Chimetto, L A; Brocchi, M; Gondo, M; Thompson, C C; Gomez-Gil, B; Thompson, F L
2009-06-01
A taxonomic survey of the vibrios associated with the Brazilian endemic coral Mussismilia hispida and the sympatric zoanthids (i.e. Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). Mucus of 54 cnidarian specimens collected in three different places at São Sebastião in two consecutive years (i.e. 2005 and 2006) was used for taxonomic characterization of the cnidarian microbiota. Ninety-eight of the 151 vibrio isolates fell within the vibrio core group according to partial 16S rDNA sequences. We performed the sequencing of recA and pyrH genes of all vibrio isolates. The most abundant taxa belonged to the vibrio core group (Vibrio harveyi, Vibrio rotiferianus, Vibrio campbellii and Vibrio alginolyticus), Vibrio mediterranei (=Vibrio shillonii) and Vibrio chagasii. With the exception of V. chagasii which was found only in the mucus of M. hispida, the other species appeared in different hosts with no evidence for the presence of host-specific clones or species. Using rep-PCR analysis, we observed a high genomic heterogeneity within the vibrios. Each vibrio isolate generated a different rep-PCR fingerprint pattern. There was a complete agreement between the grouping based on rep-PCR and concatenated sequences of pyrH, recA and 16S rDNA, but the pyrH gene has the highest discriminatory power for vibrio species identification. The vibrio core group is dominant in the mucus of these cnidarians. There is a tremendous diversity of vibrio lineages within the coral mucus. pyrH gene sequences permit a clear-cut identification of vibrios. The taxonomic resolution provided by pyrH (but not recA) appears to be enough for identifying species of vibrios and for disclosing putative new taxa. The vibrio core group appears to be dominant in the mucus of the Brazilian cnidarians. The overrepresentation of these vibrios may reflect as yet unknown ecological functions in the coral holobiont.
Seafood Safety: Seriousness of Problems and Efforts to Protect Consumers.
1988-08-01
contaminated mollusks are eaten raw or undercooked, they may inflict humans with vibrio cholerae , hepatitis, or other serious illnesses, which in some cases...such as vibrio parahaemolyticus, vibrio cholerae , and vibrio vulnificus. Vibrio vulnificus infection causes high fever, chills, and, in some cases...Gulf of Mexico waters. Of these cases six fatalities were associated with the consumption of raw oysters contaminated with vibrio vulnificus. Vibrio
USDA-ARS?s Scientific Manuscript database
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) were assessed in natural seawater and in the Eastern oyster...
... Vibrio is a bacteria that lives in warm coastal seawater. There are many different kinds of Vibrio ... from Vibrio Infection? Seawater that takes over an area after a hurricane or flood may contain Vibrio ...
Chahorm, Kanchana; Prakitchaiwattana, Cheunjit
2018-01-02
The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004). In comparison with the detection of the Vibrio profiles in fourteen food samples using standard method, Reverse Transcriptase-PCR-DGGE resulted in 100%, 75% and 50% similarity in 3, 1 and 6 food samples, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Teh, C S J; Chua, K H; Thong, K L
2010-06-01
To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation. Four pairs of primers targeting gyrB gene of Vibrios at genus level and pntA gene of Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus were designed. This PCR method precisely identified 250 Vibrio species and demonstrated sensitivity in the range of 4 x 10(4) CFU ml(-1) (c. 200 CFU per PCR) to 2 x 10(3) CFU ml(-1) (c. 10 CFU per PCR). Overall, the gyrB gene marker showed a higher specificity than the dnaJ gene marker for Vibrio detection and was able to distinguish Aeromonas from Vibrio species. The multiplex PCR based on combined gyrB and pntA provides a high discriminatory power in the differentiation between Vibrio alginolyticus and V. parahaemolyticus, and between V. cholerae and Vibrio mimicus. This assay will be useful for rapid differentiation of various Vibrio species from clinical and environmental sources and significantly overcomes the limitations of the conventional methods.
Prevalence of Vibrio vulnificus and Vibrio parahaemolyticus in the Maryland Coastal Bays
NASA Astrophysics Data System (ADS)
De Pascuale, V. O.
