DOE Office of Scientific and Technical Information (OSTI.GOV)
So Hirata
2012-01-03
This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per
2018-04-01
For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, A.C.; Hardis, J.E.; Southworth, S.H.
1988-01-15
Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Experiment on the concrete slab for floor vibration evaluation of deteriorated building
NASA Astrophysics Data System (ADS)
Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.
2014-08-01
Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).
Average combination difference morphological filters for fault feature extraction of bearing
NASA Astrophysics Data System (ADS)
Lv, Jingxiang; Yu, Jianbo
2018-02-01
In order to extract impulse components from vibration signals with much noise and harmonics, a new morphological filter called average combination difference morphological filter (ACDIF) is proposed in this paper. ACDIF constructs firstly several new combination difference (CDIF) operators, and then integrates the best two CDIFs as the final morphological filter. This design scheme enables ACIDF to extract positive and negative impacts existing in vibration signals to enhance accuracy of bearing fault diagnosis. The length of structure element (SE) that affects the performance of ACDIF is determined adaptively by a new indicator called Teager energy kurtosis (TEK). TEK further improves the effectiveness of ACDIF for fault feature extraction. Experimental results on the simulation and bearing vibration signals demonstrate that ACDIF can effectively suppress noise and extract periodic impulses from bearing vibration signals.
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
The structure of the NO(X (2)Pi)-N(2) complex: A joint experimental-theoretical study.
Wen, B; Meyer, H; Kłos, J
2010-04-21
We report the first measurement of the spectrum of the NO-N(2) complex in the region of the first vibrational NO overtone transition. The origin band of the complex is blueshifted by 0.30 cm(-1) from the corresponding NO monomer frequency. The observed spectrum consists of three bands assigned to the origin band, the excitation of one quantum of z-axis rotation and one associated hot band. The spacing of the bands and the rotational structure indicate a T-shaped vibrationally averaged structure with the NO molecule forming the top of the T. These findings are confirmed by high level ab initio calculations of the potential energy surfaces in planar symmetry. The deepest minimum is found for a T-shaped geometry on the A(")-surface. As a result the sum potential also has the global minimum for this structure. The different potential surfaces show several additional local minima at slightly higher energies indicating that the complex most likely will perform large amplitude motion even in its ground vibrational state. Nevertheless, as suggested by the measured spectra, the complex must, on average, spend a substantial amount of time near the T-shaped configuration.
Electron Scattering Studies of Gas Phase Molecular Structure at High Temperature
NASA Astrophysics Data System (ADS)
Mawhorter, Richard J., Jr.
A high precision counting electron diffraction study of the structure of gaseous sulfur dioxide as a function of temperature from 300(DEGREES) to 1000(DEGREES)K is presented. The results agree well with current theory, and yield insight into the effects of anharmonicity on molecular structure. Another aspect of molecular structure is the molecular charge density distribution. The difference (DELTA)(sigma) is between the electron scattering cross sections for the actual molecule and independent atom model (IAM) are a sensitive measure of the change in this distribution due to bond formation. These difference cross sections have been calculated using ab initio methods, and the results for a wide range of simple polyatomic molecules are presented. Such calculations are routinely done for a single, fixed molecular geometry, an approach which neglects the effects of the vibrational motion of real molecules. The effect of vibrational averaging is studied in detail for the three normal vibrational modes of H(,2)O in the ground state. The effects are small, lending credence to the practice of comparing cross sections calculated at a fixed geometry with inherently averaged experimental data. The efficacy of the standard formula used to account for vibrational averaging in the IAM is also examined. Finally, the nature of the ionic bond is probed with an experimental study of the structure of alkali chlorides, NaCl, KCl, RbCl, and CsCl, in the gas phase. Temperatures from 840-960(DEGREES)K were required to achieve the necessary vapor pressures of approximately 0.01 torr. A planar rhombic structure for the dimer molecule is confirmed, with a fairly uniform decrease of the chlorine-alkali-chlorine angle as the alkalis increase in size. The experiment also yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.
NASA Astrophysics Data System (ADS)
Cooley, Christopher G.
2017-09-01
This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.
The Molecular Structure of cis-FONO
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)
1994-01-01
The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.
A vibration powered wireless mote on the Forth Road Bridge
NASA Astrophysics Data System (ADS)
Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.
2015-12-01
The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.
Physical and numerical investigation of the flow induced vibration of the hydrofoil
NASA Astrophysics Data System (ADS)
Wu, Q.; Wang, G. Y.; Huang, B.
2016-11-01
The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.
Vibrational Properties of Anhydrous and Partially Hydrated Uranyl Fluoride
Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.; ...
2017-01-01
Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less
NASA Technical Reports Server (NTRS)
Harrison, Phil; LaVerde, Bruce; Teague, David
2009-01-01
Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.
Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates
Hu, Chuanjiang; Peng, Qian; Silvernail, Nathan J.; Barabanschikov, Alexander; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Sage, J. Timothy; Scheidt, W. Robert
2013-01-01
The effects of the deprotonation of coordinated imidazole on the dynamics of five-coordinate high-spin iron(II) porphyrinates have been investigated using nuclear resonance vibrational spectroscopy. Two complexes have been studied in detail with both powder and oriented single-crystal measurements. Changes in the vibrational spectra are clearly related to structural differences in the molecular structures that occur when imidazole is deprotonated. Most modes involving the simultaneous motion of iron and imidazolate are unresolved but the one mode that is resolved is found at higher frequency in the imidazolates. These out-of-plane results are in accord with earlier resonance Raman studies of heme proteins. We also show the imidazole vs. imidazolate differences in the in-plane vibrations that are not accessible to resonance Raman studies. The in-plane vibrations are at lower frequency in the imidazolate derivatives; the doming mode shifts are inconclusive. The stiffness, an experimentally determined force constant that averages the vibrational details to quantify the nearest-neighbor interactions, confirms that deprotonation inverts the relative strengths of axial and equatorial coordination. PMID:23470205
A miniaturized human-motion energy harvester using flux-guided magnet stacks
NASA Astrophysics Data System (ADS)
Halim, M. A.; Park, J. Y.
2016-11-01
We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.
Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less
Developments In Electronic Speckle Pattern Interferometry For Automotive Vibration Analysis.
NASA Astrophysics Data System (ADS)
Davies, Jeremy C.; Buckberry, Clive H.; Jones, Julian D. C.; Pannell, Chris N.
1989-01-01
The incorporation of monomode fibre optics into an argon ion powered Electronic Speckle Pattern Interferometer (ESPI) is reported. The system, consisting of an optics assembly linked to the laser and a CCD camera transceiver, flexibly connected by 40m of monomode fibre optic cable to the optics, has been used to analyse the modal behaviour of structures up to 5m X 3m X 2m in size. Phase modulation of the reference beam in order to operate in a heterodyne mode has been implemented using a piezo-electric crystal operating on the monomode fibre. A new mode of operation - sequential time-average subtraction - and the results of a new processing algorithm are also reported. Their implementation enables speckle free, time-average vibration maps to be generated in real-time on large, unstable structures. Example results for a four cylinder power unit, a vehicle body shell component and an engine oil pan are included. In all cases the analysis was conducted in a general workshop environment without the need for vibration isolation facilities.
NASA Astrophysics Data System (ADS)
Liu, K.; Brown, M. G.; Viant, M. R.; Cruzan, J. D.; Saykally, R. J.
We report the measurement of far infrared vibration rotation tunnelling parallel bands of two partially deuterated water trimer isotopomers D O DOH and H O DOH at 97 2607 cm and 86 cm respectively The hydrogen bond rearrangement dynamics of the two mixed trimers can be described by the simplified molecular symmetry G which accounts for both the flipping and bifurcation tunnelling motions previously established for H O and D O The observed donor tunnelling quartet rather than triplet splitting indicates that the two homogeneous monomers D O or H O in each mixed trimer experience slightly different environments Vibrationally averaged structures of H O D O and D O DOH were examined in a Monte Carlo simulation of the out of plane flipping motions of the free atoms The simulation addresses both the symmetric top behaviour and the negative zero point inertial defect for H O and D O which were insufficiently counted in all previous structure models The average ground state O O separations which are correlated to other angular coordinates were determined to be 2 84 0 01 A for all three species The simulated difference in hydrogen bond nonlinearity also supports the inequivalency of the two homogeneous mono mers The structural simulation shows that the unique H in D O DOH is free while a torsional analysis suggests the unique D in H O DOH is bound within the cyclic ring Both bands can be assigned to the pseudorotational transitions which correlate to those found in the pure trimers
NASA Astrophysics Data System (ADS)
Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko
2008-12-01
We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.
Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko
2008-12-28
We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H(2) (p-H(2)) and ortho-D(2) (o-D(2)) molecules inside the large hexakaidecahedral (5(12)6(4)) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H(2))(n) and (o-D(2))(n) clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H(2))(4). At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H(2) or D(2) molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D(2) molecules, their mean distance from the cage center, the D(2)-D(2) separation, and the specific orientation and localization of the tetrahedral (D(2))(4) cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D(2) occupancy.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
2016-07-01
between average background spectrum and chicken egg - white lysozyme protein spectrum...spectroscopic signatures were conducted using human insulin protein and chicken egg -white lysozyme protein. Proteins with different structures...the comparison between the average background THz spectrum (black line in Figure 13) and the chicken egg -white lysozyme THz spectrum (blue line
Mechanical energy flow models of rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1992-01-01
It has been proposed that the flow of mechanical energy through a structural/acoustic system may be modeled in a manner similar to that of flow of thermal energy/in a heat conduction problem. If this hypothesis is true, it would result in relatively efficient numerical models of structure-borne energy in large built-up structures. Fewer parameters are required to approximate the energy solution than are required to model the characteristic wave behavior of structural vibration by using traditional displacement formulations. The energy flow hypothesis is tested in this investigation for both longitudinal vibration in rods and transverse flexural vibrations of beams. The rod is shown to behave approximately according to the thermal energy flow analogy. However, the beam solutions behave significantly differently than predicted by the thermal analogy unless locally-space-averaged energy and power are considered. Several techniques for coupling dissimilar rods and beams are also discussed. Illustrations of the solution accuracy of the methods are included.
Theoretical and experimental study of the conformational and vibrational properties of benzoin
NASA Astrophysics Data System (ADS)
Pawelka, Zbignew; Kryachko, Eugene S.; Zeegers-Huyskens, Thérèse
2003-02-01
The conformational and vibrational properties of benzoin are theoretically studied at the B3LYP/6-31+G(d,p) computational level. Three lower energy stable structures are found on its potential energy surface. The two first structures correspond to cis- and trans-benzoin. The cis isomer, stabilized by an intramolecular OH⋯O hydrogen bond, is more favorable by 3.4 kcal mol -1 over the trans isomer. The third structure refers to the dienol tautomer ( cis-stilbendiol) which is less stable by 7.6 kcal mol -1. In carbon tetrachloride, benzoin is in the cis conformation. The calculated vibrational frequencies are compared with the experimental ones. When the ν(OH) and ν(CH) vibrations are corrected for anharmonicities, an average scaling factor of 0.980 is deduced. The IR and Raman spectra of solid benzoin are analyzed as well and discussed in terms of the structure determined by X-ray diffraction [Acta crystallogr. B 36 (1980) 2832]. The isotopic ratio ν(OH)/ ν(OD) reflects the weakness of the intramolecular hydrogen bond in solution and of the intermolecular hydrogen bond in the solid state. This weakness can be accounted for by the great departure of the hydrogen bond from linearity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Vibration Analysis Of Automotive Structures Using Holographic Interferometry
NASA Astrophysics Data System (ADS)
Brown, G. M.; Wales, R. R.
1983-10-01
Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.
The Shock and Vibration Digest. Volume 16, Number 1
1984-01-01
investigation of the measure- ment of frequency band average loss factors of structural components for use in the statistical energy analysis method of...stiffness. Matrix methods Key Words: Finite element technique. Statistical energy analysis . Experimental techniques. Framed structures, Com- puter...programs In order to further understand the practical application of the statistical energy analysis , a two section plate-like frame structure is
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; ...
2014-12-31
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less
Acoustic vibration effects in classical nucleation theory
NASA Astrophysics Data System (ADS)
Baird, James K.; Su, C.-H.
2018-04-01
Acoustic vibration is often used to improve the yield of crystals and nanoparticles growing from solutions and melts. As there is still a debate on how acoustic vibration actually works, we have examined the possibility that acoustic pressure can affect the rate of nucleation. Our method is based on an expansion of the free energy of the nucleus in powers of the acoustic pressure. With the assumption that the period of the sound wave is short as compared to the time scale for nucleation, we replace the powers of the acoustic pressure by their time averages, retaining the average of the square of the acoustic pressure as the leading term. By assuming a nucleus having spherical shape, we use the Young-Laplace equation to relate the pressure inside the nucleus to the ambient pressure. Without making further approximations not already standard in classical nucleation theory, we find that the proximate effect of acoustic pressure is to reduce both the size of the critical nucleus as well as the work required to form it from monomers. As the work serves as the activation energy, the ultimate effect of acoustic pressure is to increase the rate of nucleation. If we assume that the atomic structure of the nucleus is the same as that of an ordinary solid, however, we find the compressibility is too small for acoustic vibration effects to be noticeable. If on the other hand, we assume that the structure is similar to that of a loosely bound colloidal particle, then the effects of acoustic vibration become potentially observable.
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; ...
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
Differences in single and aggregated nanoparticle plasmon spectroscopy.
Singh, Pushkar; Deckert-Gaudig, Tanja; Schneidewind, Henrik; Kirsch, Konstantin; van Schrojenstein Lantman, Evelien M; Weckhuysen, Bert M; Deckert, Volker
2015-02-07
Vibrational spectroscopy usually provides structural information averaged over many molecules. We report a larger peak position variation and reproducibly smaller FWHM of TERS spectra compared to SERS spectra indicating that the number of molecules excited in a TERS experiment is extremely low. Thus, orientational averaging effects are suppressed and micro ensembles are investigated. This is shown for a thiophenol molecule adsorbed on Au nanoplates and nanoparticles.
Machine protection system for rotating equipment and method
Lakshminarasimha, Arkalgud N.; Rucigay, Richard J.; Ozgur, Dincer
2003-01-01
A machine protection system and method for rotating equipment introduces new alarming features and makes use of full proximity probe sensor information, including amplitude and phase. Baseline vibration amplitude and phase data is estimated and tracked according to operating modes of the rotating equipment. Baseline vibration and phase data can be determined using a rolling average and variance and stored in a unit circle or tracked using short term average and long term average baselines. The sensed vibration amplitude and phase is compared with the baseline vibration amplitude and phase data. Operation of the rotating equipment can be controlled based on the vibration amplitude and phase.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas
2005-01-01
The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.
Dakin, Roslyn; McCrossan, Owen; Hare, James F.; Montgomerie, Robert; Amador Kane, Suzanne
2016-01-01
Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background. PMID:27119380
Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne
2016-01-01
Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.
NASA Astrophysics Data System (ADS)
McBride, William R.; McBride, Daniel R.
2016-08-01
The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.
APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.
cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No
Micro-vibration detection with heterodyne holography based on time-averaged method
NASA Astrophysics Data System (ADS)
Qin, XiaoDong; Pan, Feng; Chen, ZongHui; Hou, XueQin; Xiao, Wen
2017-02-01
We propose a micro-vibration detection method by introducing heterodyne interferometry to time-averaged holography. This method compensates for the deficiency of time-average holography in quantitative measurements and widens its range of application effectively. Acousto-optic modulators are used to modulate the frequencies of the reference beam and the object beam. Accurate detection of the maximum amplitude of each point in the vibration plane is performed by altering the frequency difference of both beams. The range of amplitude detection of plane vibration is extended. In the stable vibration mode, the distribution of the maximum amplitude of each point is measured and the fitted curves are plotted. Hence the plane vibration mode of the object is demonstrated intuitively and detected quantitatively. We analyzed the method in theory and built an experimental system with a sine signal as the excitation source and a typical piezoelectric ceramic plate as the target. The experimental results indicate that, within a certain error range, the detected vibration mode agrees with the intrinsic vibration characteristics of the object, thus proving the validity of this method.
Bi-axial Vibration Energy Harvesting
2012-07-01
included early dedicated portable signal averaging equipment, Nomad, CT4 and F18 fatigue test control systems and some field trials. Currently he is...and repairs to acoustically- fatigued structures. ____________________ ________________________________________________ UNCLASSIFIED...Physicists at the Tokyo Institute of Technology investigated various piezoceramic materials [20], developing lead zirconate titanate ( PZT ) in around 1952
Experimental and Computational Analysis of Modes in a Partially Constrained Plate
2004-03-01
way to quantify a structure. One technique utilizing an energy method is the Statistical Energy Analysis (SEA). The SEA process involves regarding...B.R. Mace. “ Statistical Energy Analysis of Two Edge- Coupled Rectangular Plates: Ensemble Averages,” Journal of Sound and Vibration, 193(4): 793-822
Mort, Brendan C; Autschbach, Jochen
2006-08-09
Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.
Kapitán, Josef; Johannessen, Christian; Bour, Petr; Hecht, Lutz; Barron, Laurence D
2009-01-01
The samples used for the first observations of vibrational Raman optical activity (ROA) in 1972, namely both enantiomers of 1-phenylethanol and 1-phenylethylamine, have been revisited using a modern commercial ROA instrument together with state-of-the-art ab initio calculations. The simulated ROA spectra reveal for the first time the vibrational origins of the first reported ROA signals, which comprised similar couplets in the alcohol and amine in the spectral range approximately 280-400 cm(-1). The results demonstrate how easy and routine ROA measurements have become, and how current ab initio quantum-chemical calculations are capable of simulating experimental ROA spectra quite closely provided sufficient averaging over accessible conformations is included. Assignment of absolute configuration is, inter alia, completely secure from results of this quality. Anharmonic corrections provided small improvements in the simulated Raman and ROA spectra. The importance of conformational averaging emphasized by this and previous related work provides the underlying theoretical background to ROA studies of dynamic aspects of chiral molecular and biomolecular structure and behavior. (c) 2009 Wiley-Liss, Inc.
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ait Ahsaine, H.; Taoufyq, A.; Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex
2014-10-15
The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better representedmore » by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.« less
Energy distributions in rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1989-01-01
A hypothesis proposed by Nefske and Sung (1987) that the mechanical energy flow in acoustic/structural systems can be modeled using a thermal energy flow analogy was tested for both longitudinal vibration in rods and transverse flexural vibrations in beams. It was found that the rod behaves according to the energy flow analogy. However, the beam solutions behaved significantly differently than predicted by the thermal analogy, unless spatially averaged energy and power flow were considered. Otherwise, the beam analysis is restricted to frequencies where the near-field terms in the displacement solution are negligible over most of the beam.
Identification of walking human model using agent-based modelling
NASA Astrophysics Data System (ADS)
Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir
2018-03-01
The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.
NASA Astrophysics Data System (ADS)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram
2015-12-01
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinementmore » effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.« less
Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses.
Ando, Mariana F; Benzine, Omar; Pan, Zhiwen; Garden, Jean-Luc; Wondraczek, Katrin; Grimm, Stephan; Schuster, Kay; Wondraczek, Lothar
2018-03-29
In binary aluminosilicate liquids and glasses, heterogeneity on intermediate length scale is a crucial factor for optical fiber performance, determining the lower limit of optical attenuation and Rayleigh scattering, but also clustering and precipitation of optically active dopants, for example, in the fabrication of high-power laser gain media. Here, we consider the low-frequency vibrational modes of such materials for assessing structural heterogeneity on molecular scale. We determine the vibrational density of states VDoS g(ω) using low-temperature heat capacity data. From correlation with low-frequency Raman spectroscopy, we obtain the Raman coupling coefficient. Both experiments allow for the extraction of the average dynamic correlation length as a function of alumina content. We find that this value decreases from about 3.9 nm to 3.3 nm when mildly increasing the alumina content from zero (vitreous silica) to 7 mol%. At the same time, the average inter-particle distance increases slightly due to the presence of oxygen tricluster species. In accordance with Loewensteinian dynamics, this proves that mild alumina doping increases structural homogeneity on molecular scale.
Complex vibrations in arsenide skutterudites and oxyskutterudites
NASA Astrophysics Data System (ADS)
Bridges, F.; Car, B.; Sutton, L.; Hoffman-Stapleton, M.; Keiber, T.; Baumbach, R. E.; Maple, M. B.; Henkie, Z.; Wawryk, R.
2015-01-01
The local structure of two skutterudite families—Ce M4As12 (M =Fe , Ru, Os) and L n Cu3Ru4O12 (L n =La , Pr, and Nd)—have been studied using the extended x-ray absorption fine structure (EXAFS) technique with a focus on the lattice vibrations about the rare-earth "rattler atoms" and the extent to which these vibrations can be considered local modes, with the rattler vibrating inside a nearly rigid cage. X-ray absorption data at all the metal edges were collected over a temperature range of 4 to 300 K and analyzed using standard procedures. The pair distances from EXAFS results agree quite well with the average structure obtained from diffraction. The cage structure is formed by the M and As atoms in Ce M4As12 and by Cu, O, and Ru atoms in L n Cu3Ru4O12 . Although some of the bonds within the cage are quite stiff (correlated Debye temperatures, θcD, are ˜500 K for Ce M4As12 and above 800 K for L n Cu3Ru4O12 ), we show that the structure is not completely rigid. For the rattler atom the nearest-neighbor pairs have a relatively low Einstein temperature, θE:˜100 - 120 K for Ce-As and ˜130 K for L n -O . Surprisingly, the behaviors of the second-neighbor pairs are quite different: for Ce M4As12 the second-neighbor pairs (Ce -M ) have a weaker bond while for L n Cu3Ru4O12 the L n -Ru second-neighbor pair has a stiffer effective spring constant than the first-neighbor pair. In addition, we show that the As4 or CuO4 rings are relatively rigid units and that their vibrations are anisotropic within these cubic structures, with stiff restoring forces perpendicular to the rings and much weaker restoring forces in directions parallel to the rings. Consequently vibrations of the rings may also act as "rattlers" and help suppress thermal conductivity. In general neither the rigid-cage approximation nor the simple reduced-mass approximation are sufficient for describing rattler behavior.
NASA Astrophysics Data System (ADS)
Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Cabellos, José Luis; Yi, John T.; Pratt, David W.; Schmitt, Michael; Merino, Gabriel; Álvarez-Valtierra, Leonardo
2015-09-01
The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent -OH and -OCH3 groups plays a major role in these dynamics.
Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Cabellos, José Luis; Yi, John T; Pratt, David W; Schmitt, Michael; Merino, Gabriel; Álvarez-Valtierra, Leonardo
2015-09-07
The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent -OH and -OCH3 groups plays a major role in these dynamics.
Thermal vibrations in the metallic glass Cu64Zr36
NASA Astrophysics Data System (ADS)
Schönfeld, Bernd; Zemp, Jérôme; Stuhr, Uwe
2017-01-01
Neutrons with 14.7 and 34 meV energy were used to determine the elastic and inelastic part of the structure factor for the metallic glass Cu64Zr36 at 250 K. Based on the temperature dependence of the elastic scattering between 150 K and RT, an average mean-square displacement < {{u}2}> =0.027(3) ~{{{\\mathringA}}2} at 250 K is obtained. The experimental scattering-vector dependence of inelastic scattering in reference to elastic scattering is found to be well described by the Debye model. Both results are supported by molecular dynamics simulations. A procedure is presented to separate the elastic part also in total x-ray scattering. This allows the smearing of structural information due to thermal vibrations to be eliminated.
NASA Astrophysics Data System (ADS)
Lappa, Marcello
2016-10-01
The present analysis extends the author's earlier work [Lappa, Phys. Fluids 26, 093301 (2014), 10.1063/1.4893078] on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow. It is shown that under certain conditions, when subjected to vibrations to induce natural flow, nonisothermal fluids with dispersed solid particles are characterized by intervals of solid-pattern-forming behavior due to particle rearrangements preceded by intervals in which no recognizable structures of solid matter can be detected. The dynamics of these systems are highly nonlinear in nature. Because this family of particle attractors is known to exhibit strong sensitivity to the symmetry properties of the considered vibrated system and related geometrical constraints, the present study attempts to clarify the related dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming vibrations always directed perpendicularly to the imposed temperature gradient, we show that the morphology, spatial extension (percentage of physical volume occupied), separation (spatial distance), and mechanisms responsible for the formation of the resulting particle structures change significantly according to whether the temperature gradient is parallel or perpendicular to the symmetry axis of the cylinder. This indicates that the physics is not invariant with respect to 90° rotations in space of the specific forcing considered (direction of the imposed temperature gradient and associated perpendicular vibrations). Additional insights into the problem are obtained by assessing separately the influence played by the time-averaged (mean) and oscillatory effects. According to the numerical results, the intriguing diversity of particle agglomerates results from the different role or importance played by (curved or straight) boundaries in constraining particles and from the different structure and topology of the resulting macroscopic (large-scale) thermovibrational flow oscillating in time at the same frequency of the imposed vibrations.
Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik
2012-08-16
The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.
NASA Astrophysics Data System (ADS)
Yunker, Peter J.; Zhang, Zexin; Gratale, Matthew; Chen, Ke; Yodh, A. G.
2013-03-01
We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding "shadow" glassy clusters, with the same geometric configuration and interactions as the "source" cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.
DSPI technique for nanometer vibration mode measurement
NASA Astrophysics Data System (ADS)
Yue, Kaiduan; Jia, Shuhai; Tan, Yushan
2000-05-01
A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.
Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry
NASA Astrophysics Data System (ADS)
Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo
2008-12-01
In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.
[Short-term memory characteristics of vibration intensity tactile perception on human wrist].
Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo
2014-12-25
In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bijumon, Pazhoor Varghese; Sebastian, Mailadil Thomas; Dias, Anderson
2005-05-15
Complex perovskite-type Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] (0{<=}x{<=}5) ceramics were prepared by conventional solid-state ceramic route. The crystal structure, microwave dielectric properties, and vibrational spectroscopic characteristics of these materials are reported. The structure and microstructure were investigated by x-ray diffraction and scanning electron microscopy techniques. The microwave dielectric properties were measured in the 3-5-GHz frequency range by the resonance method. Structural evolutions from orthorhombic to an averaged pseudocubic phase, with associated changes in dielectric properties, were observed as a function of composition. The structure-property relationships in these ceramics were established using Raman and Fourier transform infrared spectroscopic techniques. Ramanmore » analysis showed characteristic bands of ordered perovskite materials, with variation in both intensity and frequency as a function of composition.« less
Vibrations of a Marine Propeller Operating in a Nonuniform Inflow.
1980-04-01
Expanded Blade Midsurface ......... ........................ ... 73 16 - Calculated Normalized Propeller RMS Vibration Velocity as a Function of...averaged over the blade midsurface ), rather thaft the maximum velocities near the blade tip. Then, for the two test propellers, the rms nonuniform inflow...time- averaged midsurface of the blade, then the instantaneous position S of the vibrating midsurface is _S (ric)+ qct S(r,c,t) = (rc) + q(t) i(rc
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2017-02-01
Nowadays, the vibration analysis of rotating machine signals is a well-established methodology, rooted on powerful tools offered, in particular, by the theory of cyclostationary (CS) processes. Among them, the squared envelope spectrum (SES) is probably the most popular to detect random CS components which are typical symptoms, for instance, of rolling element bearing faults. Recent researches are shifted towards the extension of existing CS tools - originally devised in constant speed conditions - to the case of variable speed conditions. Many of these works combine the SES with computed order tracking after some preprocessing steps. The principal object of this paper is to organize these dispersed researches into a structured comprehensive framework. Three original features are furnished. First, a model of rotating machine signals is introduced which sheds light on the various components to be expected in the SES. Second, a critical comparison is made of three sophisticated methods, namely, the improved synchronous average, the cepstrum prewhitening, and the generalized synchronous average, used for suppressing the deterministic part. Also, a general envelope enhancement methodology which combines the latter two techniques with a time-domain filtering operation is revisited. All theoretical findings are experimentally validated on simulated and real-world vibration signals.
Active vibration control of structures undergoing bending vibrations
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)
1995-01-01
An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.
Vibrationally averaged dipole moments of methane and benzene isotopologues.
Arapiraca, A F C; Mohallem, J R
2016-04-14
DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C6H3D3 is about twice as large as the measured dipole moment of C6H5D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.
Analysis of the Effects of Surface Pitting and Wear on the Vibrations of a Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Polyshchuk, V.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure to simulate and analyze the vibrations in a gear transmission system with surface pitting, 'wear' and partial tooth fracture of the gear teeth is presented. An analytical model was developed where the effects of surface pitting and wear of the gear tooth were simulated by phase and magnitude changes in the gear mesh stiffness. Changes in the gear mesh stiffness were incorporated into each gear-shaft model during the global dynamic simulation of the system. The overall dynamics of the system were evaluated by solving for the transient dynamics of each shaft system simultaneously with the vibration of the gearbox structure. In order to reduce the number of degrees-of-freedom in the system, a modal synthesis procedure was used in the global transient dynamic analysis of the overall transmission system. An FFT procedure was used to transform the averaged time signal into the frequency domain for signature analysis. In addition, the Wigner-Ville distribution was also introduced to examine the gear vibration in the joint time frequency domain for vibration pattern recognition. Experimental results obtained from a gear fatigue test rig at NASA Lewis Research Center were used to evaluate the analytical model.
Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution.
Yang, Ming; Szyc, Łukasz; Röttger, Katharina; Fidder, Henk; Nibbering, Erik T J; Elsaesser, Thomas; Temps, Friedrich
2011-05-12
N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).
You, Wei; Cretu, Edmond; Rohling, Robert
2013-11-01
This paper investigates a low computational cost, super-resolution ultrasound imaging method that leverages the asymmetric vibration mode of CMUTs. Instead of focusing on the broadband received signal on the entire CMUT membrane, we utilize the differential signal received on the left and right part of the membrane obtained by a multi-electrode CMUT structure. The differential signal reflects the asymmetric vibration mode of the CMUT cell excited by the nonuniform acoustic pressure field impinging on the membrane, and has a resonant component in immersion. To improve the resolution, we propose an imaging method as follows: a set of manifold matrices of CMUT responses for multiple focal directions are constructed off-line with a grid of hypothetical point targets. During the subsequent imaging process, the array sequentially steers to multiple angles, and the amplitudes (weights) of all hypothetical targets at each angle are estimated in a maximum a posteriori (MAP) process with the manifold matrix corresponding to that angle. Then, the weight vector undergoes a directional pruning process to remove the false estimation at other angles caused by the side lobe energy. Ultrasound imaging simulation is performed on ring and linear arrays with a simulation program adapted with a multi-electrode CMUT structure capable of obtaining both average and differential received signals. Because the differential signals from all receiving channels form a more distinctive temporal pattern than the average signals, better MAP estimation results are expected than using the average signals. The imaging simulation shows that using differential signals alone or in combination with the average signals produces better lateral resolution than the traditional phased array or using the average signals alone. This study is an exploration into the potential benefits of asymmetric CMUT responses for super-resolution imaging.
Vibration testing and analysis using holography
NASA Technical Reports Server (NTRS)
1971-01-01
Time average holography is useful in recording steady state vibrational mode patterns. Phase relationships under steady state conditions are measured with real time holography and special phase shifting techniques. Data from Michelson interferometer verify vibration amplitudes from holographic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Álvarez-Valtierra, Leonardo, E-mail: leoav@fisica.ugto.mx, E-mail: gmerino@mda.cinvestav.mx
2015-09-07
The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, butmore » it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent –OH and –OCH{sub 3} groups plays a major role in these dynamics.« less
NASA Astrophysics Data System (ADS)
Bouhaj, M.; von Estorff, O.; Peiffer, A.
2017-09-01
In the application of Statistical Energy Analysis "SEA" to complex assembled structures, a purely predictive model often exhibits errors. These errors are mainly due to a lack of accurate modelling of the power transmission mechanism described through the Coupling Loss Factors (CLF). Experimental SEA (ESEA) is practically used by the automotive and aerospace industry to verify and update the model or to derive the CLFs for use in an SEA predictive model when analytical estimates cannot be made. This work is particularly motivated by the lack of procedures that allow an estimate to be made of the variance and confidence intervals of the statistical quantities when using the ESEA technique. The aim of this paper is to introduce procedures enabling a statistical description of measured power input, vibration energies and the derived SEA parameters. Particular emphasis is placed on the identification of structural CLFs of complex built-up structures comparing different methods. By adopting a Stochastic Energy Model (SEM), the ensemble average in ESEA is also addressed. For this purpose, expressions are obtained to randomly perturb the energy matrix elements and generate individual samples for the Monte Carlo (MC) technique applied to derive the ensemble averaged CLF. From results of ESEA tests conducted on an aircraft fuselage section, the SEM approach provides a better performance of estimated CLFs compared to classical matrix inversion methods. The expected range of CLF values and the synthesized energy are used as quality criteria of the matrix inversion, allowing to assess critical SEA subsystems, which might require a more refined statistical description of the excitation and the response fields. Moreover, the impact of the variance of the normalized vibration energy on uncertainty of the derived CLFs is outlined.
Effects of train noise and vibration on human heart rate during sleep: an experimental study.
Croy, Ilona; Smith, Michael G; Waye, Kerstin Persson
2013-05-28
Transportation of goods on railways is increasing and the majority of the increased numbers of freight trains run during the night. Transportation noise has adverse effects on sleep structure, affects the heart rate (HR) during sleep and may be linked to cardiovascular disease. Freight trains also generate vibration and little is known regarding the impact of vibration on human sleep. A laboratory study was conducted to examine how a realistic nocturnal railway traffic scenario influences HR during sleep. Case-control. Healthy participants. 24 healthy volunteers (11 men, 13 women, 19-28 years) spent six consecutive nights in the sleep laboratory. All participants slept during one habituation night, one control and four experimental nights in which train noise and vibration were reproduced. In the experimental nights, 20 or 36 trains with low-vibration or high-vibration characteristics were presented. Polysomnographical data and ECG were recorded. The train exposure led to a significant change of HR within 1 min of exposure onset (p=0.002), characterised by an initial and a delayed increase of HR. The high-vibration condition provoked an average increase of at least 3 bpm per train in 79% of the participants. Cardiac responses were in general higher in the high-vibration condition than in the low-vibration condition (p=0.006). No significant effect of noise sensitivity and gender was revealed, although there was a tendency for men to exhibit stronger HR acceleration than women. Freight trains provoke HR accelerations during sleep, and the vibration characteristics of the trains are of special importance. In the long term, this may affect cardiovascular functioning of persons living close to railways.
Effects of train noise and vibration on human heart rate during sleep: an experimental study
Croy, Ilona; Smith, Michael G; Waye, Kerstin Persson
2013-01-01
Objectives Transportation of goods on railways is increasing and the majority of the increased numbers of freight trains run during the night. Transportation noise has adverse effects on sleep structure, affects the heart rate (HR) during sleep and may be linked to cardiovascular disease. Freight trains also generate vibration and little is known regarding the impact of vibration on human sleep. A laboratory study was conducted to examine how a realistic nocturnal railway traffic scenario influences HR during sleep. Design Case–control. Setting Healthy participants. Participants 24 healthy volunteers (11 men, 13 women, 19–28 years) spent six consecutive nights in the sleep laboratory. Interventions All participants slept during one habituation night, one control and four experimental nights in which train noise and vibration were reproduced. In the experimental nights, 20 or 36 trains with low-vibration or high-vibration characteristics were presented. Primary and secondary outcome measures Polysomnographical data and ECG were recorded. Results The train exposure led to a significant change of HR within 1 min of exposure onset (p=0.002), characterised by an initial and a delayed increase of HR. The high-vibration condition provoked an average increase of at least 3 bpm per train in 79% of the participants. Cardiac responses were in general higher in the high-vibration condition than in the low-vibration condition (p=0.006). No significant effect of noise sensitivity and gender was revealed, although there was a tendency for men to exhibit stronger HR acceleration than women. Conclusions Freight trains provoke HR accelerations during sleep, and the vibration characteristics of the trains are of special importance. In the long term, this may affect cardiovascular functioning of persons living close to railways. PMID:23793667
Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted.
Zhai, Ke; He, Qing; Li, Liang; Ren, Yi
2017-09-01
Chemical mechanical polishing (CMP) is the primary method to realize the global planarization of silicon wafer. In order to improve this process, a novel method which combined megasonic vibration to assist chemical mechanical polishing (MA-CMP) is developed in this paper. A matching layer structure of polishing head was calculated and designed. Silicon wafers are polished by megasonic assisted chemical mechanical polishing and traditional chemical mechanical polishing respectively, both coarse polishing and precision polishing experiments were carried out. With the use of megasonic vibration, the surface roughness values Ra reduced from 22.260nm to 17.835nm in coarse polishing, and the material removal rate increased by approximately 15-25% for megasonic assisted chemical mechanical polishing relative to traditional chemical mechanical polishing. Average Surface roughness values Ra reduced from 0.509nm to 0.387nm in precision polishing. The results show that megasonic assisted chemical mechanical polishing is a feasible method to improve polishing efficiency and surface quality. The material removal and finishing mechanisms of megasonic vibration assisted polishing are investigated too. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dawes, Richard; Van Der Avoird, Ad
2012-06-01
The conclusion from microwave spectra by Nelson, Fraser, and Klemperer that the ammonia dimer has a nearly cyclic structure led to much debate about the issue of whether (NH_3)_2 is hydrogen bonded. This structure was surprising because most {ab initio} calculations led to a classical, nearly linear, hydrogen-bonded structure. An obvious explanation of the discrepancy between the outcome of these calculations and the microwave data which led Nelson {et al.} to their ``surprising structure'' might be the effect of vibrational averaging: the electronic structure calculations focus on finding the minimum of the intermolecular potential, the experiment gives a vibrationally averaged structure. Isotope substitution studies seemed to indicate, however, that the complex is nearly rigid. Additional data became available from high-resolution molecular beam far-infrared spectroscopy in the Saykally group. These spectra, displaying large tunneling splittings, indicate that the complex is very floppy. The seemingly contradictory experimental data were explained when it became possible to calculate the vibration-rotation-tunneling (VRT) states of the complex on a six-dimensional intermolecular potential surface. The potential used was a simple model potential, with parameters fitted to the far-infrared data. Now, for the first time, a six-dimensional potential was computed by high level {ab initio} methods and this potential will be used in calculations of the VRT states of (NH_3)_2 and (ND_3)_2. So, we will finally be able to answer the question whether the conclusions from the model calculations are indeed a valid explanation of the experimental data. D. Nelson, G. T. Fraser, and W. Klemperer J. Chem. Phys. 83 6201 (1985) J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake J. Chem. Phys. 97 4727 (1992) E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer J. Chem. Phys. 101 8430 (1994) E. H. T. Olthof, A. van der Avoird, P. E. S. Wormer, J. G. Loeser, and R. J. Saykally J. Chem. Phys. 101 8443 (1994)
Vibrationally averaged dipole moments of methane and benzene isotopologues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arapiraca, A. F. C.; Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG; Mohallem, J. R., E-mail: rachid@fisica.ufmg.br
DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice ofmore » appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.« less
Balakrishnan, Gurusamy; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K
2018-05-17
Methionine oxidation is a major degradation pathway in therapeutic proteins which can impact the structure and function of proteins as well as risk to drug product quality. Detecting Met oxidation in proteins by peptide mapping followed by liquid chromatography with mass spectrometry (LC-MS) is the industry standard but is also labor intensive and susceptible to artifacts. In this work, vibrational difference spectroscopy in combination with 18 O isotopic shift enabled us to demonstrate the application of Raman and FTIR techniques for the detection and quantification of Met oxidation in various therapeutic proteins, including mAbs, fusion proteins, and antibody drug conjugate. Vibrational markers of Met oxidation products, such as sulfoxide and sulfone, corresponding to S═O and C-S═O stretching frequencies were unequivocally identified based 18 O isotoptic shifts. The intensity of the isolated νC-S Raman band at 702 cm -1 was successfully applied to quantify the average Met oxidation level in multiple proteins. These results are further corroborated by oxidation levels measured by tryptic peptide mapping, and thus the confirmed Met oxidation levels derived from Raman and mass spectrometry are indeed consistent with each other. Thus, we demonstrate the broader application of vibrational spectroscopy to detect the subtle spectral changes associated with various chemical or physical degradation of proteins, including Met oxidation as well as higher order structural changes.
Simulation of Surface Pressure Induced by Vortex/Body Interaction
NASA Astrophysics Data System (ADS)
He, M.; Islam, M.; Veitch, B.; Bose, N.; Colbourne, M. B.; Liu, P.
When a strong vortical wake impacts a structure, the pressure on the impacted surface sees large variations in its amplitude. This pressure fluctuation is one of the main sources causing severe structural vibration and hydrodynamic noise. Economical and effective prediction methods of the fluctuating pressure are required by engineers in many fields. This paper presents a wake impingement model (WIM) that has been incorporated into a panel method code, Propella, and its applications in simulations of a podded propeller wake impacting on a strut. Simulated strut surface pressure distributions and variations are compared with experimental data in terms of time-averaged components and phase-averaged components. The pressure comparisons show that the calculated results are in a good agreement with experimental data.
Vibration sensing method and apparatus
Barna, B.A.
1989-04-25
A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.
Vibration sensing method and apparatus
Barna, B.A.
1987-07-07
A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.
Vibration sensing method and apparatus
Barna, Basil A.
1989-04-25
A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
NASA Astrophysics Data System (ADS)
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5]. Preliminary results indicate that parametric methods are capable of sufficiently providing the structural/modal characteristics such as natural frequencies and damping ratios. The study also aims - at a further level of investigation - to provide a reliable statistically-based methodology for structural health monitoring after major seismic events which potentially cause harming consequences in structures. Acknowledgments This work was supported by the State Scholarships Foundation of Hellas. References [1] J. S. Sakellariou and S. D. Fassois, "Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation," Journal of Sound and Vibration, vol. 297, pp. 1048-1067, 2006. [2] G. Hloupis, I. Papadopoulos, J. P. Makris, and F. Vallianatos, "The South Aegean seismological network - HSNC," Adv. Geosci., vol. 34, pp. 15-21, 2013. [3] F. P. Pentaris, J. Stonham, and J. P. Makris, "A review of the state-of-the-art of wireless SHM systems and an experimental set-up towards an improved design," presented at the EUROCON, 2013 IEEE, Zagreb, 2013. [4] S. D. Fassois, "Parametric Identification of Vibrating Structures," in Encyclopedia of Vibration, S. G. Braun, D. J. Ewins, and S. S. Rao, Eds., ed London: Academic Press, London, 2001. [5] S. D. Fassois and J. S. Sakellariou, "Time-series methods for fault detection and identification in vibrating structures," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 411-448, February 15 2007.
Genetic Optimization of a Tensegrity Structure
NASA Technical Reports Server (NTRS)
Taylor, Jaime R.
2002-01-01
Marshall Space Flight Center (MSFC) is charged with developing advanced technologies for space telescopes. The next generation of space optics will be very large and lightweight. Tensegrity structures are built of compressive members (bars), and tensile members (strings). For most materials, the tensile strength of a longitudinal member is larger than its buckling strength; therefore a large stiffness to mass ratio can be achieved by increasing the use of tensile members. Tensegrities are the epitome of lightweight structures, since they take advantage of the larger tensile strength of materials. The compressive members of tensegrity structures are disjoint allowing compact storage of the structure. The structure has the potential to eliminate the requirement for assembly by man in space; it can be deployed by adjustments in its cable tension. A tensegrity structure can be more reliably modeled since none of the individual members experience bending moments. (Members that experience deformation in more than one dimension are much harder to model.) A. Keane and S. Brown designed a satellite boom truss system with an enhanced vibration performance. They started with a standard truss system, then used a genetic algorithm to alter the design, while optimizing the vibration performance. An improvement of over 20,000% in frequency-averaged energy levels was obtained using this approach. In this report an introduction to tensegrity structures is given, along with a description of how to generate the nodal coordinates and connectivity of a multiple stage cylindrical tensegrity structure. A description of how finite elements can be used to develop a stiffness and mass matrix so that the modes of vibration can be determined from the eigenvalue problem is shown. A brief description of a micro genetic algorithm is then presented.
Active Narrow-Band Vibration Isolation of Large Engineering Structures
NASA Technical Reports Server (NTRS)
Rahman, Zahidul; Spanos, John
1994-01-01
We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.
Damage localization of marine risers using time series of vibration signals
NASA Astrophysics Data System (ADS)
Liu, Hao; Yang, Hezhen; Liu, Fushun
2014-10-01
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
[Vibration disease: hygienic and medical aspects].
Rusanova, D V; Kuleshova, M V; Katamanova, E V; Kartapoltseva, N V; Pankov, V A; Lakhman, O L; Kazakova, P V; Kuptsova, N G
The hygienic assessment of working conditions of employees exposed to local vibration established that working conditions for employees ofvibration dangerous occupations at the aircraft plant according to the degree from a health standpoint and hazard are referred to the fourth (dangerous) class of the degree of danger that stipulates stable high levels of the morbidity rate. The leading factor is a local vibration that results in the consistently high levels of occupational morbidity rate. There was shown the efficiency of the use of the pulsed magnetic stimulation in the treatment ofpatients with vibration disease associated with the exposure to local vibration. For the evaluation of the effectiveness of treatment in patients the condition of the central nervous system was determined with the use of computer electroencephalography with the registration of visual and auditory evoked potentials and somatosensory evoked potentials; there was studied the state of the peripheral nerves in arms and legs relying upom electromyographic data; there was performed psychological study. After the performance of pulse magnetic stimulation in patients diagnosed to have the vibration diseases there were observed the improvement in the interaction of cortical-subcortical structures and associative areas of the frontal and temporal lobes of the brain. After treatment there was noted the shortening of the time of the conduction of the afferent wave of the excitation at the level of the cervical spinal cord, subcortical structures and the central conduction time. There was restored previously reduced the speed of the conduction of the impulse via the distal parts of the tibial and median nerve, through the ulnar nerve in the area of the elbow joint. There was noted the rise in the average temperature on the hands; the decline of thresholds of vibration and pain sensitivity; the improvement of indices characterizing of the state of mnestic- attentional and psycho-emotional scope of activity.
Experiments In Characterizing Vibrations Of A Structure
NASA Technical Reports Server (NTRS)
Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.
1993-01-01
Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).
Microgravity Vibration Control and Civil Applications
NASA Technical Reports Server (NTRS)
Whorton, Mark Stephen; Alhorn, Dean Carl
1998-01-01
Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.
Behavior of a Light Solid in a Rotating Horizontal Cylinder with Liquid Under Vibration
NASA Astrophysics Data System (ADS)
Karpunin, I. E.; Kozlova, A. N.; Kozlov, N. V.
2018-06-01
Dynamics of a cylindrical body in a rotating cavity is experimentally studied under transversal translational vibrations of the cavity rotation axis. Experiments are run at high rotation rate, when under the action of centrifugal force the body shifts to the rotation axis (the centrifuged state). In the absence of vibrations, the lagging rotation of the body is observed, due to the body radial shift from the axis of rotation caused by gravity. The body average rotation regime depends on the cavity rotation rate. The vibrations lead to the excitation of different regimes of body differential rotation (leading or lagging) associated with the excitation of its inertial oscillations. The dependence of the differential speed of the body rotation on the vibration frequency is investigated. The body dynamics has a complex character depending on the dimensionless vibration frequency. The analysis of body oscillation trajectory revealed that the body oscillatory motion consists of several modes, which contribute to the averaged dynamics of the body and the flows in the cavity.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Anand; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 453331; Rajpoot, Rambabu
2016-05-23
Transition metal Cu{sup 2+} doped Mg-Zn ferrite [Mg{sub 0.5}Zn{sub 0.5-x}Cu{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} is found to be ~29.8 nm and is found to increase with Cu{sup 2+} doping. Progressive reduction in lattice parameter of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference inmore » ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu{sup 2+}.« less
NASA Astrophysics Data System (ADS)
Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Saddam Khairuddin, Amir
2017-03-01
This paper presents the study on vibration and surface roughness of Inconel 718 workpiece produced by micro end-milling using Mikrotools Integrated Multi-Process machine tool DT-110 with control parameters; spindle speed (15000 rpm and 30000 rpm), feed rate (2 mm/min and 4 mm/min) and depth of cut (0.10 mm and 0.15mm). The vibration was measured using DYTRAN accelerometer instrument and the average surface roughness Ra was measured using Wyko NT1100. The analysis of variance (ANOVA) by using Design Expert software revealed that feed rate and depth of cut are the most significant factors on vibration meanwhile for average surface roughness, Ra, spindle speed is the most significant factor.
