Sample records for vibrations structural

  1. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  2. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  3. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  4. Vibration sensing method and apparatus

    DOEpatents

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  5. Experiments In Characterizing Vibrations Of A Structure

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.

    1993-01-01

    Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).

  6. Microgravity Vibration Control and Civil Applications

    NASA Technical Reports Server (NTRS)

    Whorton, Mark Stephen; Alhorn, Dean Carl

    1998-01-01

    Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.

  7. Structure-borne noise at hotels

    NASA Astrophysics Data System (ADS)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  8. Chemical and biological sensing using tuning forks

    DOEpatents

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  9. Integrated passive/active vibration absorber for multi-story buildings

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.

    1995-01-01

    Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.

  10. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    NASA Astrophysics Data System (ADS)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  11. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2014-11-01

    Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  12. Numerical Simulation of Flow Features and Energy Exchange Physics in Near-Wall Region with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lixiang; Wang, Wenquan; Guo, Yakun

    Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.

  13. Operation Manual for the Intensity Based Interrogation of Fibre Bragg Grating Arrays on Vibrating Structures

    DTIC Science & Technology

    2011-01-01

    based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an

  14. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  15. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  16. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  17. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    PubMed Central

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344

  18. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    PubMed

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  19. Variational study on the vibrational level structure and IVR behavior of highly vibrationally excited S0 formaldehyde.

    PubMed

    Rashev, Svetoslav; Moule, David C

    2012-02-15

    We perform large scale converged variational vibrational calculations on S(0) formaldehyde up to very high excess vibrational energies (E(v)), E(v)∼17,000cm(-1), using our vibrational method, consisting of a specific search/selection/Lanczos iteration procedure. Using the same method we investigate the vibrational level structure and intramolecular vibrational redistribution (IVR) characteristics for various vibrational levels in this energy range in order to assess the onset of IVR. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  1. An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts

    NASA Astrophysics Data System (ADS)

    Yan, Kun; Cheng, Gengdong

    2018-03-01

    For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.

  2. Concorde noise-induced building vibrations: John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.

  3. Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction

    DTIC Science & Technology

    2012-09-01

    fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as

  4. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  5. A vibrational spectroscopic study of hydrated Fe(3+) hydroxyl-sulfates; polymorphic minerals butlerite and parabutlerite.

    PubMed

    Cejka, Jiří; Sejkora, Jiří; Plášil, Jakub; Bahfenne, Silmarilly; Palmer, Sara J; Frost, Ray L

    2011-09-01

    Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)·2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H⋯O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Improved Technique for Finding Vibration Parameters

    NASA Technical Reports Server (NTRS)

    Andrew, L. V.; Park, C. C.

    1986-01-01

    Filtering and sample manipulation reduce noise effects. Analysis technique improves extraction of vibrational frequencies and damping rates from measurements of vibrations of complicated structure. Structural vibrations measured by accelerometers. Outputs digitized at frequency high enough to cover all modes of interest. Use of method on set of vibrational measurements from Space Shuttle, raised level of coherence from previous values below 50 percent to values between 90 and 99 percent

  7. Lumped mass model of a 1D metastructure for vibration suppression with no additional mass

    NASA Astrophysics Data System (ADS)

    Reichl, Katherine K.; Inman, Daniel J.

    2017-09-01

    The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.

  8. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

    1987-01-01

    Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

  9. Vibration and noise characteristics of an elevated box girder paved with different track structures

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhen; Liang, Lin; Wang, Dangxiong

    2018-07-01

    The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.

  10. An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing

    NASA Astrophysics Data System (ADS)

    Waluyo, T. B.; Bayuwati, D.

    2017-04-01

    We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.

  11. Floor vibration evaluations for medical facilities

    NASA Astrophysics Data System (ADS)

    Himmel, Chad N.

    2003-10-01

    The structural floor design for new medical facilities is often selected early in the design phase and in renovation projects, the floor structure already exists. Because the floor structure can often have an influence on the location of vibration sensitive medical equipment and facilities, it is becoming necessary to identify the best locations for equipment and facilities early in the design process. Even though specific criteria for vibration-sensitive uses and equipment may not always be available early in the design phase, it should be possible to determine compatible floor structures for planned vibration-sensitive uses by comparing conceptual layouts with generic floor vibration criteria. Relatively simple evaluations of planned uses and generic criteria, combined with on-site vibration and noise measurements early in design phase, can significantly reduce future design problems and expense. Concepts of evaluation procedures and analyses will be presented in this paper. Generic floor vibration criteria and appropriate parameters to control resonant floor vibration and noise will be discussed for typical medical facilities and medical research facilities. Physical, economic, and logistical limitations that affect implementation will be discussed through case studies.

  12. Influence of vibration on structure rheological properties of a highly concentrated suspension

    NASA Astrophysics Data System (ADS)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  13. Variational study on the vibrational level structure and vibrational level mixing of highly vibrationally excited S₀ D₂CO.

    PubMed

    Rashev, Svetoslav; Moule, David C; Rashev, Vladimir

    2012-11-01

    We perform converged high precision variational calculations to determine the frequencies of a large number of vibrational levels in S(0) D(2)CO, extending from low to very high excess vibrational energies. For the calculations we use our specific vibrational method (recently employed for studies on H(2)CO), consisting of a combination of a search/selection algorithm and a Lanczos iteration procedure. Using the same method we perform large scale converged calculations on the vibrational level spectral structure and fragmentation at selected highly excited overtone states, up to excess vibrational energies of ∼17,000 cm(-1), in order to study the characteristics of intramolecular vibrational redistribution (IVR), vibrational level density and mode selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  15. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction

    DTIC Science & Technology

    2006-06-01

    response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark

  16. Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System

    DTIC Science & Technology

    2007-08-01

    Department of Aerospace S~and Mechanical Engineering I 20070904056 I EXPERIMENTS IN SOUND AND STRUCTURAL VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED...SOUND AND STRUCTURAL * VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED PROPULSION SYSTEM FINAL TECHNICAL REPORT Prepared by: Scott C. Morris Assistant...Vibration Using Air - 5b. GRANT NUMBER Analog Model Ducted Propulsion Systems N00014-1-0522 5C. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  17. Effect of External Vibration on PZT Impedance Signature.

    PubMed

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  18. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  19. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  20. An approach to determination of shunt circuits parameters for damping vibrations

    NASA Astrophysics Data System (ADS)

    Matveenko; Iurlova; Oshmarin; Sevodina; Iurlov

    2018-04-01

    This paper considers the problem of natural vibrations of a deformable structure containing elements made of piezomaterials. The piezoelectric elements are connected through electrodes to an external electric circuit, which consists of resistive, inductive and capacitive elements. Based on the solution of this problem, the parameters of external electric circuits are searched for to allow optimal passive control of the structural vibrations. The solution to the problem is complex natural vibration frequencies, the real part of which corresponds to the circular eigenfrequency of vibrations and the imaginary part corresponds to its damping rate (damping ratio). The analysis of behaviour of the imaginary parts of complex eigenfrequencies in the space of external circuit parameters allows one to damp given modes of structure vibrations. The effectiveness of the proposed approach is demonstrated using a cantilever-clamped plate and a shell structure in the form of a semi-cylinder connected to series resonant ? circuits.

  1. Structural sensitivity of Csbnd H vibrational band in methyl benzoate

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Maiti, Kiran Sankar

    2018-05-01

    The Csbnd H vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the Csbnd H stretch vibrations, assignment of the Csbnd H vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the Csbnd H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric Csbnd H stretch vibration of methyl group. The Csbnd D stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.

  2. Vibration control of a cluster of buildings through the Vibrating Barrier

    NASA Astrophysics Data System (ADS)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  3. Design and initial validation of a wireless control system based on WSN

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping

    2013-04-01

    At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.

  4. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2015-03-01

    We have recently found that a long length of fiber of up to 1 km terminated with an in-fiber cavity structure can detect vibrations over a frequency range from 5 Hz to 2 kHz. We want to determine whether the sensor (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to maintenance cost. The sensor may also help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that requires the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Acoustic vibration monitoring may need sensing at even higher frequencies (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed longgauge vibration sensor depends on packaging.

  5. Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators

    NASA Astrophysics Data System (ADS)

    Ma, Jiangang; Sheng, Meiping; Guo, Zhiwei; Qin, Qi

    2018-06-01

    A periodic vibration suppressor with multiple secondary oscillators is examined in this paper to reduce the low-frequency vibration. The band-gap properties of infinite periodic structure and vibration transmission properties of finite periodic structure attached with secondary oscillators with arbitrary degree of freedom are thoroughly analyzed by the plane-wave-expansion method. A simply supported plate with a periodic rectangular array of vibration suppressors is considered. The dynamic model of this periodic structure is established and the equation of harmonic vibration response is theoretically derived and numerically examined. Compared with the simply supported plate without attached suppressors, the proposed plate can obtain better vibration control, and the vibration response can be effectively reduced in several frequency bands owing to the multiple band-gap property. By analyzing the modal properties of the periodic vibration suppressors, the relationship between modal frequencies and the parameters of spring stiffness and mass is established. With the numerical results, the design guidance of the locally resonant structure with multiple secondary oscillators is proposed to provide practical guidance for application. Finally, a practical periodic specimen is designed and fabricated, and then an experiment is carried out to validate the effectiveness of periodic suppressors in the reality. The results show that the experimental band gaps have a good coincidence with those in the theoretical model, and the low-frequency vibration of the plate with periodic suppressors can be effectively reduced in the tuned band gaps. Both the theoretical results and experimental results prove that the design method is effective and the structure with periodic suppressors has a promising application in engineering.

  6. Separation of overlapping vibrational peaks in terahertz spectra using two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko

    2014-07-01

    In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.

  7. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    PubMed Central

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  8. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  9. Correlating the vibrational spectra of structurally related molecules: A spectroscopic measure of similarity.

    PubMed

    Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi

    2018-03-05

    Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode-mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates. The limitations of normal mode correlation, however, foster the correlation of local vibrational modes, which offer a novel vibrational measure of similarity. It will be shown how this will open new avenues for chemical studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  11. Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments

    NASA Astrophysics Data System (ADS)

    Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz

    2018-02-01

    This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.

  12. Experimental validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.

    1994-01-01

    This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.

  13. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    NASA Astrophysics Data System (ADS)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  14. Full-scale investigation of wind-induced vibrations of mast-arm traffic signal structures.

    DOT National Transportation Integrated Search

    2014-08-01

    Because of their inherent : fl : exibility and low damping ratios, cantilevered mast : - : arm : tra : ffi : c signal structures are suscepti : b : le to : wind : - : induced vibrations. : These vibrations : cause stru : ctural stresses and strains t...

  15. Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna

    NASA Astrophysics Data System (ADS)

    He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang

    2018-03-01

    The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.

  16. Planning, creating and documenting a NASTRAN finite element model of a modern helicopter

    NASA Technical Reports Server (NTRS)

    Gabal, R.; Reed, D.; Ricks, R.; Kesack, W.

    1985-01-01

    Mathematical models based on the finite element method of structural analysis as embodied in the NASTRAN computer code are widely used by the helicopter industry to calculate static internal loads and vibration of airframe structure. The internal loads are routinely used for sizing structural members. The vibration predictions are not yet relied on during design. NASA's Langley Research Center sponsored a program to conduct an application of the finite element method with emphasis on predicting structural vibration. The Army/Boeing CH-47D helicopter was used as the modeling subject. The objective was to engender the needed trust in vibration predictions using these models and establish a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process.

  17. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  18. Method and apparatus for minimizing multiple degree of freedom vibration transmission between two regions of a structure

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)

    1992-01-01

    Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.

  19. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  20. Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind

    NASA Astrophysics Data System (ADS)

    Jendzelovsky, Norbert; Antal, Roland

    2017-10-01

    Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case vibration rises and structure can be snapped or deformed permanently. In the long term vibration, fatigue stress can be significant. At the conclusion hazardous wind speed and recommendations for different shapes and parameters of lamellas are shown.

  1. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory

    NASA Astrophysics Data System (ADS)

    Hua, Yingyu; Wong, Waion; Cheng, Li

    2018-05-01

    The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.

  2. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    NASA Astrophysics Data System (ADS)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  3. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  4. High force vibration testing with wide frequency range

    DOEpatents

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  5. Inertia-Wheel Vibration-Damping System

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V.

    1990-01-01

    Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.

  6. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  7. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    NASA Astrophysics Data System (ADS)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  8. Vibration attenuations induced by periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wang, Jianwei; Chen, Shengbing; Wen, Jihong

    2011-12-01

    Periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits are attached to a slender beam to control the propagation of vibration. Numerical models based on the transfer matrix methodology are constructed to predict the band structure, attenuation factors and the transmission of vibration in the proposed smart structure. The vibration attenuations of the proposed smart structure and that with the passive resonant shunting circuits are compared in order to verify the efficiency of the enhanced resonant shunting circuits. Vibration experiments are conducted in order to validate the theoretical predictions. The specimen with a combination of different types of resonant shunting circuits is also studied in order to gain wider attenuation frequency ranges.

  9. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  10. Adaptive vibration control of structures under earthquakes

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung

    2017-04-01

    techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.

  11. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  12. Passive Wireless Vibration Sensing for Measuring Aerospace Structural Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.

    2017-01-01

    To reduce energy consumption, emissions, and noise, NASA is exploring the use of high aspect ratio wings on subsonic aircraft. Because high aspect ratio wings are susceptible to flutter events, NASA is also investigating methods of flutter detection and suppression. In support of that work a new remote, non-contact method for measuring flutter-induced vibrations has been developed. The new sensing scheme utilizes a microwave reflectometer to monitor the reflected response from an aeroelastic structure to ultimately characterize structural vibrations. To demonstrate the ability of microwaves to detect flutter vibrations, a carbon fiber-reinforced polymer (CFRP) composite panel was vibrated at various frequencies from 1Hz to 130Hz. The reflectometer response was found to closely resemble the sinusoidal response as measured with an accelerometer up to 100 Hz. The data presented demonstrate that microwaves can be used to measure flutter-induced aircraft vibrations.

  13. Evaluation of human response to structural vibration induced by sonic boom

    NASA Technical Reports Server (NTRS)

    Sutherland, L. C.; Czech, J.

    1992-01-01

    This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.

  14. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping

    2008-07-01

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.

  15. A novel vibration structure for dynamic balancing measurement

    NASA Astrophysics Data System (ADS)

    Qin, Peng; Cai, Ping; Hu, Qinghan; Li, Yingxia

    2006-11-01

    Based on the conception of instantaneous motion center in theoretical mechanics, the paper presents a novel virtual vibration structure for dynamic balancing measurement with high precision. The structural features and the unbalancing response characteristics of this vibration structure are analyzed in depth. The relation between the real measuring system and the virtual one is emphatically expounded. Theoretical analysis indicates that the flexibly hinged integrative plate spring sets holds fixed vibration center, with the result that this vibration system has the most excellent effect of plane separation. In addition, the sensors are mounted on the same longitudinal section. Thus the influence of phase error on the primary unbalance reduction ratio is eliminated. Furthermore, the performance changes in sensors caused by environmental factor have less influence on the accuracy of the measurement. The result for this system is more accurate measurement with lower requirement for a second correction run.

  16. Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong

    2018-05-01

    According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.

  17. Study of the bending vibration characteristic of phononic crystals beam-foundation structures by Timoshenko beam theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ni, Zhi-Qiang; Jiang, Lin-Hua; Han, Lin; Kang, Xue-Wei

    2015-07-01

    Vibration problems wildly exist in beam-foundation structures. In this paper, finite periodic composites inspired by the concept of ideal phononic crystals (PCs), as well as Timoshenko beam theory (TBT), are proposed to the beam anchored on Winkler foundation. The bending vibration band structure of the PCs Timoshenko beam-foundation structure is derived from the modified transfer matrix method (MTMM) and Bloch's theorem. Then, the frequency response of the finite periodic composite Timoshenko beam-foundation structure by the finite element method (FEM) is performed to verify the above theoretical deduction. Study shows that the Timoshenko beam-foundation structure with periodic composites has wider attenuation zones compared with homogeneous ones. It is concluded that TBT is more available than Euler beam theory (EBT) in the study of the bending vibration characteristic of PCs beam-foundation structures with different length-to-height ratios.

  18. Stress-strain state of the structure in the service area of underground railway

    NASA Astrophysics Data System (ADS)

    Barabash, M.; Bashinsky, Y.; Korjakins, A.

    2017-10-01

    The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.

  19. Analysis on pseudo excitation of random vibration for structure of time flight counter

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Dapeng

    2015-03-01

    Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.

  20. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction

    NASA Astrophysics Data System (ADS)

    Koch, Sebastian; Duvigneau, Fabian; Orszulik, Ryan; Gabbert, Ulrich; Woschke, Elmar

    2017-04-01

    In this paper, the damping effect of granular materials is explored to reduce the vibration and noise of mechanical structures. To this end, a honeycomb structure with high stiffness is used to contain a granular filling which presents the possiblity for the distribution of the granular material to be designed. As a particular application example, the oil pan bottom of a combustion engine is used to investigate the influence on the vibration behavior and the sound emission. The effect of the honeycomb structure along with the granular mass, distribution, and type on the vibration behaviour of the structure is investigated via laser scanning vibrometry. From this, an optimized filling is determined and then its noise suppression level validated on an engine test bench through measurements with an acoustic array.

  1. Vibration suppression of planar truss structures utilizing uniform damping control

    NASA Technical Reports Server (NTRS)

    Andersen, G. C.; Silverberg, L. M.

    1986-01-01

    A variety of methods has been devised for vibrational control of a structure using both passive and active controls. Presented in this paper is a relatively new method for vibration suppression, uniform damping control. This method consists of implementing a control law which tends to dampen each vibrational mode of the structure at the same desirable exponential rate. The unique aspects of this method are that the control law is not explicitly dependent on the structural stiffness, the control forces are directly proportional to the distribution of the structural mass, and the control law is natural and decentralized. The control law was applied to a flexible planar truss structure and the various aspects of implementation of the control law examined are: actuator/sensor number, placement, and the impact of the actuator/sensor number and placement on the necessary control 'power' requirements such as peak power loads, total power requirements, etc. Also examined are the effects of using a limited number of active members in terms of the vibrational performance when compared with the 'ideal' distributed control law.

  2. Measurements and analyses of principal dynamic parameters of building structures as a function of type of vibration excitation

    NASA Astrophysics Data System (ADS)

    Bartmański, Cezary; Bochenek, Wojciech; Passia, Henryk; Szade, Adam

    2006-06-01

    The methods of direct measurement and analysis of the dynamic response of a building structure through real-time recording of the amplitude of low-frequency vibration (tilt) have been presented. Subject to analyses was the reaction induced either by kinematic excitation (road traffic and mining-induced vibration) or controlled action of solid-fuel rocket micro-engines installed on the building. The forces were analysed by means of a set of transducers installed both in the ground and on the structure. After the action of excitation forces has been stopped, the system (structure) makes damped vibration around the static equilibrium position. It has been shown that the type of excitation affects the accuracy of evaluation of principal dynamic parameters of the structure. In the authors opinion these are the decrement of damping and natural vibration frequency. Positive results of tests with the use of excitation by means of short-action (0.6 second) rocket micro-engines give a chance to develop a reliable method for periodical assessment of acceptable loss of usability characteristics of building structures heavily influenced by environmental effects.

  3. Dynamics of a passive micro-vibration isolator based on a pretensioned plane cable net structure and fluid damper

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Lu, Qi; Jing, Bo; Zhang, Zhiyi

    2016-09-01

    This paper addresses dynamic modelling and experiments on a passive vibration isolator for application in the space environment. The isolator is composed of a pretensioned plane cable net structure and a fluid damper in parallel. Firstly, the frequency response function (FRF) of a single cable is analysed according to the string theory, and the FRF synthesis method is adopted to establish a dynamic model of the plane cable net structure. Secondly, the equivalent damping coefficient of the fluid damper is analysed. Thirdly, experiments are carried out to compare the plane cable net structure, the fluid damper and the vibration isolator formed by the net and the damper, respectively. It is shown that the plane cable net structure can achieve substantial vibration attenuation but has a great amplification at its resonance frequency due to the light damping of cables. The damping effect of fluid damper is acceptable without taking the poor carrying capacity into consideration. Compared to the plane cable net structure and the fluid damper, the isolator has an acceptable resonance amplification as well as vibration attenuation.

  4. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  5. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  6. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  7. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  8. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.33 Section 33.33 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  9. Application of level set method to optimal vibration control of plate structures

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Khajepour, A.; Esmailzadeh, E.

    2013-02-01

    Vibration control plays a crucial role in many structures, especially in the lightweight ones. One of the most commonly practiced method to suppress the undesirable vibration of structures is to attach patches of the constrained layer damping (CLD) onto the surface of the structure. In order to consider the weight efficiency of a structure, the best shapes and locations of the CLD patches should be determined to achieve the optimum vibration suppression with minimum usage of the CLD patches. This paper proposes a novel topology optimization technique that can determine the best shape and location of the applied CLD patches, simultaneously. Passive vibration control is formulated in the context of the level set method, which is a numerical technique to track shapes and locations concurrently. The optimal damping set could be found in a structure, in its fundamental vibration mode, such that the maximum modal loss factor of the system is achieved. Two different plate structures will be considered and the damping patches will be optimally located on them. At the same time, the best shapes of the damping patches will be determined too. In one example, the numerical results will be compared with those obtained from the experimental tests to validate the accuracy of the proposed method. This comparison reveals the effectiveness of the level set approach in finding the optimum shape and location of the CLD patches.

