others, because the direct relationship between local geology and potential earthquake damage is now well understood. Improved and enlarged nets of earthquake-sensing instruments, sited in relation to known geology, are needed, as are many more geodetic and hydrographic measurements. Every large earthquake, wherever located, should be regarded as a full-scale laboratory experiment whose study can give scientific and engineering information unobtainable from any other source. Plans must be made before the event to insure staffing, funding, and coordination of effort for the scientific and engineering study of future earthquakes. Advice of earth scientists and engineers should be used in the decision-making processes involved in reconstruction after any future disastrous earthquake, as was done after the Alaska earthquake. The volume closes with a selected bibliography and a comprehensive index to the entire series of U.S. Geological Survey Professional Papers 541-546. This is the last in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 546, in 1 part, describes Lessons and Conclusions.
Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Lewicki, David G.
1996-01-01
Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.
NASA Astrophysics Data System (ADS)
Germain, Norbert; Besson, Jacques; Feyel, Frédéric
2007-07-01
Simulating damage and failure of laminate composites structures often fails when using the standard finite element procedure. The difficulties arise from an uncontrolled mesh dependence caused by damage localization and an increase in computational costs. One of the solutions to the first problem, widely used to predict the failure of metallic materials, consists of using non-local damage constitutive equations. The second difficulty can then be solved using specific finite element formulations, such as shell element, which decrease the number of degrees of freedom. The main contribution of this paper consists of extending these techniques to layered materials such as polymer matrix composites. An extension of the non-local implicit gradient formulation, accounting for anisotropy and stratification, and an original layered shell element, based on a new partition of the unity, are proposed. Finally the efficiency of the resulting numerical scheme is studied by comparing simulation with experimental results.
NASA Astrophysics Data System (ADS)
Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei
2017-09-01
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
Consistent assignment of the vibrations of symmetric and asymmetric ortho-disubstituted benzenes
NASA Astrophysics Data System (ADS)
Tuttle, William D.; Gardner, Adrian M.; Andrejeva, Anna; Kemp, David J.; Wakefield, Jonathan C. A.; Wright, Timothy G.
2018-02-01
The form of molecular vibrations, and changes in these, give valuable insights into geometric and electronic structure upon electronic excitation or ionization, and within families of molecules. Here, we give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of a wide range of ortho-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. We conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. In addition, we also find the use of the Mi labels for monosubstituted benzenes [A.M. Gardner, T.G. Wright. J. Chem. Phys. 135 (2011) 114305], or the recently-suggested labels for para-disubstituted benzenes [A. Andrejeva, A.M. Gardner, W.D. Tuttle, T.G. Wright, J. Molec. Spectrosc. 321, 28 (2016)] are not appropriate. Instead, we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of ortho-difluorobenzene (pDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers from the same force field while varying the mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric o-dihalobenzenes, o-xylene and catechol (o-dihydroxybenzene); and the asymmetric o-dihalobenzenes, o-halotoluenes, o-halophenols and o-cresol. In the symmetrically-substituted species, we find a pair of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents. When at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.
Effect of dynamic factors of space flights on the green alga Chlorella vulgaris.
Moskvitin, E V; Vaulina, E N
1974-01-01
The biological effects of vibrational and linear acceleration on the alga Chlorella vulgaris were studied. Periodic vibration in the frequency range of 4-4000 Hz with vibrational acceleration up to 16 g did not affect the survival and mutability of Chlorella cells and did not modify the effects of acute gamma-radiation. However, random vibration similar to that occurring during launch of spaceships, combined with linear acceleration increased the radiation damage to algae produced by acute gamma-radiation at a dose of 10000 r. This effect is seen only in cells at the beginning of the G1 stage, which precedes DNA synthesis.
Hand-arm vibration syndrome: A rarely seen diagnosis.
Campbell, Rebecca A; Janko, Matthew R; Hacker, Robert I
2017-06-01
Hand-arm vibration syndrome (HAVS) is a collection of sensory, vascular, and musculoskeletal symptoms caused by repetitive trauma from vibration. This case report demonstrates how to diagnose HAVS on the basis of history, physical examination, and vascular imaging and its treatment options. A 41-year-old man who regularly used vibrating tools presented with nonhealing wounds on his right thumb and third digit. Arteriography revealed occlusions of multiple arteries in his hand with formation of collaterals. We diagnosed HAVS, and his wounds healed after several weeks with appropriate treatment. HAVS is a debilitating condition with often irreversible vascular damage, requiring early diagnosis and treatment.
NASA Astrophysics Data System (ADS)
Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2017-02-01
Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.
Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo
2014-11-01
Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Vibrational spectroscopy of biological molecules: halocompound/nucleic acid component interactions
NASA Astrophysics Data System (ADS)
Bottura, J.; Filippetti, P.; Tinti, A.
1991-05-01
Organohalogen compounds play a crucial role in cancer induction due to the ability of some electrophilic species produced in their enzymatic oxidative metabolism to damage DNA. Vibrational Ftjr spectra showing the molecular interactions between chioroacetaldehyde metabolite of 1 dichioroethane and adenosine and cytidine leading to the tautomeric iminic forms are reported and discussed. 1 .
Industrial filter bags cleaned by high-frequency vibration: A concept
NASA Technical Reports Server (NTRS)
Kooy, A. V.
1973-01-01
System holds filter bag around fine-mesh metal screen and vibrates screen at its resonant frequency. This removes deposited byproducts and protects bag fibers from damaging forces. Because filter bags represent 20 to 40% of any industrial filtering investment, this method of extending bag life should be of interest to those responsible for plant maintenance.
Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-01
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056
Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun
2015-01-22
High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.
Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun
2015-01-01
High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2013-05-01
The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.
NASA Astrophysics Data System (ADS)
Johnson, Britta; Sibert, Edwin
2017-06-01
Surfaces and interfaces play an important role in understanding many chemical process; they also contain molecular configurations and vibrations that are unique compared to those seen in the bulk and gas phases. Sum frequency generated (SFG) vibrational spectroscopy provides an incredibly detailed picture of these interfaces. In particular, the CH stretch region of the spectrum contains an extensive degree of information about the molecular vibrations and arrangements at the surface or interface. The presence of a strong bandwidth SFG signal for the benzene/air interface has generated controversy since it was discovered; since benzene is centrosymmetric, no SFG signal is expected. It has been hypothesized that this signal is primarily a result of bulk contributions that results from electric quadrupole transitions. Our work focuses on testing this conclusion by calculating a theoretical VSF spectrum from pure surface contributions using a mixed quantum/classical local mode Hamiltonian. We take as a starting point our local mode CH/OH stretch Hamiltonian, that was previously used to study alkylbenzenes, benzene-(H_2O)_n, and DPOE-water clusters, and extend it to the condensed phase by including shifts in the intensities and frequencies as a function of the environment. This environment is modeled using a SAPT-based force-field that accurately reproduces the quadrupole for the benzene dimer. A series of independent time-dependent trajectories are used to obtain an ensemble of surface configurations and calculate the appropriate correlation functions. These correlations functions allow us to determine the origins of the VSF signal. Our talk will focus on the challenges of extending our local mode Hamiltonian into the condensed phase.
Study on safety operation for large hydroelectric generator unit
NASA Astrophysics Data System (ADS)
Yan, Z. G.; Cui, T.; Zhou, L. J.; Zhi, F. L.; Wang, Z. W.
2012-11-01
Hydroelectric generator unit is a complex mechanical system which is composed of hydraulic turbine and electric generator. Rotary system is supported by the bearing bracket and the reinforced concrete structures, and vibration problem can't be avoided in the process of operating. Many large-scale hydroelectric units have been damaged because of the vibration problem in recent years. As the increase of the hydraulic turbine unit capacity and water head, the safe operation of hydraulic turbine has become a focus research in many countries. The operating characteristics of the hydraulic turbine have obvious differences at different working conditions. Based on the combination of field measurement and theoretical calculation, this paper shows a deep research on the safe operation of a large-scale Francis turbine unit. Firstly, the measurements of vibration, swing, pressure fluctuation and noise were carried out at 4 different heads. And also the relationships between vibrations and pressure fluctuations at different heads and working conditions were analysed deeply. Then the scientific prediction of safe operation for the unit at high head were done based on the CFD numerical calculation. Finally, this paper shows the division of the operating zone for the hydroelectric unit. According to the experimental results (vibrations, swings, pressure fluctuations and noise) as well as the theoretical results, the operating zone of the unit has been divided into three sections: prohibited operating zone, transition operating zone and safe operating zone. After this research was applied in the hydropower station, the security and economic efficiency of unit increased greatly, and enormous economic benefits and social benefits have been obtained.