Structure-borne noise at hotels
NASA Astrophysics Data System (ADS)
Wilson, George Paul; Jue, Deborah A.
2002-11-01
Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.
Chemical and biological sensing using tuning forks
Tao, Nongjian; Boussaad, Salah
2012-07-10
A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure
NASA Astrophysics Data System (ADS)
Lü, Shulin; Yang, Xiong; Hao, Liangyan; Wu, Shusen; Fang, Xiaogang; Wang, Jing
2018-05-01
In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheo-squeeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and α-Mg matrix in Mg96.9Zn1Y2Zr0.1 alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to 4.3 μm. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast Mg96.9Zn1Y2Zr0.1 alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine α-Mg matrix (α1-Mg and α2-Mg grains) and LPSO structure.
NASA Astrophysics Data System (ADS)
Wang, Yuxi; Niu, Shengkai; Hu, Yuantai
2017-06-01
The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2014-11-01
Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
Fluid Flow Nozzle Energy Harvesters
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkenmeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-01-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
Development of a Practical Broadband Active Vibration Control System
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.
2011-01-01
The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
2011-01-01
based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an
Vibrational Responses Of Structures To Impulses
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1990-01-01
Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
Electron- and photon-impact ionization of furfural
NASA Astrophysics Data System (ADS)
Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.
2015-11-01
The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.
Zabłocka-Słowińska, Katarzyna; Limburska, Joanna; Prescha, Anna; Pieczyńska, Joanna; Tomczyk, Jarosław; Grajeta, Halina
2011-01-01
Occupational exposure of workers to mechanical hand transmitted vibrations may result in the development of nonspecific lesions. Balanced diet is one of factors that protect human organism against abnormalities resulting from occupational exposure. The aim of this study was to assess the supply of energy and macronutrients in daily food rations (DFR) of people exposed to hand transmitted vibration. Eighty workers, including 37 men (mean age 44.6 years) and 43 women (mean age 44 years) exposed to hand transmitted vibrations were recruited in this study. Of those, 72 people worked in crystal glassworks as glass cutters, 5 people were physiotherapists and 3 were woodcutters. For all workers, there was measured exposure to hand transmitted vibration. Nutritional status was assessed using 24-hour dietary recall; the procedure was repeated 3 times. The results of the nutritional assessment were compared with recommended daily allowances (RDA) for energy, protein, minerals and vitamins, total carbohydrates, total fat, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), cholesterol and dietary fibre. The average intake of energy in daily food rations of the women was too low while men received the appropriate amount of energy. Average protein intake by men and women was higher than the relevant RDA. The average amount of carbohydrates received by the surveyed women and men were too low, just as the consumption of PUFA, dietary fibre, potassium and calcium. We also found an excessive, average supply of total fat, MUFA, SFA, cholesterol and most of the vitamins with the DFR of the women and men. The nutrition in the group of workers exposed to hand transmitted vibration was found to be imbalanced due to excessive intakes of total fat, saturated fatty acids and cholesterol combined with insufficient consumption of carbohydrates, dietary fibres, potassium and calcium. The co-occurrence of vibration and imbalanced diet may increase the susceptibility of the subjects to cardiovascular and bone diseases.
Vibrational contribution to molecular polarizabilities and hyperpolarizabilities
NASA Astrophysics Data System (ADS)
Pandey, P. K. K.; Santry, D. P.
1980-09-01
The vibrational averaging theory of Kern and Matcha is extended, at the harmonic level of approximation, to the case where the molecular property under investigation can itself lead indirectly to a perturbation of the vibrational levels of the molecule. It is found that contributions arising from this perturbation can be significant, especially for molecular hyperpolarizabilities.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.
2014-06-01
Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2014-11-01
In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-01-01
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-02-06
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Rashev, Svetoslav; Moule, David C
2012-02-15
We perform large scale converged variational vibrational calculations on S(0) formaldehyde up to very high excess vibrational energies (E(v)), E(v)∼17,000cm(-1), using our vibrational method, consisting of a specific search/selection/Lanczos iteration procedure. Using the same method we investigate the vibrational level structure and intramolecular vibrational redistribution (IVR) characteristics for various vibrational levels in this energy range in order to assess the onset of IVR. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoobler, Preston Reece; Turney, Justin Matthew; Schaefer III, Henry
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born--Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamermore » followed by the gauche-trans (0.12 kcal mol^-1 above GG), trans-gauche (0.44 kcal mol^-1), gauche'-gauche (0.47 kcal mol^-1), and trans-trans (0.57 kcal mol^-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm^-1 for the GG structure) also has a significant IR intensity, 19.6 km mol^-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r_g,0 K bond lengths, accounting for zero-point vibrations present within the molecule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp
2015-05-07
Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet typesmore » in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.« less
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Nagarajaiah, Satish
2016-06-01
Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.
Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E
1987-03-01
The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
NASA Astrophysics Data System (ADS)
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
Concorde noise-induced building vibrations: John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.
Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction
2012-09-01
fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as
NASA Astrophysics Data System (ADS)
Huang, Hong-Yi; Tsai, Ming-Tsang; Lin, King-Chuen
2006-04-01
With photolysis-probe technique, we have studied vibrational and rotational energy transfers of CH involving the B Σ-2 (v =1, 0⩽N⩽6, F) state by collisions with Ar, CO, and N2O. For the vibrational energy transfer (VET) measurements, the time-resolved fluorescence of the B-X(0,0) band is monitored following the (1,0) band excitation. For the rotational energy transfer (RET) measurements, the laser-induced fluorescence of the initially populated state is dispersed using a step-scan Fourier transform spectrometer. The time-resolved spectra obtained in the nanosecond regime may yield the RET information under a single pressure of the collider. The rate constants of intramolecular energy transfers are evaluated with simulation of kinetic models. The VET lies in the range of 4×10-12to4×10-11cm3molecule-1s-1, with efficiency following the order of Ar
Directional solidification of Pb-Sn eutectics with vibration
NASA Technical Reports Server (NTRS)
Caram, Rubens; Banan, Mohsen; Wilcox, William R.
1991-01-01
Pb-Sn eutectic alloy was directionally solidified at 1.4 to 3.2 cm/hr with forced convection induced by axial vibration of the growth ampoule with a frequency of 10 to 40 Hz and an amplitude of 0.5 to 1.0 mm. To determine the exact growth rate, an interface demarcation technique was applied. The lamellar spacing was increased 10 to 40 percent in ingots solidified with vibration compared to those solidified without vibration. The number of grain boundaries was increased by vibration. The average intensity of convection in the melt under axial vibration of the ampoule was estimated by comparing the experimental results with a theoretical model.
Image-based dynamic deformation monitoring of civil engineering structures from long ranges
NASA Astrophysics Data System (ADS)
Ehrhart, Matthias; Lienhart, Werner
2015-02-01
In this paper, we report on the vibration and displacement monitoring of civil engineering structures using a state of the art image assisted total station (IATS) and passive target markings. By utilizing the telescope camera of the total station, it is possible to capture video streams in real time with 10fps and an angular resolution of approximately 2″/px. Due to the high angular resolution resulting from the 30x optical magnification of the telescope, large distances to the object to be monitored are possible. The laser distance measurement unit integrated in the total station allows to precisely set the camera's focus position and to relate the angular quantities gained from image processing to units of length. To accurately measure the vibrations and displacements of civil engineering structures, we use circular target markings rigidly attached to the object. The computation of the targets' centers is performed by a least squares adjustment of an ellipse according to the Gauß-Helmert model from which the parameters of the ellipse and their standard deviations are derived. In laboratory experiments, we show that movements can be detected with an accuracy of better than 0.2mm for single frames and distances up to 30m. For static applications, where many video frames can be averaged, accuracies of better than 0.05mm are possible. In a field test on a life-size footbridge, we compare the vibrations measured by the IATS to reference values derived from accelerometer measurements.
A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.
Jayachandran, V; Bonilha, M W
2003-03-01
This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.
Applications of Fault Detection in Vibrating Structures
NASA Technical Reports Server (NTRS)
Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.
2012-01-01
Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.
Prediction Model for Impulsive Noise on Structures
2012-09-01
construction usually have an interior wall finish of: a) gypsum wallboard (also called plasterboard or drywall), b) plaster or c) wood paneling... Gypsum Plaster , Wall Board 11,67 0.04 NA For simply-supported beams vibrating in their fundamental mode, the value of KS is needed for...Dev of log10(f0) for wood panel interior to be average for wood walls with plaster or gypsum board interior. (8) L(w) based on estimated standard
Cejka, Jiří; Sejkora, Jiří; Plášil, Jakub; Bahfenne, Silmarilly; Palmer, Sara J; Frost, Ray L
2011-09-01
Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)·2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H⋯O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, X.; Vahdati, M.; Sayma, A.; Imregun, M.
2005-03-01
This paper describes a large-scale aeroelasticity computation for an aero-engine core compressor. The computational domain includes all 17 bladerows, resulting in a mesh with over 68 million points. The Favre-averaged Navier Stokes equations are used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model of the first two rotor bladerows is based on a standard finite element representation. The fluid mesh is moved at each time step according to the structural motion so that changes in blade aerodynamic damping and flow unsteadiness can be accommodated automatically. An efficient domain decomposition technique, where special care was taken to balance the memory requirement across processors, was developed as part of the work. The calculation was conducted in parallel mode on 128 CPUs of an SGI Origin 3000. Ten vibration cycles were obtained using over 2.2 CPU years, though the elapsed time was a week only. Steady-state flow measurements and predictions were found to be in good agreement. A comparison of the averaged unsteady flow and the steady-state flow revealed some discrepancies. It was concluded that, in due course, the methodology would be adopted by industry to perform routine numerical simulations of the unsteady flow through entire compressor assemblies with vibrating blades not only to minimise engine and rig tests but also to improve performance predictions.
Improved Technique for Finding Vibration Parameters
NASA Technical Reports Server (NTRS)
Andrew, L. V.; Park, C. C.
1986-01-01
Filtering and sample manipulation reduce noise effects. Analysis technique improves extraction of vibrational frequencies and damping rates from measurements of vibrations of complicated structure. Structural vibrations measured by accelerometers. Outputs digitized at frequency high enough to cover all modes of interest. Use of method on set of vibrational measurements from Space Shuttle, raised level of coherence from previous values below 50 percent to values between 90 and 99 percent
Lumped mass model of a 1D metastructure for vibration suppression with no additional mass
NASA Astrophysics Data System (ADS)
Reichl, Katherine K.; Inman, Daniel J.
2017-09-01
The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.
1987-01-01
Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.
Vibration and noise characteristics of an elevated box girder paved with different track structures
NASA Astrophysics Data System (ADS)
Li, Xiaozhen; Liang, Lin; Wang, Dangxiong
2018-07-01
The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.
Directional solidification of Pb-Sn eutectic with vibration
NASA Technical Reports Server (NTRS)
Caram, Rubens; Banan, Mohsen; Wilcox, William R.
1991-01-01
Pb-Sn eutectic alloy was directionally solidified at 1.4 to 3.2 cm/hr with forced convection induced by axial vibration of the growth ampoule with a frequency of 10 to 40 Hz and an amplitude of 0.5 to 1.0 mm. To determine the exact growth rate, an interface demarcation technique was applied. The lamellar spacing was increased 10 to 40 percent in ingots solidified with vibration compared to those solidified without vibration. The average intensity of convection in the melt under axial vibration of the ampoule was estimated by comparing the experimental results with a theoretical model.
Vibration characteristics of OH-58A helicopter main rotor transmission
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Coy, John J.
1987-01-01
Experimental vibration tests covering a range of torque and speed conditions were performed on the OH-58A helicopter main rotor transmission at the NASA Lewis Research Center. Signals from accelerometers located on the transmission housing were analyzed by using Fourier spectra, power spectral density functions, and averaging techniques. Most peaks of the Fourier spectra occurred at the spiral bevel and planetary gear mesh harmonics. The highest level of vibration occurred at the spiral bevel meshing frequency. Transmission speed and vibration measurement location had a significant effect on measured vibration; transmission torque and measurement direction had a small effect.
NASA Astrophysics Data System (ADS)
Ahmed, Riaz; Mir, Fariha; Banerjee, Sourav
2017-08-01
The principal objective of this article is to categorically review and compare the state of the art vibration based energy harvesting approaches. To evaluate the contemporary methodologies with respect to their physics, average power output and operational frequencies, systematically divided and easy readable tables are presented followed by the description of the energy harvesting methods. Energy harvesting is the process of obtaining electrical energy from the surrounding vibratory mechanical systems through an energy conversion method using smart structures, like, piezoelectric, electrostatic materials. Recent advancements in low power electronic gadgets, micro electro mechanical systems, and wireless sensors have significantly increased local power demand. In order to circumvent the energy demand; to allow limitless power supply, and to avoid chemical waste from conventional batteries, low power local energy harvesters are proposed for harvesting energy from different ambient energy sources. Piezoelectric materials have received tremendous interest in energy harvesting technology due to its unique ability to capitalize the ambient vibrations to generate electric potential. Their crystalline configuration allows the material to convert mechanical strain energy into electrical potential, and vice versa. This article discusses the various approaches in vibration based energy scavenging where piezoelectric materials are employed as the energy conversion medium.
An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing
NASA Astrophysics Data System (ADS)
Waluyo, T. B.; Bayuwati, D.
2017-04-01
We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.
Floor vibration evaluations for medical facilities
NASA Astrophysics Data System (ADS)
Himmel, Chad N.
2003-10-01
The structural floor design for new medical facilities is often selected early in the design phase and in renovation projects, the floor structure already exists. Because the floor structure can often have an influence on the location of vibration sensitive medical equipment and facilities, it is becoming necessary to identify the best locations for equipment and facilities early in the design process. Even though specific criteria for vibration-sensitive uses and equipment may not always be available early in the design phase, it should be possible to determine compatible floor structures for planned vibration-sensitive uses by comparing conceptual layouts with generic floor vibration criteria. Relatively simple evaluations of planned uses and generic criteria, combined with on-site vibration and noise measurements early in design phase, can significantly reduce future design problems and expense. Concepts of evaluation procedures and analyses will be presented in this paper. Generic floor vibration criteria and appropriate parameters to control resonant floor vibration and noise will be discussed for typical medical facilities and medical research facilities. Physical, economic, and logistical limitations that affect implementation will be discussed through case studies.
Influence of vibration on structure rheological properties of a highly concentrated suspension
NASA Astrophysics Data System (ADS)
Ouriev Uriev, Boris N.; Uriev, Naum B.
2005-08-01
The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Rashev, Svetoslav; Moule, David C; Rashev, Vladimir
2012-11-01
We perform converged high precision variational calculations to determine the frequencies of a large number of vibrational levels in S(0) D(2)CO, extending from low to very high excess vibrational energies. For the calculations we use our specific vibrational method (recently employed for studies on H(2)CO), consisting of a combination of a search/selection algorithm and a Lanczos iteration procedure. Using the same method we perform large scale converged calculations on the vibrational level spectral structure and fragmentation at selected highly excited overtone states, up to excess vibrational energies of ∼17,000 cm(-1), in order to study the characteristics of intramolecular vibrational redistribution (IVR), vibrational level density and mode selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Method and apparatus for determining material structural integrity
Pechersky, M.J.
1994-01-01
Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
2006-06-01
response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark
Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System
2007-08-01
Department of Aerospace S~and Mechanical Engineering I 20070904056 I EXPERIMENTS IN SOUND AND STRUCTURAL VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED...SOUND AND STRUCTURAL * VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED PROPULSION SYSTEM FINAL TECHNICAL REPORT Prepared by: Scott C. Morris Assistant...Vibration Using Air - 5b. GRANT NUMBER Analog Model Ducted Propulsion Systems N00014-1-0522 5C. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER
Effect of External Vibration on PZT Impedance Signature.
Yang, Yaowen; Miao, Aiwei
2008-11-01
Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe;
2014-01-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Flow energy piezoelectric bimorph nozzle harvester
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary
2014-04-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Investigating the ground-state rotamers of n-propylperoxy radical.
Hoobler, Preston R; Turney, Justin M; Schaefer, Henry F
2016-11-07
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol -1 above GG), trans-gauche (0.44 kcal mol -1 ), gauche'-gauche (0.47 kcal mol -1 ), and trans-trans (0.57 kcal mol -1 ). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm -1 for the GG structure) also has a significant IR intensity, 19.6 km mol -1 . The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r g,0K bond lengths, accounting for zero-point vibrations present within the molecule.
Investigating the Ground-State Rotamers of n-Propylperoxy Radical
Hoobler, Preston Reece; Turney, Justin Matthew; Schaefer III, Henry
2016-11-01
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born--Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamermore » followed by the gauche-trans (0.12 kcal mol^-1 above GG), trans-gauche (0.44 kcal mol^-1), gauche'-gauche (0.47 kcal mol^-1), and trans-trans (0.57 kcal mol^-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm^-1 for the GG structure) also has a significant IR intensity, 19.6 km mol^-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r_g,0 K bond lengths, accounting for zero-point vibrations present within the molecule.« less
Investigating the ground-state rotamers of n-propylperoxy radical
NASA Astrophysics Data System (ADS)
Hoobler, Preston R.; Turney, Justin M.; Schaefer, Henry F.
2016-11-01
The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol-1 above GG), trans-gauche (0.44 kcal mol-1), gauche'-gauche (0.47 kcal mol-1), and trans-trans (0.57 kcal mol-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm-1 for the GG structure) also has a significant IR intensity, 19.6 km mol-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged rg,0K bond lengths, accounting for zero-point vibrations present within the molecule.
Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher
NASA Technical Reports Server (NTRS)
Vu, Bruce T.
2007-01-01
A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.
Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil
In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful in proper design of earthquake resistant nuclear power plants, buildings and structures. The proposed measurement scheme is successfully tested with a microprocessor based rocking vibration arrangement and the overall performance is recorded at dynamic conditions.
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable-speed operation.
Electrical and magnetic properties of nano-sized magnesium ferrite
NASA Astrophysics Data System (ADS)
T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.
2015-02-01
Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.
Method and apparatus for determining material structural integrity
Pechersky, Martin
1996-01-01
A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
An approach to determination of shunt circuits parameters for damping vibrations
NASA Astrophysics Data System (ADS)
Matveenko; Iurlova; Oshmarin; Sevodina; Iurlov
2018-04-01
This paper considers the problem of natural vibrations of a deformable structure containing elements made of piezomaterials. The piezoelectric elements are connected through electrodes to an external electric circuit, which consists of resistive, inductive and capacitive elements. Based on the solution of this problem, the parameters of external electric circuits are searched for to allow optimal passive control of the structural vibrations. The solution to the problem is complex natural vibration frequencies, the real part of which corresponds to the circular eigenfrequency of vibrations and the imaginary part corresponds to its damping rate (damping ratio). The analysis of behaviour of the imaginary parts of complex eigenfrequencies in the space of external circuit parameters allows one to damp given modes of structure vibrations. The effectiveness of the proposed approach is demonstrated using a cantilever-clamped plate and a shell structure in the form of a semi-cylinder connected to series resonant ? circuits.
Structural sensitivity of Csbnd H vibrational band in methyl benzoate
NASA Astrophysics Data System (ADS)
Roy, Susmita; Maiti, Kiran Sankar
2018-05-01
The Csbnd H vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the Csbnd H stretch vibrations, assignment of the Csbnd H vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the Csbnd H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric Csbnd H stretch vibration of methyl group. The Csbnd D stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.
Vibration control of a cluster of buildings through the Vibrating Barrier
NASA Astrophysics Data System (ADS)
Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.
2018-02-01
A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.
Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E
2017-10-26
Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.
Design and initial validation of a wireless control system based on WSN
NASA Astrophysics Data System (ADS)
Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping
2013-04-01
At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.
Communication: Creation of molecular vibrational motions via the rotation-vibration coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Chuan-Cun; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600; Henriksen, Niels E., E-mail: neh@kemi.dtu.dk
2015-06-14
Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to amore » non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.« less
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2015-03-01
We have recently found that a long length of fiber of up to 1 km terminated with an in-fiber cavity structure can detect vibrations over a frequency range from 5 Hz to 2 kHz. We want to determine whether the sensor (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to maintenance cost. The sensor may also help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that requires the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Acoustic vibration monitoring may need sensing at even higher frequencies (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed longgauge vibration sensor depends on packaging.
Autonomous cryogenic sapphire oscillators employing low vibration pulse-tube cryocoolers at NMIJ
NASA Astrophysics Data System (ADS)
Ikegami, Takeshi; Watabe, Ken-ichi; Yanagimachi, Shinya; Takamizawa, Akifumi; Hartnett, John G.
2016-06-01
Two liquid-helium-cooled cryogenic sapphire-resonator oscillators (CSOs), have been modified to operate using cryo-refrigerators and low-vibration cryostats. The Allan deviation of the first CSO was evaluated to be better than 2 x 10-15 for averaging times of 1 s to 30 000 s, which is better than that of the original liquid helium cooled CSO. The Allan deviation of the second CSO is better than 4 x 10-15 from 1 s to 6 000 s averaging time.
Arapiraca, A F C; Jonsson, Dan; Mohallem, J R
2011-12-28
We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.
NASA Astrophysics Data System (ADS)
Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph
2009-04-01
Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.
Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators
NASA Astrophysics Data System (ADS)
Ma, Jiangang; Sheng, Meiping; Guo, Zhiwei; Qin, Qi
2018-06-01
A periodic vibration suppressor with multiple secondary oscillators is examined in this paper to reduce the low-frequency vibration. The band-gap properties of infinite periodic structure and vibration transmission properties of finite periodic structure attached with secondary oscillators with arbitrary degree of freedom are thoroughly analyzed by the plane-wave-expansion method. A simply supported plate with a periodic rectangular array of vibration suppressors is considered. The dynamic model of this periodic structure is established and the equation of harmonic vibration response is theoretically derived and numerically examined. Compared with the simply supported plate without attached suppressors, the proposed plate can obtain better vibration control, and the vibration response can be effectively reduced in several frequency bands owing to the multiple band-gap property. By analyzing the modal properties of the periodic vibration suppressors, the relationship between modal frequencies and the parameters of spring stiffness and mass is established. With the numerical results, the design guidance of the locally resonant structure with multiple secondary oscillators is proposed to provide practical guidance for application. Finally, a practical periodic specimen is designed and fabricated, and then an experiment is carried out to validate the effectiveness of periodic suppressors in the reality. The results show that the experimental band gaps have a good coincidence with those in the theoretical model, and the low-frequency vibration of the plate with periodic suppressors can be effectively reduced in the tuned band gaps. Both the theoretical results and experimental results prove that the design method is effective and the structure with periodic suppressors has a promising application in engineering.
NASA Astrophysics Data System (ADS)
Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko
2014-07-01
In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.
2018-01-01
The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138
Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations
NASA Astrophysics Data System (ADS)
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.
2018-04-01
Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.
Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi
2018-03-05
Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode-mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates. The limitations of normal mode correlation, however, foster the correlation of local vibrational modes, which offer a novel vibrational measure of similarity. It will be shown how this will open new avenues for chemical studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators
Her, Shiuh-Chuan; Lin, Chi-Sheng
2013-01-01
Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121
NASA Astrophysics Data System (ADS)
Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz
2018-02-01
This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Strzalka, J; Tronin, A
2009-01-01
We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescencemore » is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.« less
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation
NASA Astrophysics Data System (ADS)
Turco, E.; Gardonio, P.
2017-10-01
This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.
Full-scale investigation of wind-induced vibrations of mast-arm traffic signal structures.
DOT National Transportation Integrated Search
2014-08-01
Because of their inherent : fl : exibility and low damping ratios, cantilevered mast : - : arm : tra : ffi : c signal structures are suscepti : b : le to : wind : - : induced vibrations. : These vibrations : cause stru : ctural stresses and strains t...