  10. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  11. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography.

    PubMed

    Jing, Bowen; Tang, Shanshan; Wu, Liang; Wang, Supin; Wan, Mingxi

    2016-12-01

    Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Input Shaping to Reduce Solar Array Structural Vibrations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  13. Vibrational structure in the photo-electron spectrum of O2+2Sigma(g)-(sigmag2s)

    NASA Technical Reports Server (NTRS)

    Gardner, J. L.; Samson, J. A. R.

    1974-01-01

    Discrete vibrational structure has been observed in the photo-electron spectrum of oxygen at an ionization potential of 40.33 eV. Two levels, attributed to the 02(+) 2 sigma g- final state, have been detected with a vibrational spacing of 0.071 eV.

  14. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao

    2018-07-01

    Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.

  15. Development of new vibration energy flow analysis software and its applications to vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.

    2005-09-01

    The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.

  16. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  17. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  18. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation

    PubMed Central

    Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo

    2017-01-01

    Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated. PMID:29088077

  19. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation.

    PubMed

    Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo

    2017-10-31

    Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.

  20. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  1. Vibrational Properties of Anhydrous and Partially Hydrated Uranyl Fluoride

    DOE PAGES

    Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.; ...

    2017-01-01

    Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less

  2. A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Bartlett, Felton D., Jr.; Cline, John H.

    1988-01-01

    The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement.

  3. Development of a radial-torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure.

    PubMed

    Wang, Jian; Guo, Jifeng

    2009-05-01

    A longitudinal-torsional hybrid-type ultrasonic motor has larger torque and lower revolution speed compared with other kinds of ultrasonic motors. It drives devices directly and precisely, so it is adaptable to many fields, especially aeronautics and astronautics, as a servo actuator. Due to the different sound propagation speeds of longitudinal and torsional vibrations in the stator, it is difficult to match resonant frequencies of longitudinal and torsional vibrations. In this paper, a new radial-torsional vibration hybrid-type ultrasonic motor is put forward, which utilizes longitudinal vibration derived from radial vibration by the Poisson effect. The short, hollow cylindrical structure easily makes resonant frequencies of first-order radial and torsional vibrations into degeneracy. First, the new structure of the motor is presented. Second, the principle of matching the resonant frequencies is developed, and the motor geometry is optimized by ANSYS software. Finally, a 60-mm diameter prototype is fabricated, which performs well. The no-load velocity and maximum torque are 25 r/min and 5 N x m, respectively. This kind of motor is small, light, and noiseless.

  4. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model

    PubMed Central

    PEELUKHANA, Srikara V.; GOENKA, Shilpi; KIM, Brian; KIM, Jay; BHATTACHARYA, Amit; STRINGER, Keith F.; BANERJEE, Rupak K.

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s2, for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D). PMID:25843564

  5. Space Shuttle Crawler Transporter Vibration Analysis in Support of Rollout Fatigue Load Spectra Verification Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.

    2004-01-01

    The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.

  6. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    NASA Astrophysics Data System (ADS)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  7. 14 CFR 23.251 - Vibration and buffeting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...

  8. 14 CFR 23.251 - Vibration and buffeting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...

  9. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  10. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  11. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  12. Coupled rotor/airframe vibration analysis

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  13. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  14. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan.

    PubMed

    Fujino, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author's experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author's past 30 years' experience of research on bridge dynamics.

  15. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    NASA Technical Reports Server (NTRS)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  16. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.63 Section 33.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...

  17. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.63 Section 33.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...

  18. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.63 Section 33.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...

  19. Imaging vibration of the cochlear partition of an excised guinea pig cochlea using phase-sensitive Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Zeng, Yaguang; Fridberger, Anders; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.; Wang, Ruikang K.

    2011-03-01

    Studying the sound stimulated vibrations of various membranes that form the complex structure of the organ of Corti in the cochlea of the inner ear is essential for understanding how the travelling sound wave of the basilar membrane couples its energy to the organ structures. In this paper we report the feasibility of using phase-sensitive Fourier domain optical coherence tomography (FD-OCT) to image the vibration of various micro-structures of the cochlea at the same time. An excised cochlea of a guinea pig was stimulated using sounds at various frequencies and vibration image was obtained. When measuring the apex area, vibration signal from different turns, which have different best response frequencies are obtained in the same image. The method has the potential to measure the response from a much wider region of the cochlea than any other currently used method. The noise floor for vibration image for the system at 200 Hz was ~0.3nm.

  20. Experimental Evaluation of a Structure-Based Connectionist Network for Fault Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, V. B.; Danai, K.; Lewicki, D. G.

    1998-01-01

    This paper presents the experimental evaluation of the Structure-Based Connectionist Network (SBCN) fault diagnostic system introduced in the preceding article. For this vibration data from two different helicopter gearboxes: OH-58A and S-61, are used. A salient feature of SBCN is its reliance on the knowledge of the gearbox structure and the type of features obtained from processed vibration signals as a substitute to training. To formulate this knowledge, approximate vibration transfer models are developed for the two gearboxes and utilized to derive the connection weights representing the influence of component faults on vibration features. The validity of the structural influences is evaluated by comparing them with those obtained from experimental RMS values. These influences are also evaluated ba comparing them with the weights of a connectionist network trained though supervised learning. The results indicate general agreement between the modeled and experimentally obtained influences. The vibration data from the two gearboxes are also used to evaluate the performance of SBCN in fault diagnosis. The diagnostic results indicate that the SBCN is effective in directing the presence of faults and isolating them within gearbox subsystems based on structural influences, but its performance is not as good in isolating faulty components, mainly due to lack of appropriate vibration features.

  1. ER fluid applications to vibration control devices and an adaptive neural-net controller

    NASA Astrophysics Data System (ADS)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  2. Vibration characteristics and damage detection in a suspension bridge

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Wasanthi R.; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Theanh

    2016-08-01

    Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.

  3. The use of a digital computer for calculation of acoustic fields of complex vibrating structures by the reciprocity principle

    NASA Technical Reports Server (NTRS)

    Rimskiy-Korsakov, A. V.; Belousov, Y. I.

    1973-01-01

    A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.

  4. Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance.

    PubMed

    Hu, Qinglei

    2007-10-01

    This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.

  5. Model identification of terfenol-D magnetostrictive actuator for precise positioning control

    NASA Astrophysics Data System (ADS)

    Saleem, Ashraf; Ghodsi, Mojtaba; Mesbah, Mostefa; Ozer, Abdullah

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  6. Study on design method and vibration reduction characteristic of floating raft with periodic structure

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Zuo, Yanyan; Xia, Zhaowang

    2018-03-01

    The noise level is getting higher with the development of high-power marine power plant. Mechanical noise is one of the most obvious noise sources which not only affect equipment reliability, riding comfort and working environment, but also enlarge underwater noise. The periodic truss type device which is commonly applied in fields of aerospace and architectural is introduced to floating raft construction in ship. Four different raft frame structure are designed in the paper. The vibration transmissibility is taken as an evaluation index to measure vibration isolation effect. A design scheme with the best vibration isolation effect is found by numerical method. Plate type and the optimized periodic truss type raft frame structure are processed to experimental verify vibration isolation effect of the structure of the periodic raft. The experimental results demonstrate that the same quality of the periodic truss floating raft has better isolation effect than that of the plate type floating raft.

  7. A data driven control method for structure vibration suppression

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  8. Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters

    NASA Astrophysics Data System (ADS)

    Lee, Jin Yong; Kim, Jongseob; Lee, Han Myoung; Tarakeshwar, P.; Kim, Kwang S.

    2000-10-01

    The water hexamer is known to have a number of isoenergetic structures. The first experimental identification of the O-H stretching vibrational spectra of the water hexamer was done in the presence of benzene. It was followed by the identification of the pure water hexamer structure by vibration-rotational tunneling (VRT) spectroscopy. Although both experiments seem to have located only the Cage structure, the structure of the benzene-water hexamer complex is not clearly known, and the effect of benzene in the water hexamer is unclear. In particular, it is not obvious how the energy difference between nearly isoenergetic water hexamer conformers changes in the presence of benzene. Thus, we have compared the benzene complexes with four low-lying isoenergetic water hexamers, Ring, Book, Cage, and Prism structures, using ab initio calculations. We also investigated the effects of the presence of benzene on the structures, harmonic vibrational frequencies, and infrared (IR) intensities for the four low-lying energy conformers. There is little change in the structure of the water hexamer upon its interaction with the benzene molecule. Hence the deformation energies are very small. The dominant contribution to the benzene-water cluster interaction mainly comes from the π-H interactions between benzene and a single water molecule. As a result of this π-H interaction, O-Hπ bond length increases and the corresponding stretching vibrational frequencies are redshifted. The IR spectral features of both (H2O)6 and benzene-(H2O)6 are quite similar. From both the energetics and the comparison of calculated and experimental spectra of the benzene-(H2O)6, the water structure in these complexes is found to have the Cage form. In particular, among the four different Cage structures, only one conformer matches the experimental O-H vibrational frequencies.

  9. Mirjana Dimitrievska | NREL

    Science.gov Websites

    understanding the structure-dependent vibrational properties and reorientational behavior of different alkali Sad, Serbia Featured Publications M. Dimitrievska et al., "Structure-dependent vibrational : Structure and luminescence," J. Phys. Chem. C 120(33), 18887-18894 (2016). DOI: http://dx.doi.org

  10. Integrated Advanced Microwave Sounding Unit-A (AMSU-A) METOP Stress Analysis Report (Qual Level Random Vibration) A1 Module

    NASA Technical Reports Server (NTRS)

    Mehitretter, R.

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module performed using the Meteorological Operational (METOP) Qualification Level 9.66 grms Random Vibration PSD Spectrum is presented. The random vibration structural margins of safety and natural frequency predictions are summarized.

  11. Nondestructive structural evaluation of wood floor systems with a vibration technique.

    Treesearch

    Xiping Wang; Robert J. Ross; Lawrence Andrew Soltis

    2002-01-01

    The objective of this study was to determine if transverse vibration methods could be used to effectively assess the structural integrity of wood floors as component systems. A total of 10 wood floor systems, including 3 laboratory-built floor sections and 7 in-place floors in historic buildings, were tested. A forced vibration method was applied to the floor systems...

  12. [Morphological structure of suprarenal glands in experimental vibration-induced pathology].

    PubMed

    Kapanadze, N A; Abzianidze, E N; Sumbadze, Ts M; Korkiia, I I; Amiranidze, M V

    2009-01-01

    Technical progress has caused development of vibration-induced pathology, which is determined by harmful factors or environmental effects. The harmful factors include physical factors--noise, mechanical vibrations, low temperature, high humidity of the air and incorrect lighting. The aim of our study was the investigation of morphological changes in suprarenal glands under condition of vibration-induced pathology. The experiment was conducted on 20 grown-up white male rats weighting 180-200 g. The animals were daily under an hour vibration during 2 months. The vibration frequency was modulated by means of a general vibration. After an experiment, animals were decapitated in condition of general anesthesia. The experiment revealed important changes in the morphological structure of suprarenal glands. The vibration pathology causes following changes: vessels' and sinusoid capillaries' uneven widening, develop the infiltrate cells, bleeding areas, necrosis and other changes. Based on above-stated it is supposed that technical progress and introduction of new technologies is one of the risk factors, which can cause neurohumoral disorders.

  13. Calculation of flight vibration levels of the AH-1G helicopter and correlation with existing flight vibration measurements

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Twomey, W. J.

    1990-01-01

    NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.

  14. Vibration and shape control of hinged light structures using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki

    2003-08-01

    This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.

  15. Full-scale measurements and system identification on Sutong cable-stayed bridge during Typhoon Fung-Wong.

    PubMed

    Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun

    2014-01-01

    The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.

  16. Full-Scale Measurements and System Identification on Sutong Cable-Stayed Bridge during Typhoon Fung-Wong

    PubMed Central

    Tao, Tianyou; Li, Aiqun

    2014-01-01

    The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367

  17. Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, X. F.; Oswald, Fred B.

    1992-01-01

    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.

  18. Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Dean, M. W.; Malatino, R.

    1974-01-01

    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.

  19. Vibrational structure of the S 2 (1B u) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kukura, Philipp; McCamant, David W.; Davis, Paul H.; Mathies, Richard A.

    2003-11-01

    Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to study the vibrational structure and dynamics of the S 2 state of diphenyloctatetraene. Strong vibrational features at 1184, 1259 and 1578 cm -1 whose linewidths are determined by the S 2 electronic lifetime are observed at early times after photoexcitation at 397 nm. Kinetic analysis of the integrated Raman intensities as well as the transient absorption reveals an exponential decay of the S 2 state on the order of 100 fs. These results demonstrate the ability of FSRS to study the vibrational structure of excited state and chemical reaction dynamics on the femtosecond timescale.

  20. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data

    NASA Technical Reports Server (NTRS)

    Edighoffer, H. H.

    1979-01-01

    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  1. A close inspection and vibration sensing aerial robot for steel structures with an EPM-based landing device

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako

    2017-04-01

    This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.

  2. Anomalous Structural Disorder in Supported Pt Nanoparticles

    DOE PAGES

    Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.; ...

    2017-07-02

    Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less

  3. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

    2016-01-01

    Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

  4. Similitude design for the vibration problems of plates and shells: A review

    NASA Astrophysics Data System (ADS)

    Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou

    2017-06-01

    Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

  5. The control of flexible structure vibrations using a cantilevered adaptive truss

    NASA Technical Reports Server (NTRS)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.

    1991-01-01

    Analytical and experimental procedures and design tools are presented for the control of flexible structure vibrations using a cantilevered adaptive truss. Simulated and experimental data are examined for three types of structures: a slender beam, a single curved beam, and two curved beams. The adaptive truss is shown to produce a 6,000-percent increase in damping, demonstrating its potential in vibration control. Good agreement is obtained between the simulated and experimental data, thus validating the modeling methods.

  6. Recent advances in micro-vibration isolation

    NASA Astrophysics Data System (ADS)

    Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming

    2015-05-01

    Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.

  7. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  8. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE PAGES

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...

    2016-12-05

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  9. Viscous-pendulum damper suppresses structural vibrations

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1964-01-01

    The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.

  10. Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra.

    PubMed

    Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo

    2005-08-12

    We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.

  11. The influence of vertical load to the natural vibration of series isolation system

    NASA Astrophysics Data System (ADS)

    Lin, Z. D.; Shi, H.

    2018-02-01

    The influence of axial load to the natural vibration of series isolation system is analyzed. The natural frequency of series isolation system is solved by differential quadrature method. According to the vertical load which is the main factor of natural vibration characteristic on the series isolation system, the parameter analysis is carried out. It should provide the basis for the vibration characteristic analysis for the structure of bearing on the top of first story column, and it can also provide evidence for the overall stability analysis of series isolation structure.

  12. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan

    PubMed Central

    FUJINO, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082

  13. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 5. Mathematical Modeling and Structural Dynamics

    DTIC Science & Technology

    1982-05-01

    ment analysis to evaluate viscoelastic damping treatments for HCF control . Steps for analyzing passive damping treatments are presented. Design criteria... design earthquake levels could structures such as piers, drydocks, power result in destruction of such critical strut- plants, control towers, and...and J.R. Curreri, "Some Aspects of 2 Vibration Control Support Designs ," The Shock p m 0.0005161 lb-sec n and vibration Symposium Bulletin, The Shock

  14. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  15. The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction.

    PubMed

    Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2018-06-15

    At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  17. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    PubMed

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  18. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  19. Structure-dependent vibrational dynamics of Mg(BH 4 ) 2 polymorphs probed with neutron vibrational spectroscopy and first-principles calculations

    DOE PAGES

    Dimitrievska, Mirjana; White, James L.; Zhou, Wei; ...

    2016-08-19

    We investigated the structure-dependent vibrational properties of different Mg(BH 4) 2 polymorphs (α, β, γ, and δ phases) with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH 4 - anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20–80 meV) are associated with the BH4 - librational modes. The features in the intermediate energy region (80–120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features inmore » the high-energy region (120–200 meV) correspond to the BH 4 - symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. We can explain these differences using the spatial distribution of BH 4 - anions within various structures. An example of the possible identification of products after the hydrogenation of MgB 2, using NVS measurements, is presented. Our results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.« less

  20. Summary of semi-initiative and initiative control automobile engine vibration

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Qu, Zhou

    2009-07-01

    Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.

  1. Vibration characteristics of a steadily rotating slender ring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1980-01-01

    Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.

  2. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  3. Smart Structures for Vibration Control on Long-Term Space Exploration and Habitation Missions

    NASA Technical Reports Server (NTRS)

    Gattis, Christy B.; Shepard, W. Steve, Jr.

    2004-01-01

    The current vision for space exploration focuses on human missions to the Moon, Mars, and beyond. To support these goals, it is certain that new vehicles and intermediate bases will be developed, whether that means simply re-direction of the ISS as a "mission research facility" or construction of a lunar base. Since these facilities are expected to be constructed from inherently light-weight materials, this work examines some of the potential sources of vibration and noise as well as means for controlling these vibrations. Many of the operating components within these facilities, such as pumps, fans, and motors, will produce vibrations during operation. These vibrations become structure in which they are housed. Resonances can impact acoustic noise levels and noise quality within the environment, possibly affecting crew health and productivity. For long-term missions in particular, it is expected that crew members will spend significant portions of their time restrained in the structure, such as in seats. As a result, the general health and well-being of the crew can be improved by limiting the harmful effects of human exposure to long-term audible and tactile vibration input. Besides the human factor, this work also examines some operational considerations in which vibrations play an important role. Vibrations can impact the environment for science and in-situ manufacturing research within these vehicles. Since a benign vibratory environment is beneficial for most types of science experiments, there is a need for various forms of vibration control. Because the operational characteristics of a vehicle can change during a long-term mission, it is further expected that the characteristics of many of the vibratory excitations will change with time. Consequently, the form of vibration control needed to improve overall habitability and usefulness of the vehicle or element for exploration missions will rely to some degree on the vibration control system's ability to adapt. To address these needs, this work also examines the development and use of smart materials to tune the dynamic characteristics of the structure in a passive sense. One prime example is the use of an adaptive electrical shunt connected to a piezoelectric patch in order to provide tuned passive vibration damping. The work also examines the use of active vibration control, such as by applying power to that same piezoelectric patch. The overall goal is to examine the use of smart structures that can react to the environment thereby improving the overall living, working, and learning environment for these long-term missions.

  4. Experimental Investigations on Effect of Damage on Vibration Characteristics of a Reinforced Concrete Beam

    NASA Astrophysics Data System (ADS)

    Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi

    2012-02-01

    Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.

  5. Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome

    NASA Astrophysics Data System (ADS)

    Pau, Annamaria; Vestroni, Fabrizio

    2013-12-01

    The present paper addresses the analysis of the ambient vibrations of the Basilica of Maxentius in Rome. This monument, in the city centre and close to busy roads, was the largest vaulted structure in the Roman Empire. Today, only one aisle of the structure remains, suffering from a complex crack scenario. The ambient vibration response is used to investigate traffic induced vibration and compare this to values that could be a potential cause of structural damage according to international standards. Using output-only methods, natural frequencies and mode shapes are obtained from the response, allowing comparison with predictions made with a finite element model. Notwithstanding simplifications regarding material behavior and crack pattern in the finite element model, an agreement between numerical and experimental results is reached once selected mechanical parameters are adjusted. A knowledge of modal characteristics and the availability of an updated model may be a first step of a structural monitoring program that could reveal any decay over time in the structural integrity of the monument.

  6. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  7. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  8. Research Program for Vibration Control in Structures

    NASA Technical Reports Server (NTRS)

    Mingori, D. L.; Gibson, J. S.

    1986-01-01

    Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.

  9. A multidegree-of-freedom vibrational apparatus

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.; Schaller, N. C.

    1973-01-01

    Apparatus uses prestressed cables to support vibrational table. Cables are durable, do not require frequent servicing, and provide increased safety. Because much weight rests on these cables, vibration actuating pistons can provide longer service. In event of structural failure of other supporting components, they will support entire weight of vibrational table.

  10. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    NASA Astrophysics Data System (ADS)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.

    Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less

  12. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    PubMed

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  13. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  14. The influence of the long-range order on the vibrational spectra of structures based on sodalite cage.

    PubMed

    Mikuła, A; Król, M; Koleżyński, A

    2015-06-05

    Zeolites are a group of tecto-aluminosilicates with numerous practical applications, e.g. gas separators, molecular sieves and sorbents. The unique properties result from porous structure of channels and cages which are built from smaller units - the so-called Secondary Building Units (SBU), and sometimes also larger groups (Breck, 1974; Ciciszwili et al., 1974; Mozgawa, 2008; Čejka and van Bekkum, 2005). The aim of this study was the examination of the influence of long-range order on vibrational spectra of sodalite and zeolite A. Ab initio calculations (geometry optimizations and vibrational spectra calculations) of sodalite cage and selected SBU were carried out by means of Gaussian09 (Frisch et al., 2009) (in the case of isolated clusters) and Crystal09 (Dovesi et al., 2005, 2009) (for periodic structures). The obtained results were compared with the experimental spectra of sodalite and zeolite A crystal structures, synthesized under hydrothermal conditions. These results allowed analyzing of the long-range ordering influence on the vibrational spectra, as well as the identification of the characteristic vibrations in β cage based frameworks. It has been found, that based on small structural fragment (SBU) models a characteristic vibrations can be identify. However, full spectra analysis and especially the interpretation of far-infrared region of the spectra require using periodic models under the influence of translational crystal lattice. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    NASA Astrophysics Data System (ADS)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.

    Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less

  17. Characterizing left-right gait balance using footstep-induced structural vibrations

    NASA Astrophysics Data System (ADS)

    Fagert, Jonathon; Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young

    2017-04-01

    In this paper, we introduce a method for estimating human left/right walking gait balance using footstep-induced structural vibrations. Understanding human gait balance is an integral component of assessing gait, neurological and musculoskeletal conditions, overall health status, and risk of falls. Existing techniques utilize pressure- sensing mats, wearable devices, and human observation-based assessment by healthcare providers. These existing methods are collectively limited in their operation and deployment; often requiring dense sensor deployment or direct user interaction. To address these limitations, we utilize footstep-induced structural vibration responses. Based on the physical insight that the vibration energy is a function of the force exerted by a footstep, we calculate the vibration signal energy due to a footstep and use it to estimate the footstep force. By comparing the footstep forces while walking, we determine balance. This approach enables non-intrusive gait balance assessment using sparsely deployed sensors. The primary research challenge is that the floor vibration signal energy is also significantly affected by the distance between the footstep location and the vibration sensor; this function is unclear in real-world scenarios and is a mixed function of wave propagation and structure-dependent properties. We overcome this challenge through footstep localization and incorporating structural factors into an analytical force-energy-distance function. This function is estimated through a nonlinear least squares regression analysis. We evaluate the performance of our method with a real-world deployment in a campus building. Our approach estimates footstep forces with a RMSE of 61.0N (8% of participant's body weight), representing a 1.54X improvement over the baseline.

  18. Development of 300 mesh Soy Bean Crusher for Tofu Material Processing

    NASA Astrophysics Data System (ADS)

    Lee, E. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Park, C. S.; Choi, W. S.

    2018-03-01

    A machine such as bean crusher machine is subjected to different loads and vibration. Due to this vibration there will be certain deformations which affect the performance of the machine in adverse manner. This paper proposed a vibration analysis of bean crusher machine using ANSYS. The effect of vibration on the structure was studied in order to ensure the safety using finite element analysis. This research supports the machine designer to create a better product with lower cost and faster development time. To do this, firstly, using Inventor, a CAD model is prepared. Secondly, the analysis is to be carried out using ANSYS 15. The modal analysis and random vibration analysis of the structure was conducted. The analysis shows that the proposed design was successfully shows the minimum deformation when the vibration was applied in normal condition.

  19. Low Frequency Vibration approach to asess the Performance of wood structural Systems

    Treesearch

    Xiping Wang; Robert J. Ross; Michael O. Hunt

    2004-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...

  20. Shock and vibration response of multistage structure

    NASA Technical Reports Server (NTRS)

    Lee, S. Y.; Liyeos, J. G.; Tang, S. S.

    1968-01-01

    Study of the shock and vibration response of a multistage structure employed analytically, lumped-mass, continuous-beam, multimode, and matrix-iteration methods. The study was made on the load paths, transmissibility, and attenuation properties along a longitudinal axis of a long, slender structure with increasing degree of complexity.

  1. Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation

    NASA Astrophysics Data System (ADS)

    He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin

    2017-03-01

    When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.

  2. Effects of experimentally measured pressure oscillations on the vibration of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Pierce, H. B.

    1972-01-01

    Results are presented of firing a Nike rocket against a backstop for the purpose of obtaining pressure fluctuations in the rocket case and determining their relationship to structural vibrations of the case. Special care was required to obtain these pressure fluctuations because of the much higher static pressure generated in the rocket. Very small pressure fluctuations within the rocket case can cause significant vibration levels. A previously observed high frequency was shown to decrease with time before completely disappearing at about 1 second of burning time. The vibration of the case itself is probably related to the longitudinal structural modes at frequencies below 500 Hz and is dependent on local structural conditions at frequencies above this value.

  3. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester.

    PubMed

    Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2013-11-26

    An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.

  4. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage

    NASA Astrophysics Data System (ADS)

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-06-01

    The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.

  5. Vibration characteristics measurement of beam-like structures using infrared thermography

    NASA Astrophysics Data System (ADS)

    Talai, S. M.; Desai, D. A.; Heyns, P. S.

    2016-11-01

    Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.

  6. A 6DOF passive vibration isolator using X-shape supporting structures

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming

    2016-10-01

    A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.

  7. Evaluation of vibration limits and mitigation techniques for urban construction : [summary].

    DOT National Transportation Integrated Search

    2013-10-01

    Construction activities such as pile driving and : dynamic compaction of loose soils induce ground : and structure vibrations. Their effects may annoy : local populations, disturb sensitive equipment, or : reduce structures serviceability and dura...

  8. Effects of local vibrations on the dynamics of space truss structures

    NASA Technical Reports Server (NTRS)

    Warnaar, Dirk B.; Mcgowan, Paul E.

    1987-01-01

    The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.

  9. A mathematical modeling method for determination of local vibroacoustic characteristics of structures

    NASA Technical Reports Server (NTRS)

    Tartakovskiy, B. D.; Dubner, A. B.

    1973-01-01

    A method is proposed for determining vibroacoustic characteristics from the results of measurements of the distribution of vibrational energy in a structure. The method is based on an energy model of a structure studied earlier. Equations are written to describe the distribution of vibrational energy in a hypothetical diffuse energy state in structural elements.

  10. Planetary Gearbox Fault Diagnosis Using a Single Piezoelectric Strain Sensor

    DTIC Science & Technology

    2014-12-23

    However, the fault detection of planetary gearbox is very complicate since the c omplex nature of dynamic rolling structure of p lanetary gearbox...vibration transfer paths due to the unique dynamic structure of rotating planet gears. Therefore, it is difficult to diagnose PGB faults via vibration...al. 2014). To overcome the above mentioned challenges in developing effective PGB fau lt diagnosis capability , a research investigation on

  11. Active Vibration Dampers For Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  12. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  13. Etched optical fiber vibration sensor to monitor health condition of beam like structures

    NASA Astrophysics Data System (ADS)

    Putha, Kishore; Dantala, Dinakar; Kamineni, Srimannarayana; Pachava, Vengal Rao

    2013-06-01

    Using a center etched single mode optical fiber, a simple vibration senor is designed to monitor the vibrations of a simply supported beam. The sensor has high linear response to the axial displacement of about 0.8 mm with a sensitivity of 32 mV/10 μm strain. The sensor is tested for periodic and suddenly released forces, and the results are found to coincide with the theoretical values. This simple design, small in size and low cost sensor may find applications in industry and civil engineering to monitor the vibrations of the beam structures and bridges.

  14. Interferometric fibre-optic curvature sensing for structural, directional vibration measurements

    NASA Astrophysics Data System (ADS)

    Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.

    2017-06-01

    Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.

  15. On vibrational imperfection sensitivity of Augusti's model structure in the vicinity of a non-linear static state

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac; Marcus, S.; Starnes, J. H., JR.

    1998-01-01

    In this paper we present a closed-form solution for vibrational imperfection sensitivity the effect of small imperfections on the vibrational frequencies of perturbed motion around the static equilibrium state of Augusti's model Structure (a rigid link, pinned at one end to a rigid foundation and supported at the other by a linear extensional spring that retains its horizontality, as the system deflects). We also treat a modified version of that model with attendant slightly different dynamics. It is demonstrated that the vibrational frequencies decreases as the initial imperfections increase.

  16. Seismic isolation device having charging function by a transducer

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki

    2016-04-01

    In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.

  17. Final Scientific/Technical Report: Breakthrough Design and Implementation of Many-Body Theories for Electron Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Hirata

    2012-01-03

    This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less

  18. Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes

    DOE PAGES

    Xu, W.; Zhu, W. D.; Smith, S. A.; ...

    2016-03-18

    While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less

  19. Spectroscopy of Vibrational States in Diatomic Iodine Molecules

    NASA Astrophysics Data System (ADS)

    Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth

    2015-04-01

    This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.

  20. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  1. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    NASA Astrophysics Data System (ADS)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  2. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.

    1990-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  3. Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers

    NASA Astrophysics Data System (ADS)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.

    1989-01-01

    Several planned United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) space systems such as Space Based Radar (SBR), Space Based Laser (SBL), and Space Station, pose serious vibration and control issues. Their low system mass combined with their large size, precision pointing/shape control and rapid retargetting requirements, will result in an unprecedented degree of interaction between the system controller and the modes of vibration of the structure. The resulting structural vibrations and/or those caused by foreign objects impacting the space structure could seriously degrade system performance, making it virtually impossible for passive structural systems to perform their missions. Therefore an active vibration control system which will sense these natural and spurious vibrations, evaluate them and dampen them out is required. This active vibration control system must be impervious to the space environment and electromagnetic interference, have very low weight, and in essence become part of the structure itself. The concept of smart structures meets these criteria. Smart structures is defined as the embedment of sensors, actuators, and possibly microprocessors in the material which forms the structure, a concept that is particularly applicable to advanced composites. These sensors, actuators, and microprocessors will work interactively to sense, evaluate, and dampen those vibrations which pose a threat to large flexible space systems (LSS). The sensors will also be capable of sensing any degradation to the structure. The Air Force Astronautics Laboratory (AFAL) has been working in the area of dynamics and control of LSS for the past five years. Several programs involving both contractual and in-house efforts to develop sensors and actuators for controlling LSS have been initiated. Presently the AFAL is developing a large scale laboratory which will have the capacity of performing large angle retargetting manuevers and vibration analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.

  4. Specific modes of vibratory technological machines: mathematical models, peculiarities of interaction of system elements

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.

    2018-03-01

    The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.

  5. Vibrational structure of vinyl chloride cation studied by using one-photon zero-kinetic energy photoelectron spectroscopy.

    PubMed

    Zhang, Ping; Li, Juan; Mo, Yuxiang

    2007-09-06

    The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).

  6. Digital synthetic impedance for application in vibration damping.

    PubMed

    Nečásek, J; Václavík, J; Marton, P

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  7. Digital synthetic impedance for application in vibration damping

    NASA Astrophysics Data System (ADS)

    Nečásek, J.; Václavík, J.; Marton, P.

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  8. Experimental investigation of railway train-induced vibrations of surrounding ground and a nearby multi-story building

    NASA Astrophysics Data System (ADS)

    Xia, He; Chen, Jianguo; Wei, Pengbo; Xia, Chaoyi; de Roeck, G.; Degrande, G.

    2009-03-01

    In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms of rms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.

  9. The methods of optical physics as a mean of the objects’ molecular structure identification (on the base of the research of dophamine and adrenaline molecules)

    NASA Astrophysics Data System (ADS)

    Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.

    2017-01-01

    Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.

  10. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  11. The development of two Broadband Vibration Energy Harvesters (BVEH) with adaptive conversion electronics

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Thiesen, Jack

    2017-04-01

    Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.

  12. Free vibration Analysis of Sandwich Plates with cutout

    NASA Astrophysics Data System (ADS)

    Mishra, N.; Basa, B.; Sarangi, S. K.

    2016-09-01

    This paper presents the free vibration analysis of sandwich plates with cutouts. Cutouts are inevitable in structural applications and the presence of these cutouts in the structures greatly influences their dynamic characteristics. A finite element model has been developed here using the ANSYS 15.0 software to study the free vibration characteristics of sandwich plates in the presence of cutouts. Shell 281 element, an 8-noded element with six degrees of freedom suited for analyzing thin to moderately thick structures is considered in the development of the model. Block Lanczose method is adopted to extract the mode shapes to obtain the natural frequency corresponding to free vibration of the plate. The effects of parametric variation on the natural frequency of the sandwich plates with cutout are studied and results are presented.

  13. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  14. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  15. Pulsed differential holographic measurements of vibration modes of high temperature panels

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Aprahamian, R.; Overoye, K. R.

    1972-01-01

    Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.

  16. The influence of adsorbed molecules on the framework vibrations of Na-Faujasites studied with FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferwerda, R.; van der Maas, J. H.

    1995-11-01

    The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.

  17. Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro

    Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.

  18. Statistical Methods for Turbine Blade Dynamics

    DTIC Science & Technology

    2008-09-30

    disks Journal of Sound and Vibration 317 , pp. 625-645. Calanni, G., Volovoi, V., Ruzzene, M, Vining, C., Cento, P., (2007). Application of Bayesian...are investigated for two vibration problems regarding a one-dimensional beam and a three-dimensional plate structure. It is to be noted that the...gaps," Reliability Engi- neering and System Safety, no. 85, pp. 249-266, 2004. [8] BENFIELD, W. A. andHRUDA, R. F., " Vibration analysis of structures

  19. Active vibrations and noise control for turboprop application research program activities

    NASA Technical Reports Server (NTRS)

    Paonessa, A.; Concilio, A.; Lecce, Leonardo V.

    1992-01-01

    The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.

  20. Active vibrations and noise control for turboprop application research program activities

    NASA Astrophysics Data System (ADS)

    Paonessa, A.; Concilio, A.; Lecce, Leonardo V.

    1992-07-01

    The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.

  1. Vibrational Study of Melatonin and its Radioprotective Activity towards Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Kaur, Sarvpreet; Saini, G. S. S.

    2011-12-01

    Vibrational study of Melatonin (N-acetyl 5-methoxytrypatamin) was done using FTIR and Raman spectroscopy. DFT calculations were employed to the structural analysis of melatonin and to the end products. The theoretical calculations confirmed the different observed vibrational modes. The optimized structure energy calculations of the different end products confirmed the most probable site of the hydroxyl radical attack is the hydrogen attached to nitrogen present in the indole ring.

  2. The vibrational signals that male fiddler crabs ( Uca lactea) use to attract females into their burrows

    NASA Astrophysics Data System (ADS)

    Takeshita, Fumio; Murai, Minoru

    2016-06-01

    In some fiddler crab species, males emit vibrations from their burrows to mate-searching females after they have attracted a female to the burrow entrance using a waving display. Although the vibrations are considered acoustic signals to induce mating, it has not been demonstrated whether the vibrations attract the females into the burrow and, consequently, influence females' mating decisions. We investigated the structures and patterns of the vibrations using a dummy female and demonstrated experimentally a female preference for male vibrations in Uca lactea in the field. The acoustic signals consisted of repetitions of pulses. The dominant frequency of the pulses decreased with male carapace width. The pulse length decreased slightly with an increasing number of vibrational repetitions, and the pulse interval increased with increasing repetitions. These factors imply that the vibrations convey information on male characteristics, such as body size and stamina. In the experiment on female mate choice, the females significantly preferred males with higher pulse repetition rates when they were positioned at the entrance of the burrow, indicating that the females use the male vibrational signals to decide whether to enter the burrow. However, females showed no preference for the vibrations once they were inside a burrow, i.e., whether they decided to copulate, suggesting that the vibrations do not independently affect a female's final decision of mate choice. The vibrations inside the burrow might influence a female's decision by interaction with other male traits such as the burrow structure.

  3. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  4. Investigation into the vibration of metro bogies induced by rail corrugation

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Li, Wei; Foo, Elbert; Wu, Lei; Wen, Zefeng; Jin, Xuesong

    2017-01-01

    The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.

  5. Human Response to Aircraft-Noise-Induced Building Vibration

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Dempsey, T. K.; DeLoach, R.

    1978-01-01

    The effects of noise induced building structure vibration and the rattle of objects on human response to aircraft flyover noise were investigated in a series of studies conducted in both the field and the laboratory. The subjective detection thresholds for vibration and rattle were determined as well as the effect of vibration and rattle upon aircraft noise annoyance.

  6. ISE structural dynamic experiments

    NASA Technical Reports Server (NTRS)

    Lock, Malcolm H.; Clark, S. Y.

    1988-01-01

    The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.

  7. Optical fiber sensors for the non-destructive evaluation of materials

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The operation of the modal domain vibration sensor was demonstrated in several simple vibrational systems. Two apparent advantages are the sensors bandwidth and sensitivity. An inherent drawback of standard vibration detection devices is their rapid cost increase with high frequency bandwidth. This sensor showed consistent response in the freqency range of 1.5 to 400 Hz. By imparting very small but measurable excitations in the structures, the sensors ability to respond to very low order vibration induced strain was established. Dynamic ranges on the order of 18 to 22 dB for the CF beam and string systems respectively were observed. The sensor itself represents a very simple system: a coherent source, a single fiber and a low bandwidth detector. The inherent advantages of ruggedness and immunity to external radiation can also be added. Finally, the sensor minimally impairs structural motion through loading, an advantage in monitoring small vibrations or lightweight structures. Some drawbacks of the sensor are also noted.

  8. A Prototype Actuator Concept for Membrane Boundary Vibration Control

    NASA Technical Reports Server (NTRS)

    Solter, Micah J.

    2005-01-01

    In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.

  9. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.; Studer, P.

    1988-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  10. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  11. On location of piezoelectric element in a smart-structure: numerical investigation and experiment

    NASA Astrophysics Data System (ADS)

    Oshmarin, D.; Iurlov, M.

    2017-06-01

    In this paper, based on some example problems it was demonstrated that in examining the possibilities of smart structure applications, the matter of considerable researchers’ concern is the problem of location of piezoelectric elements in the structure to allow effective realization of its smart functions in the framework of the specified strategy of structure control and target purposes (vibration damping, defectoscopy, etc.) The numerical and experimental investigations have shown that for structures with the elements made of piezoelectric materials, it is more convenient to use as a parameter, specifying the best location of the piezoelectric element for damping the vibrations at the prescribed frequency, the coefficient of electromechanical coupling, which is evaluated by the values of eigenfrequencies of the structure in the short-circuit and open-circuit regimes. The values of eigenfrequencies of vibrations are evaluated by solving the problem of natural vibrations of electromechanical systems by the finite element method using the applied ANSYS package. The investigation were conducted for a thin-walled aluminum shell in the form of half-cylinder.

  12. Vibration isolation by exploring bio-inspired structural nonlinearity.

    PubMed

    Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert

    2015-10-08

    Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.

  13. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  14. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    NASA Technical Reports Server (NTRS)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect of vehicle structure vibration on CMGs. Additionally, the effect of external vibrations may also be decreased by increasing the gimbal bearing friction. With the suggested modifications there may be no need to lower the gimbal rates below the nominal design requirements as it is currently done on ISS. The conclusions of this work

  15. Varying whole body vibration amplitude differentially affects tendon and ligament structural and material properties

    PubMed Central

    Keller, Benjamin V.; Davis, Matthew L.; Thompson, William R.; Dahners, Laurence E.; Weinhold, Paul S.

    2014-01-01

    Whole Body Vibration (WBV) is becoming increasingly popular for helping to maintain bone mass and strengthening muscle. Vibration regimens optimized for bone maintenance often operate at hypogravity levels (<1 G) and regimens for muscle strengthening often employ hypergravity (>1 G) vibrations. The effect of vibratory loads on tendon and ligament properties is unclear though excessive vibrations may be injurious. Our objective was to evaluate how tendon gene expression and the mechanical/histological properties of tendon and ligament were affected in response to WBV in the following groups: no vibration, low vibration (0.3 G peak-to-peak), and high vibration (2 G peak-to-peak). Rats were vibrated for 20 min a day, 5 days a week, for 5 weeks. Upon sacrifice, the medial collateral ligament (MCL), patellar tendon (PT), and the Achilles Tendon (AT) were isolated with insertion sites intact. All tissues were tensile tested to determine structural and material properties or used for histology. Patellar tendon was also subjected to quantitative RT-PCR to evaluate expression of anabolic and catabolic genes. No differences in biomechanical data between the control and the low vibration groups were found. There was evidence of significant weakness in the MCL with high vibration, but no significant effect on the PT or AT. Histology of the MCL and PT showed a hypercellular tissue response and some fiber disorganization with high vibration. High vibration caused an increase in collagen expression and a trend for an increase in IGF-1 expression suggesting a potential anabolic response to prevent tendon overuse injury. PMID:23623311

  16. CM-2 Environmental / Modal Testing of Spacehab Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.

  17. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.

  18. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect

    NASA Astrophysics Data System (ADS)

    Ni, Yan-Chun; Zhang, Feng-Liang

    2018-05-01

    Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.

  19. Evaluation of seatback vibration based on ISO 2631-1 (1997) standard method: The influence of vehicle seat structural resonance.

    PubMed

    Ittianuwat, R; Fard, M; Kato, K

    2017-01-01

    Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.

  20. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  1. Diagnosis of helicopter gearboxes using structure-based networks

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.

    1995-01-01

    A connectionist network is introduced for fault diagnosis of helicopter gearboxes that incorporates knowledge of the gearbox structure and characteristics of the vibration features as its fuzzy weights. Diagnosis is performed by propagating the abnormal features of vibration measurements through this Structure-Based Connectionist Network (SBCN), the outputs of which represent the fault possibility values for individual components of the gearbox. The performance of this network is evaluated by applying it to experimental vibration data from an OH-58A helicopter gearbox. The diagnostic results indicate that the network performance is comparable to those obtained from supervised pattern classification.

  2. Equilibrium structure and atomic vibrations of Nin clusters

    NASA Astrophysics Data System (ADS)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  3. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.

    PubMed

    Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle

    2015-06-01

    Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.

  4. Relationships for electron-vibrational coupling in conjugated π organic systems

    NASA Astrophysics Data System (ADS)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  5. Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model

    NASA Astrophysics Data System (ADS)

    Cifra, M.; Havelka, D.; Deriu, M. A.