Dynamic Capability of an Operating Stirling Convertor
NASA Technical Reports Server (NTRS)
Goodnight, Thomas W.; Hughes, William O.; McNelis, Mark E.
2000-01-01
The NASA John H. Glenn Research Center and the US Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. NASA Headquarters has recently identified the Stirling technology generator for potential use as the spacecraft power system for two of NASA's new missions, the Europa Orbiter and the Solar Probe missions (planned for launch in 2006 and 2007 respectively). As part of the development of this power system, a Stirling Technology Demonstration Convertor was vibration tested at NASA John H. Glenn Research Center to verify its survivability and capability of withstanding the harsh dynamic environment typically seen by the spacecraft when it is launched by an expendable launch vehicle. The Technology Demonstration Convertor was fully operational (producing power) during the random vibration testing. The output power of the convertor and other convertor performance indicators were measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges also were used to provide information on the dynamic characteristics of the Technology Demonstration Convertor and as an indication of any possible damage due to the vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling Technology Demonstration Convertor was extremely successful. The Technology Demonstration Convertor survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.
Infrared characterization of thermal gradients on disc brakes
NASA Astrophysics Data System (ADS)
Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre
2003-04-01
The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.
Bazewicz, Christopher G.; Liskov, Melanie T.; Hines, Kevin J.; Brewer, Scott H.
2013-01-01
We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-Lphenylalanine (pN3CH2Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN3CH2Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN3Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN3CH2Phe to different protein environments to be measured. The photo-stability of pN3CH2Phe was also measured relative to the photoreactive UAA, pN3Phe. PMID:23865850
Localization of source with unknown amplitude using IPMC sensor arrays
NASA Astrophysics Data System (ADS)
Abdulsadda, Ahmad T.; Zhang, Feitian; Tan, Xiaobo
2011-04-01
The lateral line system, consisting of arrays of neuromasts functioning as flow sensors, is an important sensory organ for fish that enables them to detect predators, locate preys, perform rheotaxis, and coordinate schooling. Creating artificial lateral line systems is of significant interest since it will provide a new sensing mechanism for control and coordination of underwater robots and vehicles. In this paper we propose recursive algorithms for localizing a vibrating sphere, also known as a dipole source, based on measurements from an array of flow sensors. A dipole source is frequently used in the study of biological lateral lines, as a surrogate for underwater motion sources such as a flapping fish fin. We first formulate a nonlinear estimation problem based on an analytical model for the dipole-generated flow field. Two algorithms are presented to estimate both the source location and the vibration amplitude, one based on the least squares method and the other based on the Newton-Raphson method. Simulation results show that both methods deliver comparable performance in source localization. A prototype of artificial lateral line system comprising four ionic polymer-metal composite (IPMC) sensors is built, and experimental results are further presented to demonstrate the effectiveness of IPMC lateral line systems and the proposed estimation algorithms.
Costantino, Cosimo; Galuppo, Laura; Romiti, Davide
2017-02-01
In recent years, local muscle vibration received considerable attention as a useful method for muscle stimulation in clinical therapy. Some studies described specific vibration training protocol, and few of them were conducted on post-stroke patients. Therefore there is a general uncertainty regarding the vibrations protocol. The aim of this study was to evaluate the effects of local muscle high frequency mechano-acoustic vibratory treatment on grip muscle strength, muscle tonus, disability and pain in post-stroke individuals with upper limb spasticity. Single-blind randomized controlled trial. Outpatient rehabilitation center. Thirty-two chronic poststroke patients with upper-limb spasticity: 21 males, 11 females, mean age 61.59 years ±15.50, time passed from stroke 37.78±17.72 months. The protocol treatment consisted of the application of local muscle vibration, set to a frequency of 300 Hz, for 30 minutes 3 times per week, for 12 sessions, applied to the skin covering the venter of triceps brachii and extensor carpi radialis longus and brevis muscles during voluntary isometric contraction. All participants were randomized in two groups: group A treated with vibration protocol; group B with sham therapy. All participants were evaluated before and after 4-week treatment with Hand Grip Strength Test, Modified Ashworth Scale, QuickDASH score, FIM scale, Fugl-Meyer Assessment, Jebsen-Taylor Hand Function Test and Verbal Numerical Rating Scale of pain. Outcomes between groups was compared using a repeated-measures ANOVA. Over 4 weeks, the values recorded in group A when compared to group B demonstrated statistically significant improvement in grip muscle strength, pain and quality of life and decrease of spasticity; P-values were <0.05 in all tested parameters. Rehabilitation treatment with local muscle high frequency (300 Hz) vibration for 30 minutes, 3 times a week for 4 weeks, could significantly improve muscle strength and decrease muscle tonus, disability and pain in upper limb of hemiplegic post-stroke patients. Local muscle vibration treatment might be an additional and safe tool in the management of chronic poststroke patients, granted its high therapeutic efficiency, limited cost and short and repeatable protocol of use.
Semi-supervised vibration-based classification and condition monitoring of compressors
NASA Astrophysics Data System (ADS)
Potočnik, Primož; Govekar, Edvard
2017-09-01
Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.
Effects of local vibration on bone loss in -tail-suspended rats.
Sun, L W; Luan, H Q; Huang, Y F; Wang, Y; Fan, Y B
2014-06-01
We investigated the effects of vibration (35 Hz, 45 Hz and 55 Hz) as countermeasure locally applied to unloading hind limbs on bone, muscle and Achilles tendon. 40 female Sprague Dawley rats were divided into 5 groups (n=8, each): tail-suspension (TS), TS plus 35 Hz/0.3 g vibration (TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), TS plus 55 Hz/0.3 g vibration (TSV55) and control (CON). After 21 days, bone mineral density (BMD) and the microstructure of the femur and tibia were evaluated by μCT in vivo. The biomechanical properties of the femur and Achilles tendon were determined by a materials testing system. Ash weight of bone, isotonic contraction and wet weight of soleus were also investigated. 35 Hz and 45 Hz localized vibration were able to significantly ameliorate the decrease in trabecular BMD (expressed as the percentage change from TS, TSV35: 48.11%, TSV45: 31.09%), microstructure and ash weight of the femur and tibia induced by TS. Meanwhile, 35 Hz vibration significantly improved the biomechanical properties of the femur (57.24% bending rigidity and 41.66% Young's modulus vs. TS) and Achilles tendon (45.46% maximum load and 66.67% Young's modulus vs. TS). Additionally, Young's modulus of the femur was highly correlated with microstructural parameters. Localized vibration was useful for counteracting microgravity-induced musculoskeletal loss. In general, the efficacy of 35 Hz was better than 45 Hz or 55 Hz in tail-suspended rats. © Georg Thieme Verlag KG Stuttgart · New York.
Effects of local vibrations on the dynamics of space truss structures
NASA Technical Reports Server (NTRS)
Warnaar, Dirk B.; Mcgowan, Paul E.
1987-01-01
The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.
NASA Astrophysics Data System (ADS)
Magalhães, F.; Cunha, A.; Caetano, E.
2012-04-01
In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.
NASA Astrophysics Data System (ADS)
Sarma, Manabendra; Singh, Raman K.; Mishra, Manoj K.
2007-12-01
Vibrational excitation cross-sections σn←m(E) in resonant e-N2, e-CO and e-H2 scattering are calculated from transition matrix elements Tn←m(E) obtained using Fourier transform of the cross correlation function <φn(R)|ψm(R,t)> where ψm(R,t); e-iHA-(R)t/ℏφm(R). Time evolution under the influence of the resonance anionic Hamiltonian HA-(A- = N2-/CO/H2-) is effected using Lanczos and fast Fourier transforms and the target (A) vibrational eigenfunctions φm(R) and φn(R) are calculated using Fourier grid Hamiltonian method applied to PE curve of the neutral target. The resulting vibrational excitation cross-section profiles provide reasonable agreement with experimental results and the cross correlation functions offer an unequivocal differentiation between the boomerang and impulse models.