NASA Astrophysics Data System (ADS)
Wang, Chun-Hsiung; Chiu, Shih-Yung; Hsu, Yu-Hsiang; Lee, Shu-Sheng; Lee, Chih-Kung
2017-06-01
A non-contact arterial-induced skin vibration inspection system is implemented. This optical metrology system is constructed with shadow Moiré configuration and the fringe analysis algorithm. Developed with the Region of Interested (ROI) capturing technique and the Two-dimensional Wavelet Transform (2D-CWT) method, this algorithm is able to retrieve the height-correlated phase information from the shadow Moiré fringe patterns. Using a commercial video camera or a CMOS image sensor, this system could monitor the skin-vibration induced by the cyclic deformation of inner layered artery. The cross-sectional variation and the rhythm of heart cycle could be continuously measured for health monitoring purposes. The average vibration amplitude of the artery at the wrist ranges between 20 μm and 50 μm, which is quite subtle comparing with the skin surface structure. Having the non-stationary motion of human body, the traditional phase shifting (PS) technique can be very unstable due to the requirement of several frames of images, especially for case that artery is continuously pumping. To bypass this fundamental issue, the shadow Moiré technique is introduced to enhance the surface deformation characteristic. And the phase information is retrieved by the means of spectrum filtering instead of PS technique, which the phase is calculated from intensity maps of multiple images. The instantaneous surface can therefore be reconstructed individually from each frame, enabling the subtle arterial-induced skin vibration measurement. The comparative results of phase reconstruction between different fringe analysis algorithms will be demonstrated numerically and experimentally. And the electrocardiography (ECG) results will used as the reference for the validity of health monitoring potential of the non-contact arterial-induced skin vibration inspection system.
Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting
NASA Astrophysics Data System (ADS)
Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy
2018-06-01
Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.
Fiber-Optic Bragg Gratings and Optical Holography Compared as Vibration Detectors
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory
2003-01-01
The NASA Glenn Research Center is interested in determining structural damage in engine components during flight to evaluate the health of aerospace propulsion systems. On the ground, we can use holography to detect structural damage by examining the characteristic mode shapes and frequencies of vibrating objects. We are studying the feasibility of using embedded fiber Bragg gratings (FBGs) to accomplish this goal in a flight-worthy system, by using the minimal intrusion and high sensitivity afforded by fiber optics. We have recently compared holographically imaged modes of vibrating plates with the corresponding dynamic strains detected by embedded FBGs. We constructed an experimental setup for studying the responses of FBGs to dynamic excitations. One of the plates was made of a polymer matrix composite (PMC) with an FBG embedded in it, and the other one was made of copper with surface-mounted FBGs. The instrumented plates were mounted and vibrated, and time-averaged holography was used to measure their surface displacements. Simultaneously, the signals from the FBGs were detected and sent via fiber-optic cable to a quiet location about 20 m away for interrogation. The the test configuration used for the PMC plate is shown. Experimental results are also shown. The FBG was embedded in the middle of the PMC plates, roughly within the center circular fringe in each of the interferograms shown. Two resonant excitation frequencies were used: 706 and 3062 Hz. The plot in this paper shows a larger FBG signal at the higher frequency; this is because the plate bends more at higher order resonant modes, causing higher strain. This contrasts to the smaller displacements characteristic of higher frequencies, which are measured by holographic techniques.
Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna
NASA Astrophysics Data System (ADS)
He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang
2018-03-01
The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.
Planning, creating and documenting a NASTRAN finite element model of a modern helicopter
NASA Technical Reports Server (NTRS)
Gabal, R.; Reed, D.; Ricks, R.; Kesack, W.
1985-01-01
Mathematical models based on the finite element method of structural analysis as embodied in the NASTRAN computer code are widely used by the helicopter industry to calculate static internal loads and vibration of airframe structure. The internal loads are routinely used for sizing structural members. The vibration predictions are not yet relied on during design. NASA's Langley Research Center sponsored a program to conduct an application of the finite element method with emphasis on predicting structural vibration. The Army/Boeing CH-47D helicopter was used as the modeling subject. The objective was to engender the needed trust in vibration predictions using these models and establish a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process.
Collisional quenching dynamics and reactivity of highly vibrationally excited molecules
NASA Astrophysics Data System (ADS)
Liu, Qingnan
Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine molecules with HOD are reported. Lower limits to the overall collision rate are directly determined from experimental measurements and compared to Lennard-Jones models which underestimate the collision rate for highly vibrationally excited azabenzenes with HOD. The fourth study explores reactive collisions of highly vibrationally excited pyridine molecules. D-atom abstraction reactions of highly vibrationally excited pyridine-d5 molecules and chlorine radical show a rate enhancement of ˜90 relative to the reaction of room temperature pyridine-d5 with chlorine radical. A single quantum of C-D stretching vibration is observed to be used for the vibrational driven reaction. Reactions of 2-picoline-d3 with chlorine radical do not show a similar enhancement. For this case, the fast rotation of --CD3 group in highly vibrationally excited 2-picoline-d3 inhibits the D-atom abstraction.
Choi, Dong-Min; Kim, Jin-Woo; Park, Se-Hee; Cho, Kyung-Mo; Kwak, Sang Won; Kim, Hyeon-Cheol
2017-07-01
This study aimed to compare the vibration generated by several nickel-titanium (NiTi) file systems and transmitted to teeth under 2 different motions (continuous rotation motion and reciprocating motion). Sixty J-shaped resin blocks (Endo Training Bloc-J; Dentsply Maillefer, Ballaigues, Switzerland) were trimmed to a root-shaped form and divided into 2 groups according to the types of electric motors: WaveOne motor (WOM, Dentsply Maillefer) and X-Smart Plus motor (XSM, Dentsply Maillefer). Each group was further subdivided into 3 subgroups (n = 10 each) according to the designated file systems: ProTaper Next (PTN, Dentsply Maillefer), ProTaper Universal (PTU, Dentsply Maillefer), and WaveOne (WOP, Dentsply Maillefer) systems. Vibration was measured during the pecking motion using an accelerometer attached to a predetermined consistent position. The average vibration values were subjected to 2-way analysis of variance as well as the t test and Duncan test for post hoc comparison at the 95% confidence interval. Both motor types and instrument types produced significantly different ranges of average vibrations. Regardless of the instrument types, the WOM group generated greater vibration than the XSM group (P < .05). Although PTN and PTU did not show significant differences, the WOP group showed significantly greater vibration than the other groups regardless of motor types (P < .05). Under the limitations of this study design, the reciprocating NiTi file system may generate greater vibration than the continuous rotation NiTi file systems. The motor type also has a significant effect to amplify the vibrations. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Olthof, E. H. T.; van der Avoird, A.; Wormer, P. E. S.
1994-11-01
We have obtained a potential for (NH3)2 by calculating the six-dimensional vibra- tion-rotation-tunneling (VRT) states from a model potential with some variable parameters, and adjusting some calculated transition frequencies to the observed far-infrared spectrum. The equilibrium geometry is strongly bent away from a linear hydrogen bonded structure. Equivalent minima with the proton donor and acceptor interchanged are separated by a barrier of only 7 cm-1. The barriers to rotation of the monomers about their C3 axes are much higher. The VRT levels from this potential agree to about 0.25 cm-1 with all far-infrared frequencies of (NH3)2 observed for K=0, ‖K‖=1, and ‖K‖=2 and for all the symmetry species: Ai=ortho-ortho, Ei=para-para, and G=ortho-para. Moreover, the dipole moments and the nuclear quadrupole splittings agree well with the values that are observed for the G states. The potential has been explicitly transformed to the center-of-mass coordinates of (ND3)2 and used to study the effects of the deuteration on the VRT states. The observed decrease of the dipole moment and the (small) changes in the nuclear quadrupole splittings are well reproduced. It follows from our calculations that the ammonia dimer is highly nonrigid and that vibrational averaging effects are essential. Seemingly contradictory effects of this averaging on its properties are the consequence of the different hindered rotor behavior of ortho and para monomers.
Vibration Propagation in Spider Webs
NASA Astrophysics Data System (ADS)
Hatton, Ross; Otto, Andrew; Elias, Damian
Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.
NASA Technical Reports Server (NTRS)
Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)
1992-01-01
Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.
Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2015-05-01
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
Soft Vibrational Modes Predict Breaking Events during Force-Induced Protein Unfolding.
Habibi, Mona; Plotkin, Steven S; Rottler, Jörg
2018-02-06
We investigate the correlation between soft vibrational modes and unfolding events in simulated force spectroscopy of proteins. Unfolding trajectories are obtained from molecular dynamics simulations of a Gō model of a monomer of a mutant of superoxide dismutase 1 protein containing all heavy atoms in the protein, and a normal mode analysis is performed based on the anisotropic network model. We show that a softness map constructed from the superposition of the amplitudes of localized soft modes correlates with unfolding events at different stages of the unfolding process. Soft residues are up to eight times more likely to undergo disruption of native structure than the average amino acid. The memory of the softness map is retained for extensions of up to several nanometers, but decorrelates more rapidly during force drops. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C
2009-12-01
The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less
Clement, Ryan S; Unger, Erica L; Ocón-Grove, Olga M; Cronin, Thomas L; Mulvihill, Maureen L
2016-01-01
Blood collection is commonplace in biomedical research. Obtaining sufficient sample while minimizing animal stress requires significant skill and practice. Repeated needle punctures can cause discomfort and lead to variable release of stress hormones, potentially confounding analysis. We designed a handheld device to reduce the force necessary for needle insertion by using low-frequency, axial (forward and backward) micromotions (that is, vibration) delivered to the needle during venipuncture. Tests with cadaver rat-tail segments (n = 18) confirmed that peak insertion forces were reduced by 73% on average with needle vibration. A serial blood-sampling study was then conducted by using Sprague–Dawley rats divided into 2 groups based on needle condition used to cause bleeds: vibration on (n = 10) and vibration off (n = 9). On 3 days (1 wk apart), 3 tail-vein blood collections were performed in each subject at 1-h intervals. To evaluate associated stress levels, plasma corticosterone concentration was quantified by radioimmunoassay and behavior (that is, movement and vocalization) was scored by blinded review of blood-sampling videos. After the initial trial, average corticosterone was lower (46% difference), the mean intrasubject variance trended lower (72%), and behavioral indications of stress were rated lower for the vibration-on group compared with the vibration-off group. Adding controlled vibrations to needles during insertion may decrease the stress associated with blood sampling from rats—an important methodologic advance for investigators studying and assessing stress processes and a refinement over current blood sampling techniques. PMID:27025813
Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind
NASA Astrophysics Data System (ADS)
Jendzelovsky, Norbert; Antal, Roland
2017-10-01
Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case vibration rises and structure can be snapped or deformed permanently. In the long term vibration, fatigue stress can be significant. At the conclusion hazardous wind speed and recommendations for different shapes and parameters of lamellas are shown.
Optical image hiding based on chaotic vibration of deformable moiré grating
NASA Astrophysics Data System (ADS)
Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas
2018-03-01
Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.
Optimal design of a beam-based dynamic vibration absorber using fixed-points theory
NASA Astrophysics Data System (ADS)
Hua, Yingyu; Wong, Waion; Cheng, Li
2018-05-01
The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.
NASA Astrophysics Data System (ADS)
Wada, Hiroshi; Ando, Masayoshi; Takeuchi, Masataka; Sugawara, Hironori; Koike, Takuji; Kobayashi, Toshimitsu; Hozawa, Koji; Gemma, Takashi; Nara, Makoto
2002-05-01
``Time-averaged holography'' and ``holographic interferometry'' enable recording of the complete vibration pattern of a surface within several seconds. The results appear in the form of fringes. Vibration amplitudes smaller than 100 nm are not readily measurable by these techniques, because such small amplitudes produce variations in gray level, but not fringes. In practice, to obtain clear fringes in these measurements, stimulus sound pressures higher than 100 dB SPL must be used. The phase of motion is also not obtainable from such fringe techniques. In this study, a sinusoidal phase modulation technique is described, which allows detection of both small amplitudes of motion and their phase from time-averaged speckle pattern interferometry. In this technique, the laser injection current is modulated and digital image processing is used to analyze the measured patterns. When the sound-pressure level of stimuli is between 70 and 85 dB SPL, this system is applied to measure the vibratory response of the tympanic membrane (TM) of guinea pig temporal bones at frequencies up to 4 kHz where complicated vibration modes are observed. The effect of the bulla on TM displacements is also quantified. Results indicate that this system is capable of measuring the nanometer displacements of the TM, produced by stimuli of 70 dB SPL.
Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements
NASA Astrophysics Data System (ADS)
Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr
2017-07-01
In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.
Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Klos, Jacob
2016-01-01
Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.
NASA Astrophysics Data System (ADS)
Krasnoshchekov, Sergey V.; Schutski, Roman S.; Craig, Norman C.; Sibaev, Marat; Crittenden, Deborah L.
2018-02-01
Three dihalogenated methane derivatives (CH2F2, CH2FCl, and CH2Cl2) were used as model systems to compare and assess the accuracy of two different approaches for predicting observed fundamental frequencies: canonical operator Van Vleck vibrational perturbation theory (CVPT) and vibrational configuration interaction (VCI). For convenience and consistency, both methods employ the Watson Hamiltonian in rectilinear normal coordinates, expanding the potential energy surface (PES) as a Taylor series about equilibrium and constructing the wavefunction from a harmonic oscillator product basis. At the highest levels of theory considered here, fourth-order CVPT and VCI in a harmonic oscillator basis with up to 10 quanta of vibrational excitation in conjunction with a 4-mode representation sextic force field (SFF-4MR) computed at MP2/cc-pVTZ with replacement CCSD(T)/aug-cc-pVQZ harmonic force constants, the agreement between computed fundamentals is closer to 0.3 cm-1 on average, with a maximum difference of 1.7 cm-1. The major remaining accuracy-limiting factors are the accuracy of the underlying electronic structure model, followed by the incompleteness of the PES expansion. Nonetheless, computed and experimental fundamentals agree to within 5 cm-1, with an average difference of 2 cm-1, confirming the utility and accuracy of both theoretical models. One exception to this rule is the formally IR-inactive but weakly allowed through Coriolis-coupling H-C-H out-of-plane twisting mode of dichloromethane, whose spectrum we therefore revisit and reassign. We also investigate convergence with respect to order of CVPT, VCI excitation level, and order of PES expansion, concluding that premature truncation substantially decreases accuracy, although VCI(6)/SFF-4MR results are still of acceptable accuracy, and some error cancellation is observed with CVPT2 using a quartic force field.
High force vibration testing with wide frequency range
Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn
2013-04-02
A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.
Inertia-Wheel Vibration-Damping System
NASA Technical Reports Server (NTRS)
Fedor, Joseph V.
1990-01-01
Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.
On the vibration properties of composite materials and structures
NASA Astrophysics Data System (ADS)
Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.
1993-01-01
In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.
NASA Astrophysics Data System (ADS)
Müller, Michelle; Maiwald, Verena; Thiele, Lothar; Beutel, Jan; Roman, Cosmin; Hierold, Christofer
2018-04-01
A micromechanical broadband vibration amplitude-amplifier for low power detection of acoustic emission signals is presented. It is based on a coupled mass-spring system and was fabricated in a two-level bulk microfabrication process. The device consists of ten resonators coupled in series, which decrease in mass by a factor of three each, to achieve a high amplification over a broad bandwidth. The fabrication process for this multiscale device is based on front- and backside etching of a silicon-on-insulator wafer. It enables coupling MEMS resonators of two different thicknesses with a weight ratio from largest to smallest mass of 26’244 and reduces die size by resonator stacking. The first ten eigenmodes of the device are in-plane and unidirectional. Steady-state and transient response of the device in comparison to a 1D lumped element model is presented. An average amplitude amplification of 295 over a bandwidth of 10.7 kHz (4.4-15.1 kHz) is achieved and can be reached in less than 1 ms. Applications are low-power detection of short broadband vibration signals e.g. for structural health monitoring (cliffs, pipelines, bridges).
NASA Astrophysics Data System (ADS)
Yesudas, Freeda; Mero, Mark; Kneipp, Janina; Heiner, Zsuzsanna
2018-03-01
Broadband vibrational sum-frequency generation (BB-VSFG) spectroscopy has become a well-established surface analytical tool capable of identifying the orientation and structure of molecular layers. A straightforward way to boost the sensitivity of the technique could be to increase the laser repetition rate beyond that of standard BB-VSFG spectrometers, which rely on Ti:sapphire lasers operating at repetition rates of 1-5 kHz. Nevertheless, possible thermally induced artifacts in the vibrational spectra due to higher laser average powers are unexplored. Here, we discuss laser power induced temperature accumulation effects that distort the BB-VSFG spectra of 1,2-diacyl-sn-glycero-3-phosphocholine at an interface between two transparent phases at repetition rates of 5, 10, 50, and 100 kHz at constant pulse energy. No heat-induced distortions were found in the spectra, suggesting that the increase in the laser repetition rate provides a feasible route to an improved signal-to-noise ratio or shorter data acquisition times in BB-VSFG spectroscopy for thin films on transparent substrates. The results have implications for future BB-VSFG spectrometers pushing the detection limit for molecular layers with low surface coverage.
Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao
2015-05-01
Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.
2015-01-01
OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469
NASA Astrophysics Data System (ADS)
Wang, Gang; Wang, Jianwei; Chen, Shengbing; Wen, Jihong
2011-12-01
Periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits are attached to a slender beam to control the propagation of vibration. Numerical models based on the transfer matrix methodology are constructed to predict the band structure, attenuation factors and the transmission of vibration in the proposed smart structure. The vibration attenuations of the proposed smart structure and that with the passive resonant shunting circuits are compared in order to verify the efficiency of the enhanced resonant shunting circuits. Vibration experiments are conducted in order to validate the theoretical predictions. The specimen with a combination of different types of resonant shunting circuits is also studied in order to gain wider attenuation frequency ranges.
NASA Astrophysics Data System (ADS)
Nyawako, Donald; Reynolds, Paul; Hudson, Emma
2016-04-01
Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.
Adaptive vibration control of structures under earthquakes
NASA Astrophysics Data System (ADS)
Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung
2017-04-01
techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.
Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump
NASA Astrophysics Data System (ADS)
Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng
2017-06-01
In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.
Passive Wireless Vibration Sensing for Measuring Aerospace Structural Flutter
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.
2017-01-01
To reduce energy consumption, emissions, and noise, NASA is exploring the use of high aspect ratio wings on subsonic aircraft. Because high aspect ratio wings are susceptible to flutter events, NASA is also investigating methods of flutter detection and suppression. In support of that work a new remote, non-contact method for measuring flutter-induced vibrations has been developed. The new sensing scheme utilizes a microwave reflectometer to monitor the reflected response from an aeroelastic structure to ultimately characterize structural vibrations. To demonstrate the ability of microwaves to detect flutter vibrations, a carbon fiber-reinforced polymer (CFRP) composite panel was vibrated at various frequencies from 1Hz to 130Hz. The reflectometer response was found to closely resemble the sinusoidal response as measured with an accelerometer up to 100 Hz. The data presented demonstrate that microwaves can be used to measure flutter-induced aircraft vibrations.
Quantum mechanical characterization of the He4ICl weakly bound complex.
Valdés, Álvaro; Prosmiti, Rita
2013-08-15
Vibrational calculations are performed for the 12-dimensional He4ICl van der Waals complex using the multiconfiguration time-dependent Hartree (MCTDH) method. The potential energy surface of the cluster is represented as a sum of the triatomic He-ICl ab initio parametrized terms plus the He-He interactions. The topology of the potential presents higher anisotropy compared to the one with a homonuclear dopant, and this is clearly reflected in the structure and energetics of the low-lying conformers of the system. In order to take advantage of the MCTDH method, natural potential fits are employed for the potential energy operator, and also, a mode combination scheme is introduced in order to speed up the computations. Zero-point energy, binding energies, and vibrationally averaged structures of different isomers of the He4ICl cluster are obtained. The present results predict that the (3,1,0) structure, involving three He atoms in the near T-shaped and one He atom in the linear configurations, to be the most stable one in accord with recent experimental findings. Comparisons with previous theoretical and experimental data are presented, and the stability of the high-order conformers is discussed in connection with the multiple minima (global and local) of the underlying potential surface.
Roy, S; Gruenbaum, S M; Skinner, J L
2014-11-14
Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.
Evaluation of human response to structural vibration induced by sonic boom
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Czech, J.
1992-01-01
This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.
NASA Astrophysics Data System (ADS)
Li, Hui; Ou, Jinping
2008-07-01
A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.
A novel vibration structure for dynamic balancing measurement
NASA Astrophysics Data System (ADS)
Qin, Peng; Cai, Ping; Hu, Qinghan; Li, Yingxia
2006-11-01
Based on the conception of instantaneous motion center in theoretical mechanics, the paper presents a novel virtual vibration structure for dynamic balancing measurement with high precision. The structural features and the unbalancing response characteristics of this vibration structure are analyzed in depth. The relation between the real measuring system and the virtual one is emphatically expounded. Theoretical analysis indicates that the flexibly hinged integrative plate spring sets holds fixed vibration center, with the result that this vibration system has the most excellent effect of plane separation. In addition, the sensors are mounted on the same longitudinal section. Thus the influence of phase error on the primary unbalance reduction ratio is eliminated. Furthermore, the performance changes in sensors caused by environmental factor have less influence on the accuracy of the measurement. The result for this system is more accurate measurement with lower requirement for a second correction run.
Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation
NASA Astrophysics Data System (ADS)
Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong
2018-05-01
According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Ni, Zhi-Qiang; Jiang, Lin-Hua; Han, Lin; Kang, Xue-Wei
2015-07-01
Vibration problems wildly exist in beam-foundation structures. In this paper, finite periodic composites inspired by the concept of ideal phononic crystals (PCs), as well as Timoshenko beam theory (TBT), are proposed to the beam anchored on Winkler foundation. The bending vibration band structure of the PCs Timoshenko beam-foundation structure is derived from the modified transfer matrix method (MTMM) and Bloch's theorem. Then, the frequency response of the finite periodic composite Timoshenko beam-foundation structure by the finite element method (FEM) is performed to verify the above theoretical deduction. Study shows that the Timoshenko beam-foundation structure with periodic composites has wider attenuation zones compared with homogeneous ones. It is concluded that TBT is more available than Euler beam theory (EBT) in the study of the bending vibration characteristic of PCs beam-foundation structures with different length-to-height ratios.
Stress-strain state of the structure in the service area of underground railway
NASA Astrophysics Data System (ADS)
Barabash, M.; Bashinsky, Y.; Korjakins, A.
2017-10-01
The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.
Analysis on pseudo excitation of random vibration for structure of time flight counter
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Dapeng
2015-03-01
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.
A non-ideal portal frame energy harvester controlled using a pendulum
NASA Astrophysics Data System (ADS)
Iliuk, I.; Balthazar, J. M.; Tusset, A. M.; Piqueira, J. R. C.; Rodrigues de Pontes, B.; Felix, J. L. P.; Bueno, Á. M.
2013-09-01
A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency.
Partial filling of a honeycomb structure by granular materials for vibration and noise reduction
NASA Astrophysics Data System (ADS)
Koch, Sebastian; Duvigneau, Fabian; Orszulik, Ryan; Gabbert, Ulrich; Woschke, Elmar
2017-04-01
In this paper, the damping effect of granular materials is explored to reduce the vibration and noise of mechanical structures. To this end, a honeycomb structure with high stiffness is used to contain a granular filling which presents the possiblity for the distribution of the granular material to be designed. As a particular application example, the oil pan bottom of a combustion engine is used to investigate the influence on the vibration behavior and the sound emission. The effect of the honeycomb structure along with the granular mass, distribution, and type on the vibration behaviour of the structure is investigated via laser scanning vibrometry. From this, an optimized filling is determined and then its noise suppression level validated on an engine test bench through measurements with an acoustic array.
NASA Astrophysics Data System (ADS)
Lyubimova, T.; Lyubimov, D.; Parshakova, Ya.
2017-04-01
The effect of vertical vibrations on the Rayleigh-Benard-Marangoni instability of a two-layer system of immiscible incompressible viscous fluids subjected to a constant vertical heat flux at the external boundaries is studied in the framework of the generalized Boussinesq approximation taking into account the interface deformations. The study is performed using the averaging approach under the assumption that the vibration period is small in comparison with the hydrodynamical time scales and the product of the vibration amplitude and the Boussinesq parameter is small in comparison with the layer thickness. It has been found that the long-wave instability is not affected by vibrations of small and moderate intensity. It turned out that vibrations have a stabilizing effect on the finite-wavelength perturbations in a wide range of parameters.
NASA Astrophysics Data System (ADS)
Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.
2016-08-01
A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.
First-principles studies of PETN molecular crystal vibrational frequencies under high pressure
NASA Astrophysics Data System (ADS)
Perger, Warren; Zhao, Jijun
2005-07-01
The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.