    2011-12-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.

  6. Fully-coupled aeroelastic simulation with fluid compressibility — For application to vocal fold vibration

    PubMed Central

    Yang, Jubiao; Wang, Xingshi; Krane, Michael; Zhang, Lucy T.

    2017-01-01

    In this study, a fully-coupled fluid–structure interaction model is developed for studying dynamic interactions between compressible fluid and aeroelastic structures. The technique is built based on the modified Immersed Finite Element Method (mIFEM), a robust numerical technique to simulate fluid–structure interactions that has capabilities to simulate high Reynolds number flows and handles large density disparities between the fluid and the solid. For accurate assessment of this intricate dynamic process between compressible fluid, such as air and aeroelastic structures, we included in the model the fluid compressibility in an isentropic process and a solid contact model. The accuracy of the compressible fluid solver is verified by examining acoustic wave propagations in a closed and an open duct, respectively. The fully-coupled fluid–structure interaction model is then used to simulate and analyze vocal folds vibrations using compressible air interacting with vocal folds that are represented as layered viscoelastic structures. Using physiological geometric and parametric setup, we are able to obtain a self-sustained vocal fold vibration with a constant inflow pressure. Parametric studies are also performed to study the effects of lung pressure and vocal fold tissue stiffness in vocal folds vibrations. All the case studies produce expected airflow behavior and a sustained vibration, which provide verification and confidence in our future studies of realistic acoustical studies of the phonation process. PMID:29527067

  7. Vibration isolation of automotive vehicle engine using periodic mounting systems

    NASA Astrophysics Data System (ADS)

    Asiri, S.

    2005-05-01

    Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of mounting systems with plain and periodic mounts will be studied first. The dynamic characteristics of such systems will be obtained experimentally in both cases. The tests will be then carried out to study the performance characteristics of periodic mounts with geometrical and/or material periodicity. The effectiveness of the periodicity on the vibration levels of mounting systems will be demonstrated theoretically and experimentally. Finally, the experimental results will be compared with the theoretical predictions.

  8. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    NASA Technical Reports Server (NTRS)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  9. Anharmonic Vibrational Analyses of Pentapeptide Conformations Explored with Enhanced Sampling Simulations.

    PubMed

    Otaki, Hiroki; Yagi, Kiyoshi; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Sugita, Yuji

    2016-10-06

    An accurate theoretical prediction of the vibrational spectrum of polypeptides remains to be a challenge due to (1) their conformational flexibility and (2) non-negligible anharmonic effects. The former makes the search for conformers that contribute to the spectrum difficult, and the latter requires an expensive, quantum mechanical calculation for both electrons and vibrations. Here, we propose a new theoretical approach, which implements an enhanced conformational sampling by the replica-exchange molecular dynamics method, a structural clustering to identify distinct conformations, and a vibrational structure calculation by the second-order vibrational quasi-degenerate perturbation theory (VQDPT2). A systematic mode-selection scheme is developed to reduce the cost of VQDPT2 and the generation of a potential energy surface by the electronic structure calculation. The proposed method is applied to a pentapeptide, SIVSF-NH 2 , for which the infrared spectrum has recently been measured in the gas phase with high resolution in the OH and NH stretching region. The theoretical spectrum of the lowest energy conformer is obtained with a mean absolute deviation of 11.2 cm -1 from the experimental spectrum. Furthermore, the NH stretching frequencies of the five lowest energy conformers are found to be consistent with the literature values measured for small peptides with a similar secondary structure. Therefore, the proposed method is a promising way to analyze the vibrational spectrum of polypeptides.

  10. Some problems of control of dynamical conditions of technological vibrating machines

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  11. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  12. Blading System and Method For Controlling Structural Vibrations

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan (Inventor)

    2000-01-01

    A new blading system for controlling the structural vibrations in axial-flow compressors, turbines, or fans, as in aircraft engines and like turbomachines including a stator disc and a rotor disc is presented. The rotor disc defines several radial hubs that retain the rotor blading systems. Each blading system includes a blade formed of an airfoil, and a root attachment which is dimensioned to fit within, and to engage a corresponding hub. Viscoelastic dampers are selectively applied to the outer surfaces of the root attachment on which compressive or shear forces are likely to develop, intermediate the root attachment and the hub, for compression therebetween upon rotation of the rotor disc, in order to dampen structural vibrations. One advantage presented by the viscoelastic dampers lies in its simplicity, efficiency, cost effectiveness, and its ability to be retrofitted into existing turbomachines with minor surface treatment of the root attachments. Furthermore, since the dampers are not exposed to the inflowing airstream, they do not affect the aerodynamic performance of the turbomachine. Another feature of the damping system is that it provides a significant source of damping to minimize destructive structural vibrations, thereby increasing the durability of the turbomachine, and reducing acoustic noise accompanying high amplitude vibrations.

  13. Vibrational impacts of hush house operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, A.J.

    1988-01-01

    United States Air Force (USAF) facilities are required to test turboprop and turbojet engines before or after maintenance or repair and prior to installation on aircraft to ensure that no problems were introduced or remain uncorrected. This requirement prevents the installation of engines in aircraft which require further maintenance. There are a number of facilities in use by USAF for conducting engine diagnostic tests. The most modern of these facilities is the hush house which is a hangar-like structure designed to isolate the noise associated with extended engine operations from the surrounding environment. One type of hush house, the T-10,more » is of particular concern because of vibrational impacts to surrounding structures induced by subaudible sound (infrasound) emitted during operation. While these facilities fulfill the design requirement of reducing audible noise, serious siting problems have been reported at several installations because of infrasound-induced vibrations. The worst of these include the abandonment of an avionics laboratory because induced vibrations interfered with this facilities function and structural damage to a concrete block maintenance facility. This paper describes a predictive method for assessing vibration-driven structural impacts. 9 refs., 2 figs.« less

  14. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group hasmore » been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.« less

  15. Control of resonant frequencies in adaptive structures by prestressing

    NASA Technical Reports Server (NTRS)

    Baycan, Can M.; Utku, Senol; Wada, Ben K.

    1992-01-01

    The natural vibration frequencies of a structure can be affected by inducing stress in the structure. The success of this kind of control of the resonant frequencies of a truss structure depends on the geometry of the structure. It is shown that in adaptive truss structures the method is effective for vibrations in less stiff directions, such as the normal direction of the plane containing all of the bars of a node, suggesting its applicability for cable, membrane, and thin plate and shell structures.

  16. Noise emissions and building structural vibration levels from the Supersonic Concorde and subsconic turbojet aircraft

    DOT National Transportation Integrated Search

    1975-03-01

    Noise emissions and building structural vibration levels were measured during landing and take off operations of the Anglo/French supersonic aircraft (Concorde) and from some conventional subsonic turbojet aircraft. Measurements were made at both the...

  17. Structural-Vibration-Response Data Analysis

    NASA Technical Reports Server (NTRS)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  18. Flexible Animation Computer Program

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1990-01-01

    FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.

  19. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  20. The NASA/industry design analysis methods for vibrations (DAMVIBS) program - Accomplishments and contributions

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1991-01-01

    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.

  1. The NASA/industry design analysis methods for vibrations (DAMVIBS) program: Accomplishments and contributions

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1991-01-01

    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.

  2. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  3. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  4. A vibration powered wireless mote on the Forth Road Bridge

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  5. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.« less

  6. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    NASA Astrophysics Data System (ADS)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  7. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  8. The vibrational spectra and structure of 4-methyl oxaloacetate (carbomethoxypyruvic acid)

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Katon, J. E.

    1986-04-01

    The vibrational spectra of solid 4-methyl oxalocetate have been recorded. Infrared spectra were collected at ambient and liquid nitrogen temperatures; Raman spectra were collected at ambient temperature only. A tentative vibrational assignment of the solid is proposed based on a dimer structure composed of two enolic monomer units hydrogen bonded through the carboxylic acid group. 4-Methyl oxaloacetate was found to undergo keto—enol tautomerization in solution, and the solvent dependency of this equilibrium was demonstrated.

  9. The vibrational spectra and structures of dimethyl oxaloacetate and dimethyl oxaloacetate- d2

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Katon, J. E.

    The complete vibrational spectra of dimethyl oxaloacetate and dimethyl oxaloacetate- d2 have been recorded and analyzed. The i.r. spectra were recorded at liquid N 2 as well as ambient temperature. Tentative vibrational assignments are proposed based on an enol structure in the crystalline phase. In solution, dimethyl oxaloacetate exists as a tautomeric mixture of keto and enol forms. Evidence for the existence of different enol conformers in CCl 4 and CS 2 solutions is also presented.

  10. Active control of structures using macro-fiber composite (MFC)

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  11. Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes.

    PubMed

    Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H

    2004-01-22

    Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.

  12. The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - A government overview. [of rotorcraft technology development using finite element method

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.

  13. Passive damping concepts for tubular beams with partial rotational and translational end restraints

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia; Muyundo, David K.

    1991-01-01

    The main objectives of the study are: (1) identification of potential passive damping concepts for slender tubular structural members with rotational and translational end springs under natural and forced-free vibrations; (2) evaluation of damping efficiencies of the various damping concepts; and (3) evaluation of the suitability of a theoretical finite difference analysis by comparison to the experimental results for the case of natural vibrations. Only member flexural an translation motion is considered. The natural vibration study is conducted on the seven damping concepts and for only one specific initial deflection. The most suitable of the seven dampers is further investigated under forced-free vibrations. In addition only one set of end springs is used for all of the experiments. The results show that passive damping provides a possible approach to structural vibration reduction.

  14. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  15. Retraction: Vibrational evidence for the "missing link" in structural kinship between kanemite and FSM-16 mesoporous silica.

    PubMed

    Serwicka, Ewa M; Bahranowski, Krzysztof; Sitarz, Maciej; Zimowska, Małgorzata; Michalik-Zym, Alicja

    2016-09-27

    Retraction of 'Vibrational evidence for the "missing link" in structural kinship between kanemite and FSM-16 mesoporous silica' by Ewa M. Serwicka, et al., Dalton Trans., 2016, DOI: 10.1039/C6DT01600F.

  16. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  17. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electronmore » affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.« less

  18. Evaluation of Aero Commander sidewall vibration and interior acoustic data: Static operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1980-01-01

    Results for the vibration measured at five locations on the fuselage structure during static operations are presented. The analysis was concerned with the magnitude of the vibration and the relative phase between different locations, the frequency response (inertance) functions between the exterior pressure field and the vibration, and the coherent output power functions at interior microphone locations based on sidewall vibration. Fuselage skin panels near the plane of rotation of the propeller accept propeller noise excitation more efficiently than they do exhaust noise.

  19. Progressive phase trends in plates with embedded acoustic black holes.

    PubMed

    Conlon, Stephen C; Feurtado, Philip A

    2018-02-01

    Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.

  20. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  1. Research on the design of fixture for motor vibration test

    NASA Astrophysics Data System (ADS)

    Shen, W. X.; Ma, W. S.; Zhang, L. W.

    2018-03-01

    The vibration reliability of the new energy automobile motor plays a very important role in driving safety, so it is very important to test the vibration durability of the motor. In the vibration test process, the fixture is very important, simulated road spectrum signal vibration can be transmitted without distortion to the motor through the fixture, fixture design directly affect the result of vibration endurance test. On the basis of new energy electric vehicle motor concrete structure, Two fixture design and fixture installation schemes for lateral cantilever type and base bearing type are put forward in this article, the selection of material, weighting process, middle alignment process and manufacturing process are summarized.The modal analysis and frequency response calculation of the fixture are carried out in this design, combine with influence caused by fixture height and structure profile on response frequency, the response frequency of each order of the fixture is calculated, then ultimately achieve the purpose of guiding the design.

  2. Stress analysis of rotating propellers subject to forced excitations

    NASA Astrophysics Data System (ADS)

    Akgun, Ulas

    Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.

  3. Simultaneous Vibration Suppression and Energy Harvesting

    DTIC Science & Technology

    2013-08-15

    D.J., 2011. “Modeling and Analysis of Piezoelectric Energy Harvesting from Aeroelastic Vibrations Using the Doublet-Lattice Method,” ASME Journal...Friswell, M. I., and Inman, D. J., 2009, “ Piezoelectric Energy Harvesting from Broadband Random Vibrations ,” Smart Materials and Structures, Vol. 18...and Electrode Configuration on Piezoelectric Energy Harvesting from Cantilevered Beams,” ASME Journal of Vibration and Acoustics, Vol. 131, No. 1, pp

  4. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  5. Vibration Suppression Strategies for Large Tension-Aligned Array Structures

    DTIC Science & Technology

    2013-11-19

    show vibration suppression. Practical issues related to actuator bandwidth were also addressed. 40 Dr. Ranjan Mukherjee (517) 355-1834 FINAL...third strategies, Lyapunov stability theory was used to show vibration suppression. Practical issues related to actuator bandwidth were also addressed...1 Publications Journal Papers : • Alsahlani, A. and Mukherjee, R., “Vibration Control of a String Using a Scabbard-Like Actuator”, Journal of Sound and

  6. Vibration studies of a lightweight three-sided membrane suitable for space application

    NASA Technical Reports Server (NTRS)

    Sewell, J. L.; Miserentino, R.; Pappa, R. S.

    1983-01-01

    Vibration studies carried out in a vacuum chamber are reported for a three-sided membrane with inwardly curved edges. Uniform tension was transmitted by thin steel cables encased in the edges. Variation of ambient air pressure from atmospheric to near vacuum resulted in increased response frequencies and amplitudes. The first few vibration modes measured in a near vacuum are shown to be predictable by a finite element structural analysis over a range of applied tension loads. The complicated vibration mode behavior observed during tests at various air pressures is studied analytically with a nonstructural effective air-mass approximation. The membrane structure is a candidate for reflective surfaces in space antennas.

  7. Hologram interferometry in automotive component vibration testing

    NASA Astrophysics Data System (ADS)

    Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.

    1993-02-01

    An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.

  8. Two-mode elliptical-core weighted fiber sensors for vibration analysis

    NASA Technical Reports Server (NTRS)

    Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.

    1992-01-01

    Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.

  9. Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: The case study of Palazzo del Podestà in Montelupone

    NASA Astrophysics Data System (ADS)

    Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.

  10. Stress Distribution in a Rigidly Clamped Composite Plate with Locally Curved Structures under Forced Vibration

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.

    2001-09-01

    A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading

  11. Structural impact response for assessing railway vibration induced on buildings

    NASA Astrophysics Data System (ADS)

    Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.

    2018-03-01

    Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.

  12. Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.; Cronkhite, J. D.

    1986-01-01

    Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.

  13. Using vibrational molecular spectroscopy to reveal association of steam-flaking induced carbohydrates molecular structural changes with grain fractionation, biodigestion and biodegradation

    NASA Astrophysics Data System (ADS)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-04-01

    Advanced vibrational molecular spectroscopy has been developed as a rapid and non-destructive tool to reveal intrinsic molecular structure conformation of biological tissues. However, this technique has not been used to systematically study flaking induced structure changes at a molecular level. The objective of this study was to use vibrational molecular spectroscopy to reveal association between steam flaking induced CHO molecular structural changes in relation to grain CHO fractionation, predicted CHO biodegradation and biodigestion in ruminant system. The Attenuate Total Reflectance Fourier-transform Vibrational Molecular Spectroscopy (ATR-Ft/VMS) at SRP Key Lab of Molecular Structure and Molecular Nutrition, Ministry of Agriculture Strategic Research Chair Program (SRP, University of Saskatchewan) was applied in this study. The fractionation, predicted biodegradation and biodigestion were evaluated using the Cornell Net Carbohydrate Protein System. The results show that: (1) The steam flaking induced significant changes in CHO subfractions, CHO biodegradation and biodigestion in ruminant system. There were significant differences between non-processed (raw) and steam flaked grain corn (P < .01); (2) The ATR-Ft/VMS molecular technique was able to detect the processing induced CHO molecular structure changes; (3) Induced CHO molecular structure spectral features are significantly correlated (P < .05) to CHO subfractions, CHO biodegradation and biodigestion and could be applied to potentially predict CHO biodegradation (R2 = 0.87, RSD = 0.74, P < .01) and intestinal digestible undegraded CHO (R2 = 0.87, RSD = 0.24, P < .01). In summary, the processing induced molecular CHO structure changes in grain corn could be revealed by the ATR-Ft/VMS vibrational molecular spectroscopy. These molecular structure changes in grain were potentially associated with CHO biodegradation and biodigestion.

  14. Development of flexural vibration inspection techniques to rapidly assess the structural health of rural bridge systems

    Treesearch

    Brian K. Brashaw; Robert Vatalaro; Xiping Wang; Kevin Sarvela; James P. Wacker

    2008-01-01

    Approximately 4,000 vehicle bridges in the State of Minnesota contain structural timber members. Recent research at the University of Minnesota Duluth Natural Resources Research Institute (UMD NRRI) has been conducted on vibration testing of timber bridges as a means of developing rapid in-place testing techniques for assessing the structural health of bridges. The...

  15. Low frequency vibration approach for assessing performance of wood floor systems

    Treesearch

    Xiping Wang; Robert J. Ross; Michael O. Hunt; John R. Erickson; John W. Forsman

    2005-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to...

  16. Proceedings of Damping 1993, volume 3

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  17. Proceedings of Damping 1993, volume 1

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.

  18. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli’s principle: An application to vocal folds vibration

    PubMed Central

    Zhang, Lucy T.; Yang, Jubiao

    2017-01-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541

  19. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

    PubMed

    Zhang, Lucy T; Yang, Jubiao

    2016-12-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

  20. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  1. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  2. Computational thermochemistry: Automated generation of scale factors for vibrational frequencies calculated by electronic structure model chemistries

    NASA Astrophysics Data System (ADS)

    Yu, Haoyu S.; Fiedler, Lucas J.; Alecu, I. M.; Truhlar, Donald G.

    2017-01-01

    We present a Python program, FREQ, for calculating the optimal scale factors for calculating harmonic vibrational frequencies, fundamental vibrational frequencies, and zero-point vibrational energies from electronic structure calculations. The program utilizes a previously published scale factor optimization model (Alecu et al., 2010) to efficiently obtain all three scale factors from a set of computed vibrational harmonic frequencies. In order to obtain the three scale factors, the user only needs to provide zero-point energies of 15 or 6 selected molecules. If the user has access to the Gaussian 09 or Gaussian 03 program, we provide the option for the user to run the program by entering the keywords for a certain method and basis set in the Gaussian 09 or Gaussian 03 program. Four other Python programs, input.py, input6, pbs.py, and pbs6.py, are also provided for generating Gaussian 09 or Gaussian 03 input and PBS files. The program can also be used with data from any other electronic structure package. A manual of how to use this program is included in the code package.

  3. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  4. Integrated tuned vibration absorbers: a theoretical study.

    PubMed

    Gardonio, Paolo; Zilletti, Michele

    2013-11-01

    This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.

  5. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  6. Construction vibration attenuation with distance and its effect on the quality of early-age concrete.

    DOT National Transportation Integrated Search

    2011-06-01

    Damage to structures due to vibrations from pile driving operations is of great concern to engineers. This : research has stemmed from the need to address potential damage to concrete-filled pipe piles and recently : placed concrete structures that c...

  7. Noncolocated Structural Vibration Suppression Using Zero Annihilation Periodic Control

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Boussalis, Dhemetrios

    1993-01-01

    The Zero Annihilation Periodic (ZAP) controller is applied to the problem of vibration control of a noncolocated flexible structure. It is shown that even though the transfer function is nonminimum-phase, a plant inverse controller can be designed which elicits a deadbeat closed-loop response.

  8. Ventilation duct with concurrent acoustic feed-forward and decentralised structural feedback active control

    NASA Astrophysics Data System (ADS)

    Rohlfing, J.; Gardonio, P.

    2014-02-01

    This paper presents theoretical and experimental work on concurrent active noise and vibration control for a ventilation duct. The active noise control system is used to reduce the air-borne noise radiated via the duct outlet whereas the active vibration control system is used to both reduce the structure-borne noise radiated by the duct wall and to minimise the structural feed-through effect that reduces the effectiveness of the active noise control system. An elemental model based on structural mobility functions and acoustic impedance functions has been developed to investigate the principal effects and limitations of feed-forward active noise control and decentralised velocity feedback vibration control. The principal simulation results have been contrasted and validated with measurements taken on a laboratory duct set-up, equipped with an active noise control system and a decentralised vibration control system. Both simulations and experimental results show that the air-borne noise radiated from the duct outlet can be significantly attenuated using the feed-forward active noise control. In the presence of structure-borne noise the performance of the active noise control system is impaired by a structure-borne feed-through effect. Also the sound radiation from the duct wall is increased. In this case, if the active noise control is combined with a concurrent active vibration control system, the sound radiation by the duct outlet is further reduced and the sound radiation from the duct wall at low frequencies reduces noticeably.