2016-02-01
The bacterial family of Vibrionaceae is indigenous in the marine estuarine environments such as the Maryland Coastal Bays. Vibrio vulnificus and Vibrio parahaemolyticus are both pathogenic bacteria. Understanding the distribution of Vibrio species is crucial because of the health concerns associated with the bacteria. The aim of this study was to evaluate the overall abundance of bacteria with a focus on Vibrio species in the Maryland Coastal Bays. Seawater samples were collected from 10 different sites that differ with regard to water quality. The total bacteria count (TBC) was determined by two methods: Total plate count and Epifluorescence microscopy. The most-probable-number (MPN) methodology was used to estimate the population of Vibrio parahaemolyticus and Vibrio vulnificus. In addition to the bacteriological analysis, the environmental parameters of temperature and salinity were measured using YSI 6600 multiparameter meter. The average total bacteria count was 2.21 log CFU ml-1. Vibrio vulnificus comprised 5% of the total bacteria count while Vibrio parahaemolyticus comprised only 2% of the total bacteria count. Vibrio vulnificus ranged from 0.30 to 2.48 log MPN ml-1 at the sites tested. Lower Vibrio parahaemolyticus count was observed at the sites with a range of 0.30 to 1.97 log MPN ml-1. There was no significant correlation between the environmental parameters and the Vibrio spp. Since both Vibrio vulnificus and Vibrio parahaemolyticus peak in the summer, there is a potential for a risk of wound infections and gastrointestinal illness based on this data.
Hughes, Stephanie N; Greig, Denise J; Miller, Woutrina A; Byrne, Barbara A; Gulland, Frances M D; Harvey, James T
2013-05-01
Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.
Vibrio2017: the seventh international conference on the biology of Vibrios.
Klose, Karl E; Satchell, Karla J F
2018-06-04
Vibrio2017: The ASM Conference on the Biology of Vibrios, was held in November 2017. The conference focused on all aspects of biology related to the bacterial genus Vibrio. The meeting highlighted that the Vibrios have a tremendous impact on humans, both directly by Vibrio-related diseases, as well as indirectly through their interactions with other animal species, e.g. fish and shellfish, and with our environment, including influencing the health of our coastal waters and coral reefs. Copyright © 2018 American Society for Microbiology.
Prevalence of Vibrio spp. in Retail Seafood in Berlin, Germany.
Vu, Thi Thu Tra; Alter, Thomas; Huehn, Stephan
2018-04-01
This study was conducted to determine the prevalence of Vibrio spp. in retail seafood in Berlin, Germany. A total of 160 raw seafood samples from supermarkets and seafood shops, consisting of shrimp ( n = 80) and bivalves ( n = 80), were investigated for the presence of Vibrio spp. using the International Organization for Standardization ISO/TS 21872 method and a multiplex PCR. The overall prevalence of Vibrio spp. in retail seafood was 55% (95% CI: 47.2 to 62.8%). The prevalence of Vibrio spp. in shrimp was slightly higher than in bivalves (57.5 versus 52.5%); however, the difference was not statistically significant. Vibrio alginolyticus was the most prevalent species (35.6%), followed by Vibrio parahaemolyticus (27.5%), Vibrio cholerae (6.3%), and Vibrio vulnificus (0.6%). None of the V. parahaemolyticus ( n = 110) isolates encoded tdh/ trh genes, whereas all V. cholerae isolates ( n = 27) were lacking ctxA. Among the chilled samples ( n = 105), the prevalence of Vibrio spp. in unpacked samples was significantly higher than in packed samples ( P = 0.006). Among the packed samples ( n = 55), no significant difference in the prevalence of Vibrio spp. was observed between chilled or frozen products. The results of this study indicated a high prevalence of Vibrio spp. in retail seafood in Germany; positive samples were detected in all types of seafood investigated. The detection of tdh/ trh-negative V. parahaemolyticus isolates should not be neglected because of previous findings on pathogenic strains lacking these virulence markers. Even though thorough cooking might limit the risk of foodborne illness caused by Vibrio, potential cross-contamination during preparation or consumption of raw and undercooked seafood might represent a risk of Vibrio infections.
Vibrio infections in Louisiana: twenty-five years of surveillance 1980-2005.
Thomas, Annu; Straif-Bourgeois, Susanne; Sokol, Theresa M; Ratard, Raoult C
2007-01-01
A total of 1,007 Vibrio infections were reported to the Infectious Disease Epidemiology Department at the Louisiana Office of Public Heath, between 1980 and 2005. The most common were Vibrio vulnificus (257 infections), Vibrio parahemolyticus (249 infections), and Vibrio cholerae non O1 (200 cases). Other species were much less common. Vibrio vulnificus infections, which are associated with consumption of raw seafood (particularly oysters) or contact with sea water, and severe immuno-suppression or liver disease were increasing. Septicemia and blood stream infections are the main manifestations of this infection. The number of infections due to Vibrio parahemolyticus on the other hand, causing mostly gastroenteritis, has remained stable. Vibrio cholerae infections are less common and almost always associated with consumption of partially cooked or contaminated crabs.
de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R
2006-03-01
C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.