Vibration suppression of planar truss structures utilizing uniform damping control
NASA Technical Reports Server (NTRS)
Andersen, G. C.; Silverberg, L. M.
1986-01-01
A variety of methods has been devised for vibrational control of a structure using both passive and active controls. Presented in this paper is a relatively new method for vibration suppression, uniform damping control. This method consists of implementing a control law which tends to dampen each vibrational mode of the structure at the same desirable exponential rate. The unique aspects of this method are that the control law is not explicitly dependent on the structural stiffness, the control forces are directly proportional to the distribution of the structural mass, and the control law is natural and decentralized. The control law was applied to a flexible planar truss structure and the various aspects of implementation of the control law examined are: actuator/sensor number, placement, and the impact of the actuator/sensor number and placement on the necessary control 'power' requirements such as peak power loads, total power requirements, etc. Also examined are the effects of using a limited number of active members in terms of the vibrational performance when compared with the 'ideal' distributed control law.
NASA Astrophysics Data System (ADS)
Bartmański, Cezary; Bochenek, Wojciech; Passia, Henryk; Szade, Adam
2006-06-01
The methods of direct measurement and analysis of the dynamic response of a building structure through real-time recording of the amplitude of low-frequency vibration (tilt) have been presented. Subject to analyses was the reaction induced either by kinematic excitation (road traffic and mining-induced vibration) or controlled action of solid-fuel rocket micro-engines installed on the building. The forces were analysed by means of a set of transducers installed both in the ground and on the structure. After the action of excitation forces has been stopped, the system (structure) makes damped vibration around the static equilibrium position. It has been shown that the type of excitation affects the accuracy of evaluation of principal dynamic parameters of the structure. In the authors opinion these are the decrement of damping and natural vibration frequency. Positive results of tests with the use of excitation by means of short-action (0.6 second) rocket micro-engines give a chance to develop a reliable method for periodical assessment of acceptable loss of usability characteristics of building structures heavily influenced by environmental effects.
NASA Astrophysics Data System (ADS)
Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi
2016-09-01
This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...
Application of level set method to optimal vibration control of plate structures
NASA Astrophysics Data System (ADS)
Ansari, M.; Khajepour, A.; Esmailzadeh, E.
2013-02-01
Vibration control plays a crucial role in many structures, especially in the lightweight ones. One of the most commonly practiced method to suppress the undesirable vibration of structures is to attach patches of the constrained layer damping (CLD) onto the surface of the structure. In order to consider the weight efficiency of a structure, the best shapes and locations of the CLD patches should be determined to achieve the optimum vibration suppression with minimum usage of the CLD patches. This paper proposes a novel topology optimization technique that can determine the best shape and location of the applied CLD patches, simultaneously. Passive vibration control is formulated in the context of the level set method, which is a numerical technique to track shapes and locations concurrently. The optimal damping set could be found in a structure, in its fundamental vibration mode, such that the maximum modal loss factor of the system is achieved. Two different plate structures will be considered and the damping patches will be optimally located on them. At the same time, the best shapes of the damping patches will be determined too. In one example, the numerical results will be compared with those obtained from the experimental tests to validate the accuracy of the proposed method. This comparison reveals the effectiveness of the level set approach in finding the optimum shape and location of the CLD patches.
Architectures for wrist-worn energy harvesting
NASA Astrophysics Data System (ADS)
Rantz, R.; Halim, M. A.; Xue, T.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.
2018-04-01
This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures; rotational and linear motion-based architectures are examined. Mathematical models are developed and experimentally corroborated. An optimization routine is applied to the proposed architectures to maximize average power output and allow for comparison. The addition of a linear spring element to the structures has the potential to improve power output; for example, in the case of rotational structures, a 211% improvement in power output was estimated under real walking excitation. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 66% when real walking data is used as input to the simulations.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
Jing, Bowen; Tang, Shanshan; Wu, Liang; Wang, Supin; Wan, Mingxi
2016-12-01
Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Input Shaping to Reduce Solar Array Structural Vibrations
NASA Technical Reports Server (NTRS)
Doherty, Michael J.; Tolson, Robert J.
1998-01-01
Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.
Vibrational structure in the photo-electron spectrum of O2+2Sigma(g)-(sigmag2s)
NASA Technical Reports Server (NTRS)
Gardner, J. L.; Samson, J. A. R.
1974-01-01
Discrete vibrational structure has been observed in the photo-electron spectrum of oxygen at an ionization potential of 40.33 eV. Two levels, attributed to the 02(+) 2 sigma g- final state, have been detected with a vibrational spacing of 0.071 eV.
NASA Astrophysics Data System (ADS)
Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao
2018-07-01
Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy
Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi
2016-01-01
Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states. PMID:27812020
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
NASA Astrophysics Data System (ADS)
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2017-01-01
Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.
NASA Astrophysics Data System (ADS)
Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.
2014-10-01
The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-01-01
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated. PMID:29088077
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-10-31
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.
Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building
Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo
2013-01-01
This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999
Healey, D.L.
1971-01-01
Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.
An epidemiological study of low back pain in professional drivers
NASA Astrophysics Data System (ADS)
Bovenzi, Massimo; Rui, Francesca; Negro, Corrado; D'Agostin, Flavia; Angotzi, Giuliano; Bianchi, Sandra; Bramanti, Lucia; Festa, GianLuca; Gatti, Silvana; Pinto, Iole; Rondina, Livia; Stacchini, Nicola
2006-12-01
The prevalence of low back pain (LBP) was investigated in 598 Italian professional drivers exposed to whole-body vibration (WBV) and ergonomic risk factors (drivers of earth moving machines, fork-lift truck drivers, truck drivers, bus drivers). The control group consisted of a small sample of 30 fire inspectors not exposed to WBV. Personal, occupational and health histories were collected by means of a structured questionnaire. Vibration measurements were performed on representative samples of the machines and vehicles used by the driver groups. From the vibration magnitudes and exposure durations, alternative measures of vibration dose were estimated for each subject. Daily vibration exposure, expressed in terms of 8-h energy-equivalent frequency-weighted acceleration, A(8), averaged 0.28-0.61 (range 0.10-1.18) m s -2 rms in the driver groups. Duration of exposure to WBV ranged between 1 and 41 years. The 7-day and 12-month prevalence of LBP was greater in the driver groups than in the controls. In the professional drivers, the occurrence of 12-month LBP, high intensity of LBP (Von Korff pain scale score ⩾5), and LBP disability (Roland & Morris disability scale score ⩾12) significantly increased with increasing cumulative vibration exposure. Even though several alternative measures of vibration exposure were associated with LBP outcomes, nevertheless a more regular trend of association with LBP was found for vibration dose expressed as ∑ a vit i (m s -2 h), in which the frequency-weighted acceleration, a v, and lifetime exposure duration, t, were given equal weight. In multivariate data analysis, individual characteristics (e.g. age, body mass index) and a physical load index (derived from combining manual materials handling and awkward postures) were significantly associated with LBP outcomes, while psychosocial work factors (e.g. job decision, job support) showed a marginal relation to LBP. This study tends to confirm that professional driving in industry is associated with an increased risk of work-related LBP. Exposure to WBV and physical loading factors at work are important components of the multifactorial origin of LBP in professional drivers.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1976-01-01
A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Bartlett, Felton D., Jr.; Cline, John H.
1988-01-01
The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement.
Wang, Jian; Guo, Jifeng
2009-05-01
A longitudinal-torsional hybrid-type ultrasonic motor has larger torque and lower revolution speed compared with other kinds of ultrasonic motors. It drives devices directly and precisely, so it is adaptable to many fields, especially aeronautics and astronautics, as a servo actuator. Due to the different sound propagation speeds of longitudinal and torsional vibrations in the stator, it is difficult to match resonant frequencies of longitudinal and torsional vibrations. In this paper, a new radial-torsional vibration hybrid-type ultrasonic motor is put forward, which utilizes longitudinal vibration derived from radial vibration by the Poisson effect. The short, hollow cylindrical structure easily makes resonant frequencies of first-order radial and torsional vibrations into degeneracy. First, the new structure of the motor is presented. Second, the principle of matching the resonant frequencies is developed, and the motor geometry is optimized by ANSYS software. Finally, a 60-mm diameter prototype is fabricated, which performs well. The no-load velocity and maximum torque are 25 r/min and 5 N x m, respectively. This kind of motor is small, light, and noiseless.
PEELUKHANA, Srikara V.; GOENKA, Shilpi; KIM, Brian; KIM, Jay; BHATTACHARYA, Amit; STRINGER, Keith F.; BANERJEE, Rupak K.
2015-01-01
To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s2, for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D). PMID:25843564
NASA Technical Reports Server (NTRS)
Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.
2004-01-01
The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.
Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model
NASA Astrophysics Data System (ADS)
Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.
2010-08-01
The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.
Modal description—A better way of characterizing human vibration behavior
NASA Astrophysics Data System (ADS)
Rützel, Sebastian; Hinz, Barbara; Wölfel, Horst Peter
2006-12-01
Biodynamic responses to whole body vibrations are usually characterized in terms of transfer functions, such as impedance or apparent mass. Data measurements from subjects are averaged and analyzed with respect to certain attributes (anthropometrics, posture, excitation intensity, etc.). Averaging involves the risk of identifying unnatural vibration characteristics. The use of a modal description as an alternative method is presented and its contribution to biodynamic modelling is discussed. Modal description is not limited to just one biodynamic function: The method holds for all transfer functions. This is shown in terms of the apparent mass and the seat-to-head transfer function. The advantages of modal description are illustrated using apparent mass data of six male individuals of the same mass percentile. From experimental data, modal parameters such as natural frequencies, damping ratios and modal masses are identified which can easily be used to set up a mathematical model. Following the phenomenological approach, this model will provide the global vibration behavior relating to the input data. The modal description could be used for the development of hardware vibration dummies. With respect to software models such as finite element models, the validation process for these models can be supported by the modal approach. Modal parameters of computational models and of the experimental data can establish a basis for comparison.
NASA Astrophysics Data System (ADS)
Chang, Chih-Min; Huang, Yu-Hsuan; Liu, Suet-Yi; Lee, Yuan-Pern; Pombar-Pérez, Marta; Martínez-Núñez, Emilio; Vázquez, Saulo A.
2008-12-01
Following photodissociation of 2-chloropropene (H2CCClCH3) at 193 nm, vibration-rotationally resolved emission spectra of HCl (υ ≤6) in the spectral region of 1900-2900 cm-1 were recorded with a step-scan time-resolved Fourier-transform spectrometer. All vibrational levels show a small low-J component corresponding to ˜400 K and a major high-J component corresponding to 7100-18 700 K with average rotational energy of 39±311 kJ mol-1. The vibrational population of HCl is inverted at υ =2, and the average vibrational energy is 86±5 kJ mol-1. Two possible channels of molecular elimination producing HCl+propyne or HCl+allene cannot be distinguished positively based on the observed internal energy distribution of HCl. The observed rotational distributions fit qualitatively with the distributions of both channels obtained with quasiclassical trajectories (QCTs), but the QCT calculations predict negligible populations for states at small J. The observed vibrational distribution agrees satisfactorily with the total QCT distribution obtained as a weighted sum of contributions from both four-center elimination channels. Internal energy distributions of HCl from 2-chloropropene and vinyl chloride are compared.
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
14 CFR 23.251 - Vibration and buffeting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxian; Myers, John N.; Huang, Huai; Shobha, Hosadurga; Chen, Zhan; Grill, Alfred
2016-02-01
PECVD deposited porous SiCOH with ultralow dielectric constant has been successfully integrated as the insulator in advanced interconnects to decrease the RC delay. The effects of NH3 plasma treatment and the effectiveness of the dielectric repair on molecular structures at the surface and buried interface of a pSiCOH film deposited on top of a SiCNH film on a Si wafer were fully characterized using sum frequency generation vibrational spectroscopy (SFG), supplemented by X-ray photoelectron spectroscopy. After exposure to NH3 plasma for 18 s, about 40% of the methyl groups were removed from the pSiCOH surface, and the average orientation of surface methyl groups tilted more towards the surface. The repair method used here effectively repaired the molecular structures at the pSiCOH surface but did not totally recover the entire plasma-damaged layer. Additionally, simulated SFG spectra with various average orientations of methyl groups at the SiCNH/pSiCOH buried interface were compared with the experimental SFG spectra collected using three different laser input angles to determine the molecular structural information at the SiCNH/pSiCOH buried interface after NH3 plasma treatment and repair. The molecular structures including the coverage and the average orientation of methyl groups at the buried interface were found to be unchanged by NH3 plasma treatment and repair.
Coupled rotor/airframe vibration analysis
NASA Technical Reports Server (NTRS)
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
Analysis of Piezoelectric Actuator for Vibration Control of Composite plate
NASA Astrophysics Data System (ADS)
Gomaa, Ahmed R.; Hai, Huang
2017-07-01
Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.
Vibration-based monitoring for performance evaluation of flexible civil structures in Japan.
Fujino, Yozo
2018-01-01
The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author's experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author's past 30 years' experience of research on bridge dynamics.
Ciezak, Jennifer A; Trevino, S F
2006-04-20
Solid-state geometry optimizations and corresponding normal-mode analysis of the widely used energetic material cyclotrimethylenetrinitramine (RDX) were performed using density functional theory with both the generalized gradient approximation (BLYP and BP functionals) and the local density approximation (PWC and VWN functionals). The structural results were found to be in good agreement with experimental neutron diffraction data and previously reported calculations based on the isolated-molecule approximation. The vibrational inelastic neutron scattering (INS) spectrum of polycrystalline RDX was measured and compared with simulated INS constructed from the solid-state calculations. The vibrational frequencies calculated from the solid-state methods had average deviations of 10 cm(-1) or less, whereas previously published frequencies based on an isolated-molecule approximation had deviations of 65 cm(-1) or less, illustrating the importance of including crystalline forces. On the basis of the calculations and analysis, it was possible to assign the normal modes and symmetries, which agree well with previous assignments. Four possible "doorway modes" were found in the energy range defined by the lattice modes, which were all found to contain fundamental contributions from rotation of the nitro groups.
NASA Technical Reports Server (NTRS)
Cox, T. H.; Gilyard, G. B.
1986-01-01
The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.63 Section 33.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.63 Section 33.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.63 Section 33.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...
NASA Astrophysics Data System (ADS)
Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki
2017-04-01
Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.
Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D2O)2
NASA Astrophysics Data System (ADS)
Braly, L. B.; Cruzan, J. D.; Liu, K.; Fellers, R. S.; Saykally, R. J.
2000-06-01
Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four (D2O)2 intermolecular vibrations (one previously published) have been measured between 65 and 104 cm-1. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, the 83 cm-1 (acceptor wag) and 90 cm-1 (D2O)2 (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for (H2O)2 is presented in an accompanying paper.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2009-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
NASA Astrophysics Data System (ADS)
Choudhury, Niloy; Zeng, Yaguang; Fridberger, Anders; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.; Wang, Ruikang K.
2011-03-01
Studying the sound stimulated vibrations of various membranes that form the complex structure of the organ of Corti in the cochlea of the inner ear is essential for understanding how the travelling sound wave of the basilar membrane couples its energy to the organ structures. In this paper we report the feasibility of using phase-sensitive Fourier domain optical coherence tomography (FD-OCT) to image the vibration of various micro-structures of the cochlea at the same time. An excised cochlea of a guinea pig was stimulated using sounds at various frequencies and vibration image was obtained. When measuring the apex area, vibration signal from different turns, which have different best response frequencies are obtained in the same image. The method has the potential to measure the response from a much wider region of the cochlea than any other currently used method. The noise floor for vibration image for the system at 200 Hz was ~0.3nm.
NASA Technical Reports Server (NTRS)
Jammu, V. B.; Danai, K.; Lewicki, D. G.
1998-01-01
This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.
ER fluid applications to vibration control devices and an adaptive neural-net controller
NASA Astrophysics Data System (ADS)
Morishita, Shin; Ura, Tamaki
1993-07-01
Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.
Vibration characteristics and damage detection in a suspension bridge
NASA Astrophysics Data System (ADS)
Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh
2016-08-01
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
NASA Astrophysics Data System (ADS)
Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.
2006-07-01
The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.
NASA Technical Reports Server (NTRS)
Rimskiy-Korsakov, A. V.; Belousov, Y. I.
1973-01-01
A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.
NASA Astrophysics Data System (ADS)
Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.
2017-06-01
Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.
Kim, Ji-Min; Sohn, Dong-Seok; Heo, Jeong-Uk; Park, Jun-Sub; Jung, Heui-Seung; Moon, Jee-Won; Lee, Ju-Hyoung; Park, In-Sook
2012-12-01
The purpose of this study was to evaluate the success rate of implants and vertical bone gain of edentulous posterior maxilla using ultrasonic piezoelectric vibration and hydraulic pressure, namely the hydrodynamic piezoelectric internal sinus elevation (HPISE) technique through a crestal approach. A total of 250 maxillary sinuses were augmented using HPISE and 353 implants (averaging 11.8 mm in length and 4.5 mm in diameter), with 12 different systems, were placed simultaneously with or without additional bone grafting. Plain radiograms and cone beam computed tomograms were taken in all patients to evaluate sinus augmentation. Membrane perforation was recorded at 10 of the 353 implant sites. The perforation rate was 2.83%. The total success rate of implantation was 97.2% after an average of 69.3 weeks of loading. The crestally approached sinus augmentation using ultrasonic piezoelectric vibration and hydraulic pressure is an additional method of maxillary sinus augmentation.
NASA Astrophysics Data System (ADS)
Sawczuk, Wojciech
2017-06-01
Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.
Vibration Signature Analysis of a Faulted Gear Transmission System
NASA Technical Reports Server (NTRS)
Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.
1994-01-01
A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.
Tikhonov, Denis S; Sharapa, Dmitry I; Schwabedissen, Jan; Rybkin, Vladimir V
2016-10-12
In this study, we investigate the ability of classical molecular dynamics (MD) and Monte-Carlo (MC) simulations for modeling the intramolecular vibrational motion. These simulations were used to compute thermally-averaged geometrical structures and infrared vibrational intensities for a benchmark set previously studied by gas electron diffraction (GED): CS 2 , benzene, chloromethylthiocyanate, pyrazinamide and 9,12-I 2 -1,2-closo-C 2 B 10 H 10 . The MD sampling of NVT ensembles was performed using chains of Nose-Hoover thermostats (NH) as well as the generalized Langevin equation thermostat (GLE). The performance of the theoretical models based on the classical MD and MC simulations was compared with the experimental data and also with the alternative computational techniques: a conventional approach based on the Taylor expansion of potential energy surface, path-integral MD and MD with quantum-thermal bath (QTB) based on the generalized Langevin equation (GLE). A straightforward application of the classical simulations resulted, as expected, in poor accuracy of the calculated observables due to the complete neglect of quantum effects. However, the introduction of a posteriori quantum corrections significantly improved the situation. The application of these corrections for MD simulations of the systems with large-amplitude motions was demonstrated for chloromethylthiocyanate. The comparison of the theoretical vibrational spectra has revealed that the GLE thermostat used in this work is not applicable for this purpose. On the other hand, the NH chains yielded reasonably good results.
Klobes, Benedikt; Hu, Michael Y.; Beekman, Matt; ...
2015-11-30
The Sn specific densities of phonon states in the SnSe subunits of [(SnSe) 1.04] m[MoSe 2] n ferecrystals with (m,n) = (1,1), (4,1) and in bulk SnSe were derived from nuclear inelastic scattering by the 119Sn M ssbauer resonance. When using different measurement configurations, phonons with polarization parallel and perpendicular to the ferecrystal plane were specifically probed. Vibrational properties and phonon spectral weight are found to strongly depend on the phonon polarization and layer count m. Moreover, a highly peculiar feature of these ferecrystal densities of phonon states is the emergence of rather sharp high energy vibrational modes polarized perpendicularmore » to the ferecrystal plane, which contrasts with usual findings in thin layered structures and nanostructured materials in general, and a depletion of modes with a gap appearing between acoustic and high energy modes. The spectral weight of these phonons depends on the overall SnSe content, m, but cannot be unambiguously attributed to SnSe MoSe 2 interfaces. Considering the low energy part of lattice dynamics, ferecrystals exhibit rather low average phonon group velocities as compared to the speed of sound in the long wavelength limit. For the (1,1) ferecrystal, this effect is most pronounced for vibrations polarized in the ferecrystal plane. Therefore, an experimental microscopic origin for the vibrational and bonding anisotropy in subunits of ferecrystals is provided.« less
Hu, Qinglei
2007-10-01
This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.
Model identification of terfenol-D magnetostrictive actuator for precise positioning control
NASA Astrophysics Data System (ADS)
Saleem, Ashraf; Ghodsi, Mojtaba; Mesbah, Mostefa; Ozer, Abdullah
2016-04-01
Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.
NASA Astrophysics Data System (ADS)
Fang, Yuanyuan; Zuo, Yanyan; Xia, Zhaowang
2018-03-01
The noise level is getting higher with the development of high-power marine power plant. Mechanical noise is one of the most obvious noise sources which not only affect equipment reliability, riding comfort and working environment, but also enlarge underwater noise. The periodic truss type device which is commonly applied in fields of aerospace and architectural is introduced to floating raft construction in ship. Four different raft frame structure are designed in the paper. The vibration transmissibility is taken as an evaluation index to measure vibration isolation effect. A design scheme with the best vibration isolation effect is found by numerical method. Plate type and the optimized periodic truss type raft frame structure are processed to experimental verify vibration isolation effect of the structure of the periodic raft. The experimental results demonstrate that the same quality of the periodic truss floating raft has better isolation effect than that of the plate type floating raft.
A data driven control method for structure vibration suppression
NASA Astrophysics Data System (ADS)
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters
NASA Astrophysics Data System (ADS)
Lee, Jin Yong; Kim, Jongseob; Lee, Han Myoung; Tarakeshwar, P.; Kim, Kwang S.
2000-10-01
The water hexamer is known to have a number of isoenergetic structures. The first experimental identification of the O-H stretching vibrational spectra of the water hexamer was done in the presence of benzene. It was followed by the identification of the pure water hexamer structure by vibration-rotational tunneling (VRT) spectroscopy. Although both experiments seem to have located only the Cage structure, the structure of the benzene-water hexamer complex is not clearly known, and the effect of benzene in the water hexamer is unclear. In particular, it is not obvious how the energy difference between nearly isoenergetic water hexamer conformers changes in the presence of benzene. Thus, we have compared the benzene complexes with four low-lying isoenergetic water hexamers, Ring, Book, Cage, and Prism structures, using ab initio calculations. We also investigated the effects of the presence of benzene on the structures, harmonic vibrational frequencies, and infrared (IR) intensities for the four low-lying energy conformers. There is little change in the structure of the water hexamer upon its interaction with the benzene molecule. Hence the deformation energies are very small. The dominant contribution to the benzene-water cluster interaction mainly comes from the π-H interactions between benzene and a single water molecule. As a result of this π-H interaction, O-Hπ bond length increases and the corresponding stretching vibrational frequencies are redshifted. The IR spectral features of both (H2O)6 and benzene-(H2O)6 are quite similar. From both the energetics and the comparison of calculated and experimental spectra of the benzene-(H2O)6, the water structure in these complexes is found to have the Cage form. In particular, among the four different Cage structures, only one conformer matches the experimental O-H vibrational frequencies.
understanding the structure-dependent vibrational properties and reorientational behavior of different alkali Sad, Serbia Featured Publications M. Dimitrievska et al., "Structure-dependent vibrational : Structure and luminescence," J. Phys. Chem. C 120(33), 18887-18894 (2016). DOI: http://dx.doi.org
Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.
Riga, Jeanne M; Fredj, Erick; Martens, Craig C
2006-02-14
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.
NASA Technical Reports Server (NTRS)
Mehitretter, R.
1996-01-01
Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module performed using the Meteorological Operational (METOP) Qualification Level 9.66 grms Random Vibration PSD Spectrum is presented. The random vibration structural margins of safety and natural frequency predictions are summarized.
Nondestructive structural evaluation of wood floor systems with a vibration technique.
Xiping Wang; Robert J. Ross; Lawrence Andrew Soltis
2002-01-01
The objective of this study was to determine if transverse vibration methods could be used to effectively assess the structural integrity of wood floors as component systems. A total of 10 wood floor systems, including 3 laboratory-built floor sections and 7 in-place floors in historic buildings, were tested. A forced vibration method was applied to the floor systems...
[Morphological structure of suprarenal glands in experimental vibration-induced pathology].