  9. Reconstruction of instantaneous surface normal velocity of a vibrating structure using interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Geng, Lin; Bi, Chuan-Xing; Xie, Feng; Zhang, Xiao-Zheng

    2018-07-01

    Interpolated time-domain equivalent source method is extended to reconstruct the instantaneous surface normal velocity of a vibrating structure by using the time-evolving particle velocity as the input, which provides a non-contact way to overall understand the instantaneous vibration behavior of the structure. In this method, the time-evolving particle velocity in the near field is first modeled by a set of equivalent sources positioned inside the vibrating structure, and then the integrals of equivalent source strengths are solved by an iterative solving process and are further used to calculate the instantaneous surface normal velocity. An experiment of a semi-cylindrical steel plate impacted by a steel ball is investigated to examine the ability of the extended method, where the time-evolving normal particle velocity and pressure on the hologram surface measured by a Microflown pressure-velocity probe are used as the inputs of the extended method and the method based on pressure measurements, respectively, and the instantaneous surface normal velocity of the plate measured by a laser Doppler vibrometry is used as the reference for comparison. The experimental results demonstrate that the extended method is a powerful tool to visualize the instantaneous surface normal velocity of a vibrating structure in both time and space domains and can obtain more accurate results than that of the method based on pressure measurements.

  10. The rotation-vibration structure of the SO 2 C 1B 2 state explained by a new internal coordinate force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jun; Park, G. Barratt; Field, Robert W.

    A new quartic force field for the SO 2 C ~ 1B 2 state has been derived, based on high resolution data from S 16O 2 and S 18O 2. Included are eight b 2 symmetry vibrational levels of S 16O 2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ~ state vibrational levels, are well reproduced using our force field. Because themore » two stretching modes of the C ~ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm –1. Based on our force field, the structure of the Coriolis interactions in the C ~ state of SO 2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, ν β (which correlates with the antisymmetric stretching mode in our assignment scheme).« less

  11. The rotation-vibration structure of the SO 2 C 1B 2 state explained by a new internal coordinate force field

    DOE PAGES

    Jiang, Jun; Park, G. Barratt; Field, Robert W.

    2016-04-14

    A new quartic force field for the SO 2 C ~ 1B 2 state has been derived, based on high resolution data from S 16O 2 and S 18O 2. Included are eight b 2 symmetry vibrational levels of S 16O 2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ~ state vibrational levels, are well reproduced using our force field. Because themore » two stretching modes of the C ~ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm –1. Based on our force field, the structure of the Coriolis interactions in the C ~ state of SO 2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, ν β (which correlates with the antisymmetric stretching mode in our assignment scheme).« less

  12. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.

  13. The molecular structure and vibrational spectra of corrolazine metal complexes (CzM) by density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Hongming; Yang, Chuanlu; Zhang, Zhihong; Wang, Meishan; Han, Keli

    2006-06-01

    The ground-state geometries, electronic structures and vibrational frequencies of metal corrolazine complexes, CzM (M = Mn, Co, Ni and Fe) have been studied using B3LYP/6-311g(d) method. The molecular geometries are sensitive to the species of the metal, and the bond length of the M sbnd N is increase with the metal atom radii. The ground-state electronic structures indicate that there are strong interactions between d of the metal fragments and the corrolazine fragments. The calculations also indicate that the CzNi is the stabilest among the four metal corrolazine complexes. Vibrational frequencies of these metal corrolazine complexes were also calculated and were assigned to the local coordinates of the corrolazine ring, which reveals the some common feature of the molecular vibrations of the metal corrolazine complexes as four-coordination metallocorrolazines.

  14. DFT based vibrational spectroscopic investigations and biological activity of toxic material monocrotophos

    NASA Astrophysics Data System (ADS)

    Nimmi, D. E.; Sam, S. P. Chandhini; Praveen, S. G.; Binoy, J.

    2018-05-01

    Many organophosphate compounds exhibiting toxicity are widely used as pesticides and insecticides whose structural features can be explained excellently using geometric simulation using density functional theory and vibrational spectrum. In this work, the molecular structural parameters and vibrational frequencies of the fundamental modes of Monocrotophoshave been obtained using Density functional theory (DFT), using B3LYP functional with 6-311++G(d, p) basis sets and the detailed vibrational analysis of FT-IR and FT-Ramanspectral bands have been carried out using potential energy distribution (PED). The deviation from the resonance structure of phosphate group due to `bridging of oxygen' and π-resonance of amides has been investigated based on the spectral and geometric data. The molecular docking simulation of Monocrotophos with BSA and DNA has been performed to find the mode of binding and the interactions with BSA has been investigated with UV-Visible spectroscopic method, to assess the strength of binding.

  15. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  17. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator

    NASA Astrophysics Data System (ADS)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan

    2018-05-01

    This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.

  18. Performance of tensor decomposition-based modal identification under nonstationary vibration

    NASA Astrophysics Data System (ADS)

    Friesen, P.; Sadhu, A.

    2017-03-01

    Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.

  19. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    NASA Astrophysics Data System (ADS)

    Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos

    2011-02-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

  20. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  1. Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment

    NASA Astrophysics Data System (ADS)

    Zabihi, Fatemeh; Chen, Qianli; Xie, Yu; Eslamian, Morteza

    2016-12-01

    In this work, in an attempt to improve the performance and lifetime of organic solar cells, P3HT photon absorbing polymer was doped with graphene (G) nano-sheets, to make light harvesting G-P3HT composite thin film. The composite this film was then employed as the donor of a bilayer organic solar cell with the structure of glass/ITO/PEDOT:PSS/G-P3HT/C60/Al. The reference P3HT:PCBM bulk heterojunction solar cell was also fabricated for comparison. All solution-processed layers were made by spin coating in humid air (Shanghai, China); C60 and Al were deposited by thermal evaporation. An effective mechanical treatment approach developed by the authors, i.e. the application of forced ultrasonic vibration on the wet spun-on films, was used to improve the dispersion of graphene in G-P3HT composite films to obtain a uniform nanostructure. This mechanical method eliminates tedious and expensive chemical steps, currently performed to engineer the structure of organic solar cells. It is evidenced that the G-P3HT composite thin films, post treated by ultrasonic vibration at the optimum vibration duration, possess superior electrical conductivity, charge carrier mobility and density, uniform surface potential distribution, and lower surface roughness, compared to those of P3HT and G-P3HT thin films made without vibration. The results show significant improvement in the power conversion efficiency (PCE) of vibration-treated G-P3HT/C60 cell (PCE = 5.17%, the highest reported for this structure), substantiating the strong positive effect of using graphene and forced vibration for the fabrication of P3HT active layer in the bilayer cell structure.

  2. Modeling of induced seismicity and ground vibrations associated with geologic CO 2 storage, and assessing their effects on surface structures and human perception

    DOE PAGES

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...

    2014-05-01

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  3. Structural parameter study on polymer-based ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro

    2017-11-01

    Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.

  4. Differences in Train-induced Vibration between Hard Soil and Soft Soil

    NASA Astrophysics Data System (ADS)

    Noyori, M.; Yokoyama, H.

    2017-12-01

    Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.

  5. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  6. Experiment on the concrete slab for floor vibration evaluation of deteriorated building

    NASA Astrophysics Data System (ADS)

    Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.

    2014-08-01

    Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).

  7. Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae

    PubMed Central

    Murphy, Christin T.; Eberhardt, William C.; Calhoun, Benton H.; Mann, Kenneth A.; Mann, David A.

    2013-01-01

    Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the vibrissae. PMID:23922834

  8. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multistage Compressor Blading

    DTIC Science & Technology

    1992-03-01

    of realistic reduced frequency values for the ftost time. 14. SUIUECT TEIEMS IS. NUMBER OF PAGES Unsteady Aerodynamic, 143 Flow Induced Vibrations 16...Flat Plate APPENDIX X. Prediction of Turbulence Generated Random Vibrational 106 Response of Turbomachinery Blading 3 APPENDIX XI. Viscous Oscillating...failure is fatigue caused by vibrations at levels exceeding3 material endurance limits. These vibrations occur when a periodic forcing function, with

  9. Power efficient control algorithm of electromechanical unbalance vibration exciter with induction motor

    NASA Astrophysics Data System (ADS)

    Topovskiy, V. V.; Simakov, G. M.

    2017-10-01

    A control algorithm of an electromechanical unbalance vibration exciter that provides a free rotational movement is offered in the paper. The unbalance vibration exciter control system realizing a free rotational movement has been synthesized. The structured modeling of the synthesized system has been carried out and its transients are presented. The advantages and disadvantages of the proposed control algorithm applied to the unbalance vibration exciter are shown.

  10. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.

    PubMed

    Elsaesser, Thomas

    2009-09-15

    Hydrogen bonding plays a key role in the structural, physical, and chemical properties of liquids such as water and in macromolecular structures such as proteins. Vibrational spectroscopy is an important tool for understanding hydrogen bonding because it provides a way to observe local molecular geometries and their interaction with the environment. Linear vibrational spectroscopy has mapped characteristic changes of vibrational spectra and the occurrence of new bands that form upon hydrogen bonding. However, linear vibrational spectroscopy gives very limited insight into ultrafast dynamics of the underlying molecular interactions, such as the motions of hydrogen-bonded groups, energy dissipation and delocalization, and the fluctuations within hydrogen-bonded structures that occur in the ultrafast time domain. Nonlinear vibrational spectroscopy with its femtosecond time resolution can discern these dynamic processes in real time and has emerged as an important tool for unraveling molecular dynamics and for quantifying interactions that govern the vibrational and structural dynamics of hydrogen bonds. This Account reviews recent progress originating from third-order nonlinear methods of coherent multidimensional vibrational spectroscopy. Ultrafast dynamics of intermolecular hydrogen bonds are addressed for a number of prototype systems: hydrogen-bonded carboxylic acid dimers in an aprotic liquid environment, the disordered fluctuating hydrogen-bond network of liquid water, and DNA oligomers interacting with water. Cyclic carboxylic acid dimers display a rich scheme of vibrational couplings, resulting in OH stretching absorption bands with highly complex spectral envelopes. Two-dimensional spectroscopy of acetic acid dimers in a nonpolar liquid environment demonstrates that multiple Fermi resonances of the OH stretching mode with overtones and combination tones of fingerprint vibrations dominate both the 2D and linear absorption spectra. The coupling of the OH stretching mode with low-frequency hydrogen-bonding modes leads to additional progressions and coherent low-frequency hydrogen-bond motions in the subpicosecond time domain. In water, the 2D spectra reveal ultrafast spectral diffusion on a sub-100 fs time scale caused by the ultrafast structural fluctuations of the strongly coupled hydrogen-bond network. Librational motions play a key role for the ultrafast loss of structural memory. Spectral diffusion rates are enhanced by resonant transfer of OH stretching quanta between water molecules, typically occurring on a 100 fs time scale. In DNA oligomers, femtosecond nonlinear vibrational spectroscopy resolves NH and OH stretching bands in the highly congested infrared spectra of these molecules, which contain alternating adenine-thymine pairs. Studies at different levels of hydration reveal the spectral signatures of water molecules directly interacting with the phosphate groups of DNA and of a second water species forming a fluctuating environment around the DNA oligomers. We expect that the application of 2D infrared spectroscopy in an extended spectral range will reveal the intrinsic coupling between water and specific functional units of DNA.

  11. Implementation of input command shaping to reduce vibration in flexible space structures

    NASA Technical Reports Server (NTRS)

    Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney

    1992-01-01

    Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.

  12. Structural vibration-based damage classification of delaminated smart composite laminates

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo

    2018-03-01

    Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.

  13. Passive Vibration Control of Existing Structures by Gravity-Loaded Cables

    NASA Astrophysics Data System (ADS)

    Alvis, E.; Tsang, H. H.; Hashemi, M. J.

    2017-06-01

    Structures with high concentration of mass at or close to the top such as highway bridge piers are vulnerable in earthquakes or accidents. In this paper, a simple and convenient retrofit strategy is proposed for minimizing vibrations and damages, extending service life and preventing collapse of existing structures. The proposed system comprises of tension-only cables secured to the sides of the structure through gravity anchor blocks that are free to move in vertical shafts. The system is installed in such a way that the cables do not induce unnecessary stress on the main structure when there is no lateral motion or vibration. The effectiveness of controlling global structural responses is investigated for tension-only bilinear-elastic behaviour of cables. Results of a realistic case study for a reinforced concrete bridge pier show that response reduction is remarkably well under seismic excitation.

  14. Coupled multi-disciplinary composites behavior simulation

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.

  15. Fatigue failure in metal bellows due to flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.; Fargo, C. G.

    1969-01-01

    To prevent fatigue due to flow-induced vibrations in metal bellows connected to ducts carrying liquid hydrogen, a study was made which shows that the flexure lines are in general a function of the vibration coupling between the fluid and bellows structure, and the nature of the external environment.

  16. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  17. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  18. Recent Developments in Ground-Borne Noise and Vibration Control

    NASA Astrophysics Data System (ADS)

    Nelson, J. T.

    1996-05-01

    Vibration control provisions available to the transit designer include (among others) precision straightened rail, ballast mats, floating slabs and very soft direct fixation fasteners, in addition to rail grinding, wheel truing, and continuous welded rail. Recently, the Los Angeles Metro has developed specifications for a soft resilient direct fixation fastener to fit the same base dimensions as the standard direct fixation fastener. In San Francisco, low resonance frequency (8 Hz) floating slabs have been constructed to mitigate predicted ground vibration impacts at nearby residential structures. In Atlanta, low resonance frequency loading slabs have been constructed to maintain a low vibration environment in a medical building planned to be built over the subway structure. In Portland and Pasadena, ballast mats have been recommended to control light rail transit ground vibration impacts on housing located at typically 35 feet from the alignment. Each of these provisions are briefly described in view of recent applications at U.S. transit systems.

  19. Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Sugino, C.; Erturk, A.

    2018-05-01

    Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from locally resonant metastructures without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, integrating energy harvesters into a locally resonant metastructure enables a new potential for multifunctional locally resonant metastructures that can host self-powered sensors.

  20. Application of impact dampers in vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.; Butt, Aamir S.

    1995-01-01

    Impact dampers belong to the category of passive vibration devices used to attenuate the vibration of discrete and continuous systems. An impact damper generally consists of a mass which is allowed to travel freely between two defined stops. Under the right conditions, the vibration of the structure to which the impact damper is attached will cause the mass of the impact damper to strike the structure. Previous analytical and experimental research work on the effect of impact dampers in attenuating the vibration of discrete and continuous systems have demonstrated their effectiveness. It has been shown in this study that impact dampers can increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists of a slender flexible beam supported by a pin-type support at one end and supported by a linear helical flexible spring at another location. Sinusoidal excitation spanning the first three natural frequencies was applied in the horizontal plane. The orientation of the excitation and the test structure in the horizontal plane minimizes the effect of gravity on the behavior of the test structure. The excitation was applied using a linear sine sweep technique. The span of the test structure, the mass of the impact damper, the distance of travel, and the location of the impact damper along the span of the test structure were varied. The damping ratio are estimated for sixty test configurations. The results show that the impact damper significantly increases the damping ratio of the test structure. Statistical analysis of the results using the method of multiple linear regression indicates that a reasonable fit has been accomplished. It is concluded that additional experimental analysis of flexible structures in microgravity environment is needed in order to achieve a better understanding of the behavior of impact damper under conditions of microgravity. Numerical solution of the behavior of flexible structures equipped with impact dampers is also needed to predict stresses and deformations under operating conditions of microgravity in space applications.

  1. Imaging Organ of Corti Vibration Using Fourier-Domain OCT

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Chen, Fangyi; Fridberger, Anders; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.

    2011-11-01

    Measuring the sound stimulated vibration from various structures in the organ of Corti is important in understanding how the small vibrations are amplified and detected. In this study we examine the feasibility of using phase-sensitive Fourier domain optical coherence tomography (PSFD-OCT) to measure vibration of the cellular structures of the organ of Corti. PSFD-OCT is a low coherence interferrometry system where the interferrogram is detected as a function of wavelength. The phase of the Fourier transformation of the detected spectra contains path deference (between the sample arm and the reference arm) information of the interferometer. In PSFD-OCT this phase is measured as a function of time and thus any time dependent change in the path difference between the sample arm and the reference arm can be detected. In the experiment, we used an in vitro preparation of the guinea pig cochlea and made a surgical opening at the apical end to access the organ of Corti. By applying tones with different frequencies via the intact middle ear, we recorded the structural vibration inside the organ of Corti. Vibration amplitude and phase of different substructures were mapped on a cross-section view of the organ of Corti. Although the measurements were made at the apical turn of the cochlea, it will be possible to make vibration measurement from various turns of the cochlea. The noise floor of the system was 0.3 nm, calibrated using a piezo stack as a calibrator.

  2. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  3. Proceedings of Damping 1993, volume 2

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  4. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2012-08-01

    Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)], 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0 represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes.

  5. Design of vibration sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Liu, Chuntong

    2017-12-01

    Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.

  6. An innovative multi dof TMD system for motorcycle handlebars designed to reduce structural vibrations and human exposure

    NASA Astrophysics Data System (ADS)

    Agostoni, S.; Cheli, F.; Leo, E.; Pezzola, M.

    2012-08-01

    Motor vehicle ride comfort is mainly affected by reciprocating engine inertia unbalances. These forces are transmitted to the driver through the main frame, the engine mounts, and the auxiliary sub systems—all components with which he physically comes into contact. On-road traction vehicle engines are mainly characterized by transient exercise. Thus, an excitation frequency range from 800 RPM (≈15 Hz for stationary vehicles) up to 15,000 RPM (≈250 Hz as a cut off condition) occurs. Several structural resonances are induced by the unbalancing forces spectrum, thus exposing the driver to amplified vibrations. The aim of this research is to reduce driver vibration exposure, by acting on the modal response of structures with which the driver comes into contact. An experimental methodology, capable of identifying local vibration modes was developed. The application of this methodology on a reference vehicle allows us to detect if/when/how the above mentioned resonances are excited. Numerical models were used to study structural modifications. In this article, a handlebar equipped with an innovative multi reciprocating tuned mass damper was optimized. All structural modifications were designed, developed and installed on a vehicle. Modal investigations were then performed in order to predict modification efficiency. Furthermore, functional solution efficiency was verified during sweep tests performed on a target vehicle, by means of a roller bench capable of replicating on-road loads. Three main investigation zones of the vehicle were detected and monitored using accelerometers: (1) engine mounts, to characterize vibration emissions; (2) bindings connecting the engine to the frame, in order to detect vibration transfer paths, with particular attention being paid to local dynamic amplifications due to compliances and (3) the terminal components with which the driver comes into contact.

  7. Passive Isolators for use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Gattis, Christy

    2003-01-01

    The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.

  8. Computational molecular spectroscopy of X ˜ 2 Π NCS: Electronic properties and ro-vibrationally averaged structure

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-04-01

    For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.

  9. Ground test for vibration control demonstrator

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  10. Conceptural Study of Gyroscopic Damping Systems for Structural Indentification

    NASA Astrophysics Data System (ADS)

    Furuya, H.; Senba, A.

    2002-01-01

    System identification of the adaptive gyroscopic damper system (AGDS) is treated in this paper. The adaptive gyroscopic damper system was proposed as the extension of the conventional gyroscopic damper under the concept of intelligent adaptive structure systems [1]. The conventional gyroscopic damper has passive characteristics similar to a tuned mass damper (TMD). Because the conventional gyroscopic damper has one natural frequency, several applications to the ground structures have been studied to suppress the fundamental vibration mode (e.g. [2]). On the other hand, as the AGDS has a property of adjusting the natural frequency of the gimbal to that of the structural system by controlling the moment of inertia around its gimbal axis, the performance for suppressing the vibration of one-DOF system was improved. In addition, by extending this property, suppression of multiple modes vibration by quasi-static control for the AGDS was demonstrated [3]. To realize the high performance for suppressing the structural vibration, the identification of characteristics of the structural system with AGDS is significant, because the adaptability of the AGDS to the natural frequency of the system reflects to the performance. By using a capability of AGDS as changing its moment of inertia around its gimbals axis by controlling appendage mass, the system identification is also possible. A sensitivity analysis for the change of the response amplitude and the natural frequency with modal parameters is applied to the method. The errors included in the identification results of modal parameters for cantilevered beam model is examined. The numerical demonstrations were performed to investigate the identification errors of system parameters by the response amplitude and the natural frequency with modal parameters, respectively. The results show that the technique used in the study can identify the structural system and the identification errors occur for near the natural frequency of the system by using the response amplitude, and for the optimum momentum inertia by using the natural frequency. References [1] Hiroshi FURUYA, Masanori TAKAHASHI, and Tatsuo OHMACHI: Concept of Adaptive Gyroscopic Damper and Vibration Suppression of Flexible Structures, 8th International Conference on Adaptive Structures and Technologies, Wakayama, Oct. 29-31, 1997, eds. Y. Murotsu, C.A. Rogers, P. Santini, and H. Okubo, Technomic Publishing, pp.247-254, 1998. [2] Hiroshi FURUYA, Masanori TAKAHASHI, and Tatsuo OHMACHI: Pseudo Feedback Control of Adaptive Gyroscopic Damper for Vibration Suppression, 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, AIAA 98-1796, Long Beach, CA, April 20-23, pp.830-834, 1998. [3] Hiroshi FURUYA and Atsuo KOBORI: Suppression of Multiple Modes Vibration of Flexible Structures with Adaptive Gyroscopic Damper System, 10th International Conference on Adaptive Structures and Technologies, Paris, Oct. 13-15, 1999, eds. R. Ohayon, and M. Bernadou, Technomic Publishing, pp. 127-134, 1999.

  11. Active damping of modal vibrations by force apportioning

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1980-01-01

    Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.

  12. Entropy in sound and vibration: towards a new paradigm.

    PubMed

    Le Bot, A

    2017-01-01

    This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart.

  13. Chaotic sources of noise in machine acoustics

    NASA Astrophysics Data System (ADS)

    Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.