NASA Astrophysics Data System (ADS)
Gruzdev, N. B.; Sokolov, V. I.; Yemelchenko, G. A.
2009-01-01
Vibrational states interacting with a donor exciton in the compound ZnO:Co are revealed by the sensitive method of field exciton-vibrational spectroscopy. The vibrational modes of the electroabsorption spectrum of the compound ZnO:Co in the region of the donor exciton are given an interpretation based on the existing data on the symmetrized local density of states of the compounds ZnO and ZnO :Ni3+. The results are compared with the known data for II-VI:Ni compounds in the case of an acceptor exciton. The position of the donor level of the Co2+ ion relative to the bottom of the conduction band in the given compound is determined and found to conform well to the universal trend for donor levels of 3d ions in II-VI compounds.
NASA Astrophysics Data System (ADS)
Felici, A.; Trombetta, C.; Abundo, P.; Foti, C.; Rosato, N.
2012-10-01
Mechanical vibrations application is increasingly common in clinical practice due to the effectiveness induced by these stimuli on the human body. Local vibration (LV) application allows to apply and act only where needed, focusing the treatment on the selected body segment. An experimental device for LV application was used to generate the vibrations. The aim of this study was to detect and analyze the metabolic effects induced by LV on the brachial bicep muscle by means of an oximeter. This device monitors tissue and muscle oxygenation using NIRS (Near Infrared Spectroscopy) and is able to determine the concentration of haemoglobin and oxygen saturation in the tissue. In a preliminary stage we also investigated the effects induced by LV application, by measuring blood pressure, heart rate, oxygen saturation and temperature. These data confirmed that the effects induced by LV application are actually localized. The results of the measurements obtained using the oximeter during the vibration application, have shown a variation of the concentrations. In particular an increase of oxygenate haemoglobin was shown, probably caused by an increased muscle activity and/or a rise in local temperature detected during the application.
A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model
NASA Astrophysics Data System (ADS)
Li, Jie; Huang, Houxu; Wang, Mingyang
2017-03-01
In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.
Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach
NASA Technical Reports Server (NTRS)
Shi, John J.
2005-01-01
During the development stage, in order to design/to size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads must be defined. There are two kinds of dynamic environment, i.e. shock transients and steady-state random and sinusoidal vibration environments. Usually, the steady-state random and sinusoidal vibration environments are scalable, but the shock environments are not scalable. In other words, based on similarities only random vibration environments can be defined for a new engine. The methodology covered in this paper provides a way to predict the shock environments and the dynamic loads for new engine systems and new engine components in the early stage of new engine development or engine nozzle modifications.
Structural Modeling Using "Scanning and Mapping" Technique
NASA Technical Reports Server (NTRS)
Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)
2000-01-01
Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar components, then passed to AutoCAD for modification and correction of any discrepancies seen in the Photomodeler version of the 3Dmodel. These three software packages are fully compatible. The DXF file can be used to transfer drawings among those packages. To begin this entire process, we are using a small replica of an actual engine blade as a test object. This paper introduces the accomplishment of our recent work.
Vibration localization in dual-span, axially moving beams. Part I: Formulation and results
NASA Astrophysics Data System (ADS)
Al-Jawi, A. A. N.; Pierre, C.; Ulsoy, A. G.
1995-01-01
An investigation of the vibration localization phenomenon in dual-span, axially moving beams is presented. The effects of a tension difference among the spans, also referred to as disorder, on the natural modes of free vibration are studied in terms of inter-span coupling and transport speed. The equations governing the transverse vibration of the two-span, axially moving beam are derived through Hamilton's principle and solution methods are developed. Results demonstrate that normal mode localizationindeed occurs for both stationary and translating disordered two-span beams, especially for small inter-span coupling. The occurrence of localization is characterized by a peak deflection much greater in one span than in the other. In the stationary disordered case, localization becomes more pronounced as inter-span coupling decreases, i.e., as the span axial tension increases. In the axially moving disordered case, the transport speed has a significant influence on localization and, generally speaking, localization becomes stronger with increasing speed. For a moving beam with identical spans, the two loci of each pair of natural frequencies may exhibit one or more crossing(s) (depending on the value of tension) when plotted against the axial transport speed. These crossings become veerings when the beam is disordered, and localization is strongest at those speeds at which the eigenvalue veerings occur.
Investigation of Concrete Floor Vibration Using Heel-Drop Test
NASA Astrophysics Data System (ADS)
Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd
2018-04-01
In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, Barbara; Iachello, Francesco; Macek, Michal
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less
Dietz, Barbara; Iachello, Francesco; Macek, Michal
2017-08-07
The localization properties of the wave functions of vibrations in two-dimensional (2D) crystals are studied numerically for square and hexagonal lattices within the framework of an algebraic model. The wave functions of 2D lattices have remarkable localization properties, especially at the van Hove singularities (vHs). Finite-size sheets with a hexagonal lattice (graphene-like materials), in addition, exhibit at zero energy a localization of the wave functions at zigzag edges, so-called edge states. The striped structure of the wave functions at a vHs is particularly noteworthy. We have investigated its stability and that of the edge states with respect to perturbations inmore » the lattice structure, and the effect of the boundary shape on the localization properties. We find that the stripes disappear instantaneously at the vHs in a square lattice when turning on the perturbation, whereas they broaden but persist at the vHss in a hexagonal lattice. For one of them, they eventually merge into edge states with increasing coupling, which, in contrast to the zero-energy edge states, are localized at armchair edges. The results are corroborated based on participation ratios, obtained under various conditions.« less
Continuum limit of the vibrational properties of amorphous solids.
Mizuno, Hideyuki; Shiba, Hayato; Ikeda, Atsushi
2017-11-14
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.
Continuum limit of the vibrational properties of amorphous solids
Mizuno, Hideyuki; Ikeda, Atsushi
2017-01-01
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law. PMID:29087941
Empirical entropic contributions in computational docking: evaluation in APS reductase complexes.
Chang, Max W; Belew, Richard K; Carroll, Kate S; Olson, Arthur J; Goodsell, David S
2008-08-01
The results from reiterated docking experiments may be used to evaluate an empirical vibrational entropy of binding in ligand-protein complexes. We have tested several methods for evaluating the vibrational contribution to binding of 22 nucleotide analogues to the enzyme APS reductase. These include two cluster size methods that measure the probability of finding a particular conformation, a method that estimates the extent of the local energetic well by looking at the scatter of conformations within clustered results, and an RMSD-based method that uses the overall scatter and clustering of all conformations. We have also directly characterized the local energy landscape by randomly sampling around docked conformations. The simple cluster size method shows the best performance, improving the identification of correct conformations in multiple docking experiments. 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xu, Zhenlong; Tong, Jie; Wu, Fugen
2018-03-01
Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.
Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures
Yang, Yaowen; Hu, Yuhang; Lu, Yong
2008-01-01
Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived. PMID:27879711
Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.
Yang, Yaowen; Hu, Yuhang; Lu, Yong
2008-01-21
Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.
Shock and vibration tests of a SNAP-8 NaK pump
NASA Technical Reports Server (NTRS)
Stromquist, A. J.; Nelson, R. B.; Hibben, L.
1971-01-01
The pump used for reactor cooling in the SNAP 8 space power system was subjected to the expected vehicle launch vibration, and shock loading in accordance with the SNAP 8 environmental specification. Subsequent disassembly revealed damage to the thrust bearing pins, which should be redesigned and strengthened. The unit was operational, however, when run in a test loop after reassembly.
NASA Astrophysics Data System (ADS)
Zhao, Z. Y.; Ostapenko, S.; Anundson, R.; Tvinnereim, M.; Belyaev, A.; Anthony, M.