Kapanadze, N A; Abzianidze, E N; Sumbadze, Ts M; Korkiia, I I; Amiranidze, M V
2009-01-01
Technical progress has caused development of vibration-induced pathology, which is determined by harmful factors or environmental effects. The harmful factors include physical factors--noise, mechanical vibrations, low temperature, high humidity of the air and incorrect lighting. The aim of our study was the investigation of morphological changes in suprarenal glands under condition of vibration-induced pathology. The experiment was conducted on 20 grown-up white male rats weighting 180-200 g. The animals were daily under an hour vibration during 2 months. The vibration frequency was modulated by means of a general vibration. After an experiment, animals were decapitated in condition of general anesthesia. The experiment revealed important changes in the morphological structure of suprarenal glands. The vibration pathology causes following changes: vessels' and sinusoid capillaries' uneven widening, develop the infiltrate cells, bleeding areas, necrosis and other changes. Based on above-stated it is supposed that technical progress and introduction of new technologies is one of the risk factors, which can cause neurohumoral disorders.
NASA Technical Reports Server (NTRS)
Sopher, R.; Twomey, W. J.
1990-01-01
NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.
Vibration and shape control of hinged light structures using electromagnetic forces
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki
2003-08-01
This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, X. F.; Oswald, Fred B.
1992-01-01
Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
NASA Astrophysics Data System (ADS)
Kukura, Philipp; McCamant, David W.; Davis, Paul H.; Mathies, Richard A.
2003-11-01
Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to study the vibrational structure and dynamics of the S 2 state of diphenyloctatetraene. Strong vibrational features at 1184, 1259 and 1578 cm -1 whose linewidths are determined by the S 2 electronic lifetime are observed at early times after photoexcitation at 397 nm. Kinetic analysis of the integrated Raman intensities as well as the transient absorption reveals an exponential decay of the S 2 state on the order of 100 fs. These results demonstrate the ability of FSRS to study the vibrational structure of excited state and chemical reaction dynamics on the femtosecond timescale.
NASA Technical Reports Server (NTRS)
Edighoffer, H. H.
1979-01-01
A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.
NASA Astrophysics Data System (ADS)
Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako
2017-04-01
This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.
Anomalous Structural Disorder in Supported Pt Nanoparticles
Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.; ...
2017-07-02
Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less
NASA Technical Reports Server (NTRS)
Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)
2016-01-01
Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.
Similitude design for the vibration problems of plates and shells: A review
NASA Astrophysics Data System (ADS)
Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou
2017-06-01
Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.
Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent
2010-03-01
The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.
NASA Astrophysics Data System (ADS)
Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan
2018-02-01
Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.
The control of flexible structure vibrations using a cantilevered adaptive truss
NASA Technical Reports Server (NTRS)
Wynn, Robert H., Jr.; Robertshaw, Harry H.
1991-01-01
Analytical and experimental procedures and design tools are presented for the control of flexible structure vibrations using a cantilevered adaptive truss. Simulated and experimental data are examined for three types of structures: a slender beam, a single curved beam, and two curved beams. The adaptive truss is shown to produce a 6,000-percent increase in damping, demonstrating its potential in vibration control. Good agreement is obtained between the simulated and experimental data, thus validating the modeling methods.
Recent advances in micro-vibration isolation
NASA Astrophysics Data System (ADS)
Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming
2015-05-01
Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Viscous-pendulum damper suppresses structural vibrations
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1964-01-01
The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.
Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo
2005-08-12
We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.
The influence of vertical load to the natural vibration of series isolation system
NASA Astrophysics Data System (ADS)
Lin, Z. D.; Shi, H.
2018-02-01
The influence of axial load to the natural vibration of series isolation system is analyzed. The natural frequency of series isolation system is solved by differential quadrature method. According to the vertical load which is the main factor of natural vibration characteristic on the series isolation system, the parameter analysis is carried out. It should provide the basis for the vibration characteristic analysis for the structure of bearing on the top of first story column, and it can also provide evidence for the overall stability analysis of series isolation structure.
Vibration-based monitoring for performance evaluation of flexible civil structures in Japan
FUJINO, Yozo
2018-01-01
The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082
1982-05-01
ment analysis to evaluate viscoelastic damping treatments for HCF control . Steps for analyzing passive damping treatments are presented. Design criteria... design earthquake levels could structures such as piers, drydocks, power result in destruction of such critical strut- plants, control towers, and...and J.R. Curreri, "Some Aspects of 2 Vibration Control Support Designs ," The Shock p m 0.0005161 lb-sec n and vibration Symposium Bulletin, The Shock
Vibration Testing of Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey
2003-01-01
The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.
Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2018-06-15
At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of human response to structural vibrations induced by sonic booms
NASA Technical Reports Server (NTRS)
Sutherland, Louis C.; Czech, J.
1992-01-01
The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.
Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei
2016-12-01
In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.
Dimitrievska, Mirjana; White, James L.; Zhou, Wei; ...
2016-08-19
We investigated the structure-dependent vibrational properties of different Mg(BH 4) 2 polymorphs (α, β, γ, and δ phases) with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH 4 - anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20–80 meV) are associated with the BH4 - librational modes. The features in the intermediate energy region (80–120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features inmore » the high-energy region (120–200 meV) correspond to the BH 4 - symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. We can explain these differences using the spatial distribution of BH 4 - anions within various structures. An example of the possible identification of products after the hydrogenation of MgB 2, using NVS measurements, is presented. Our results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.« less
Summary of semi-initiative and initiative control automobile engine vibration
NASA Astrophysics Data System (ADS)
Qu, Wei; Qu, Zhou
2009-07-01
Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.
Stress hysteresis as the cause of persistent holes in particulate suspensions
NASA Astrophysics Data System (ADS)
Deegan, Robert D.
2010-03-01
Concentrated particulate suspensions under vibrations can support stable, localized, vertically oriented free surfaces. The most robust of these structures are persistent holes: deep and stable depressions of the interface. Using a reduced model of the hydrodynamics we show that a rheology with hysteresis can lead to motion opposite to the time-averaged applied force. Moreover, we show experimentally that particulate suspensions of cornstarch in water exhibits hysteresis in the shear-rate response to an applied sinusoidal stress. The results of our model and our experiments suggest that hysteresis accounts for the outward force needed to support persistent holes.
Vibration characteristics of a steadily rotating slender ring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1980-01-01
Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.
NASA Astrophysics Data System (ADS)
Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud
2005-05-01
Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.
Advanced optical measuring systems for measuring the properties of fluids and structures
NASA Technical Reports Server (NTRS)
Decker, A. J.
1986-01-01
Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.
NASA Astrophysics Data System (ADS)
Feng, Rong-Juan; Li, Xia; Zhang, Zhen; Lu, Zhou; Guo, Yuan
2016-12-01
The interfacial behavior of the benchmark zwitterionic phospholipid molecule dipalmitoylphosphatidylcholine (DPPC) has been extensively investigated by surface-selective vibrational sum frequency generation spectroscopy (VSFG). However, there is still a lack of agreement between various orientational measurements of phospholipid monolayers at the air/water interface, mainly because of the difficulty in assigning congested VSFG features. In this study, polarization-dependent VSFG measurements reveal a frequency shift between the in-plane and out-of-plane antisymmetric stretching modes of the terminal methyl groups in the DPPC alkyl tails, favoring the model of Cs local symmetry rather than the previously assumed C3v symmetry. Further VSFG experiments of isotopically labeled DPPC successfully capture the vibrational signatures of the glycerol backbone. With the newly derived VSFG polarization selection rules for Cs symmetry and the refreshed spectral assignments, the average tilt angles of the alkyl tail groups, choline headgroup, and glycerol backbone of DPPC molecules can all be determined, showing the powerful capability of VSFG spectroscopy in revealing the structural details at interfaces. The VSFG polarization dependence rules and the orientational analysis procedures developed for Cs symmetry in this work are applicable to other bulky molecules in which the methyl group cannot freely rotate, and they therefore have general applications in future VSFG studies.
Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester
Kubba, Ali E.; Jiang, Kyle
2014-01-01
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177
Efficiency enhancement of a cantilever-based vibration energy harvester.
Kubba, Ali E; Jiang, Kyle
2013-12-23
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).
NASA Astrophysics Data System (ADS)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
Smart Structures for Vibration Control on Long-Term Space Exploration and Habitation Missions
NASA Technical Reports Server (NTRS)
Gattis, Christy B.; Shepard, W. Steve, Jr.
2004-01-01
The current vision for space exploration focuses on human missions to the Moon, Mars, and beyond. To support these goals, it is certain that new vehicles and intermediate bases will be developed, whether that means simply re-direction of the ISS as a "mission research facility" or construction of a lunar base. Since these facilities are expected to be constructed from inherently light-weight materials, this work examines some of the potential sources of vibration and noise as well as means for controlling these vibrations. Many of the operating components within these facilities, such as pumps, fans, and motors, will produce vibrations during operation. These vibrations become structure in which they are housed. Resonances can impact acoustic noise levels and noise quality within the environment, possibly affecting crew health and productivity. For long-term missions in particular, it is expected that crew members will spend significant portions of their time restrained in the structure, such as in seats. As a result, the general health and well-being of the crew can be improved by limiting the harmful effects of human exposure to long-term audible and tactile vibration input. Besides the human factor, this work also examines some operational considerations in which vibrations play an important role. Vibrations can impact the environment for science and in-situ manufacturing research within these vehicles. Since a benign vibratory environment is beneficial for most types of science experiments, there is a need for various forms of vibration control. Because the operational characteristics of a vehicle can change during a long-term mission, it is further expected that the characteristics of many of the vibratory excitations will change with time. Consequently, the form of vibration control needed to improve overall habitability and usefulness of the vehicle or element for exploration missions will rely to some degree on the vibration control system's ability to adapt. To address these needs, this work also examines the development and use of smart materials to tune the dynamic characteristics of the structure in a passive sense. One prime example is the use of an adaptive electrical shunt connected to a piezoelectric patch in order to provide tuned passive vibration damping. The work also examines the use of active vibration control, such as by applying power to that same piezoelectric patch. The overall goal is to examine the use of smart structures that can react to the environment thereby improving the overall living, working, and learning environment for these long-term missions.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome
NASA Astrophysics Data System (ADS)
Pau, Annamaria; Vestroni, Fabrizio
2013-12-01
The present paper addresses the analysis of the ambient vibrations of the Basilica of Maxentius in Rome. This monument, in the city centre and close to busy roads, was the largest vaulted structure in the Roman Empire. Today, only one aisle of the structure remains, suffering from a complex crack scenario. The ambient vibration response is used to investigate traffic induced vibration and compare this to values that could be a potential cause of structural damage according to international standards. Using output-only methods, natural frequencies and mode shapes are obtained from the response, allowing comparison with predictions made with a finite element model. Notwithstanding simplifications regarding material behavior and crack pattern in the finite element model, an agreement between numerical and experimental results is reached once selected mechanical parameters are adjusted. A knowledge of modal characteristics and the availability of an updated model may be a first step of a structural monitoring program that could reveal any decay over time in the structural integrity of the monument.
Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya
2017-07-01
All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
A multidegree-of-freedom vibrational apparatus
NASA Technical Reports Server (NTRS)
Kerley, J. J., Jr.; Schaller, N. C.
1973-01-01
Apparatus uses prestressed cables to support vibrational table. Cables are durable, do not require frequent servicing, and provide increased safety. Because much weight rests on these cables, vibration actuating pistons can provide longer service. In event of structural failure of other supporting components, they will support entire weight of vibrational table.
NASA Astrophysics Data System (ADS)
Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young
2018-02-01
Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.
Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-12-03
Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.
Armenise, Iole; Kustova, Elena
2018-05-21
A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2017-01-01
We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.
NASA Astrophysics Data System (ADS)
Ramesh, Gaddam; Reddy, Byru Venkatram
2018-05-01
In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The 13C and 1H NMR chemical shifts of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible (UV-Vis) spectra of the compounds are also recorded in the region 200-400 nm. Thermodynamic parameters and rotational constants are also determined and found that they are comparable with experimental literature values for these molecules.
NASA Astrophysics Data System (ADS)
Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.
2002-04-01
Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.
Mikuła, A; Król, M; Koleżyński, A
2015-06-05
Zeolites are a group of tecto-aluminosilicates with numerous practical applications, e.g. gas separators, molecular sieves and sorbents. The unique properties result from porous structure of channels and cages which are built from smaller units - the so-called Secondary Building Units (SBU), and sometimes also larger groups (Breck, 1974; Ciciszwili et al., 1974; Mozgawa, 2008; Čejka and van Bekkum, 2005). The aim of this study was the examination of the influence of long-range order on vibrational spectra of sodalite and zeolite A. Ab initio calculations (geometry optimizations and vibrational spectra calculations) of sodalite cage and selected SBU were carried out by means of Gaussian09 (Frisch et al., 2009) (in the case of isolated clusters) and Crystal09 (Dovesi et al., 2005, 2009) (for periodic structures). The obtained results were compared with the experimental spectra of sodalite and zeolite A crystal structures, synthesized under hydrothermal conditions. These results allowed analyzing of the long-range ordering influence on the vibrational spectra, as well as the identification of the characteristic vibrations in β cage based frameworks. It has been found, that based on small structural fragment (SBU) models a characteristic vibrations can be identify. However, full spectra analysis and especially the interpretation of far-infrared region of the spectra require using periodic models under the influence of translational crystal lattice. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.
2018-01-01
Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.
Characterizing left-right gait balance using footstep-induced structural vibrations
NASA Astrophysics Data System (ADS)
Fagert, Jonathon; Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young
2017-04-01
In this paper, we introduce a method for estimating human left/right walking gait balance using footstep-induced structural vibrations. Understanding human gait balance is an integral component of assessing gait, neurological and musculoskeletal conditions, overall health status, and risk of falls. Existing techniques utilize pressure- sensing mats, wearable devices, and human observation-based assessment by healthcare providers. These existing methods are collectively limited in their operation and deployment; often requiring dense sensor deployment or direct user interaction. To address these limitations, we utilize footstep-induced structural vibration responses. Based on the physical insight that the vibration energy is a function of the force exerted by a footstep, we calculate the vibration signal energy due to a footstep and use it to estimate the footstep force. By comparing the footstep forces while walking, we determine balance. This approach enables non-intrusive gait balance assessment using sparsely deployed sensors. The primary research challenge is that the floor vibration signal energy is also significantly affected by the distance between the footstep location and the vibration sensor; this function is unclear in real-world scenarios and is a mixed function of wave propagation and structure-dependent properties. We overcome this challenge through footstep localization and incorporating structural factors into an analytical force-energy-distance function. This function is estimated through a nonlinear least squares regression analysis. We evaluate the performance of our method with a real-world deployment in a campus building. Our approach estimates footstep forces with a RMSE of 61.0N (8% of participant's body weight), representing a 1.54X improvement over the baseline.
Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration
NASA Astrophysics Data System (ADS)
Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian
2018-01-01
In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.
Evaluation of Whole-Body Vibration in Vehicles
NASA Astrophysics Data System (ADS)
PADDAN, G. S.; GRIFFIN, M. J.
2002-05-01
The vibration in 100 different vehicles has been measured, evaluated and assessed according to British Standard BS 6841 (1987) and International Standard ISO 2631 (1997). Vibration was measured in 14 categories of vehicle including cars, lift trucks, tractors, lorries, vans and buses. In each vehicle, the vibration was measured in five axes: vertical vibration beneath the seat, fore-and-aft, lateral and vertical vibration on the seat pan and fore-and-aft vibration at the backrest. The alternative methods of evaluating the vibration (use of different frequency weightings, different averaging methods, the inclusion of different axes, vibration dose values and equivalent r.m.s. acceleration) as defined in the standards have been compared. BS 6841 (1987) suggests that an equivalent acceleration magnitude is calculated using vibration measured at four locations around the seat (x -, y -, z -seat and x -backrest); ISO 2631 (1997) suggests that vibration is measured in the three translational axes only on the seat pan but only the axis with the most severe vibration is used to assess vibration severity. Assessments made using the procedure defined in ISO 2631 tend to underestimate any risks from exposure to whole-body vibration compared to an evaluation made using the guidelines specified in BS 6841; the measurements indicated that the 17 m/s1.75 “health guidance caution zone” in ISO 2631 was less likely to be exceeded than the 15 m/s1.75 “action level” in BS 6841. Consequently, ISO 2631 “allows” appreciably longer daily exposures to whole-body vibration than BS 6841.
Development of 300 mesh Soy Bean Crusher for Tofu Material Processing
NASA Astrophysics Data System (ADS)
Lee, E. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Park, C. S.; Choi, W. S.
2018-03-01
A machine such as bean crusher machine is subjected to different loads and vibration. Due to this vibration there will be certain deformations which affect the performance of the machine in adverse manner. This paper proposed a vibration analysis of bean crusher machine using ANSYS. The effect of vibration on the structure was studied in order to ensure the safety using finite element analysis. This research supports the machine designer to create a better product with lower cost and faster development time. To do this, firstly, using Inventor, a CAD model is prepared. Secondly, the analysis is to be carried out using ANSYS 15. The modal analysis and random vibration analysis of the structure was conducted. The analysis shows that the proposed design was successfully shows the minimum deformation when the vibration was applied in normal condition.
Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Slazak, M.
1983-01-01
An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.
Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft
NASA Astrophysics Data System (ADS)
Vaicaitis, R.; Slazak, M.
1983-12-01
An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.
Low Frequency Vibration approach to asess the Performance of wood structural Systems
Xiping Wang; Robert J. Ross; Michael O. Hunt
2004-01-01
The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...
Vibration for Pain Reduction in a Plastic Surgery Clinic.
Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D
2016-01-01
Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p < .001). The average pain score was 3.46 without vibration and 1.93 with vibration, and vibration with injections resulted in the greatest improvement. Eighty-six percent of the patients claimed that vibration significantly reduced their pain. Vibration is an effective method of pain reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.
Shock and vibration response of multistage structure
NASA Technical Reports Server (NTRS)
Lee, S. Y.; Liyeos, J. G.; Tang, S. S.
1968-01-01
Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity.
NASA Astrophysics Data System (ADS)
He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin
2017-03-01
When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.
Effects of experimentally measured pressure oscillations on the vibration of a solid rocket motor
NASA Technical Reports Server (NTRS)
Schoenster, J. A.; Pierce, H. B.
1972-01-01
Results are presented of firing a Nike rocket against a backstop for the purpose of obtaining pressure fluctuations in the rocket case and determining their relationship to structural vibrations of the case. Special care was required to obtain these pressure fluctuations because of the much higher static pressure generated in the rocket. Very small pressure fluctuations within the rocket case can cause significant vibration levels. A previously observed high frequency was shown to decrease with time before completely disappearing at about 1 second of burning time. The vibration of the case itself is probably related to the longitudinal structural modes at frequencies below 500 Hz and is dependent on local structural conditions at frequencies above this value.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.
NASA Astrophysics Data System (ADS)
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-06-01
The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.
Vibration characteristics measurement of beam-like structures using infrared thermography
NASA Astrophysics Data System (ADS)
Talai, S. M.; Desai, D. A.; Heyns, P. S.
2016-11-01
Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.
A 6DOF passive vibration isolator using X-shape supporting structures
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming
2016-10-01
A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn
A new finding of the site-averaging approximation was recently reported on the dissociative chemisorption of the HCl/DCl+Au(111) surface reaction [T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 139, 184705 (2013); T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 140, 144701 (2014)]. Here, in order to investigate the dependence of new site-averaging approximation on the initial vibrational state of H{sub 2} as well as the PES for the dissociative chemisorption of H{sub 2} on Cu(111) surface at normal incidence, we carried out six-dimensional quantum dynamics calculations using the initial state-selected time-dependent wave packet approach, withmore » H{sub 2} initially in its ground vibrational state and the first vibrational excited state. The corresponding four-dimensional site-specific dissociation probabilities are also calculated with H{sub 2} fixed at bridge, center, and top sites. These calculations are all performed based on two different potential energy surfaces (PESs). It is found that the site-averaging dissociation probability over 15 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability for H{sub 2} (v = 0) and (v = 1) on the two PESs.« less
Evaluation of vibration limits and mitigation techniques for urban construction : [summary].
DOT National Transportation Integrated Search
2013-10-01
Construction activities such as pile driving and : dynamic compaction of loose soils induce ground : and structure vibrations. Their effects may annoy : local populations, disturb sensitive equipment, or : reduce structures serviceability and dura...
Effects of local vibrations on the dynamics of space truss structures
NASA Technical Reports Server (NTRS)
Warnaar, Dirk B.; Mcgowan, Paul E.
1987-01-01
The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.
NASA Technical Reports Server (NTRS)
Tartakovskiy, B. D.; Dubner, A. B.
1973-01-01
A method is proposed for determining vibroacoustic characteristics from the results of measurements of the distribution of vibrational energy in a structure. The method is based on an energy model of a structure studied earlier. Equations are written to describe the distribution of vibrational energy in a hypothetical diffuse energy state in structural elements.
Planetary Gearbox Fault Diagnosis Using a Single Piezoelectric Strain Sensor
2014-12-23
However, the fault detection of planetary gearbox is very complicate since the c omplex nature of dynamic rolling structure of p lanetary gearbox...vibration transfer paths due to the unique dynamic structure of rotating planet gears. Therefore, it is difficult to diagnose PGB faults via vibration...al. 2014). To overcome the above mentioned challenges in developing effective PGB fau lt diagnosis capability , a research investigation on
Active Vibration Dampers For Rotating Machinery
NASA Technical Reports Server (NTRS)
Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong
1994-01-01
Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.
Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.
1999-11-11
Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.
Etched optical fiber vibration sensor to monitor health condition of beam like structures
NASA Astrophysics Data System (ADS)
Putha, Kishore; Dantala, Dinakar; Kamineni, Srimannarayana; Pachava, Vengal Rao
2013-06-01
Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8 mm with a sensitivity of 32 mV/10 μm strain. The sensor is tested for periodic and suddenly released forces, and the results are found to coincide with the theoretical values. This simple design, small in size and low cost sensor may find applications in industry and civil engineering to monitor the vibrations of the beam structures and bridges.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Marcus, S.; Starnes, J. H., JR.
1998-01-01
In this paper we present a closed-form solution for vibrational imperfection sensitivity the effect of small imperfections on the vibrational frequencies of perturbed motion around the static equilibrium state of Augusti's model Structure (a rigid link, pinned at one end to a rigid foundation and supported at the other by a linear extensional spring that retains its horizontality, as the system deflects). We also treat a modified version of that model with attendant slightly different dynamics. It is demonstrated that the vibrational frequencies decreases as the initial imperfections increase.
Seismic isolation device having charging function by a transducer
NASA Astrophysics Data System (ADS)
Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki
2016-04-01
In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.
Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes
Xu, W.; Zhu, W. D.; Smith, S. A.; ...
2016-03-18
While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less
Spectroscopy of Vibrational States in Diatomic Iodine Molecules
NASA Astrophysics Data System (ADS)
Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth
2015-04-01
This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.
NASA Astrophysics Data System (ADS)
Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.
2018-05-01
This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
Research on the Mechanism of In-Plane Vibration on Friction Reduction
Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang
2017-01-01
A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679
The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao
2008-05-15
A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less
Vibration analysis of the tympanic membrane with a ventilation tube and a perforation by holography
NASA Astrophysics Data System (ADS)
Maeta, Manabu; Kawakami, Shinichiro; Ogawara, Toshiaki; Masuda, Yu
1991-08-01
For severe otitis media with effusion, insertion of a ventilation tube is performed for the purpose of ventilation of the middle ear cavity and normalization of the eustachian tubular function and middle ear mucosa. The ventilation tube is left in place for as long as several months or even a few years. However, the influence of the indwelling tube on vibration of the tympanic membrane is unknown. Therefore, the authors observed the influence by means of time-averaged holography using human tympanic membranes. The following results were obtained. After insertion of a ventilation tube, vibration pattern of the tympanic membrane was not obviously changed, but the vibration amplitude of the tympanic membrane was decreased, especially at 500 Hz. Generally speaking, the change caused by insertion of a ventilation tube was very small. Also, the vibration pattern of perforated tympanic membrane was not changed, but the vibration amplitude of perforated tympanic membrane was decreased at the low frequency area.
Quantifying Ant Activity Using Vibration Measurements
Oberst, Sebastian; Baro, Enrique Nava; Lai, Joseph C. S.; Evans, Theodore A.