    1994-05-01

    In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.

  14. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  15. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  16. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  17. Optimization of helicopter airframe structures for vibration reduction considerations, formulations and applications

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1988-01-01

    Several key issues involved in the application of formal optimization technique to helicopter airframe structures for vibration reduction are addressed. Considerations which are important in the optimization of real airframe structures are discussed. Considerations necessary to establish relevant set of design variables, constraints and objectives which are appropriate to conceptual, preliminary, detailed design, ground and flight test phases of airframe design are discussed. A methodology is suggested for optimization of airframes in various phases of design. Optimization formulations that are unique to helicopter airframes are described and expressions for vibration related functions are derived. Using a recently developed computer code, the optimization of a Bell AH-1G helicopter airframe is demonstrated.

  18. Structural stability, vibrational, and bonding properties of potassium 1, 1′-dinitroamino-5, 5′-bistetrazolate: An emerging green primary explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2015-08-14

    Potassium 1,1′-dinitroamino-5,5′-bistetrazolate (K{sub 2}DNABT) is a nitrogen rich (50.3% by weight, K{sub 2}C{sub 2}N{sub 12}O{sub 4}) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K{sub 2}DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (b

  19. A theoretical and experimental benchmark study of core-excited states in nitrogen

    NASA Astrophysics Data System (ADS)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; Nandi, Saikat; Coriani, Sonia; Gühr, Markus; Koch, Henrik

    2018-02-01

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.

  20. Development of the relaxation-assisted 2DIR method for accessing structures of molecules and its application for studying the energy transport on a molecular level

    NASA Astrophysics Data System (ADS)

    Kasyanenko, Valeriy Mitrofanovich

    Measuring the three-dimensional structure of molecules, dynamics of structural changes, and energy transport on a molecular scale is important for many areas of natural science. Supplementing the widely used methods of x-ray diffraction, NMR, and optical spectroscopies, a two-dimensional infrared spectroscopy (2DIR) method was introduced about a decade ago. The 2DIR method measures pair-wise interactions between vibrational modes in molecules, thus acquiring molecular structural constraints such as distances between vibrating groups and the angles between their transition dipoles. The 2DIR method has been applied to a variety of molecular systems but in studying larger molecules such as proteins and peptides the method is facing challenges associated with the congestion of their vibrational spectra and delocalized character of their vibrational modes. To help extract structural information from such spectra and make efficient use of vibrational modes separated by large distances, a novel relaxation-assisted 2DIR method (RA 2DIR) has recently been proposed, which exploits the transport of excess vibrational energy from the initially excited mode. With the goal of further development of RA 2DIR, we applied it to a variety of molecular systems, including model compounds, transition-metal complexes, and isomers. The experiments revealed several novel effects which both enhance the power of RA 2DIR and bring a deeper understanding to the fundamental process of energy transport on a molecular level. We demonstrated that RA 2DIR can enhance greatly (27-fold) the cross-peak amplitude among spatially remote modes, which leads to an increase of the range of distances accessible for structural measurements by several fold. We demonstrated that the energy transport time correlates with the intermode distance. This correlation offers a new way for identifying connectivity patterns in molecules. We developed two models of energy transport in molecules. In one, a spatial overlap of vibrational modes determines the rate of energy transfer. Another model uses generalizations of Marcus theory of electron transfer applied to anharmonic vibrational transitions. These theoretical models reproduce well the main features of RA 2DIR measurements in a set of isomers where the energy transport is found to be affected by the three-dimensional structure as well as in transition-metal complexes, where the energy transport has to go through relatively weak coordination bonds and can be different from that occurring via covalent bonds.

  1. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes.

    PubMed

    Conlon, Stephen C; Fahnline, John B; Semperlotti, Fabio

    2015-01-01

    The concept of an Acoustic Black Hole (ABH) has been developed and exploited as an approach for passively attenuating structural vibration. The basic principle of the ABH relies on proper tailoring of the structure geometrical properties in order to produce a gradual reduction of the flexural wave speed, theoretically approaching zero. For practical systems the idealized "zero" wave speed condition cannot be achieved so the structural areas of low wave speed are treated with surface damping layers to allow the ABH to approach the idealized dissipation level. In this work, an investigation was conducted to assess the effects that distributions of ABHs embedded in plate-like structures have on both vibration and structure radiated sound, focusing on characterizing and improving low frequency performance. Finite Element and Boundary Element models were used to assess the vibration response and radiated sound power performance of several plate configurations, comparing baseline uniform plates with embedded periodic ABH designs. The computed modal loss factors showed the importance of the ABH unit cell low order modes in the overall vibration reduction effectiveness of the embedded ABH plates at low frequencies where the free plate bending wavelengths are longer than the scale of the ABH.

  2. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  3. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.

    PubMed

    Yuan, Tao; Li, Chaodong; Fan, Pingqing

    2018-03-22

    Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses-elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason's model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably.

  4. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses

    PubMed Central

    Yuan, Tao; Li, Chaodong; Fan, Pingqing

    2018-01-01

    Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses—elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason’s model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably. PMID:29565825

  5. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  6. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    ERIC Educational Resources Information Center

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  7. Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Egger, Philipp; Caracoglia, Luca

    2015-09-01

    Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.

  8. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted.

  9. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  10. Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates

    PubMed Central

    Hu, Chuanjiang; Peng, Qian; Silvernail, Nathan J.; Barabanschikov, Alexander; Zhao, Jiyong; Alp, E. Ercan; Sturhahn, Wolfgang; Sage, J. Timothy; Scheidt, W. Robert

    2013-01-01

    The effects of the deprotonation of coordinated imidazole on the dynamics of five-coordinate high-spin iron(II) porphyrinates have been investigated using nuclear resonance vibrational spectroscopy. Two complexes have been studied in detail with both powder and oriented single-crystal measurements. Changes in the vibrational spectra are clearly related to structural differences in the molecular structures that occur when imidazole is deprotonated. Most modes involving the simultaneous motion of iron and imidazolate are unresolved but the one mode that is resolved is found at higher frequency in the imidazolates. These out-of-plane results are in accord with earlier resonance Raman studies of heme proteins. We also show the imidazole vs. imidazolate differences in the in-plane vibrations that are not accessible to resonance Raman studies. The in-plane vibrations are at lower frequency in the imidazolate derivatives; the doming mode shifts are inconclusive. The stiffness, an experimentally determined force constant that averages the vibrational details to quantify the nearest-neighbor interactions, confirms that deprotonation inverts the relative strengths of axial and equatorial coordination. PMID:23470205

  11. Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System

    PubMed Central

    Moreno, Javier; Clotet, Eduard; Tresanchez, Marcel; Martínez, Dani; Casanovas, Jordi; Palacín, Jordi

    2017-01-01

    This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16. PMID:28505108

  12. Combined Euler column vibration isolation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  13. Si-H bond dynamics in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  14. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  15. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    NASA Astrophysics Data System (ADS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  16. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beammore » which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.« less

  17. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling

    NASA Astrophysics Data System (ADS)

    Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang

    2018-03-01

    Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.

  18. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  19. On the control of vibrations using synchrophasing

    NASA Astrophysics Data System (ADS)

    Dench, M. R.; Brennan, M. J.; Ferguson, N. S.

    2013-09-01

    This paper describes the application of a technique, known as synchrophasing, to the control of machinery vibration. It is applicable to machinery installations, in which several synchronous machines, such as those driven by electrical motors, are fitted to an isolated common structure known as a machinery raft. To reduce the vibration transmitted to the host structure to which the machinery raft is attached, the phase of the electrical supply to the motors is adjusted so that the net transmitted force to the host structure is minimised. It is shown that while this is relatively simple for an installation consisting of two machines, it is more complicated for installations in which there are more than two machines, because of the interaction between the forces generated by each machine. The development of a synchrophasing scheme, which has been applied to propeller aircraft, and is known as Propeller Signature Theory (PST) is discussed. It is shown both theoretically and experimentally, that this is an efficient way of controlling the phase of multiple machines. It is also shown that synchrophasing is a worthwhile vibration control technique, which has the potential to suppress vibration transmitted to the host structure by up to 20 dB at certain frequencies. Although the principle of synchronisation has been demonstrated on a one-dimensional structure, it is believed that this captures the key features of the approach. However, it should be realised that the mode-shapes of a machinery raft may be more complex than that of a one-dimensional structure and this may need to be taken into account in a real application.

  20. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusualmore » feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.« less

  1. Study on model design and dynamic similitude relations of vibro-acoustic experiment for elastic cavity

    NASA Astrophysics Data System (ADS)

    Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi

    2018-05-01

    Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.

  2. Development and applications of two computational procedures for determining the vibration modes of structural systems. [aircraft structures - aerospaceplanes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1975-01-01

    Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.

  3. User manual for BUNVIS-RG: An exact buckling and vibration program for lattice structures, with repetitive geometry and substructuring options

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Warnaar, D. B.; Ling, B. J. AEHERSTROM, C. l. afkennedy, d

    1986-01-01

    A computer program is described which is especially suited for making vibration and buckling calculations for prestressed lattice structures that might be used for space application. Structures having repetitive geometry are treated in a very efficient manner. Detailed instructions for data input are given along with several example problems illustrating the use and capability of the program.

  4. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  5. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  6. Streamlined design and self reliant hardware for active control of precision space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.; King, James A.; Phillips, Douglas J.

    1994-01-01

    Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.

  7. Vibration control of building structures using self-organizing and self-learning neural networks

    NASA Astrophysics Data System (ADS)

    Madan, Alok

    2005-11-01

    Past research in artificial intelligence establishes that artificial neural networks (ANN) are effective and efficient computational processors for performing a variety of tasks including pattern recognition, classification, associative recall, combinatorial problem solving, adaptive control, multi-sensor data fusion, noise filtering and data compression, modelling and forecasting. The paper presents a potentially feasible approach for training ANN in active control of earthquake-induced vibrations in building structures without the aid of teacher signals (i.e. target control forces). A counter-propagation neural network is trained to output the control forces that are required to reduce the structural vibrations in the absence of any feedback on the correctness of the output control forces (i.e. without any information on the errors in output activations of the network). The present study shows that, in principle, the counter-propagation network (CPN) can learn from the control environment to compute the required control forces without the supervision of a teacher (unsupervised learning). Simulated case studies are presented to demonstrate the feasibility of implementing the unsupervised learning approach in ANN for effective vibration control of structures under the influence of earthquake ground motions. The proposed learning methodology obviates the need for developing a mathematical model of structural dynamics or training a separate neural network to emulate the structural response for implementation in practice.

  8. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.

  9. Human-simulated intelligent control of train braking response of bridge with MRB

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie

    2016-04-01

    The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.

  10. Structural Noise and Acoustic Characteristics Improvement of Transport Power Plants

    NASA Astrophysics Data System (ADS)

    Chaynov, N. D.; Markov, V. A.; Savastenko, A. A.

    2018-03-01

    Noise reduction generated during the operation of various machines and mechanisms is an urgent task with regard to the power plants and, in particular, to internal combustion engines. Sound emission from the surfaces vibration of body parts is one of the main noise manifestations of the running engine and it is called a structural noise. The vibration defining of the outer surfaces of complex body parts and the calculation of their acoustic characteristics are determined with numerical methods. At the same time, realization of finite and boundary elements methods combination turned out to be very effective. The finite element method is used in calculating the structural elements vibrations, and the boundary elements method is used in the structural noise calculation. The main conditions of the methodology and the results of the structural noise analysis applied to a number of automobile engines are shown.

  11. Vibration suppression using a proofmass actuator operating in stroke/force saturation

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Celano, T. P.; Ide, E. N.

    1991-01-01

    The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.

  12. Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Ni, Yanchun; Lu, Xilin; Lu, Wensheng

    2017-03-01

    The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.

  13. Control design challenges of large space systems and spacecraft control laboratory experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Lin, Jiguan Gene

    1987-01-01

    The quick suppression of the structural vibrations excited by bang-bang (BB) type time-optional slew maneuvers via modal-dashpot design of velocity output feedback control was investigated. Simulation studies were conducted, and modal dashpots were designed for the SCOLE flexible body dynamics. A two-stage approach was proposed for rapid slewing and precision pointing/retargeting of large, flexible space systems: (1) slew the whole system like a rigid body in a minimum time under specified limits on the control moments and forces, and (2) damp out the excited structural vibrations afterwards. This approach was found promising. High-power modal/dashpots can suppress very large vibrations, and can add a desirable amount of active damping to modeled modes. Unmodeled modes can also receive some concomitant active damping, as a benefit of spillover. Results also show that not all BB type rapid pointing maneuvers will excite large structural vibrations. When properly selected small forces (e.g., vernier thrusters) are used to complete the specified slew maneuver in the shortest time, even BB-type maneuvers will excite only small vibrations (e.g., 0.3 ft peak deflection for a 130 ft beam).

  14. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study.

    PubMed

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Ambient Vibration Tests of an Arch Dam with Different Reservoir Water Levels: Experimental Results and Comparison with Finite Element Modelling

    PubMed Central

    Ranieri, Gaetano

    2014-01-01

    This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results. PMID:25003146

  16. Vibration Analysis Of Automotive Structures Using Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Brown, G. M.; Wales, R. R.

    1983-10-01

    Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.

  17. Development of piezoelectric bistable energy harvester based on buckled beam with axially constrained end condition for human motion

    NASA Astrophysics Data System (ADS)

    Eltanany, Ali M.; Yoshimura, Takeshi; Fujimura, Norifumi; Ebied, Mohamed R.; Ali, Mohamed G. S.

    2017-10-01

    In this study, we aim to examine the triggering force for an efficient snap-through solution of hand shaking vibrations of a piezoelectric bistable energy harvester. The proposed structure works at very low frequencies with nearly continuous periodic vibrations. The static characterizations are presented as well as the dynamic characterizations based on the phase diagrams of velocity vs displacement, voltage vs displacement, and voltage vs input acceleration. The mass attached to the bistable harvester plays an important role in determining the acceleration needed for the snap-through action, and the explanation for this role is complex because of mass dependence on frequency/amplitude vibration. Various hand shaking vibration tests are performed to demonstrate the advantage of the proposed structure in harvesting energy from hand shaking vibration. The minimum input acceleration for snap-through action was 11.59 m/s2 with peaks of 15.76 and 2 m/s2 in the frequency range of 1.3-2.7 Hz, when an attached mass of 14.6 g is used. The maximum generated power at a buckling state of 0.5 mm is 11.3 µW for the test structure at 26 g. The experimental results obtained in this study indicate that power output harvesting of slow hand shaking vibrations at 10 µW and a load resistance of 1 MΩ.

  18. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    NASA Astrophysics Data System (ADS)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  19. A New Approach in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    The force-limited vibration test approaches discussed in NASA-7004C were developed to reduce overtesting associated with base shake vibration tests of aerospace hardware where the interface responses are excited coherently. This handbook outlines several different methods of specifying the force limits. The rationale for force limiting is based on the disparity between the impedances of typical aerospace mounting structures and the large impedances of vibration test shakers when the interfaces in general are coherently excited. Among these approaches, the semi-empirical method is presently the most widely used method to derive the force limits. The inclusion of the incoherent excitation of the aerospace structures at mounting interfaces has not been accounted for in the past and provides the basis for more realistic force limits for qualifying the hardware using shaker testing. In this paper current methods for defining the force limiting specifications discussed in the NASA handbook are reviewed using data from a series of acoustic and vibration tests. A new approach based on considering the incoherent excitation of the structural mounting interfaces using acoustic test data is also discussed. It is believed that the new approach provides much more realistic force limits that may further remove conservatism inherent in shaker vibration testing not accounted for by methods discussed in the NASA handbook. A discussion on using FEM/BEM analysis to obtain realistic force limits for flight hardware is provided.

  20. Tautomerization, molecular structure, transition state structure, and vibrational spectra of 2-aminopyridines: a combined computational and experimental study.

    PubMed

    Al-Otaibi, Jamelah S

    2015-01-01

    2-amino pyridine derivatives have attracted considerable interest because they are useful precursors for the synthesis of a variety of heterocyclic compounds possessing a medicinal value. In this work we aim to study both structural and electronic as well as high quality vibrational spectra for 2-amino-3-methylpyridine (2A3MP) and 2-amino-4-methylpyridine (2A4MP). Møller-Plesset perturbation theory (MP2/6-31G(d) and MP2/6-31++G(d,p) methods were used to investigate the structure and vibrational analysis of (2A3MP) and (2A4MP). Tautomerization of 2A4MP was investigated by Density Functional Theory (DFT/B3LYP) method in the gas phase. For the first time, all tautomers including NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. The canonical structure (2A4MP1) is the most stable tautomer. It is 13.60 kcal/mole more stable than the next (2A4MP2). Transition state structures of pyramidal N inversion and proton transfer were computed at B3LYP/6-311++G(d,p). Barrier to transition state of hydrogen proton transfer is calculated as 44.81 kcal/mol. Transition state activation energy of pyramidal inversion at amino N is found to be 0.41 kcal/mol using the above method. Bond order and natural atomic charges were also calculated at the same level. The raman and FT-IR spectra of (2A3MP) and (2A4MP) were measured (4000-400 cm(-1)). The optimized molecular geometries, frequencies and vibrational bands intensity were calculated at ab initio (MP2) and DFT(B3LYP) levels of theory with 6-31G(d), 6-31++G(d,p) and 6-311++G(d,p) basis sets. The vibrational frequencies were compared with experimentally measured FT-IR and FT-Raman spectra. Reconsidering the vibrational analysis of (2A3MP) and (2A4MP) with more accurate FT-IR machine and highly accurate animation programs result in new improved vibrational assignments. Sophisticated quantum mechanics methods enable studying the transition state structure for different chemical systems.

  1. Vibration measurement by atomic force microscopy with laser readout

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas J.; Mizariene, Vida; Kalinauskas, Margiris; Lucinskas, Paulius

    1998-06-01

    Micromachined cantilever beams are widely used for different microengineering and nanotechnology actuators and sensors applications. The micromechanical cantilever tip-based data storage devices with reading real data at the rates exceeding 1Mbit/s have been demonstrated. The vibrational noise spectrum of a cantilever limits the data storage resolution. Therefore the possibility to measure the microvibrations and acoustic fields in different micromachined devices are of great interest. We describe a method to study a micromechanical cantilever and surface vibrations based on laser beam deflection measurements. The influence of piezoelectric plate vibrations and the tip- surface contact condition on the cantilever vibrations were investigated in the frequency range of 1-200 kHz. The experiments were performed using the measurement results. The V-shaped cantilevers exited by the normal vibrations due to the non-linearity at the tip-surface contact vibrates with a complex motion and has a lateral vibration mode coupled with normal vibration mode. The possibility to use laser deflection technique for the vibration measurements in micromachined structures with nano resolution is shown.

  2. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  3. Molecular structure, interatomic interactions and vibrational analysis of 1,4-diazabicyclo[3.2.1]octane parent ring system

    NASA Astrophysics Data System (ADS)

    Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.

    2017-02-01

    Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.

  4. Analysis and calibration of stage axial vibration for synchrotron radiation nanoscale computed tomography.

    PubMed

    Fu, Jian; Li, Chen; Liu, Zhenzhong

    2015-10-01

    Synchrotron radiation nanoscale computed tomography (SR nano-CT) is a powerful analysis tool and can be used to perform chemical identification, mapping, or speciation of carbon and other elements together with X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. In practical applications, there are often challenges for SR nano-CT due to the misaligned geometry caused by the sample stage axial vibration. It occurs quite frequently because of experimental constraints from the mechanical error of manufacturing and assembly and the thermal expansion during the time-consuming scanning. The axial vibration will lead to the structure overlap among neighboring layers and degrade imaging results by imposing artifacts into the nano-CT images. It becomes worse for samples with complicated axial structure. In this work, we analyze the influence of axial vibration on nano-CT image by partial derivative. Then, an axial vibration calibration method for SR nano-CT is developed and investigated. It is based on the cross correlation of plane integral curves of the sample at different view angles. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission X-ray microscope nano-CT setup at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The results demonstrate that the presented method can handle the stage axial vibration. It can work for random axial vibration and needs neither calibration phantom nor additional calibration scanning. It will be helpful for the development and application of synchrotron radiation nano-CT systems.

  5. Density functional theory study of structural and electronic properties of trans and cis structures of thiothixene as a nano-drug.

    PubMed

    Noori Tahneh, Akram; Bagheri Novir, Samaneh; Balali, Ebrahim

    2017-11-25

    The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.

  6. Production, Delivery and Application of Vibration Energy in Healthcare

    NASA Astrophysics Data System (ADS)

    Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  7. Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.

  8. Data of piezoelectric vibration energy harvesting of a bridge undergoing vibration testing and train passage.

    PubMed

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-04-01

    The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.

  9. Entropy in sound and vibration: towards a new paradigm

    PubMed Central

    2017-01-01

    This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart. PMID:28265190

  10. Tutorial: Novel properties of defects in semiconductors revealed by their vibrational spectra

    NASA Astrophysics Data System (ADS)

    Stavola, Michael; Fowler, W. Beall

    2018-04-01

    This is an introductory survey of the vibrational spectroscopy of defects in semiconductors that contain light-mass elements. The capabilities of vibrational spectroscopy for the identification of defects, the determination of their microscopic structures, and their dynamics are illustrated by a few examples. Several additional examples are discussed, with a focus on defects with properties not obviously accessible by vibrational spectroscopy, such as the diffusivity of an impurity, the negative U ordering of electronic levels, and the time constant for a nuclear-spin flip. These novel properties have, nonetheless, been revealed by vibrational spectra and their interpretation by theory.