2001-07-01
The semiconductor industry does not have effective metrology for well implants. The ability to measure such deep level implants will become increasingly important as we progress along the technology road map. This work explores the possibility of using the acoustic whistle effect on ion implanted silicon wafers. The technique detects the elastic stress and defects in silicon wafers by measuring the sub-harmonic f/2 resonant vibrations on a wafer induced via backside contact to create standing waves, which are measured by a non-contact ultrasonic probe. Preliminary data demonstrates that it is sensitive to implant damage, and there is a direct correlation between this sub-harmonic acoustic mode and some of the implant and anneal conditions. This work presents the results of a feasibility study to assess and quantify the correspondent whistle effect to implant damage, residual damage after annealing and intrinsic defects.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1997-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1998-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
NASA Astrophysics Data System (ADS)
Demirci, Alper; Bekler, Tolga; Karagöz, Özlem
2010-05-01
The local site conditions can cause variations in the ground motion during the earthquake events. These local effects can be estimated by Nakamura method (1989) which is based on the analysis and treatment of earth vibration records by calculating the ratio of horizontal spectrum to vertical spectrum (H/V). This approach uses ambient noises and aids to estimate the dynamic soil conditions like fundamental vibration period and soil amplification of the surface layers, to characterize the seismic hazard during earthquakes and to provide detailed information for seismic microzonation in small scale urban areas. Due to these advantages, the method has been frequently used by a great number of seismologists and engineers. In this study, we aimed at explaining the soil conditions in Çanakkale and Kepez basins by using H/V technique. Çanakkale and Kepez (NW, Turkey) have fairly complex tectonic structure and have been exposed to serious earthquake damages in historical and instrumental period. Active faults, which have influence on the Çanakkale and Kepez settlements, are the Yenice-Gönen fault, Saroz-Gaziköy fault and Etili fault. It is well known that, these faults have produced high magnitude earthquakes such as 7.2 in 1912 and 7.3 in 1953. The surface geology of the surveyed area is covered by quaternary aged sediments. Sarıçay river, which originates from the eastern hilly area, accumulates sediment deposits and forms this alluvial basin. Considering the geological conditions, ambient noises were recorded at 88 measurement points which were selected to provide good coverage of the study area. All records were acquired during the midnight (between 1:00 am and 6:00 am) to reduce the artificial effects in the urban area. Taking into account the effects of undesirable traffic and industrial noises in the vicinity of measurements stations, record lengths were chosen in the range of 25-75 minutes with the sampling rate of 100 Hz. Once the required signal processes have been applied to raw ambient noise records, fundamental vibration periods and relative soil amplification factors were calculated at the each measurement points. Fundamental vibration periods were determined in the range of 0.15-1.13 sec. The periods values between 0.7 and 1.13 sec., showed that soft alluvial layers have been observed in the middle and south part of the Sarıçay basin. Amplification factor values indicated that these parts of the study area amplify the amplitude of the earthquake waves fourfold compared to the most compact zone of the study area. Additionally, small period values ranging between 0.1 and 0.4 sec. which indicate relatively compact zones were observed at the high altitude areas consisting of relatively older geological units. The relative soil amplification factors have a good agreement with the fundamental vibration period values. As a result of the study, it is strongly suggested to research alternative settlement areas or apply ground improvement techniques at the planning stage of engineering structures in the middle of the basins due to the unfavorable ground conditions. Keywords: Ambient noise, Çanakkale, Kepez, Fundamental vibration period, soil amplification factor
Flow-induced vibration and fretting-wear damage in a moisture separator reheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.
1996-12-01
Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operationalmore » changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem.« less
Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration
Krajnak, Kristine; Miller, G. Roger; Waugh, Stacey; Johnson, Claud; Kashon, Michael L.
2015-01-01
Objective Occupational exposure to hand-transmitted vibration can result in damage to nerves and sensory loss. The goal of this study was to assess the frequency-dependent effects of repeated bouts of vibration on sensory nerve function and associated changes in nerves. Methods The tails of rats were exposed to vibration at 62.5, 125, or 250 Hz (constant acceleration of 49m/s2) for 10 days. The effects on sensory nerve function, nerve morphology, and transcript expression in ventral tail nerves were measured. Results Vibration at all frequencies had effects on nerve function and physiology. However, the effects tended to be more prominent with exposure at 250 Hz. Conclusion Exposure to vibration has detrimental effects on sensory nerve function and physiology. However, many of these changes are more prominent at 250-Hz exposure than at lower frequencies. PMID:22785326
Determining the vibrations between sensor and sample in SQUID microscopy
NASA Astrophysics Data System (ADS)
Schiessl, Daniel; Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Ullah, Rahim R.; Holland, Connor M.; Fung, Y.-K.-K.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.
2016-12-01
Vibrations can cause noise in scanning probe microscopies. Relative vibrations between the scanning sensor and the sample are important but can be more difficult to determine than absolute vibrations or vibrations relative to the laboratory. We measure the noise spectral density in a scanning SQUID microscope as a function of position near a localized source of magnetic field and show that we can determine the spectra of all three components of the relative sensor-sample vibrations. This method is a powerful tool for diagnosing vibrational noise in scanning microscopies.
Structural health monitoring and impact detection for primary aircraft structures
NASA Astrophysics Data System (ADS)
Kosters, Eric; van Els, Thomas J.
2010-04-01
The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome
Waugh, Stacey; Kashon, Michael L.; Li, Shengqiao; Miller, Gerome R.; Johnson, Claud; Krajnak, Kristine
2016-01-01
Objective The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Methods Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s2, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Results Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Conclusion Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division. PMID:27058473
An Assessment of the Common Carrier Shipping Environment
1979-01-01
resistance to ’damage of the, item to be protected or packaged, and (3) a knowledge of the performance i/ Maintained at Madison, Wis., in cOoperation...the damage attributed to shippers, while rough handling accounted for 80 percent of the damage attributed to carriers. Results of surveys of this tyre ...vibration environment in tractor trailers. Tests were conducted to determine the effect of suspension system (conventioaal steel spring, rubber isolator
Peris, Eulalia; Woodcock, James; Sica, Gennaro; Sharp, Calum; Moorhouse, Andrew T; Waddington, David C
2014-01-01
Railway induced vibration is an important source of annoyance among residents living in the vicinity of railways. Annoyance increases with vibration magnitude. However, these correlations between the degree of annoyance and vibration exposure are weak. This suggests that railway vibration induced annoyance is governed by more than just vibration level and therefore other factors may provide information to understand the wide variation in annoyance reactions. Factors coming into play when considering an exposure-response relationship between level of railway vibration and annoyance are presented. The factors investigated were: attitudinal, situational and demographic factors. This was achieved using data from field studies comprised of face-to-face interviews and internal vibration measurements (N = 755). It was found that annoyance scores were strongly influenced by two attitudinal factors: Concern of property damage and expectations about future levels of vibration. Type of residential area and age of the respondent were found to have an important effect on annoyance whereas visibility of the railway and time spent at home showed a significant but small influence. These results indicate that future railway vibration policies and regulations focusing on community impact need to consider additional factors for an optimal assessment of railway effects on residential environments.
Assessment of Solder Joint Fatigue Life Under Realistic Service Conditions
NASA Astrophysics Data System (ADS)
Hamasha, Sa'd.; Jaradat, Younis; Qasaimeh, Awni; Obaidat, Mazin; Borgesen, Peter
2014-12-01
The behavior of lead-free solder alloys under complex loading scenarios is still not well understood. Common damage accumulation rules fail to account for strong effects of variations in cycling amplitude, and random vibration test results cannot be interpreted in terms of performance under realistic service conditions. This is a result of the effects of cycling parameters on materials properties. These effects are not yet fully understood or quantitatively predictable, preventing modeling based on parameters such as strain, work, or entropy. Depending on the actual spectrum of amplitudes, Miner's rule of linear damage accumulation has been shown to overestimate life by more than an order of magnitude, and greater errors are predicted for other combinations. Consequences may be particularly critical for so-called environmental stress screening. Damage accumulation has, however, been shown to scale with the inelastic work done, even if amplitudes vary. This and the observation of effects of loading history on subsequent work per cycle provide for a modified damage accumulation rule which allows for the prediction of life. Individual joints of four different Sn-Ag-Cu-based solder alloys (SAC305, SAC105, SAC-Ni, and SACXplus) were cycled in shear at room temperature, alternating between two different amplitudes while monitoring the evolution of the effective stiffness and work per cycle. This helped elucidate general trends and behaviors that are expected to occur in vibrations of microelectronics assemblies. Deviations from Miner's rule varied systematically with the combination of amplitudes, the sequences of cycles, and the strain rates in each. The severity of deviations also varied systematically with Ag content in the solder, but major effects were observed for all the alloys. A systematic analysis was conducted to assess whether scenarios might exist in which the more fatigue-resistant high-Ag alloys would fail sooner than the lower-Ag ones.