2014-01-01
Ant behaviour is of great interest due to their sociality. Ant behaviour is typically observed visually, however there are many circumstances where visual observation is not possible. It may be possible to assess ant behaviour using vibration signals produced by their physical movement. We demonstrate through a series of bioassays with different stimuli that the level of activity of meat ants (Iridomyrmex purpureus) can be quantified using vibrations, corresponding to observations with video. We found that ants exposed to physical shaking produced the highest average vibration amplitudes followed by ants with stones to drag, then ants with neighbours, illuminated ants and ants in darkness. In addition, we devised a novel method based on wavelet decomposition to separate the vibration signal owing to the initial ant behaviour from the substrate response, which will allow signals recorded from different substrates to be compared directly. Our results indicate the potential to use vibration signals to classify some ant behaviours in situations where visual observation could be difficult. PMID:24658467
Vibration Based Sun Gear Damage Detection
NASA Technical Reports Server (NTRS)
Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll
2013-01-01
Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1990-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.
Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers
NASA Astrophysics Data System (ADS)
Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.
1989-01-01
Several planned United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) space systems such as Space Based Radar (SBR), Space Based Laser (SBL), and Space Station, pose serious vibration and control issues. Their low system mass combined with their large size, precision pointing/shape control and rapid retargetting requirements, will result in an unprecedented degree of interaction between the system controller and the modes of vibration of the structure. The resulting structural vibrations and/or those caused by foreign objects impacting the space structure could seriously degrade system performance, making it virtually impossible for passive structural systems to perform their missions. Therefore an active vibration control system which will sense these natural and spurious vibrations, evaluate them and dampen them out is required. This active vibration control system must be impervious to the space environment and electromagnetic interference, have very low weight, and in essence become part of the structure itself. The concept of smart structures meets these criteria. Smart structures is defined as the embedment of sensors, actuators, and possibly microprocessors in the material which forms the structure, a concept that is particularly applicable to advanced composites. These sensors, actuators, and microprocessors will work interactively to sense, evaluate, and dampen those vibrations which pose a threat to large flexible space systems (LSS). The sensors will also be capable of sensing any degradation to the structure. The Air Force Astronautics Laboratory (AFAL) has been working in the area of dynamics and control of LSS for the past five years. Several programs involving both contractual and in-house efforts to develop sensors and actuators for controlling LSS have been initiated. Presently the AFAL is developing a large scale laboratory which will have the capacity of performing large angle retargetting manuevers and vibration analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.
NASA Astrophysics Data System (ADS)
Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.
2018-03-01
The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.
Zhang, Ping; Li, Juan; Mo, Yuxiang
2007-09-06
The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).
Digital synthetic impedance for application in vibration damping.
Nečásek, J; Václavík, J; Marton, P
2016-02-01
In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.
Digital synthetic impedance for application in vibration damping
NASA Astrophysics Data System (ADS)
Nečásek, J.; Václavík, J.; Marton, P.
2016-02-01
In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.
NASA Astrophysics Data System (ADS)
Xia, He; Chen, Jianguo; Wei, Pengbo; Xia, Chaoyi; de Roeck, G.; Degrande, G.
2009-03-01
In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms of rms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.
NASA Astrophysics Data System (ADS)
Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.
2017-01-01
Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.
Chen, Xiaojie; Green, Paul G.; Levine, Jon D.
2010-01-01
We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ~44 Hz during a 1 minute suprathreshold stimulus) much greater than has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves, and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. PMID:20800357
Analysis of Distribution of Polyvinyl Alcohol Hydrogel Nanocrystalline by using SAXS Synchrotron
NASA Astrophysics Data System (ADS)
Sunaryono; Taufiq, A.; Mufti, N.; Hidayat, N.; Rugmai, S.; Soontaranon, S.; Putra, E. G. R.; Darminto
2017-05-01
Polyvinyl alcohol (PVA) hydrogel has been successfully synthesized through freezing-thawing (F-T) process by using time-variation. This work is aimed to investigate the distribution of nanocrystalline from the hydrogel. Fourier Transform Infrared (FTIR) Spectroscopy, Differential Thermal Analysis/Thermogravimetric (DTA/TG), and Synchrotron Small-Angle X-ray Scattering (SAXS) were used as the instruments in characterizing the PVA hydrogel, respectively to observe the frequency of absorption, thermal degradation, and structural dimensions. The functional groups which represent the PVA polymer chains were verified on the wavenumber of 1450-1480 cm-1 and 850-870 cm-1 which is in accordance with the stretching of -CH2 vibration mode. The absorption band of PVA polymer chains was also found on the wavenumber of 1090-1150 cm-1 which is in accordance with the stretching of carboxyl vibration mode (CO), and this wavenumber gave a contribution towards the crystallinity of PVA polymer. Furthermore, the PVA polymer only interacted with the distilled water in the sample of PVA hydrogel without experiencing any chemical interactions between the PVA polymer and other substances. Meanwhile, the graphic of PVA hydrogel thermal degradation shows three thermal decompositions which are indicated by three areas in which there was sample weight loss. The second decomposition with sample weight loss was equivalent to 61.62%-73.04% occurred at the temperature of 282-376 °C which became the highest sample weight loss due to polymer chain degradation. Teubner-Strey and Beaucage models were used to analyze the characterization of structural dimension and distribution of PVA Hydrogel nanocrystalline with SAXS Synchrotron. With a high compatibility between the model data and the experiment, the average structural dimension of PVA hydrogel nanocrystalline is the equivalent of 3.96 nm, with an inter-crystalline average distance of 16.9 nm. These results indicate that PVA hydrogel is very potential to be applied as a primary material for human implants.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2010-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
NASA Technical Reports Server (NTRS)
Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.
2013-01-01
The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.
Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction
NASA Technical Reports Server (NTRS)
Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent
1993-01-01
The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Thiesen, Jack
2017-04-01
Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.
Free vibration Analysis of Sandwich Plates with cutout
NASA Astrophysics Data System (ADS)
Mishra, N.; Basa, B.; Sarangi, S. K.
2016-09-01
This paper presents the free vibration analysis of sandwich plates with cutouts. Cutouts are inevitable in structural applications and the presence of these cutouts in the structures greatly influences their dynamic characteristics. A finite element model has been developed here using the ANSYS 15.0 software to study the free vibration characteristics of sandwich plates in the presence of cutouts. Shell 281 element, an 8-noded element with six degrees of freedom suited for analyzing thin to moderately thick structures is considered in the development of the model. Block Lanczose method is adopted to extract the mode shapes to obtain the natural frequency corresponding to free vibration of the plate. The effects of parametric variation on the natural frequency of the sandwich plates with cutout are studied and results are presented.
Theory and experiment research for ultra-low frequency maglev vibration sensor.
Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun
2015-10-01
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Theory and experiment research for ultra-low frequency maglev vibration sensor
NASA Astrophysics Data System (ADS)
Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun
2015-10-01
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Pulsed differential holographic measurements of vibration modes of high temperature panels
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Overoye, K. R.
1972-01-01
Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.
NASA Astrophysics Data System (ADS)
Ferwerda, R.; van der Maas, J. H.
1995-11-01
The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.
Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro
Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.
Statistical Methods for Turbine Blade Dynamics
2008-09-30
disks Journal of Sound and Vibration 317 , pp. 625-645. Calanni, G., Volovoi, V., Ruzzene, M, Vining, C., Cento, P., (2007). Application of Bayesian...are investigated for two vibration problems regarding a one-dimensional beam and a three-dimensional plate structure. It is to be noted that the...gaps," Reliability Engi- neering and System Safety, no. 85, pp. 249-266, 2004. [8] BENFIELD, W. A. andHRUDA, R. F., " Vibration analysis of structures
Active vibrations and noise control for turboprop application research program activities
NASA Technical Reports Server (NTRS)
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-01-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
Active vibrations and noise control for turboprop application research program activities
NASA Astrophysics Data System (ADS)
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-07-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
Vibrational Study of Melatonin and its Radioprotective Activity towards Hydroxyl Radical
NASA Astrophysics Data System (ADS)
Singh, Gurpreet; Kaur, Sarvpreet; Saini, G. S. S.
2011-12-01
Vibrational study of Melatonin (N-acetyl 5-methoxytrypatamin) was done using FTIR and Raman spectroscopy. DFT calculations were employed to the structural analysis of melatonin and to the end products. The theoretical calculations confirmed the different observed vibrational modes. The optimized structure energy calculations of the different end products confirmed the most probable site of the hydroxyl radical attack is the hydrogen attached to nitrogen present in the indole ring.
NASA Astrophysics Data System (ADS)
Takeshita, Fumio; Murai, Minoru
2016-06-01
In some fiddler crab species, males emit vibrations from their burrows to mate-searching females after they have attracted a female to the burrow entrance using a waving display. Although the vibrations are considered acoustic signals to induce mating, it has not been demonstrated whether the vibrations attract the females into the burrow and, consequently, influence females' mating decisions. We investigated the structures and patterns of the vibrations using a dummy female and demonstrated experimentally a female preference for male vibrations in Uca lactea in the field. The acoustic signals consisted of repetitions of pulses. The dominant frequency of the pulses decreased with male carapace width. The pulse length decreased slightly with an increasing number of vibrational repetitions, and the pulse interval increased with increasing repetitions. These factors imply that the vibrations convey information on male characteristics, such as body size and stamina. In the experiment on female mate choice, the females significantly preferred males with higher pulse repetition rates when they were positioned at the entrance of the burrow, indicating that the females use the male vibrational signals to decide whether to enter the burrow. However, females showed no preference for the vibrations once they were inside a burrow, i.e., whether they decided to copulate, suggesting that the vibrations do not independently affect a female's final decision of mate choice. The vibrations inside the burrow might influence a female's decision by interaction with other male traits such as the burrow structure.
NASA Astrophysics Data System (ADS)
McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan
2009-03-01
Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.
Löhner, Alexander; Cogdell, Richard
2018-01-01
As the electronic energies of the chromophores in a pigment–protein complex are imposed by the geometrical structure of the protein, this allows the spectral information obtained to be compared with predictions derived from structural models. Thereby, the single-molecule approach is particularly suited for the elucidation of specific, distinctive spectral features that are key for a particular model structure, and that would not be observable in ensemble-averaged spectra due to the heterogeneity of the biological objects. In this concise review, we illustrate with the example of the light-harvesting complexes from photosynthetic purple bacteria how results from low-temperature single-molecule spectroscopy can be used to discriminate between different structural models. Thereby the low-temperature approach provides two advantages: (i) owing to the negligible photobleaching, very long observation times become possible, and more importantly, (ii) at cryogenic temperatures, vibrational degrees of freedom are frozen out, leading to sharper spectral features and in turn to better resolved spectra. PMID:29321265
Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom
NASA Astrophysics Data System (ADS)
Manning, Christopher J.
1994-10-01
The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.
Investigation into the vibration of metro bogies induced by rail corrugation
NASA Astrophysics Data System (ADS)
Ling, Liang; Li, Wei; Foo, Elbert; Wu, Lei; Wen, Zefeng; Jin, Xuesong
2017-01-01
The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.
Human Response to Aircraft-Noise-Induced Building Vibration
NASA Technical Reports Server (NTRS)
Cawthorn, J. M.; Dempsey, T. K.; DeLoach, R.
1978-01-01
The effects of noise induced building structure vibration and the rattle of objects on human response to aircraft flyover noise were investigated in a series of studies conducted in both the field and the laboratory. The subjective detection thresholds for vibration and rattle were determined as well as the effect of vibration and rattle upon aircraft noise annoyance.
ISE structural dynamic experiments
NASA Technical Reports Server (NTRS)
Lock, Malcolm H.; Clark, S. Y.
1988-01-01
The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.
Optical fiber sensors for the non-destructive evaluation of materials
NASA Technical Reports Server (NTRS)
1986-01-01
The operation of the modal domain vibration sensor was demonstrated in several simple vibrational systems. Two apparent advantages are the sensors bandwidth and sensitivity. An inherent drawback of standard vibration detection devices is their rapid cost increase with high frequency bandwidth. This sensor showed consistent response in the freqency range of 1.5 to 400 Hz. By imparting very small but measurable excitations in the structures, the sensors ability to respond to very low order vibration induced strain was established. Dynamic ranges on the order of 18 to 22 dB for the CF beam and string systems respectively were observed. The sensor itself represents a very simple system: a coherent source, a single fiber and a low bandwidth detector. The inherent advantages of ruggedness and immunity to external radiation can also be added. Finally, the sensor minimally impairs structural motion through loading, an advantage in monitoring small vibrations or lightweight structures. Some drawbacks of the sensor are also noted.
A Prototype Actuator Concept for Membrane Boundary Vibration Control
NASA Technical Reports Server (NTRS)
Solter, Micah J.
2005-01-01
In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.
Optimum vibration control of flexible beams by piezo-electric actuators
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.; Studer, P.
1988-01-01
The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.
Optimum vibration control of flexible beams by piezo-electric actuators
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.
On multiple manifestations of the second response branch in streamwise vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Cagney, N.; Balabani, S.
2013-07-01
The structural motion and velocity field in the wake of a cylinder exhibiting vortex-induced vibration (VIV) in the streamwise direction were measured using Particle-Image Velocimetry. The effect of hysteresis on the amplitude response of the cylinder and the existence of multiple wake modes in the region of the second response branch were examined. As the reduced velocity was decreased, there was a reduction in the lock-in range; outside this range the amplitude response was found to be negligible and the A-II mode (which is similar to the von Kármán vortex street) was observed in the wake. When the reduced velocity was increased the second branch could be manifested in two forms, depending on whether the wake exhibited the SA or the A-IV mode (in which two and four vortices are shed per wake cycle, respectively). The A-IV mode has been observed in studies in which a cylinder was forced to oscillate in the streamwise direction; however, this represents the first time that it has been recorded in the wake of a freely oscillating body, and it was not previously known that the A-IV mode was capable of exciting self-sustaining vibrations. Both the SA and A-IV modes were stable and no intermittent mode-switching was observed; however, it was found to be unpredictable which mode would dominate as the reduced velocity was varied and the cylinder entered the second response branch. Analysis of the cylinder displacement signals measured while each mode was dominant indicated that the SA mode excited larger amplitude vibrations than the A-IV mode. A reduced velocity near the second response branch was identified at which the wake could exhibit either the SA, A-IV, or A-II modes, with the latter occurring as the reduced velocity was decreased. Although bi-modal behaviour is well established in VIV studies, as far as the authors are aware, this represents the first time that a point has been observed in the response regime of a freely oscillating structure in which three stable states have been observed, each corresponding to a different wake mode and vibration amplitude, for the same structural parameters, reduced velocity, and Reynolds number. This suggests that the mechanism determining which wake mode dominates and the fluid-structure interaction in the case of streamwise VIV may be more complex than has previously been thought. Finally, the vortex-formation and shedding processes associated with the A-II, SA, and A-IV modes were described using phase-averaged vorticity fields, and the differences between the SA and A-IV modes were discussed.
Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Millan-Malo, Beatriz M; Rodriguez-Garcia, Mario E
2018-07-01
This work is focused on the chemical, structural, morphological, thermal, IR vibrational, and pasting characterization of isolated white, yellow, and purple Arracacha starches from Colombia. Inductive couple plasma showed that these starches are rich in potassium. Scanning Electron Microscopy (SEM) images show that the starch granules are formed by ovoid fully filled Lego-like starch microparticles, the circular cross-section has a diameter between 9 and 15μm and mayor axis between 20 and 30μm. Each one of these ovoids is formed by irregular wedge-shaped 6 to 10 isolated starch granules with an average size between 4 and 12μm. The amylose content ranged between 31 and 36%. Arracacha starches exhibited high viscosity values (between 20.000 and 28.000cP), which could be influenced by the high content of potassium ions, due to the C-H~K Van Der Waals interaction that was identified by using IR spectroscopy. According to the X-ray diffraction analysis, the starch patterns exhibited broad diffracted peaks which could be associated with the existence of nano-crystals and lamellae; the Differential Scanning calorimetry (DSC) result showed starches with a low gelatinization temperature of about 60°C. Copyright © 2018 Elsevier B.V. All rights reserved.
On location of piezoelectric element in a smart-structure: numerical investigation and experiment
NASA Astrophysics Data System (ADS)
Oshmarin, D.; Iurlov, M.
2017-06-01
In this paper, based on some example problems it was demonstrated that in examining the possibilities of smart structure applications, the matter of considerable researchers’ concern is the problem of location of piezoelectric elements in the structure to allow effective realization of its smart functions in the framework of the specified strategy of structure control and target purposes (vibration damping, defectoscopy, etc.) The numerical and experimental investigations have shown that for structures with the elements made of piezoelectric materials, it is more convenient to use as a parameter, specifying the best location of the piezoelectric element for damping the vibrations at the prescribed frequency, the coefficient of electromechanical coupling, which is evaluated by the values of eigenfrequencies of the structure in the short-circuit and open-circuit regimes. The values of eigenfrequencies of vibrations are evaluated by solving the problem of natural vibrations of electromechanical systems by the finite element method using the applied ANSYS package. The investigation were conducted for a thin-walled aluminum shell in the form of half-cylinder.
Vibration isolation by exploring bio-inspired structural nonlinearity.
Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert
2015-10-08
Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.
Simulating Vibrations in a Complex Loaded Structure
NASA Technical Reports Server (NTRS)
Cao, Tim T.
2005-01-01
The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.
Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics
NASA Technical Reports Server (NTRS)
Dobrinskaya, Tatiana
2008-01-01
Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect of vehicle structure vibration on CMGs. Additionally, the effect of external vibrations may also be decreased by increasing the gimbal bearing friction. With the suggested modifications there may be no need to lower the gimbal rates below the nominal design requirements as it is currently done on ISS. The conclusions of this work
Whole-body vibration exposure: a comprehensive field study.
Ozkaya, N; Willems, B; Goldsheyder, D
1994-12-01
A comprehensive field study investigated whole-body vibration exposure levels experienced by the train operators of a large metropolitan subway system. The purposes of the study were to measure mechanical vibrations transmitted to the seated train operators, to calculate daily whole-body vibration exposure levels, and to compare these levels with maximum acceptable exposure levels recommended by the international standard on whole-body vibration (ISO 2631). The study also sought to identify factors that may influence mechanical vibrations transmitted to the operators and quantify their effects on the measured vibration levels. The study was carried out by dividing the subway system into subway lines, each line into southbound and northbound directions, and each direction into station-to-station observations. Triaxial measurements were made on all subway lines and for all car types used in the system. For each line, at least two round trips of data were collected. Time-weighted averages of the two sets of data were used for final presentation. A total of 48 round trips were made and more than 100 hours of vibration data was collected and analyzed. All phases of the study were carried out in accordance with the procedures outlined in ISO 2631. It was determined that 6 out of 20 subway lines had vibration levels higher than daily exposure limits recommended by ISO 2631. It was also determined that train speed was the most significant factor influencing vibration exposure levels.
Keller, Benjamin V.; Davis, Matthew L.; Thompson, William R.; Dahners, Laurence E.; Weinhold, Paul S.
2014-01-01
Whole Body Vibration (WBV) is becoming increasingly popular for helping to maintain bone mass and strengthening muscle. Vibration regimens optimized for bone maintenance often operate at hypogravity levels (<1 G) and regimens for muscle strengthening often employ hypergravity (>1 G) vibrations. The effect of vibratory loads on tendon and ligament properties is unclear though excessive vibrations may be injurious. Our objective was to evaluate how tendon gene expression and the mechanical/histological properties of tendon and ligament were affected in response to WBV in the following groups: no vibration, low vibration (0.3 G peak-to-peak), and high vibration (2 G peak-to-peak). Rats were vibrated for 20 min a day, 5 days a week, for 5 weeks. Upon sacrifice, the medial collateral ligament (MCL), patellar tendon (PT), and the Achilles Tendon (AT) were isolated with insertion sites intact. All tissues were tensile tested to determine structural and material properties or used for histology. Patellar tendon was also subjected to quantitative RT-PCR to evaluate expression of anabolic and catabolic genes. No differences in biomechanical data between the control and the low vibration groups were found. There was evidence of significant weakness in the MCL with high vibration, but no significant effect on the PT or AT. Histology of the MCL and PT showed a hypercellular tissue response and some fiber disorganization with high vibration. High vibration caused an increase in collagen expression and a trend for an increase in IGF-1 expression suggesting a potential anabolic response to prevent tendon overuse injury. PMID:23623311
CM-2 Environmental / Modal Testing of Spacehab Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.
NASA Astrophysics Data System (ADS)
Ni, Yan-Chun; Zhang, Feng-Liang
2018-05-01
Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.
Ittianuwat, R; Fard, M; Kato, K
2017-01-01
Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.
An innovative and multi-functional smart vibration platform
NASA Astrophysics Data System (ADS)
Olmi, C.; Song, G.; Mo, Y. L.
2007-08-01
Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.
Diagnosis of helicopter gearboxes using structure-based networks
NASA Technical Reports Server (NTRS)
Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.
1995-01-01
A connectionist network is introduced for fault diagnosis of helicopter gearboxes that incorporates knowledge of the gearbox structure and characteristics of the vibration features as its fuzzy weights. Diagnosis is performed by propagating the abnormal features of vibration measurements through this Structure-Based Connectionist Network (SBCN), the outputs of which represent the fault possibility values for individual components of the gearbox. The performance of this network is evaluated by applying it to experimental vibration data from an OH-58A helicopter gearbox. The diagnostic results indicate that the network performance is comparable to those obtained from supervised pattern classification.
Equilibrium structure and atomic vibrations of Nin clusters
NASA Astrophysics Data System (ADS)
Borisova, Svetlana D.; Rusina, Galina G.
2017-12-01
The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.
Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle
2015-06-01
Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.
Relationships for electron-vibrational coupling in conjugated π organic systems
NASA Astrophysics Data System (ADS)
O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.
2005-06-01
A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.
NASA Astrophysics Data System (ADS)
Cifra, M.; Havelka, D.; Deriu, M. A.
2011-12-01
Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.
Yang, Jubiao; Wang, Xingshi; Krane, Michael; Zhang, Lucy T.
2017-01-01
In this study, a fully-coupled fluid–structure interaction model is developed for studying dynamic interactions between compressible fluid and aeroelastic structures. The technique is built based on the modified Immersed Finite Element Method (mIFEM), a robust numerical technique to simulate fluid–structure interactions that has capabilities to simulate high Reynolds number flows and handles large density disparities between the fluid and the solid. For accurate assessment of this intricate dynamic process between compressible fluid, such as air and aeroelastic structures, we included in the model the fluid compressibility in an isentropic process and a solid contact model. The accuracy of the compressible fluid solver is verified by examining acoustic wave propagations in a closed and an open duct, respectively. The fully-coupled fluid–structure interaction model is then used to simulate and analyze vocal folds vibrations using compressible air interacting with vocal folds that are represented as layered viscoelastic structures. Using physiological geometric and parametric setup, we are able to obtain a self-sustained vocal fold vibration with a constant inflow pressure. Parametric studies are also performed to study the effects of lung pressure and vocal fold tissue stiffness in vocal folds vibrations. All the case studies produce expected airflow behavior and a sustained vibration, which provide verification and confidence in our future studies of realistic acoustical studies of the phonation process. PMID:29527067
Cussons, P D; Matthews, P B; Muir, R B
1979-01-01
1. Irregularities in the development of tension during the tonic vibration reflex of the soleus muscle of the decerebrate cat have been analysed into their frequency components. The reflex was recorded isometrically and elicited by longitudinal vibration, normally at 150 Hz. The amplitude of vibration was set so as to elicit a maximal reflex response, suggesting 1:1 driving of the majority of the Ia afferents at the frequency of vibration. 2. The resulting power spectrum regularly showed a well marked tremor peak separated by a trough from any slow irregularities. The predominant frequency of this tremor varied from 4 to 11 Hz in different preparations, with a mean of 7.4 Hz; on average, frequencies within 1.7 Hz on either side contained over half the power of the predominant frequency. Altering the frequency of vibration did not alter the distribution of tremor frequencies. 3. The root mean square value of the tension irregularities, over the range 4-14 Hz, varied from 12 to 110 mN in different preparations (median value, 23 mN); this was superimposed on mean active reflex tensions varying from 2 to 10 N. 4. The 'tremor' due to a single motor unit was estimated from spectral analysis of tetanic contractions of the whole muscle and decreased with increasing frequency of activation. Comparison of the single unit values with the tremor seen during vibration in the same preparations showed that equivalent amounts of tremor to the latter could typically have been produced by the continued synchronous contraction of about five 'average' motor units firing at the predominant tremor frequency. 5. When a tonic stretch reflex was present its tremor frequencies did not differ consistently from those of the tonic vibration reflex. On average, the tremor was smaller for the stretch reflex than for the tonic vibration reflex; the difference was usually slight and might have been related to the stretch refex tension being smaller. 6. Evidence was obtained that the tremor was not due to any insecurity of 1:1 driving of the Ia afferents by the vibration. First, the tremor did not increase when the amplitude of vibration was decreased sufficiently to ensure that the degree of 1:1 driving must have been reduced. Secondly, the introduction of a comparable 'artificial tremor' by sinusoidally oscillating the muscle at low frequency did not produce the e.m.g. response that would have been expected if the applied 'tremor' had been modulating the firing of the Ia or any other group of afferents. 7. It is concluded that the observed tremor cannot be attributed to 'oscillation in the stretch reflex arc', though without prejudice to the role of this mechanism under other conditions and especially when the recording is not isometric. However, the genesis of the tremor has not been established and much of it might result simply from the chance synchronization of motor units that are firing below their tetanic fusion frequency. PMID:158643
Vibration isolation of automotive vehicle engine using periodic mounting systems
NASA Astrophysics Data System (ADS)
Asiri, S.