  11. Computer analysis of railcar vibrations

    NASA Technical Reports Server (NTRS)

    Vlaminck, R. R.

    1975-01-01

    Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.

  12. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: McDonnell-Douglas Helicopter Company achievements

    NASA Technical Reports Server (NTRS)

    Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa

    1993-01-01

    This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.

  13. Linear and nonlinear analysis of fluid slosh dampers

    NASA Astrophysics Data System (ADS)

    Sayar, B. A.; Baumgarten, J. R.

    1982-11-01

    A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.

  14. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate.

    PubMed

    Marchewka, M K; Drozd, M

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Gear fault diagnosis based on the structured sparsity time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Sun, Ruobin; Yang, Zhibo; Chen, Xuefeng; Tian, Shaohua; Xie, Yong

    2018-03-01

    Over the last decade, sparse representation has become a powerful paradigm in mechanical fault diagnosis due to its excellent capability and the high flexibility for complex signal description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal processing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain a fine match for the structure of signals. In order to extract the transient feature from gear vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work. The steady modulation components and impulsive components of the defective gear vibration signals can be extracted simultaneously by choosing different time-frequency neighborhood and generalized thresholding operators. Besides, the time-frequency distribution with high resolution is obtained by piling different components in the same diagram. The diagnostic conclusion can be made according to the envelope spectrum of the impulsive components or by the periodicity of impulses. The effectiveness of the method is verified by numerical simulations, and the vibration signals registered from a gearbox fault simulator and a wind turbine. To validate the efficiency of the presented methodology, comparisons are made among some state-of-the-art vibration separation methods and the traditional time-frequency analysis methods. The comparisons show that the proposed method possesses advantages in separating feature signals under strong noise and accounting for the inner time-frequency structure of the gear vibration signals.

  16. Multi-link piezoelectric structure for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Aryanpur, Rameen M.; White, Robert D.

    2012-04-01

    Work in piezoelectric vibration energy harvesting has typically focused on single member cantilevered structures with transverse tip displacement at a known frequency, taking advantage of the optimal coupling characteristics of piezoceramics in the 3-1 bending mode. Multi-member designs could be advantageous in delivering power to a load in environments with random or wide-band vibrations. The design presented in this work consists of two hinged piezoceramic (PZT-5A) beams x-poled for series operation. Each beam measures 31.8mm x 12.7mm x 0.38mm and consists of two layers of nickel-plated piezoceramic adhered to a brass center shim. The hinge device consists of two custom-machined aluminum attachments epoxied to the end of a beam and connected using a 1.59mm diameter alloy steel dowel. A stainless steel torsion spring is placed over the pin and attached to the aluminum body to provide a restoring torque when under rotation. The design is modeled using the piezoelectric constitutive equations to solve for voltage and power for a set of electromechanical boundary conditions. Experimental measurements on the design are achieved by bolting one end of the structure to a vibration shaker and fixing the other to a rigid framework of industrial aluminum framing material. For a given frequency of vibration, power output of the structure can be obtained by measuring voltage drop across a resistive load.

  17. Assassin bug uses aggressive mimicry to lure spider prey.

    PubMed

    Wignall, Anne E; Taylor, Phillip W

    2011-05-07

    Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.

  18. Internally resonating lattices for bandgap generation and low-frequency vibration control

    NASA Astrophysics Data System (ADS)

    Baravelli, Emanuele; Ruzzene, Massimo

    2013-12-01

    The paper reports on a structural concept for high stiffness and high damping performance. A stiff external frame and an internal resonating lattice are combined in a beam-like assembly which is characterized by high frequency bandgaps and tuned vibration attenuation at low frequencies. The resonating lattice consists of an elastomeric material arranged according to a chiral topology which is designed to resonate at selected frequencies. The concept achieves high damping performance by combining the frequency-selective properties of internally resonating structures, with the energy dissipation characteristics of their constituent material. The flexible ligaments, the circular nodes and the non-central interactions of the chiral topology lead to dynamic deformation patterns which are beneficial to energy dissipation. Furthermore, tuning and grading of the elements of the lattice allows for tailoring of the resonating properties so that vibration attenuation is obtained over desired frequency ranges. Numerical and experimental results demonstrate the tuning flexibility of this concept and suggest its potential application for load-carrying structural members parts of vibration and shock prone systems.

  19. Inner structural vibration isolation method for a single control moment gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao; Tang, Liang; Guan, Xin

    2016-01-01

    Assembling and manufacturing errors of control moment gyros (CMG) often generate high frequency vibrations which are detrimental to spacecrafts with high precision pointing requirement. In this paper, some design methods of vibration isolation between CMG and spacecraft is dealt with. As a first step, the dynamic model of the CMG with and without supporting isolation structures is studied and analyzed. Subsequently, the frequency domain analysis of CMG with isolation system is performed and the effectiveness of the designed system is ascertained. Based on the above studies, an adaptive design suitable with appropriate design parameters are carried out. A numerical analysis is also performed to understand the effectiveness of the system and the comparison made. The simulation results clearly indicate that when the ideal isolation structure was implemented in the spacecraft, the vibrations generated by the rotor were found to be greatly reduced, while the capacity of the output torque was not lost, which means that the isolation system will not affect the performance of attitude control.

  20. Vibration suppression for large scale adaptive truss structures using direct output feedback control

    NASA Technical Reports Server (NTRS)

    Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.

  1. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE PAGES

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; ...

    2018-02-14

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  2. The Effect of Structural Curvings on the Stress Distribution in a Rigidly Fixed Composite Plate under Forced Vibration

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.

    2002-01-01

    Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.

  3. Conformational structures of a decapeptide validated by first principles calculations and cold ion spectroscopy.

    PubMed

    Roy, Tapta Kanchan; Kopysov, Vladimir; Nagornova, Natalia S; Rizzo, Thomas R; Boyarkin, Oleg V; Gerber, R Benny

    2015-05-18

    Calculated structures of the two most stable conformers of a protonated decapeptide gramicidin S in the gas phase have been validated by comparing the vibrational spectra, calculated from first- principles and measured in a wide spectral range using infrared (IR)-UV double resonance cold ion spectroscopy. All the 522 vibrational modes of each conformer were calculated quantum mechanically and compared with the experiment without any recourse to an empirical scaling. The study demonstrates that first-principles calculations, when accounting for vibrational anharmonicity, can reproduce high-resolution experimental spectra well enough for validating structures of molecules as large as of 200 atoms. The validated accurate structures of the peptide may serve as templates for in silico drug design and absolute calibration of ion mobility measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Four experimental demonstrations of active vibration control for flexible structures

    NASA Technical Reports Server (NTRS)

    Phillips, Doug; Collins, Emmanuel G., Jr.

    1990-01-01

    Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.

  5. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  6. Pilot study to examine use of transverse vibration nondestructive evaluation for assessing floor systems

    Treesearch

    Zhiyong Cai; Robert J. Ross; Michael O. Hunt; Lawrence A. Soltis

    2002-01-01

    Evaluation of existing timber structures requires procedures to evaluate in situ structural members and components. This report evaluates the transverse vibration response of laboratory-built floor systems with new and salvaged joists. The objectives were to 1) compare floor system response to individual member response; 2) examine response sensitivity to location of...

  7. Multifunctional Composite Structures

    DTIC Science & Technology

    2010-03-01

    78  Design of vibrating / oscillating wings for MAV ................................................. 79  6...62  Oscillating structural mechanism ................................................................... 80  Fig. 63  Mode shapes of vibration ...allowing  it  to  perform  important  tasks  including  actuation,  sensing,  energy  storage  and  energy  harvesting   in  addition  to  providing

  8. About Mass Transfer in Capillaries of Biological Systems under Influence of Vibrations

    NASA Astrophysics Data System (ADS)

    Prisniakov, K.

    Vibrations accompany the flight of the manned spacecraft both at a stage of a orbital injection to an orbit, and during long flights (as noise), rendering undesirable physiological influence on crew, reducing serviceability and creating constant discomfort. The report represents attempt to predict a state of the cosmonaut in conditions of influence of vibrations for the period of start and stay in Space, being based on researches of mass transfer processes in capillary systems. For this purpose the original researches on heat and mass transfer processes with evaporation of liquids in capillary - porous structures in conditions of vibration actions and changes of a direction of action of gravitation are generalized. Report demonstrates the existence of modes at which increased or lowered mass transfer is achieved on border of separation "liquid - gas". The possible mechanism of influence of vibrations on evaporation of a liquid in capillaries is examined. The magnitudes of frequencies and amplitudes are submitted at which minimax characteristics are observed. The opportunity of application of the developed mathematical model of heat and mass transfer in capillary - porous structures to forecasting influence of vibrations for biological processes in capillaries of alive essences is analyzed. Such approach is justified on the mechanical nature of harmful influence of vibrations on an organism of the person. In addition the range of vibration frequencies which arise during space flights, corresponds to own resonant frequencies of a human body and his separate organs. Comparison of these resonant frequencies of a body of the person (5-80 Hertz) with vibration frequencies of optimum modes of heat and mass transfer in capillary - porous structures (20-40 Hertz) is shown their ranges of coverage. It gives the basis to assume existence of similar effects in capillaries of human body. It is supposed, that the difficulty of breath, change of a rhythm of breath, the subsequent weariness under vibration action are attributable to infringements of normal mass transfer between the inhaled air and blood. The opportunity of use of the received laws is discussed for assessment of influence of gravitational fields on intensity mass transfer in capillaries of biosystems also.

  9. Using the Saturn V and Titan III Vibroacoustic Databanks for Random Vibration Criteria Development

    NASA Technical Reports Server (NTRS)

    Ferbee, R C.

    2009-01-01

    This is an update to TN D-7159, "Development and Application of Vibroacoustic Structural Data Banks in Predicting Vibration Design and Test Criteria for Rocket Vehicle Structures", which was originally published in 1973. Errors in the original document have been corrected and additional data from the Titan III program have been included. Methods for using the vibroacoustic databanks for vibration test criteria development are shown, as well as all of the data with drawings and pictures of the measurement locations. An Excel spreadsheet with the data included is available from the author.

  10. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  11. Modeling Smart Structure of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping

    2012-06-01

    With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.

  12. {gamma}-vibrational states in superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yang; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000; Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  13. Long-range monostatic remote sensing of geomaterial structure weak vibrations

    NASA Astrophysics Data System (ADS)

    Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik

    2018-04-01

    We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.

  14. Remote vibration monitoring system using wireless internet data transfer

    NASA Astrophysics Data System (ADS)

    Lemke, John

    2000-06-01

    Vibrations from construction activities can affect infrastructure projects in several ways. Within the general vicinity of a construction site, vibrations can result in damage to existing structures, disturbance to people, damage to sensitive machinery, and degraded performance of precision instrumentation or motion sensitive equipment. Current practice for monitoring vibrations in the vicinity of construction sites commonly consists of measuring free field or structural motions using velocity transducers connected to a portable data acquisition unit via cables. This paper describes an innovative way to collect, process, transmit, and analyze vibration measurements obtained at construction sites. The system described measures vibration at the sensor location, performs necessary signal conditioning and digitization, and sends data to a Web server using wireless data transmission and Internet protocols. A Servlet program running on the Web server accepts the transmitted data and incorporates it into a project database. Two-way interaction between the Web-client and the Web server is accomplished through the use of a Servlet program and a Java Applet running inside a browser located on the Web client's computer. Advantages of this system over conventional vibration data logging systems include continuous unattended monitoring, reduced costs associated with field data collection, instant access to data files and graphs by project team members, and the ability to remotely modify data sampling schemes.

  15. DFT calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V. G.; Milton Franklin Benial, A.

    2014-08-01

    The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis.

  16. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  17. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui

    2017-12-01

    This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.

  18. A two scale modeling and computational framework for vibration-induced Raynaud syndrome.

    PubMed

    Hua, Yue; Lemerle, Pierre; Ganghoffer, Jean-François

    2017-07-01

    Hand-Arm Vibration syndrome (HAVS), usually caused by long-term use of hand-held power tools, can in certain manifestations alter the peripheral blood circulation in the hand-arm region. HAVS typically occurs after exposure to cold, causing an abnormally strong vasoconstriction of blood vessels. A pathoanatomical mechanism suggests that a reduction of the lumen of the blood vessels in VWF (Vibration White Finger) subjects, due to either hypertrophy or thickening of the vessel wall, may be at the origin of the disease. However, the direct and indirect effects of the load of the hand-held tools on the structure of blood vessels remain controversial:.one hypothesis is the mechanical action of vibration on the local acral dysregulation and/or on the vessel histomorphological modifications. Another hypothesis is the participation of the sympathetic nervous system to this dysregulation. In this paper, we assume the modifications as mechanobiological growth and the load-effect relationship may be interpreted as directly or indirectly induced. This work is the first attempt to model the effect of vibration through soft tissues onto the distal capillaries, addressing the double paradigm of multi space-time scales, i.e. low period vibration versus high time constant of the growth phenomenon as well as vibrations propagating in the macroscopic tissue including the microscopic capillary structures subjected to a pathological microstructural evolution. The objective is to lay down the theoretical basis of growth modeling for the small distal artery, with the ability to predict the geometrical and structural changes of the arterial walls caused by vibration exposure. We adopt the key idea of splitting the problem into one global vibration problem at the macroscopic scale and one local growth problem at the micro level. The macroscopic hyperelastic viscous dynamic model of the fingertip cross-section is validated by fitting experimental data. It is then used in steady-state vibration conditions to predict the mechanical fields in the close vicinity of capillaries. The space scale transfer from macroscopic to microscopic levels is ensured by considering a representative volume element (RVE) embedding a single capillary in its center. The vibrations emitted by the hand held power tool are next linked to the capillary growth through the adopted biomechanical growth model at the capillary level. The obtained results show that vibrations induce an increase of the thickness of the capillary's wall, thereby confirming the scenario of vibrations induced reduction of the lumen of blood vessels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Passive vibration control: a structure-immittance approach.

    PubMed

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A

    2017-05-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.

  20. Passive vibration control: a structure-immittance approach

    NASA Astrophysics Data System (ADS)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A.

    2017-05-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.

  1. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  2. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids.

    PubMed

    Van Hoozen, Brian L; Petersen, Poul B

    2018-04-07

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm -1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pK A values. Dimers with large pK A differences are found to have features that can extend to frequencies below 1000 cm -1 . The relationships between mean OH/NH frequency, aqueous pK A , and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm -1 . Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pK A and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  3. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.

    PubMed

    Kurkal-Siebert, Vandana; Smith, Jeremy C

    2006-02-22

    An understanding of low-frequency, collective protein dynamics at low temperatures can furnish valuable information on functional protein energy landscapes, on the origins of the protein glass transition and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a broad peak in the dynamic structure factor centered at about approximately 2-2.5 meV, originates from approximately 10(2) collective, harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical nature of protein-protein interactions.

  4. A Review of Noise and Vibration Control Technologies for Rotorcraft Transmissions

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2016-01-01

    An expanded commercial use of rotorcraft can alleviate runway congestion and improve the accessibility of routine air travel. To date, commercial use has been hindered by excessive cabin noise. The primary noise source is structure-borne vibration originating from the main rotor gearbox. Despite significant advancements in gear design, the gear mesh tones generated often exceed 100 dB. This paper summarizes the findings of a literature survey of vibration control technologies that serve to attenuate this vibration near the source, before it spreads into the airframe and produces noise. The scope is thus limited to vibration control treatments and modifications of the gears, driveline, housing structures, and the strut connections to the airframe. The findings of the literature are summarized and persistent and unresolved issues are identified. An emphasis is placed on components and systems that have been demonstrated in flight vehicles. Then, a discussion is presented of emerging technologies that have the potential to make significant advancements over the state of the art.

  5. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    PubMed

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  6. Damage assessment in a sandwich panel based on full-field vibration measurements

    NASA Astrophysics Data System (ADS)

    Seguel, F.; Meruane, V.

    2018-03-01

    Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.

  7. Vibroacoustic processes and structural variations in muscular tissue

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Klochkov, B. N.; Kovaleva, E. P.

    1995-03-01

    This paper reviews the problems and results obtained in the course of experimental and theoretical investigations of the vibroacoustic activity of contracting muscles. Two types of such processes are examined: (1) acoustic vibrations due to the macromolecular recombinations of muscle proteins, which are responsible for the muscle contraction, and (2) acoustic vibrations associated with the finite accuracy and speed of the receptor-effector system that controls the muscle contraction. By investigating the acoustic vibrations, we examine structural recombinations (conformation variations) in macromolecules during mechanochemical reactions. Since chemical reactions of macromolecules are always accompanied by conformational recombinations, the generation mechanism, which is responsible for the contraction processes in a muscular tissue, can also be extended to other macromolecular media. Investigation of infrasound vibrations makes it possible to explore the quality and error of control for the processes in the muscle under different types of loading. Since a living body is controlled via perceptions, the latter can be quantitatively estimated by the parametess of infrasound vibrations.

  8. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    PubMed

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.

    2003-01-01

    The NASA Glenn Research Center, the U.S. Department of Energy, and the Stirling Technology Company (STC) are developing a highly efficient, long-life, free-piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions, including deep-space and Mars surface applications. As part of this development, four structural dynamic test programs were recently performed on Stirling Technology Demonstration Convertors (TDC's) that were designed and built by STC under contract to the Department of Energy. This testing was performed in Glenn's Structural Dynamics Laboratory and Microgravity Emissions Laboratory. The first test program, in November and December 1999, demonstrated that the Stirling TDC could withstand the harsh random vibration experienced during a typical spacecraft launch and survive with no structural damage or functional power performance degradation. This was a critical step in enabling the use of Stirling convertors for future spacecraft power systems. The most severe test was a 12.3grms random vibration test, with test durations of 3 min per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. The Microgravity Emissions Laboratory is typically used to measure the dynamics produced by operating space experiments and the resulting impact to the International Space Station's microgravity environment. For the second Stirling dynamic test program, performed in January 2001, the Microgravity Emissions Laboratory was used to characterize the structure-borne disturbances produced by the normal operation of a pair of Stirling convertors. The forces and moments produced by the normal operation of a Stirling system must be recognized and controlled, if necessary, so that other nearby spacecraft components, such as cameras, are not adversely affected. The Stirling convertor pair emitted relatively benign tonal forces at its operational frequency and associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.

  10. A contact vibration measurement sensor based on a distributed Bragg reflector fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Jie; Fang, Gan; Lyu, Chengang; Zhang, Shuai

    2017-12-01

    A new contact method to measure vibrations with a frequency range of about 30-110 Hz by a distributed Bragg reflector (DBR) fiber laser sensor, based on a beat frequency modulation, has been proposed. In order to demonstrate the plausibility for a DBR fiber sensor to detect vibrations lower than 110 Hz without any complex structures, it is encapsulated in a rectangular slice composed of an epoxy resin glue, with a Young’s modulus of about 2.9 GPa. In experiments, the packaged DBR fiber sensor is placed on a vibration platform to sense the vibration, with a commercial magnet-electrical vibration velocity transducer as a reference. Experimental results indicate that the single DBR fiber laser is able to measure the low-frequency vibration with a few tens of Hertz and several microns of amplitude, offering potential for a low-frequency vibration measurement.

  11. Shaping liquid drops by vibration

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2018-02-01

    We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in the horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragment into smaller drops.

  12. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    PubMed

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  13. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal of Acoustic Society of America for publication.

  14. Application of foam-extend on turbulent fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  15. Method development of damage detection in asymmetric buildings

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.

  16. Fast Bayesian approach for modal identification using free vibration data, Part I - Most probable value

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Liang; Ni, Yan-Chun; Au, Siu-Kui; Lam, Heung-Fai

    2016-03-01

    The identification of modal properties from field testing of civil engineering structures is becoming economically viable, thanks to the advent of modern sensor and data acquisition technology. Its demand is driven by innovative structural designs and increased performance requirements of dynamic-prone structures that call for a close cross-checking or monitoring of their dynamic properties and responses. Existing instrumentation capabilities and modal identification techniques allow structures to be tested under free vibration, forced vibration (known input) or ambient vibration (unknown broadband loading). These tests can be considered complementary rather than competing as they are based on different modeling assumptions in the identification model and have different implications on costs and benefits. Uncertainty arises naturally in the dynamic testing of structures due to measurement noise, sensor alignment error, modeling error, etc. This is especially relevant in field vibration tests because the test condition in the field environment can hardly be controlled. In this work, a Bayesian statistical approach is developed for modal identification using the free vibration response of structures. A frequency domain formulation is proposed that makes statistical inference based on the Fast Fourier Transform (FFT) of the data in a selected frequency band. This significantly simplifies the identification model because only the modes dominating the frequency band need to be included. It also legitimately ignores the information in the excluded frequency bands that are either irrelevant or difficult to model, thereby significantly reducing modeling error risk. The posterior probability density function (PDF) of the modal parameters is derived rigorously from modeling assumptions and Bayesian probability logic. Computational difficulties associated with calculating the posterior statistics, including the most probable value (MPV) and the posterior covariance matrix, are addressed. Fast computational algorithms for determining the MPV are proposed so that the method can be practically implemented. In the companion paper (Part II), analytical formulae are derived for the posterior covariance matrix so that it can be evaluated without resorting to finite difference method. The proposed method is verified using synthetic data. It is also applied to modal identification of full-scale field structures.