Fatigue assessment of an existing steel bridge by finite element modelling and field measurements
NASA Astrophysics Data System (ADS)
Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.
2017-05-01
The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.
Tiwari, Vivek; Jonas, David M
2018-02-28
Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a purely electronic excitonic coupling model. Energy transfer can leave excess energy behind as vibration on the electronic ground state of the donor, allowing vibrational relaxation on the donor's ground electronic state to make energy transfer permanent by removing excess energy from the excited electronic state of the dimer.
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Jonas, David M.
2018-02-01
Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a purely electronic excitonic coupling model. Energy transfer can leave excess energy behind as vibration on the electronic ground state of the donor, allowing vibrational relaxation on the donor's ground electronic state to make energy transfer permanent by removing excess energy from the excited electronic state of the dimer.
NASA Astrophysics Data System (ADS)
Yan, Peng; Lu, Wenbo; Zhang, Jing; Zou, Yujun; Chen, Ming
2017-04-01
Ground vibration, as the most critical public hazard of blasting, has received much attention from the community. Many countries established national standards to suppress vibration impact on structures, but a world-accepted blasting vibration criterion on human safety is still missing. In order to evaluate human response to the vibration from blasting excavation of a large-scale rock slope in China, this study aims to suggest a revised criterion. The vibration frequency was introduced to improve the existing single-factor (peak particle velocity) standard recommended by the United States Bureau of Mines (USBM). The feasibility of the new criterion was checked based on field vibration monitoring and investigation of human reactions. Moreover, the air overpressure or blast effects on human beings have also been discussed. The result indicates that the entire zone of influence can be divided into three subzones: severe-annoyance, light-annoyance and perception zone according to the revised safety standard. Both the construction company and local residents have provided positive comments on this influence degree assessment, which indicates that the presented criterion is suitable for evaluating human response to nearby blasts. Nevertheless, this specific criterion needs more field tests and verifications before it can be
Eckel, Edwin B.
1967-01-01
The earthquake of March 27, 1964, wrecked or severely hampered all forms of transportation, all utilities, and all communications systems over a very large part of south-central Alaska. Effects on air transportation were minor as compared to those on the water, highway, and railroad transport systems. A few planes were damaged or wrecked by seismic vibration or by flooding. Numerous airport facilities were damaged by vibration or by secondary effects of the earthquake, notably seismic sea and landslide-generated waves, tectonic subsidence, and compaction. Nearly all air facilities were partly or wholly operational within a few hours after the earthquake. The earthquake inflicted enormous damage on the shipping industry, which is indispensable to a State that imports fully 90 percent of its requirements—mostly by water—and whose largest single industry is fishing. Except for those of Anchorage, all port facilities in the earthquake-affected area were destroyed or made inoperable by submarine slides, waves, tectonic uplift, and fire. No large vessels were lost, but more than 200 smaller ones (mostly crab or salmon boats) were lost or severely damaged. Navigation aids were destroyed, and hitherto well-known waterways were greatly altered by uplift or subsidence. All these effects wrought far-reaching changes in the shipping economy of Alaska, many of them to its betterment. Virtually all utilities and communications in south-central Alaska were damaged or wrecked by the earthquake, but temporary repairs were effected in remarkably short times. Communications systems were silenced almost everywhere by loss of power or by downed lines; their place was quickly taken by a patchwork of self-powered radio transmitters. A complex power-generating system that served much of the stricken area from steam, diesel, and hydrogenerating plants was disrupted in many places by vibration damage to equipment and by broken transmission lines. Landslides in Anchorage broke gas-distribution lines in many places, but the main transmission line from the Kenai Peninsula was virtually undamaged. Petroleum supplies were disrupted, principally by breakage or loss of storage tanks caused by seismic vibration, slides, waves, and fire. Water-supply and sewer lines were also broken in many towns.
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Bakhshandeh Amnieh, Hassan; Bahadori, Moein
2012-12-01
Ground vibration, air vibration, fly rock, undesirable displacement and fragmentation are some inevitable side effects of blasting operations that can cause serious damage to the surrounding environment. Peak Particle Velocity (PPV) is the main criterion in the assessment of the amount of damage caused by ground vibration. There are different standards for the determination of the safe level of the PPV. To calculate the permissible amount of the explosive to control the damage to the underground structures of Gotvand Olya dam, use was made of sixteen 3-component (totally 48) records generated from 4 blasts. These operations were recorded in 3 directions (radial, transverse and vertical) by four PG-2002 seismographs having GS-11D 3-component seismometers and the records were analyzed with the help of the DADISP software. To predict the PPV, use was made of the scaled distance and the Simulated Annealing (SA) hybrid methods. Using the scaled distance resulted in a relation for the prediction of the PPV; the precision of the relation was then increased to 0.94 with the help of the SA hybrid method. Relying on the high correlation of this relation and considering a minimum distance of 56.2 m to the center of the blast site and a permissible PPV of 178 mm/s (for a 2-day old concrete), the maximum charge weight per delay came out to be 212 Kg.
Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2018-06-15
At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.
Localization and stability in damageable amorphous solids
NASA Astrophysics Data System (ADS)
de Tommasi, D.; Marzano, S.; Puglisi, G.; Saccomandi, G.
2010-01-01
In the present article, based on a recently proposed model (De Tommasi et al. in J Rheol 50:495-512, 2006; Phys Rev Lett 100:085502, 2008), we analyze the influence of the microstructure properties on the damage behavior of amorphous materials. In accordance with the experimental observations, different scenarios of damage nucleation and evolution are associated to different material distributions at the microscale. In particular, we observe the possibilities of uniform or localized damage and strain geometries with a macroscopic behavior that may range from brittle to ductile or rubber-like. To describe the possibility of extending our stability analysis to three-dimensional damageable amorphous bodies we consider a simple boundary value problem of engineering interest.
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades
Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-01-01
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064
A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan
2017-06-26
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.
Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.
Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang
2012-07-11
From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.
Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions
NASA Astrophysics Data System (ADS)
Stafford, J.; Jeffers, N.
2014-07-01
This paper experimentally examines the bulk aerodynamic performance of a vibrating fan operating in the first mode of vibration. The influence of operating condition on the local velocity field has also been investigated to understand the flow distribution at the exit region and determine the stalling condition for vibrating fans. Fan motion has been generated and controlled using a piezoelectric ceramic attached to a stainless steel cantilever. The frequency and amplitude at resonance were 109.4 Hz and 12.5 mm, respectively. A test facility has been developed to measure the pressure-flow characteristics of the vibrating fan and simultaneously conduct local velocity field measurements using particle image velocimetry. The results demonstrate the impact of system characteristics on the local velocity field. High momentum regions generated due to the oscillating motion exist with a component direction that is tangent to the blade at maximum displacement. These high velocity zones are significantly affected by increasing impedance while flow reversal is a dominant feature at maximum pressure rise. The findings outlined provide useful information for design of thermal management solutions that may incorporate this air cooling approach.
Characterizing left-right gait balance using footstep-induced structural vibrations
NASA Astrophysics Data System (ADS)
Fagert, Jonathon; Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young
2017-04-01
In this paper, we introduce a method for estimating human left/right walking gait balance using footstep-induced structural vibrations. Understanding human gait balance is an integral component of assessing gait, neurological and musculoskeletal conditions, overall health status, and risk of falls. Existing techniques utilize pressure- sensing mats, wearable devices, and human observation-based assessment by healthcare providers. These existing methods are collectively limited in their operation and deployment; often requiring dense sensor deployment or direct user interaction. To address these limitations, we utilize footstep-induced structural vibration responses. Based on the physical insight that the vibration energy is a function of the force exerted by a footstep, we calculate the vibration signal energy due to a footstep and use it to estimate the footstep force. By comparing the footstep forces while walking, we determine balance. This approach enables non-intrusive gait balance assessment using sparsely deployed sensors. The primary research challenge is that the floor vibration signal energy is also significantly affected by the distance between the footstep location and the vibration sensor; this function is unclear in real-world scenarios and is a mixed function of wave propagation and structure-dependent properties. We overcome this challenge through footstep localization and incorporating structural factors into an analytical force-energy-distance function. This function is estimated through a nonlinear least squares regression analysis. We evaluate the performance of our method with a real-world deployment in a campus building. Our approach estimates footstep forces with a RMSE of 61.0N (8% of participant's body weight), representing a 1.54X improvement over the baseline.