2005-05-01
Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of mounting systems with plain and periodic mounts will be studied first. The dynamic characteristics of such systems will be obtained experimentally in both cases. The tests will be then carried out to study the performance characteristics of periodic mounts with geometrical and/or material periodicity. The effectiveness of the periodicity on the vibration levels of mounting systems will be demonstrated theoretically and experimentally. Finally, the experimental results will be compared with the theoretical predictions.
Virokannas, H
1995-05-01
31 railway workers and 32 lumberjacks were examined to compare the dose-response relation between the exposure to two types of hand-arm vibration and the sensory disturbances in peripheral nerves as evaluated by the vibration perception thresholds (VPTs). Clinical examinations were carried out that included measurements of the VPTs, and electroneuromyography (ENMG), and an inquiry to confirm the use of vibrating tools. Diseases of the central nervous system and neuropathies were checked by inquiry and a clinical examination, diabetes was excluded by a blood sample analysis, and the subjects with carpal tunnel syndrome confirmed with ENMG were excluded from the study. Lifetime use of hand held tamping machines (railway workers) and chain saws (lumberjacks) had a significant correlation with the VPTs at frequencies from 32 to 500 Hz. The increase of the VPTs (250 Hz) in relation to use of vibrating tools was 1.8-fold higher on average in the whole group and 2.3-fold higher in the young (< 45) railway workers who had used hand held tamping machines, than in the corresponding groups of lumberjacks, who had used chain saws, whereas the frequency weighted acceleration of vibration in tamping machines was fourfold. There was a significant dose-response relation between the exposure to hand-arm vibration and the VPTs. The VPTs as a function of the frequency weighted acceleration of vibration and the exposure to vibration gave promising results for assessment of the risk of damage to sensory nerves induced by vibration.
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
NASA Technical Reports Server (NTRS)
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
Otaki, Hiroki; Yagi, Kiyoshi; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Sugita, Yuji
2016-10-06
An accurate theoretical prediction of the vibrational spectrum of polypeptides remains to be a challenge due to (1) their conformational flexibility and (2) non-negligible anharmonic effects. The former makes the search for conformers that contribute to the spectrum difficult, and the latter requires an expensive, quantum mechanical calculation for both electrons and vibrations. Here, we propose a new theoretical approach, which implements an enhanced conformational sampling by the replica-exchange molecular dynamics method, a structural clustering to identify distinct conformations, and a vibrational structure calculation by the second-order vibrational quasi-degenerate perturbation theory (VQDPT2). A systematic mode-selection scheme is developed to reduce the cost of VQDPT2 and the generation of a potential energy surface by the electronic structure calculation. The proposed method is applied to a pentapeptide, SIVSF-NH 2 , for which the infrared spectrum has recently been measured in the gas phase with high resolution in the OH and NH stretching region. The theoretical spectrum of the lowest energy conformer is obtained with a mean absolute deviation of 11.2 cm -1 from the experimental spectrum. Furthermore, the NH stretching frequencies of the five lowest energy conformers are found to be consistent with the literature values measured for small peptides with a similar secondary structure. Therefore, the proposed method is a promising way to analyze the vibrational spectrum of polypeptides.
NASA Astrophysics Data System (ADS)
Bieniek, Ronald
2008-05-01
Rates for collisionally induced transitions between molecular vibrational levels are important in modeling a variety of non-LTE processes in astrophysical environments. Two examples are SiO masering in circumstellar envelopes in certain late-type stars [1] and the vibrational populations of molecular hydrogen in shocked interstellar medium [cf 2]. A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for state-to-state and thermally averaged rates for collisionally induced vibrational-translational (VT) transitions in diatomic molecules [3,4]. The thermally averaged rates predicted by this formula have been shown to be in excellent numerical agreement with absolute experimental and quantum mechanical rates over large temperature ranges and initial vibrational excitation levels in a variety of species, e.g., OH, O2, N2 [3] and even for the rate of H2(v=1)+H2, which changes by five orders of magnitude in the temperature range 50-2000 K [4]. Analogous analytic rates will be reported for vibrational transitions in SiO due to collisions with H2 and compared to the numerical fit of quantum-mechanical rates calculated by Bieniek and Green [5]. [1] Palov, A.P., Gray, M.D., Field, D., & Balint-Kurti, G.G. 2006, ApJ, 639, 204. [2] Flower, D. 2007, Molecular Collisions in the Interstellar Medium (Cambridge: Cambridge Univ. Press) [3] Bieniek, R.J. & Lipson, S.J. 1996, Chem. Phys. Lett. 263, 276. [4] Bieniek, R.J. 2006, Proc. NASA LAW (Lab. Astrophys. Workshop) 2006, 299; http://www.physics.unlv.edu/labastro/nasalaw2006proceedings.pdf. [5] Bieniek, R.J., & Green, S. 1983, ApJ, 265, L29 and 1983, ApJ, 270, L101.
Effect of Seating on Exposures to Whole-Body Vibration in Vehicles
NASA Astrophysics Data System (ADS)
PADDAN, G. S.; GRIFFIN, M. J.
2002-05-01
The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.
Some problems of control of dynamical conditions of technological vibrating machines
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.
2017-10-01
The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.
Vibration damping method and apparatus
Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.
1999-01-01
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.
Blading System and Method For Controlling Structural Vibrations
NASA Technical Reports Server (NTRS)
Nguyen, Nhan (Inventor)
2000-01-01
A new blading system for controlling the structural vibrations in axial-flow compressors, turbines, or fans, as in aircraft engines and like turbomachines including a stator disc and a rotor disc is presented. The rotor disc defines several radial hubs that retain the rotor blading systems. Each blading system includes a blade formed of an airfoil, and a root attachment which is dimensioned to fit within, and to engage a corresponding hub. Viscoelastic dampers are selectively applied to the outer surfaces of the root attachment on which compressive or shear forces are likely to develop, intermediate the root attachment and the hub, for compression therebetween upon rotation of the rotor disc, in order to dampen structural vibrations. One advantage presented by the viscoelastic dampers lies in its simplicity, efficiency, cost effectiveness, and its ability to be retrofitted into existing turbomachines with minor surface treatment of the root attachments. Furthermore, since the dampers are not exposed to the inflowing airstream, they do not affect the aerodynamic performance of the turbomachine. Another feature of the damping system is that it provides a significant source of damping to minimize destructive structural vibrations, thereby increasing the durability of the turbomachine, and reducing acoustic noise accompanying high amplitude vibrations.
Vibrational impacts of hush house operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witten, A.J.
1988-01-01
United States Air Force (USAF) facilities are required to test turboprop and turbojet engines before or after maintenance or repair and prior to installation on aircraft to ensure that no problems were introduced or remain uncorrected. This requirement prevents the installation of engines in aircraft which require further maintenance. There are a number of facilities in use by USAF for conducting engine diagnostic tests. The most modern of these facilities is the hush house which is a hangar-like structure designed to isolate the noise associated with extended engine operations from the surrounding environment. One type of hush house, the T-10,more » is of particular concern because of vibrational impacts to surrounding structures induced by subaudible sound (infrasound) emitted during operation. While these facilities fulfill the design requirement of reducing audible noise, serious siting problems have been reported at several installations because of infrasound-induced vibrations. The worst of these include the abandonment of an avionics laboratory because induced vibrations interfered with this facilities function and structural damage to a concrete block maintenance facility. This paper describes a predictive method for assessing vibration-driven structural impacts. 9 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shun-Li; Fu, Li; Chase, Zizwe A.
Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less
Control of resonant frequencies in adaptive structures by prestressing
NASA Technical Reports Server (NTRS)
Baycan, Can M.; Utku, Senol; Wada, Ben K.
1992-01-01
The natural vibration frequencies of a structure can be affected by inducing stress in the structure. The success of this kind of control of the resonant frequencies of a truss structure depends on the geometry of the structure. It is shown that in adaptive truss structures the method is effective for vibrations in less stiff directions, such as the normal direction of the plane containing all of the bars of a node, suggesting its applicability for cable, membrane, and thin plate and shell structures.
Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.
Wang, Jun; Zhang, Kai; Zhu, Yuejin
2005-05-01
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palomba, M., E-mail: mariano.palomba@cnr.it; Carotenuto, G.; Binetti, S.
Owing to the very brittle nature of the tellurium powder, nanoscopic grains with average size of 4.8 nm were produced by dry vibration milling technique using a Mixer mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA). The morphology, elemental composition, and structural properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied in dark condition and under white light illumination varying the optical power density from 10 to 170 mW/cm{sup 2} and turning onmore » and off the light cyclically.« less
DOT National Transportation Integrated Search
1975-03-01
Noise emissions and building structural vibration levels were measured during landing and take off operations of the Anglo/French supersonic aircraft (Concorde) and from some conventional subsonic turbojet aircraft. Measurements were made at both the...
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
NASA Astrophysics Data System (ADS)
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
NASA Astrophysics Data System (ADS)
Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.
2016-09-01
Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.
2015-10-28
Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less
NASA Astrophysics Data System (ADS)
Sharma, Vikas; Parey, Anand
2017-02-01
In the purview of fluctuating speeds, gear fault diagnosis is challenging due to dynamic behavior of forces. Various industrial applications employing gearbox which operate under fluctuating speed conditions. For diagnostics of a gearbox, various vibrations based signal processing techniques viz FFT, time synchronous averaging and time-frequency based wavelet transform, etc. are majorly employed. Most of the time, theories about data or computational complexity limits the use of these methods. In order to perform fault diagnosis of a gearbox for fluctuating speeds, frequency domain averaging (FDA) of intrinsic mode functions (IMFs) after their dynamic time warping (DTW) has been done in this paper. This will not only attenuate the effect of fluctuating speeds but will also extract the weak fault feature those masked in vibration signal. Experimentally signals were acquired from Drivetrain Diagnostic Simulator for different gear health conditions i.e., healthy pinion, pinion with tooth crack, chipped tooth and missing tooth and were analyzed for the different fluctuating profiles of speed. Kurtosis was calculated for warped IMFs before DTW and after DTW of the acquired vibration signals. Later on, the application of FDA highlights the fault frequencies present in the FFT of faulty gears. The result suggests that proposed approach is more effective towards the fault diagnosing with fluctuating speed.
Structural-Vibration-Response Data Analysis
NASA Technical Reports Server (NTRS)
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
Flexible Animation Computer Program
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.
1990-01-01
FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.
Ground vibration test results of a JetStar airplane using impulsive sine excitation
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Voracek, David F.
1989-01-01
Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1991-01-01
A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1991-01-01
A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less
NASA Astrophysics Data System (ADS)
Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing
2015-03-01
The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.« less
NASA Astrophysics Data System (ADS)
Yang, Feng; Zhang, Xiaofang; Huang, Yu; Hao, Weiwei; Guo, Baiwei
2012-11-01
Satellite platform vibration causes the image quality to be degraded, it is necessary to study its influence on image quality. The forms of Satellite platform vibration consist of linear vibration, sinusoidal vibration and random vibration. Based on Matlab & Zemax, the simulation system has been developed for simulating impact caused by satellite platform vibration on image quality. Dynamic Data Exchange is used for the communication between Matlab and Zemax. The data of sinusoidal vibration are produced by sinusoidal curve with specific amplitude and frequency. The data of random vibration are obtained by combining sinusoidal signals with 10Hz, 100Hz and 200Hz's frequency, 100, 12, 1.9's amplitude and white noise with zero mean value. Satellite platform vibration data which produced by Matlab are added to the optical system, and its point spread function can be obtained by Zemax. Blurred image can be gained by making the convolution of PSF and the original image. The definition of the original image and the blurred image are evaluated by using average gradient values of image gray. The impact caused by the sine and random vibration of six DOFs on the image quality are respectively simulated. The simulation result reveal that the decenter of X-, Y-, Z- direction and the tilt of Z-direction have a little effect on image quality, while the tilt of X-, Y- direction make image quality seriously degraded. Thus, it can be concluded that correcting the error of satellite platform vibration by FSM is a viable and effective way.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
The effects of vibration-reducing gloves on finger vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2015-01-01
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new results and knowledge can be used to help select appropriate gloves for the operations of powered hand tools, to help perform risk assessment of the vibration exposure, and to help design better VR gloves. PMID:26543297
NASA Astrophysics Data System (ADS)
Baklanov, V. S.
2016-07-01
The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.
The vibrational spectra and structure of 4-methyl oxaloacetate (carbomethoxypyruvic acid)
NASA Astrophysics Data System (ADS)
Schiering, David W.; Katon, J. E.
1986-04-01
The vibrational spectra of solid 4-methyl oxalocetate have been recorded. Infrared spectra were collected at ambient and liquid nitrogen temperatures; Raman spectra were collected at ambient temperature only. A tentative vibrational assignment of the solid is proposed based on a dimer structure composed of two enolic monomer units hydrogen bonded through the carboxylic acid group. 4-Methyl oxaloacetate was found to undergo keto—enol tautomerization in solution, and the solvent dependency of this equilibrium was demonstrated.
The vibrational spectra and structures of dimethyl oxaloacetate and dimethyl oxaloacetate- d2
NASA Astrophysics Data System (ADS)
Schiering, David W.; Katon, J. E.
The complete vibrational spectra of dimethyl oxaloacetate and dimethyl oxaloacetate- d2 have been recorded and analyzed. The i.r. spectra were recorded at liquid N 2 as well as ambient temperature. Tentative vibrational assignments are proposed based on an enol structure in the crystalline phase. In solution, dimethyl oxaloacetate exists as a tautomeric mixture of keto and enol forms. Evidence for the existence of different enol conformers in CCl 4 and CS 2 solutions is also presented.
Active control of structures using macro-fiber composite (MFC)
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Barkanov, E.; Gluhihs, S.
2007-12-01
This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.
Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H
2004-01-22
Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Passive damping concepts for tubular beams with partial rotational and translational end restraints
NASA Technical Reports Server (NTRS)
Razzaq, Zia; Muyundo, David K.
1991-01-01
The main objectives of the study are: (1) identification of potential passive damping concepts for slender tubular structural members with rotational and translational end springs under natural and forced-free vibrations; (2) evaluation of damping efficiencies of the various damping concepts; and (3) evaluation of the suitability of a theoretical finite difference analysis by comparison to the experimental results for the case of natural vibrations. Only member flexural an translation motion is considered. The natural vibration study is conducted on the seven damping concepts and for only one specific initial deflection. The most suitable of the seven dampers is further investigated under forced-free vibrations. In addition only one set of end springs is used for all of the experiments. The results show that passive damping provides a possible approach to structural vibration reduction.
CM-2 Environmental/Modal Testing of SPACEHAB Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.
Serwicka, Ewa M; Bahranowski, Krzysztof; Sitarz, Maciej; Zimowska, Małgorzata; Michalik-Zym, Alicja
2016-09-27
Retraction of 'Vibrational evidence for the "missing link" in structural kinship between kanemite and FSM-16 mesoporous silica' by Ewa M. Serwicka, et al., Dalton Trans., 2016, DOI: 10.1039/C6DT01600F.
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2013-05-01
The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.
Effects of seated posture on erector spinae EMG activity during whole body vibration.
Zimmermann, C L; Cook, T M; Goel, V K
1993-06-01
The purpose of this study was to evaluate the electromyographic (EMG) response of the erector spinae to whole body vibration in three different unsupported seated postures: neutral upright, forward lean, and posterior lean. Subjects were 11 healthy college-age men. EMG was collected using bipolar surface electrodes placed bilaterally over the erector spinae at the L4 level. A modified chair with attached accelerometer was affixed to an induction type vibrator. Subjects were vibrated vertically at 4.5 Hz and 6.21 m.s-2 RMS. Data were collected in each of the three postures for 30 s pre- and post-vibration and for 2 min during vibration. Mean EMG values were determined for each sampling period and compared using ANOVA. The mean value for anterior lean was significantly larger (p < 0.05) than that for posterior lean and neutral. EMG data analysed by triggered averaging showed a phase-dependent response to the vibratory cycle for the forward leaning and neutral upright postures. The results of this study indicate that the magnitude of the vibration synchronous response of the erector spinae musculature is dependent upon body posture. This response may be an important factor in the onset of muscular fatigue and the increased incidence of back disorders among individuals exposed to whole body vibration.
The influence of traffic vibrations on the radon potential.
Schmid, S; Wiegand, J
1998-02-01
The influence of traffic vibrations on the radon potential is analyzed in this study. Generally, the radon concentration in soil-gas increases through traffic vibrations. The influence of the vibrations is determined near railway tracks and heavy-traffic roads. Soils above natural, in-place, bedrock (solid and unconsolidated rocks) and backfills were studied. The type of vibrations, as well the soil material, have a pronounced influence on the amount of increase of the radon concentration. The spatial radius of influence is wider with railway traffic (>30 m) than with motor vehicle traffic (<25 m). Close to the traffic lanes the increase of the radon concentration by motor vehicle traffic is significantly higher (37%) than that by railway traffic (11.5%). There are no differences between locations, which lay above unconsolidated rock (11.1%), and locations above solid rock (11.8%). In addition to the increased radon concentrations, the averaged radon concentration decreases with increasing distance to the vibration source, but only at locations that lay above solid rock. Both phenomena can be explained by a "pump effect": the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. During the vibrations the topmost soil layers lose radon to the atmosphere and as a result the upward transport is increased.
Statistical analysis of low frequency vibrations in variable speed wind turbines
NASA Astrophysics Data System (ADS)
Escaler, X.; Mebarki, T.
2013-12-01
The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.
Whole-body vibration exposure of occupational horseback riding in agriculture: A ranching example.
Zeng, Xiaoke; Trask, Catherine; Kociolek, Aaron M
2017-02-01
Horse riding is common in many occupations; however, there is currently no research evaluating exposure to whole-body vibration and mechanical shock on horseback. Whole-body vibration was measured on a cattle rancher during two 30 min horseback rides using a tri-axial accelerometer mounted on a western saddle. Vibration was summarized into standardized metrics, including the 8 hr equivalent root-mean-squared acceleration (A[8]) and the daily 4th power vibration dose value (VDV). The resulting exposures were compared to the exposure limit and action values provided by European Union Directive 2002/44/EC. The highest vibration for both rides was in the vertical axis, with average A(8) and VDV of 0.56 m/s 2 and 26.24 m/s 1.75 , respectively. The A(8) value indicated moderate risk while the VDV suggested high risk of harmful health effects. Exposure to whole-body vibration and mechanical shock during occupational horseback riding may pose deleterious health risks and increased susceptibility to low back pain. Am. J. Ind. Med. 60:215-220, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, Xiuting; Jing, Xingjian
2016-12-01
This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.
Vibrational spectroscopic and structural investigations on fullerene: A DFT approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electronmore » affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.« less
Evaluation of Aero Commander sidewall vibration and interior acoustic data: Static operations
NASA Technical Reports Server (NTRS)
Piersol, A. G.; Wilby, E. G.; Wilby, J. F.
1980-01-01
Results for the vibration measured at five locations on the fuselage structure during static operations are presented. The analysis was concerned with the magnitude of the vibration and the relative phase between different locations, the frequency response (inertance) functions between the exterior pressure field and the vibration, and the coherent output power functions at interior microphone locations based on sidewall vibration. Fuselage skin panels near the plane of rotation of the propeller accept propeller noise excitation more efficiently than they do exhaust noise.
Progressive phase trends in plates with embedded acoustic black holes.
Conlon, Stephen C; Feurtado, Philip A
2018-02-01
Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
Research on the design of fixture for motor vibration test
NASA Astrophysics Data System (ADS)
Shen, W. X.; Ma, W. S.; Zhang, L. W.
2018-03-01
The vibration reliability of the new energy automobile motor plays a very important role in driving safety, so it is very important to test the vibration durability of the motor. In the vibration test process, the fixture is very important, simulated road spectrum signal vibration can be transmitted without distortion to the motor through the fixture, fixture design directly affect the result of vibration endurance test. On the basis of new energy electric vehicle motor concrete structure, Two fixture design and fixture installation schemes for lateral cantilever type and base bearing type are put forward in this article, the selection of material, weighting process, middle alignment process and manufacturing process are summarized.The modal analysis and frequency response calculation of the fixture are carried out in this design, combine with influence caused by fixture height and structure profile on response frequency, the response frequency of each order of the fixture is calculated, then ultimately achieve the purpose of guiding the design.
Stress analysis of rotating propellers subject to forced excitations
NASA Astrophysics Data System (ADS)
Akgun, Ulas
Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.
Simultaneous Vibration Suppression and Energy Harvesting
2013-08-15
D.J., 2011. “Modeling and Analysis of Piezoelectric Energy Harvesting from Aeroelastic Vibrations Using the Doublet-Lattice Method,” ASME Journal...Friswell, M. I., and Inman, D. J., 2009, “ Piezoelectric Energy Harvesting from Broadband Random Vibrations ,” Smart Materials and Structures, Vol. 18...and Electrode Configuration on Piezoelectric Energy Harvesting from Cantilevered Beams,” ASME Journal of Vibration and Acoustics, Vol. 131, No. 1, pp
Vibration damping method and apparatus
Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.
1999-06-22
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.
Vibration Suppression Strategies for Large Tension-Aligned Array Structures
2013-11-19
show vibration suppression. Practical issues related to actuator bandwidth were also addressed. 40 Dr. Ranjan Mukherjee (517) 355-1834 FINAL...third strategies, Lyapunov stability theory was used to show vibration suppression. Practical issues related to actuator bandwidth were also addressed...1 Publications Journal Papers : • Alsahlani, A. and Mukherjee, R., “Vibration Control of a String Using a Scabbard-Like Actuator”, Journal of Sound and
A computationally efficient software application for calculating vibration from underground railways
NASA Astrophysics Data System (ADS)
Hussein, M. F. M.; Hunt, H. E. M.
2009-08-01
The PiP model is a software application with a user-friendly interface for calculating vibration from underground railways. This paper reports about the software with a focus on its latest version and the plans for future developments. The software calculates the Power Spectral Density of vibration due to a moving train on floating-slab track with track irregularity described by typical values of spectra for tracks with good, average and bad conditions. The latest version accounts for a tunnel embedded in a half space by employing a toolbox developed at K.U. Leuven which calculates Green's functions for a multi-layered half-space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long
2016-01-07
The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H{sub 2}O–Ar, which explicitly incorporates interdependence on the intramolecular (Q{sub 1}, Q{sub 2}, Q{sub 3}) normal-mode coordinates of the H{sub 2}O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averagedmore » interaction energies for the (v{sub 1}, v{sub 2}, v{sub 3}) = (0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0) states of H{sub 2}O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm{sup −1}, and required only 58 parameters. With the 3D PESs of H{sub 2}O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm{sup −1} for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H{sub 2}O in H{sub 2}O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings.« less
Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. (D{sub 2}O){sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braly, L. B.; Cruzan, J. D.; Liu, K.
Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four (D{sub 2}O){sub 2} intermolecular vibrations (one previously published) have been measured between 65 and 104 cm{sup -1}. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, themore » 83 cm{sup -1} (acceptor wag) and 90 cm{sup -1} (D{sub 2}O){sub 2} (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for (H{sub 2}O){sub 2} is presented in an accompanying paper. (c) 2000 American Institute of Physics.« less