  17. Modeling and Application of Piezoelectric Materials in Repair of Engineering Structures

    NASA Astrophysics Data System (ADS)

    Wu, Nan

    The shear horizontal wave propagation and vibration of piezoelectric coupled structures under an open circuit electrical boundary condition are studied. Following the studies on the dynamic response of piezoelectric coupled structures, the repair of both crack/notch and delaminated structures using piezoelectric materials are conducted. The main contribution was the proposed the active structural repair design using piezoelectric materials for different structures. An accurate model for the piezoelectric effect on the shear wave propagation is first proposed to guide the application of piezoelectric materials as sensors and actuators in the repair of engineering structures. A vibration analysis of a circular steel substrate surface bonded by a piezoelectric layer with open circuit is presented. The mechanical models and solutions for the wave propagation and vibration analysis of piezoelectric coupled structures are established based on the Kirchhoff plate model and Maxwell equation. Following the studies of the dynamic response of piezoelectric coupled structures, a close-loop feedback control repair methodology is proposed for a vibrating delaminated beam structure by using piezoelectric patches. The electromechanical characteristic of the piezoelectric material is employed to induce a local shear force above the delamination area via an external actuation voltage, which is designed as a feedback of the deflection of a vibrating beam and a delaminated plate, to reduce the stress singularity around the delamination tips. Furthermore, an experimental realization of an effective repair of a notched cantilever beam structure subjected to a dynamic loading by use of piezoelectric patches is reported. A small piezoelectric patch used as a sensor is placed on the notch position to monitor the severity of the stress singularity around the notch area by measuring the charge output on the sensor, and a patch used as an actuator is located around the notch area to generate a required bending moment by employing an actuation voltage to reduce the stress singularity at the notch position. The actuation voltage on the actuator is designed from a feedback circuit process. Through the analytical model, FEM simulation and experimental studies, the active structural repair method using piezoelectric materials is realized and proved to be feasible and practical.

  18. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  19. Mechanism of vibrational energy dissipation of free OH groups at the air–water interface

    PubMed Central

    Hsieh, Cho-Shuen; Campen, R. Kramer; Okuno, Masanari; Backus, Ellen H. G.; Nagata, Yuki; Bonn, Mischa

    2013-01-01

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces. PMID:24191016

  20. Investigation of solvent polarity effect on molecular structure and vibrational spectrum of xanthine with the aid of quantum chemical computations.

    PubMed

    Polat, Turgay; Yıldırım, Gurcan

    2014-04-05

    The main scope of this study is to determine the effects of 8 solvents on the geometric structure and vibrational spectra of the title compound, xanthine, by means of the DFT/B3LYP level of theory in the combination with the polarizable conductor continuum model (CPCM) for the first time. After determination of the most-steady state (favored structure) of the xanthine molecule, the role of the solvent polarity on the SCF energy (for the molecule stability), atomic charges (for charge distribution) and dipole moments (for molecular charge transfer) belonging to tautomer is discussed in detail. The results obtained indicate not only the presence of the hydrogen bonding and strong intra-molecular charge transfer (ICT) in the compound but the increment of the molecule stability with the solvent polarity, as well. Moreover, it is noted that the optimized geometric parameters and the theoretical vibrational frequencies are in good agreement with the available experimental results found in the literature. In fact, the correlations between the experimental and theoretical findings for the molecular structures improve with the enhancement of the solvent polarity. At the same time, the dimer forms of the xanthine compound are simulated to describe the effect of intermolecular hydrogen bonding on the molecular geometry and vibrational frequencies. It is found that the CO and NH stretching vibrations shift regularly to lower frequency value with higher IR intensity as the dielectric medium enhances systematically due to the intermolecular NH⋯O hydrogen bonds. Theoretical vibrational spectra are also assigned based on the potential energy distribution (PED) using the VEDA 4 program. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  2. Structure, isomerism, and vibrational assignment of aluminumtrifluoroacetylacetonate. An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Vakili, M.; Boluri, E.; Tayyari, S. F.; Nekoei, A.-R.; Hakimi-Tabar, M.; Darugar, V.

    2018-02-01

    An interpretation of the experimental IR and Raman spectra of Aluminum (III) trifluoroacetylacetonate (Al(TFAA)3) complex, which were synthesized by us, is first reported here. The charge distribution, isomerism, strength of metal-oxygen binding and vibrational spectral properties for this complex structure were theoretically investigated through population analysis, geometry optimization and harmonic frequency calculations, performed at B3LYP/6-311G* level of theory. In the population analysis, two different approaches reffered to as ;Atoms in molecules (AIM);, and ;Natural Bond Orbital (NBO); were used. According to the calculation resuls, the energy difference between the cis and trans isomers of Al(TFAA)3 is very small and indicates that both isomers coexist in the sample in comparable proportions. Comparison of the calculated frequency and intensity data with the observed IR and Raman spectra of the complex has supported this conclusion. On the other hand, comparison of the structural and vibrational spectral data of Al(TFAA)3, which were experimentally measured and calculated at B3LYP/6-311G* level, with the corresponding data of Aluminum acetylacetonate (Al(AA)3) has revealed the effects of CF3 substitution on the structural and vibrational spectral data associated with the CH3 groups in the complex structure.

  3. Structural and vibrational spectroscopic analysis of anticancer drug mitotane using DFT method; a comparative study of its parent structure

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2015-04-01

    A comprehensive screening of the density functional theoretical approach to structural analysis is presented in this section. DFT calculations using B3LYP/6-311++G(d,p) level of theory were found to yield results that are very comparable to experimental IR and Raman spectra. Computed geometrical parameters and harmonic vibrational wavenumbers of the fundamentals were found in satisfactory agreement with the experimental data and also its parent structure. The vibrational assignments of the normal modes were performed on the basis of the potential energy distribution (PED) calculations. It can be proven from the comparative results of mitotane and its parent structure Dichlorodiphenyldichloroethane (DDD), the intramolecular nonbonding interaction between (C1sbnd H19⋯Cl18) in the ortho position which is calculated 2.583 Å and the position of the substitution takeover the vibrational wavenumber to redshift of 47 cm-1. In addition, natural bond orbital (NBO) analysis has been performed for analyzing charge delocalization throughout the molecule. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity and charge delocalization has been analyzed. 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method and compared with published results.

  4. Improving the Performance of the Structure-Based Connectionist Network for Diagnosis of Helicopter Gearboxes

    NASA Technical Reports Server (NTRS)

    Jammu, Vinay B.; Danai, Koroush; Lewicki, David G.

    1996-01-01

    A diagnostic method is introduced for helicopter gearboxes that uses knowledge of the gear-box structure and characteristics of the 'features' of vibration to define the influences of faults on features. The 'structural influences' in this method are defined based on the root mean square value of vibration obtained from a simplified lumped-mass model of the gearbox. The structural influences are then converted to fuzzy variables, to account for the approximate nature of the lumped-mass model, and used as the weights of a connectionist network. Diagnosis in this Structure-Based Connectionist Network (SBCN) is performed by propagating the abnormal vibration features through the weights of SBCN to obtain fault possibility values for each component in the gearbox. Upon occurrence of misdiagnoses, the SBCN also has the ability to improve its diagnostic performance. For this, a supervised training method is presented which adapts the weights of SBCN to minimize the number of misdiagnoses. For experimental evaluation of the SBCN, vibration data from a OH-58A helicopter gearbox collected at NASA Lewis Research Center is used. Diagnostic results indicate that the SBCN is able to diagnose about 80% of the faults without training, and is able to improve its performance to nearly 100% after training.

  5. Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1997-01-01

    Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.

  6. A decentralized approach to vibration suppression in segmented reflector telescopes. [large spaceborne

    NASA Technical Reports Server (NTRS)

    Ryaciotaki-Boussalis, Helen A.; Wang, Shyh Jong

    1989-01-01

    The problem of vibration suppression in segmented reflector telescopes is considered. The decomposition of the structure into smaller components is discussed, and control laws for vibration suppression as well as conditions for stability at the local level are derived. These conditions and the properties of the interconnecting patterns are then utilized to obtain sufficient conditions for global stability.

  7. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    NASA Astrophysics Data System (ADS)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  8. Experimental demonstration of 1.5Hz passive isolation system for precision optical payloads

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Wang, Guang-yuan; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    The ground resolution of remote sensing satellite has been raised from hundreds of meters to less than one meter in recent few decades. As a result, the precision optical payload becomes more and more sensitive to structure vibrations of satellite buses. Although these vibrations generally have extremely low magnitude, they can result in significant image quality degradation to an optical payload. The suggestion of using vibration isolators to isolate payload from the satellite bus has been put forward in 1980s'[1]. Recently, WorldView-2 achieved its perfect image quality via using a set of low frequency isolators[2]. Recently, some of the optical payload manufacturers begin to provide vibration isolators as standard parts together with their main products . During the prototype testing of an earth resource satellite, the image of the optical payload was found to jitter for 5 10 pixels due to disturbances transmitted from the satellite bus structure. Test results indicated that the acceleration level of the vibration was of mG magnitude. To solve the problem, a highly sensitive vibration isolation system was developed to reduce the transmission of disturbances. Integrated isolation performance tests showed that the image jitter can be decreased to below 0.3 pixels.

  9. Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid

    NASA Astrophysics Data System (ADS)

    Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali

    2016-09-01

    Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.

  10. Kinetic theory for DNA melting with vibrational entropy

    NASA Astrophysics Data System (ADS)

    Sensale, Sebastian; Peng, Zhangli; Chang, Hsueh-Chia

    2017-10-01

    By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.

  11. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  12. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia

    This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO formore » structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation« less

  13. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    DOE PAGES

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia; ...

    2017-08-01

    This study describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980 s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLOmore » for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation.« less

  14. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia

    This study describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980 s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLOmore » for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation.« less

  15. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  16. Dynamic (Vibration) Testing: Design-Certification of Aerospace System

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2010-01-01

    Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.

  17. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  18. Computer program determines vibration in three-dimensional space of hydraulic lines excited by forced displacements

    NASA Technical Reports Server (NTRS)

    Dodge, W. G.

    1968-01-01

    Computer program determines the forced vibration in three dimensional space of a multiple degree of freedom beam type structural system. Provision is made for the longitudinal axis of the analytical model to change orientation at any point along its length. This program is used by industries in which structural design dynamic analyses are performed.

  19. Vibrational signatures in the THz spectrum of 1,3-DNB: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Azad, Abul K.; Chellappa, Raja; Higginbotham-Duque, Amanda; Dattelbaum, Dana M.; Zhu, Jian-Xin; Moore, David; Graf, Matthias J.

    2016-05-01

    Understanding the fundamental processes of light-matter interaction is important for detection of explosives and other energetic materials, which are active in the infrared and terahertz (THz) region. We report a comprehensive study on electronic and vibrational lattice properties of structurally similar 1,3-dinitrobenzene (1,3-DNB) crystals through first-principles electronic structure calculations and THz spectroscopy measurements on polycrystalline samples. Starting from reported x-ray crystal structures, we use density-functional theory (DFT) with periodic boundary conditions to optimize the structures and perform linear response calculations of the vibrational properties at zero phonon momentum. The theoretically identified normal modes agree qualitatively with those obtained experimentally in a frequency range up to 2.5 THz and quantitatively at much higher frequencies. The latter frequencies are set by intra-molecular forces. Our results suggest that van der Waals dispersion forces need to be included to improve the agreement between theory and experiment in the THz region, which is dominated by intermolecular modes and sensitive to details in the DFT calculation. An improved comparison is needed to assess and distinguish between intra- and intermolecular vibrational modes characteristic of energetic materials.

  20. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  1. Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures

    NASA Astrophysics Data System (ADS)

    Zhang, S. Q.; Li, H. N.; Schmidt, R.; Müller, P. C.

    2014-02-01

    Thin-walled piezoelectric integrated smart structures are easily excited to vibrate by unknown disturbances. In order to design and simulate a control strategy, firstly, an electro-mechanically coupled dynamic finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Linear piezoelectric constitutive equations and the assumption of constant electric field through the thickness are considered. Based on the dynamic FE model, a disturbance rejection (DR) control with proportional-integral (PI) observer using step functions as the fictitious model of disturbances is developed for vibration suppression of smart structures. In order to achieve a better dynamic behavior of the fictitious model of disturbances, the PI observer is extended to generalized proportional-integral (GPI) observer, in which sine or polynomial functions can be used to represent disturbances resulting in better dynamics. Therefore the disturbances can be estimated either by PI or GPI observer, and then the estimated signals are fed back to the controller. The DR control is validated by various kinds of unknown disturbances, and compared with linear-quadratic regulator (LQR) control. The results illustrate that the vibrations are better suppressed by the proposed DR control.

  2. Substitution structure of cyanogen, NCCN, from high-resolution far infrared spectra

    NASA Astrophysics Data System (ADS)

    Grecu, John C.; Winnewisser, Brenda P.; Winnewisser, Manfred

    2003-04-01

    The lowest lying vibrational bands of the gas-phase spectra of cyanogen, NCCN, and four of its isotopomers, 15NCCN, N13CCN, 15NCC15N, and N13C13CN, were recorded with a Fourier transform interferometer. The resolution was limited by the maximum optical path difference (MOPD) attainable with the interferometer to FWHM=0.0012 cm-1. Rovibrational transitions of the ν5 ( ≈230 cm-1) and also the ν2- ν5 ( ≈610 cm-1) band systems were assigned for all five isotopomers. The use of an effective Hamiltonian for linear molecules to fit the data yielded precise spectroscopic vibrational and rotational constants for the vibrational states ( v1v2v3v4v5) or ( v4v5)=(00), (01), (02), (03), and (01000). These data include the first rotationally resolved transitions involving (01000). Complete substitution ( rs) structures of cyanogen, based on both single and double isotopic substitution of the parent species, were calculated. The derived structure is rCC=138.48(17) pm and rCN=115.66(13) pm. The two rs structures coincide within the errors due to remaining contributions of zero-point vibrations.

  3. Experimental investigation of jet pulse control on flexible vibrating structures

    NASA Astrophysics Data System (ADS)

    Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios

    2016-08-01

    The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.

  4. Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning

    NASA Astrophysics Data System (ADS)

    Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.

    2018-03-01

    Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.

  5. Theoretical and experimental study of the conformational and vibrational properties of benzoin

    NASA Astrophysics Data System (ADS)

    Pawelka, Zbignew; Kryachko, Eugene S.; Zeegers-Huyskens, Thérèse

    2003-02-01

    The conformational and vibrational properties of benzoin are theoretically studied at the B3LYP/6-31+G(d,p) computational level. Three lower energy stable structures are found on its potential energy surface. The two first structures correspond to cis- and trans-benzoin. The cis isomer, stabilized by an intramolecular OH⋯O hydrogen bond, is more favorable by 3.4 kcal mol -1 over the trans isomer. The third structure refers to the dienol tautomer ( cis-stilbendiol) which is less stable by 7.6 kcal mol -1. In carbon tetrachloride, benzoin is in the cis conformation. The calculated vibrational frequencies are compared with the experimental ones. When the ν(OH) and ν(CH) vibrations are corrected for anharmonicities, an average scaling factor of 0.980 is deduced. The IR and Raman spectra of solid benzoin are analyzed as well and discussed in terms of the structure determined by X-ray diffraction [Acta crystallogr. B 36 (1980) 2832]. The isotopic ratio ν(OH)/ ν(OD) reflects the weakness of the intramolecular hydrogen bond in solution and of the intermolecular hydrogen bond in the solid state. This weakness can be accounted for by the great departure of the hydrogen bond from linearity.

  6. Candidate proof mass actuator control laws for the vibration suppression of a frame

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Inman, Daniel J.

    1991-01-01

    The vibration of an experimental flexible space truss is controlled with internal control forces produced by several proof mass actuators. Four candidate control law strategies are evaluated in terms of performance and robustness. These control laws are experimentally implemented on a quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the final closed loop is self-equilibrated. The first two control laws considered are based on direct output feedback and consist of tuning the actuator feedback gains to the lowest mode intended to receive damping. The first method feeds back only the position and velocity of the proof mass relative to the structure; this results in a traditional vibration absorber. The second method includes the same feedback paths as the first plus feedback of the local structural velocity. The third law is designed with robust H infinity control theory. The fourth strategy is an active implementation of a viscous damper, where the actuator is configured to provide a bending moment at two points on the structure. The vibration control system is then evaluated in terms of how it would benefit the space structure's position control system.

  7. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations.

    PubMed

    Sangeetha, V; Govindarajan, M; Kanagathara, N; Marchewka, M K; Gunasekaran, S; Anbalagan, G

    2014-05-05

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  9. Vibrationally resolved photoelectron angular distributions for H/sub 2/ in the range 17 eVless than or equal toh. nu. less than or equal to39 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parr, A.C.; Hardis, J.E.; Southworth, S.H.

    1988-01-15

    Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less

  10. Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints - A survey

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1991-01-01

    This paper presents a survey of the state-of-the-art in the field of structural optimization when applied to vibration reduction of helicopters in forward flight with aeroelastic and multidisciplinary constraints. It emphasizes the application of the modern approach where the optimization is formulated as a mathematical programming problem, the objective function consists of the vibration levels at the hub, and behavior constraints are imposed on the blade frequencies and aeroelastic stability margins, as well as on a number of additional ingredients that can have a significant effect on the overall performance and flight mechanics of the helicopter. It is shown that the integrated multidisciplinary optimization of rotorcraft offers the potential for substantial improvements, which can be achieved by careful preliminary design and analysis without requiring additional hardware such as rotor vibration absorbers of isolation systems.

  11. Active and passive vibration suppression for space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  12. 3D Finite Element Analysis of Some Structural Modified PC Sleeper with the Vibration Characteristics between Sleeper and Ballast

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Urakawa, Fumihiro; Aikawa, Akira; Namura, Akira

    The vibration of concrete sleepers is an important factor engendering track deterioration. In this paper, we created a three-dimensional finite element model to reproduce a prestressed concrete (PC) sleeper in detail, expressing influence of ballast layers with a 3D spring series and dampers to reproduce their vibration and dynamic characteristics. Determination of these parameters bases on the experimental modal analysis using an impact excitation technique for PC sleepers by adjusting the accelerance between the analytical results and experimental results. Furthermore, we compared the difference of these characteristics between normal sleepers and those with some structural modifications. Analytical results clarified that such means as sleeper width extension and increased sleeper thickness will influence the reduction of ballasted track vibration as improvements of PC sleepers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  14. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  15. Computer animation of modal and transient vibrations

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1987-01-01

    An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.

  16. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    NASA Astrophysics Data System (ADS)

    Thompson, Michael C.; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.; Weber, J. Mathias

    2015-06-01

    We report infrared spectra of nitromethane anion, CH3NO2-, in the region 700-2150 cm-1, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  17. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions.

    PubMed

    Thompson, Michael C; Baraban, Joshua H; Matthews, Devin A; Stanton, John F; Weber, J Mathias

    2015-06-21

    We report infrared spectra of nitromethane anion, CH3NO2 (-), in the region 700-2150 cm(-1), obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  18. Vibration Control of Deployable Astromast Boom: Preliminary Experiments

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Hamilton, David A.

    1994-01-01

    This paper deals with the dynamic characterization of a flexible aerospace solar boom. The modeling issues and sine dwell vibration testing to determine natural frequencies and mode shapes of a continuous-longer on deployable ASTROMAST lattice boom are discussed. The details of the proof-of-concept piezoelectric active vibration experiments on a simple cantilever beam to control its vibrations are presented. The control parameters like voltage to the controller crystal and its location are investigated, to determine the effectiveness of control element to suppress selected resonant vibrations of the test specimen. Details of this experiment and plans for its future adaptation to the prototype structure are also discussed.

  19. Computational vibrational study on coordinated nicotinamide

    NASA Astrophysics Data System (ADS)

    Bolukbasi, Olcay; Akyuz, Sevim

    2005-06-01

    The molecular structure and vibrational spectra of zinc (II) halide complexes of nicotinamide (ZnX 2(NIA) 2; X=Cl or Br; NIA=Nicotinamide) were investigated by computational vibrational study and scaled quantum mechanical (SQM) analysis. The geometry optimisation and vibrational wavenumber calculations of zinc halide complexes of nicotinamide were carried out by using the DFT/RB3LYP level of theory with 6-31G(d,p) basis set. The calculated wavenumbers were scaled by using scaled quantum mechanical (SQM) force field method. The fundamental vibrational modes were characterised by their total energy distribution. The coordination effects on nicotinamide through the ring nitrogen were discussed.

  20. Vibrational energy transfer from photoexcited carbon nanotubes to proteins observed by coherent phonon spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomohito; Yoshizawa, Shunsuke; Hirano, Atsushi; Tanaka, Takeshi; Shiraki, Kentaro; Hase, Muneaki

    2017-12-01

    Vibrational energy transfer from photoexcited single-wall carbon nanotubes (SWCNTs) to coupled proteins is a key to engineering thermally induced biological reactions, for example, in photothermal therapy. Here, we explored vibrational energy transfer from photoexcited SWCNTs to different adsorbed biological materials by means of a femtosecond pump-probe technique. We show that the vibrational relaxation time of the radial breathing modes in SWCNTs depends significantly on the structure of the coupled materials, that is, proteins or biopolymers, indicating that the vibrational energy transfer is governed by overlapping of the phonon densities of states of the SWCNTs and coupled materials.

Top