The manipulator tool state classification based on inertia forces analysis
NASA Astrophysics Data System (ADS)
Gierlak, Piotr
2018-07-01
In this article, we discuss the detection of damage to the cutting tool used in robotised light mechanical processing. Continuous monitoring of the state of the tool mounted in the tool holder of the robot is required due to the necessity to save time. The tool is a brush with ceramic fibres used for surface grinding. A typical example of damage to the brush is the breaking of fibres, resulting in a tool imbalance and vibrations at a high rotational speed, e.g. during grinding. This also results in a limited operating surface of the tool and a decrease in the efficiency of processing. While an imbalanced tool is spinning, fictitious forces occur that carry the information regarding the balance of the tool. The forces can be measured using a force sensor located in the end-effector of the robot allowing the assessment of the damage to the brush in an automatized way, devoid of any operator.
Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah
2014-01-01
Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.
Local vibrational modes of the formic acid dimer - the strength of the double hydrogen bond
NASA Astrophysics Data System (ADS)
Kalescky, R.; Kraka, E.; Cremer, D.
2013-07-01
The 24 normal and 24 local vibrational modes of the formic acid dimer formed by two trans formic acid monomers to a ring (TT1) are analysed utilising preferentially experimental frequencies, but also CCSD(T)/CBS and ωB97X-D harmonic vibrational frequencies. The local hydrogen bond (HB) stretching frequencies are at 676 cm-1 and by this 482 and 412 cm-1 higher compared to the measured symmetric and asymmetric HB stretching frequencies at 264 and 194 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to the topology of dimer TT1, mass coupling, and avoided crossings involving the HṡṡṡOC bending modes. The HB local mode stretching force constant is related to the strength of the HB whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the HB strength. The HB in TT1 is stabilised by electron delocalisation in the O=C-O units fostered by forming a ring via double HBs. This implies that the CO apart from the OH local stretching frequencies reflect the strength of the HB via their red or blue shifts relative to their corresponding values in trans formic acid.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa
2003-01-01
Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.
Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J
2017-05-02
Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-02-01
The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-05-01
The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.
Prognostic Fusion for Uncertainty Reduction
2007-02-01
Damage estimates are arrived at using sensor information such as oil debris monitoring data as well as vibration data. The method detects the onset of...NAME OF RESPONSIBLE PERSON ( Monitor ) a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT...estimates are arrived at using sensor information such as oil debris monitoring data as well as vibration data. The method detects the onset of
Vibration signal models for fault diagnosis of planet bearings
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.
2016-05-01
Rolling element bearings are key components of planetary gearboxes. Among them, the motion of planet bearings is very complex, encompassing spinning and revolution. Therefore, planet bearing vibrations are highly intricate and their fault characteristics are completely different from those of fixed-axis case, making planet bearing fault diagnosis a difficult topic. In order to address this issue, we derive the explicit equations for calculating the characteristic frequency of outer race, rolling element and inner race fault, considering the complex motion of planet bearings. We also develop the planet bearing vibration signal model for each fault case, considering the modulation effects of load zone passing, time-varying angle between the gear pair mesh and fault induced impact force, as well as the time-varying vibration transfer path. Based on the developed signal models, we derive the explicit equations of Fourier spectrum in each fault case, and summarize the vibration spectral characteristics respectively. The theoretical derivations are illustrated by numerical simulation, and further validated experimentally and all the three fault cases (i.e. outer race, rolling element and inner race localized fault) are diagnosed.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation
NASA Astrophysics Data System (ADS)
Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.
2013-07-01
CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.
Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.
Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi
2018-05-08
Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.
NASA Astrophysics Data System (ADS)
Roy, A.; Staino, A.; (D Ghosh, A.; Basu, B.; Chatterjee, S.
2016-09-01
Elevated water tanks (EWTs), being top-heavy structures, are highly vulnerable to earthquake forces, and several have experienced damage/failure in past seismic events. However, as these are critical facilities whose continued performance in the post-earthquake scenario is of vital concern, it is significant to investigate their seismic vibration control using reliable and cost-effective passive dampers such as the Tuned Liquid Damper (TLD). Here, this aspect is studied for flexible EWT structures, such as those with annular shaft supports. The criterion of tuning the sloshing frequency of the TLD to the structural frequency necessitates dimensions of the TLD larger than those hitherto examined in literature. Hence the nonlinear model of the TLD based on established shallow water wave theory is verified for large container size by employing Real-Time-Hybrid-Testing (RTHT). Simulation studies are further carried out on a realistic example of a flexible EWT structure with TLDs. Results indicate that the TLD can be applied very effectively for the seismic vibration mitigation of EWTs.
Seismic response analysis of a 13-story steel moment-framed building in Alhambra, California
Rodgers, Janise E.; Sanli, Ahmet K.; Çelebi, Mehmet
2004-01-01
The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections of some frames following the M6.7 1994 Northridge earthquake. This report presents an investigation of the seismic behavior of an instrumented 13-story steel moment frame building located in the greater Los Angeles area of California. An extensive strong motion dataset, ambient vibration data, engineering drawings and earthquake damage reports are available for this building. The data are described and subsequently analyzed. The results of the analyses show that the building response is more complex than would be expected from its highly symmetrical geometry. The building's response is characterized by low damping in the fundamental mode, larger peak accelerations in the intermediate stories than at the roof, extended periods of vibration after the cessation of strong input shaking, beating in the response, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses of the data and all damage detection methods employed except one method based on system identification indicate that the response of the structure was elastic in all recorded earthquakes. These findings are in general agreement with the results of intrusive inspections (meaning fireproofing and architectural finishes were removed) conducted on approximately 5 percent of the moment connections following the Northridge earthquake, which found no earthquake damage.
Feasibility study of the seismic reflection method in Amargosa Desert, Nye County, Nevada
Brocher, T.M.; Hart, P.E.; Carle, S.F.
1990-01-01
The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections of some frames following the M6.7 1994 Northridge earthquake. This report presents an investigation of the seismic behavior of an instrumented 13-story steel moment frame building located in the greater Los Angeles area of California. An extensive strong motion dataset, ambient vibration data, engineering drawings and earthquake damage reports are available for this building. The data are described and subsequently analyzed. The results of the analyses show that the building response is more complex than would be expected from its highly symmetrical geometry. The building's response is characterized by low damping in the fundamental mode, larger peak accelerations in the intermediate stories than at the roof, extended periods of vibration after the cessation of strong input shaking, beating in the response, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses of the data and all damage detection methods employed except one method based on system identification indicate that the response of the structure was elastic in all recorded earthquakes. These findings are in general agreement with the results of intrusive inspections (meaning fireproofing and architectural finishes were removed) conducted on approximately 5 percent of the moment connections following the Northridge earthquake, which found no earthquake damage.
NASA Astrophysics Data System (ADS)
Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo
The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Weiland, Kenneth E.
2003-01-01
This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.
A mechanics framework for a progressive failure methodology for laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Lo, David C.
1989-01-01
A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.
Fatigue failure of pb-free electronic packages under random vibration loads
NASA Astrophysics Data System (ADS)
Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.
2018-03-01
The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.
Multiple spatially localized dynamical states in friction-excited oscillator chains
NASA Astrophysics Data System (ADS)
Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.
2018-03-01
Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.
Development of a Model Based Technique for Gear Diagnostics using the Wigner-Ville method
NASA Technical Reports Server (NTRS)
Choy, F.; Xu, A.; Polyshchuk, V.
1997-01-01
Imperfections in gear tooth geometry often result from errors in the manufacturing process or excessive material wear during operation. Such faults in the gear tooth geometry can result in large vibrations in the transmission system, and, in some cases, may lead to early failure of the gear transmission system. This report presents the study of the effects of imperfection in gear tooth geometry on the dynamic characteristics of a gear transmission system. The faults in the gear tooth geometry are modeled numerically as the deviation of the tooth profile from its original involute geometry. The changes in gear mesh stiffness due to various profile and pattern variations are evaluated numerically. The resulting changes in the mesh stiffness are incorporated into a computer code to simulate the dynamics of the gear transmission system. A parametric study is performed to examine the sensitivity of gear tooth geometry imperfections on the vibration of a gear transmission system. The parameters variations in this study consist of the magnitude of the imperfection, the pattern of the profile variation, and the total number of teeth affected. Numerical results from the dynamic simulations are examined in both the time and the frequency domains. A joint time-frequency analysis procedure using the Wigner-Ville Distribution is also introduced to identify the location of the damaged tooth from the vibration signature. Numerical simulations of the system dynamics with gear faults were compared to experimental results. An optimal tracker was introduced to quantify the level of damage in the gear mesh system. Conclusions are drawn from the results of this numerical study.
NASA Astrophysics Data System (ADS)
Proskuryakov, K. N.
2017-11-01
Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.
A novel approach to enhance the accuracy of vibration control of Frames
NASA Astrophysics Data System (ADS)
Toloue, Iraj; Shahir Liew, Mohd; Harahap, I. S. H.; Lee, H. E.
2018-03-01
All structures built within known seismically active regions are typically designed to endure earthquake forces. Despite advances in earthquake resistant structures, it can be inferred from hindsight that no structure is entirely immune to damage from earthquakes. Active vibration control systems, unlike the traditional methods which enlarge beams and columns, are highly effective countermeasures to reduce the effects of earthquake loading on a structure. It requires fast computation of nonlinear structural analysis in near time and has historically demanded advanced programming hosted on powerful computers. This research aims to develop a new approach for active vibration control of frames, which is applicable over both elastic and plastic material behavior. In this study, the Force Analogy Method (FAM), which is based on Hook's Law is further extended using the Timoshenko element which considers shear deformations to increase the reliability and accuracy of the controller. The proposed algorithm is applied to a 2D portal frame equipped with linear actuator, which is designed based on full state Linear Quadratic Regulator (LQR). For comparison purposes, the portal frame is analysed by both the Euler Bernoulli and Timoshenko element respectively. The results clearly demonstrate the superiority of the Timoshenko element over Euler Bernoulli for application in nonlinear analysis.
NASA Astrophysics Data System (ADS)
Girolamo, D.; Girolamo, L.; Yuan, F. G.
2015-03-01
Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian Piero; Meo, Michele
2017-04-01
Currently there are numerous phased array techniques such as Full Matrix Capture (FMC) and Total Focusing Method (TFM) that provide good damage assessment for composite materials. Although, linear methods struggle to evaluate and assess low levels of damage, while nonlinear methods have shown great promise in early damage detection. A sweep and subtraction evaluation method coupled with a constructive nonlinear array method (CNA) is proposed in order to assess damage specific nonlinearities, address issues with frequency selection when using nonlinear ultrasound imaging techniques and reduce equipment generated nonlinearities. These methods were evaluated using multiple excitation locations on an impacted composite panel with a complex damage (barely visible impact damage). According to various recent works, damage excitation can be accentuated by exciting at local defect resonance (LDR) frequencies; although these frequencies are not always easily determinable. The sweep methodology uses broadband excitation to determine both local defect and material resonances, by assessing local defect generated nonlinearities using a laser vibrometer it is possible to assess which frequencies excite the complex geometry of the crack. The dual effect of accurately determining local defect resonances, the use of an image subtraction method and the reduction of equipment based nonlinearities using CNA result in greater repeatability and clearer nonlinear imaging (NIM).
Bearing diagnostics: A method based on differential geometry
NASA Astrophysics Data System (ADS)
Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng
2016-12-01
The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Xu, Minqiang; Wang, Rixin; Huang, Wenhu
2016-01-01
This paper presents a new rolling bearing fault diagnosis method based on local mean decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and improved support vector machine based binary tree (ISVM-BT). When the fault occurs in rolling bearings, the measured vibration signal is a multi-component amplitude-modulated and frequency-modulated (AM-FM) signal. LMD, a new self-adaptive time-frequency analysis method can decompose any complicated signal into a series of product functions (PFs), each of which is exactly a mono-component AM-FM signal. Hence, LMD is introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS approach is introduced to refine the fault features by sorting the scale factors. Subsequently, the obtained features are fed into the multi-fault classifier ISVM-BT to automatically fulfill the fault pattern identifications. The experimental results validate the effectiveness of the methodology and demonstrate that proposed algorithm can be applied to recognize the different categories and severities of rolling bearings.
NASA Astrophysics Data System (ADS)
Avci, Onur; Abdeljaber, Osama; Kiranyaz, Serkan; Hussein, Mohammed; Inman, Daniel J.
2018-06-01
Being an alternative to conventional wired sensors, wireless sensor networks (WSNs) are extensively used in Structural Health Monitoring (SHM) applications. Most of the Structural Damage Detection (SDD) approaches available in the SHM literature are centralized as they require transferring data from all sensors within the network to a single processing unit to evaluate the structural condition. These methods are found predominantly feasible for wired SHM systems; however, transmission and synchronization of huge data sets in WSNs has been found to be arduous. As such, the application of centralized methods with WSNs has been a challenge for engineers. In this paper, the authors are presenting a novel application of 1D Convolutional Neural Networks (1D CNNs) on WSNs for SDD purposes. The SDD is successfully performed completely wireless and real-time under ambient conditions. As a result of this, a decentralized damage detection method suitable for wireless SHM systems is proposed. The proposed method is based on 1D CNNs and it involves training an individual 1D CNN for each wireless sensor in the network in a format where each CNN is assigned to process the locally-available data only, eliminating the need for data transmission and synchronization. The proposed damage detection method operates directly on the raw ambient vibration condition signals without any filtering or preprocessing. Moreover, the proposed approach requires minimal computational time and power since 1D CNNs merge both feature extraction and classification tasks into a single learning block. This ability is prevailingly cost-effective and evidently practical in WSNs considering the hardware systems have been occasionally reported to suffer from limited power supply in these networks. To display the capability and verify the success of the proposed method, large-scale experiments conducted on a laboratory structure equipped with a state-of-the-art WSN are reported.
NASA Astrophysics Data System (ADS)
Egorov, A. G.; Kamalutdinov, A. M.; Nuriev, A. N.
2018-05-01
The paper is devoted to study of the aerodynamic forces acting on flat cantilever beams performing flexural vibrations in a viscous fluid. Original method for the force evaluation is presented based on analysis of experimental measurements of a logarithmic decrement of vibrations and relative variation in frequency of duralumin test specimens. The theoretical core of the method is based on the classical theory of bending beam oscillations and quasi-two dimensional model of interaction between a beam and a gas. Using the proposed method, extensive series of experiments for a wide range of oscillations parameters were carried out. The processing of the experimental data allowed to establish the global influence of the aerodynamic effects on beam oscillations and the local force characteristics of each cross-section of the beam in the form of universal functions of dimensionless amplitude and dimensionless frequency of oscillation. The obtained estimates of the drag and added mass forces showed a good correspondence with the available numerical and experimental data practically in the entire range of the investigated parameters.
Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H
2018-05-17
A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.
Vibration extraction based on fast NCC algorithm and high-speed camera.
Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an
2015-09-20
In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.
Satellite data based method for general survey of forest insect disturbance in British Columbia
NASA Astrophysics Data System (ADS)
Ranson, J.; Montesano, P.
2008-12-01
Regional forest disturbances caused by insects are important to monitor and quantify because of their influence on local ecosystems and the global carbon cycle. Local damage to forest trees disrupts food supplies and shelter for a variety of organisms. Changes in the global carbon budget, its sources and its sinks affect the way the earth functions as a whole, and has an impact on global climate. Furthermore, the ability to detect nascent outbreaks and monitor the spread of regional infestations helps managers mitigate the damage done by catastrophic insect outbreaks. While detection is needed at a fine scale to support local mitigation efforts, detection at a broad regional scale is important for carbon flux modeling on the landscape scale, and needed to direct the local efforts. This paper presents a method for routinely detecting insect damage to coniferous forests using MODIS vegetation indices, thermal anomalies and land cover. The technique is validated using insect outbreak maps and accounts for fire disturbance effects. The range of damage detected may be used to interpret and quantify possible forest damage by insects.
NASA Technical Reports Server (NTRS)
Shen, Ji Y.; Sharpe, Lonnie, Jr.
1998-01-01
The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.
Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach
Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim; ...
2017-07-20
The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less
Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim
The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less
The effect of inertial coupling in the dynamics and control of flexible robotic manipulators
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee
1988-01-01
A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.
Correlation of vibrational modes and DX-like centers in GaN : O
NASA Astrophysics Data System (ADS)
Wetzel, C.; , J. W. Ager, III; Topf, M.; Meyer, B. K.; Amano, H.; Akasaki, I.
1999-12-01
Vibrational modes in O-doped GaN have been observed at 544 cm-1 in Raman spectroscopy. Under perturbation of large hydrostatic pressure the mode appears as a set of three different lines Q1⋯3 whose relative intensities change by pressure. A switching between the modes occurs near 10 and 20 GPa and is found to correlate with the electron capture process to the DX-like state of O. We employ a simple oscillator model to predict the vibrational frequencies of ON. A localization energy of 23 cm-1 with respect to the optical phonon band is predicted. This is in reasonable agreement with the observed vibrational frequencies. Therefore, we assign the Q modes to the local vibration of O on N site in GaN. Modes Q1⋯3 are tentatively assigned to three different charge states of the O defect center.
Use of FBG sensors for health monitoring of pipelines
NASA Astrophysics Data System (ADS)
Felli, Ferdinando; Paolozzi, Antonio; Vendittozzi, Cristian; Paris, Claudio; Asanuma, Hiroshi
2016-04-01
The infrastructures for oil and gas production and distribution need reliable monitoring systems. The risks for pipelines, in particular, are not only limited to natural disasters (landslides, earthquakes, extreme environmental conditions) and accidents, but involve also the damages related to criminal activities, such as oil theft. The existing monitoring systems are not adequate for detecting damages from oil theft, and in several occasion the illegal activities resulted in leakage of oil and catastrophic environmental pollution. Systems based on fiber optic FBG (Fiber Bragg Grating) sensors present a number of advantages for pipeline monitoring. FBG sensors can withstand harsh environment, are immune to interferences, and can be used to develop a smart system for monitoring at the same time several physical characteristics, such as strain, temperature, acceleration, pressure, and vibrations. The monitoring station can be positioned tens of kilometers away from the measuring points, lowering the costs and the complexity of the system. This paper describes tests on a sensor, based on FBG technology, developed specifically for detecting damages of pipeline due to illegal activities (drilling of the pipes), that can be integrated into a smart monitoring chain.
Vibration Damping Response of Composite Materials
1991-04-01
using a diamond-impregnated cutoff wheel mounted on a milling machine . This procedure was followed to minimize damage to the composite specimens prior to...Development Report Vibration Damping Response of Composite Materials by Roger M. Crane 0E DTIC0 • ELECTE 16 - MAY 28 19914S8 0 E 5; 91--00524 Approved for...Damping Response of Composite Materials by Roger M. Crane TABLE OF CONTENTS Page LIST OF TABLES
NASA Astrophysics Data System (ADS)
Ikemoto, Toshikazu; Mori, Masashi; Miyajima, Masakatsu; Hashimoto, Takao; Murata, Akira
There are many earthquake damages of kenchi block masonry wall. So, we carried out experimental studies on the collapse mechanism of kenchi block masonry wall during earthquake. From these experimental data, i.e. acceleration response magnification, displacement and soil pressure were found to destroy the central wall vibrations caused by the subsidence of the embankment.
Experimental Validation of Normalized Uniform Load Surface Curvature Method for Damage Localization
Jung, Ho-Yeon; Sung, Seung-Hoon; Jung, Hyung-Jo
2015-01-01
In this study, we experimentally validated the normalized uniform load surface (NULS) curvature method, which has been developed recently to assess damage localization in beam-type structures. The normalization technique allows for the accurate assessment of damage localization with greater sensitivity irrespective of the damage location. In this study, damage to a simply supported beam was numerically and experimentally investigated on the basis of the changes in the NULS curvatures, which were estimated from the modal flexibility matrices obtained from the acceleration responses under an ambient excitation. Two damage scenarios were considered for the single damage case as well as the multiple damages case by reducing the bending stiffness (EI) of the affected element(s). Numerical simulations were performed using MATLAB as a preliminary step. During the validation experiments, a series of tests were performed. It was found that the damage locations could be identified successfully without any false-positive or false-negative detections using the proposed method. For comparison, the damage detection performances were compared with those of two other well-known methods based on the modal flexibility matrix, namely, the uniform load surface (ULS) method and the ULS curvature method. It was confirmed that the proposed method is more effective for investigating the damage locations of simply supported beams than the two conventional methods in terms of sensitivity to damage under measurement noise. PMID:26501286
Li, A A; Nesterov, N I; Avilov, V Ia
1996-01-01
Sequential intrarectal impacts with local vibration and ultrasound on distal part of ureter in 60 patients with "stone pathway" promoted elimination of the stone fragments in 58 (96.7%) patients. The size of the urolith fragments varied from 1 to 5 mm.
Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration
NASA Technical Reports Server (NTRS)
Nerem, R. M.
1973-01-01
The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.
NASA Astrophysics Data System (ADS)
Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young
2018-02-01
Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.
NASA Astrophysics Data System (ADS)
Sait, Abdulrahman S.
This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.
Vibration Isolation System for Cryocoolers of Soft X-Ray Spectrometer (SXS) Onboard ASTRO-H (Hitomi)
NASA Technical Reports Server (NTRS)
Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo;
2016-01-01
Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a micro-calorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.
Expanding the utility of 4-cyano-L-phenylalanine as a vibrational reporter of protein environments.
Bazewicz, Christopher G; Lipkin, Jacob S; Smith, Emily E; Liskov, Melanie T; Brewer, Scott H
2012-09-06
The ability to genetically incorporate amino acids modified with spectroscopic reporters site-specifically into proteins with high efficiency and fidelity has greatly enhanced the ability to probe local protein structure and dynamics. Here, we have synthesized the unnatural amino acid (UAA), 4-cyano-L-phenylalanine (pCNPhe), containing the nitrile vibrational reporter and three isotopomers ((15)N, (13)C, (13)C(15)N) of this UAA to enhance the ability of pCNPhe to study local protein environments. Each pCNPhe isotopic variant was genetically incorporated in an efficient, site-specific manner into superfolder green fluorescent protein (sfGFP) in response to an amber codon with high fidelity utilizing an engineered, orthogonal aminoacyl-tRNA synthetase. The isotopomers of 4-cyano-L-phenylalanine permitted the nitrile symmetric stretch vibration of these UAAs to be unambiguously assigned utilizing the magnitude and direction of the isotopic shift of this vibration. The sensitivity of the nitrile symmetric stretching frequency of each isotopic variant to the local environment was measured by individually incorporating the probes into two distinct local environments of sfGFP. The UAAs were also utilized in concert to probe multiple local environments in sfGFP simultaneously to increase the utility of 4-cyano-L-phenylalanine.
De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis
2016-01-01
Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Heyliger, P. R.
1994-01-01
Unified mechanics are developed with the capability to model both sensory and active composite laminates with embedded piezoelectric layers. A discrete-layer formulation enables analysis of both global and local electromechanical response. The mechanics include the contributions from elastic, piezoelectric, and dielectric components. The incorporation of electric potential into the state variables permits representation of general electromechanical boundary conditions. Approximate finite element solutions for the static and free-vibration analysis of beams are presented. Applications on composite beams demonstrate the capability to represent either sensory or active structures and to model the complicated stress-strain fields, the interactions between passive/active layers, interfacial phenomena between sensors and composite plies, and critical damage modes in the material. The capability to predict the dynamic characteristics under various electrical boundary conditions is also demonstrated.