Virulence factors in Vibrios and Aeromonads isolated from seafood.
Scoglio, M E; Di Pietro, A; Picerno, I; Delia, S; Mauro, A; Lagana, P
2001-07-01
Thirty-one isolates from seafood, identified as Aeromonas hydrophila (7), Aeromonas caviae (11), Vibrio parahaemolyticus (3), Vibrio fluvialis (5), Vibrio alginolytictus (3), Vibrio metschnikovii (1) and Vibrio damsela (1), were tested for possible virulence factors including extracellular hydrolytic enzymes, haemolysins, cytotoxins (VERO and HEp-2 cells) and adherence ability (HEp-2 cells). All the A. hydrophila strains were beta-haemolytic and produced cytotoxins as well as one strain of V. fluvialis. A. hydrophila and A. caviae strains, frequently adhesive, showed both aggregative and diffusive patterns, while five Vibrio strains only (three V. fluvialis, one V. parahaemolyticus and one V. alginolyticus) were adhesive with an aggregative pattern.
Impact of milk fish farming in the tropics on potentially pathogenic vibrios.
Reichardt, W T; Reyes, J M; Pueblos, M J; Lluisma, A O
2013-12-15
Ratios of sucrose-negative to sucrose-positive vibrios on TCBS agar (suc-/suc+) indicate the abundance of potential human pathogenic non-cholera vibrios in coastal mariculture environments of the Lingayen Gulf (Philippines. In guts of adult maricultured milkfish (Chanos chanos) of suc- vibrios reached extreme peak values ranging between 2 and 545 million per g wet weight. Suc- vibrios outnumbered suc+ vibrios in anoxic sediments, too, and were rarely predominant in coastal waters or in oxidized sediments. Suc-/suc+ ratios in sediments increased toward the mariculture areas with distance from the open sea at decreasing redox potentials. There is circumstantial evidence that suc- vibrios can be dispersed from mariculture areas to adjacent environments including coral reefs. An immediate human health risk by pathogenic Vibrio species is discounted, since milkfish guts contained mainly members of the Enterovibrio group. A representative isolate of these contained proteolytic and other virulence factors, but no genes encoding toxins characteristic of clinical Vibrio species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jesser, Kelsey J; Noble, Rachel T
2018-07-01
Of marine eubacteria, the genus Vibrio is intriguing because member species are relevant to both marine ecology and human health. Many studies have touted the relationships of Vibrio to environmental factors, especially temperature and salinity, to predict total Vibrio abundance but lacked the taxonomic resolution to identify the relationships among species and the key drivers of Vibrio dynamics. To improve next-generation sequencing (NGS) surveys of Vibrio , we have conducted both 16S small subunit rRNA and heat shock protein 60 ( hsp60 ) amplicon sequencing of water samples collected at two well-studied locations in the Neuse River Estuary, NC. Samples were collected between May and December 2016 with enhanced sampling efforts in response to two named storms. Using hsp60 sequences, 21 Vibrio species were identified, including the potential human pathogens V. cholerae , V. parahaemolyticus , and V. vulnificus Changes in the Vibrio community mirrored seasonal and storm-related changes in the water column, especially in response to an influx of nutrient-rich freshwater to the estuary after Hurricane Matthew, which initiated dramatic changes in the overall Vibrio community. Individual species dynamics were wide ranging, indicating that individual Vibrio taxa have unique ecologies and that total Vibrio abundance predictors are insufficient for risk assessments of potentially pathogenic species. Positive relationships between Vibrio , dinoflagellates, and Cyanobacteria were identified, as were intraspecies associations, which further illuminated the interactions of cooccurring Vibrio taxa along environmental gradients. IMPORTANCE The objectives of this research were to utilize a novel approach to improve sequence-based surveys of Vibrio communities and to demonstrate the usefulness of this approach by presenting an analysis of Vibrio dynamics in the context of environmental conditions, with a particular focus on species that cause disease in humans and on storm effects. The methods presented here enabled the analysis of Vibrio dynamics with excellent taxonomic resolution and could be incorporated into future ecological studies and risk prediction strategies for potentially pathogenic species. Next-generation sequencing of hsp60 and other innovative sequence-based approaches are valuable tools and show great promise for studying Vibrio ecology and associated public health risks. Copyright © 2018 American Society for Microbiology.
Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.
Janda, J M; Powers, C; Bryant, R G; Abbott, S L
1988-01-01
Recent taxonomic advances have now implicated several different Vibrio species as human pathogens. While the most common clinical presentation of Vibrio infection continues to be gastroenteritis, an increasing number of extraintestinal infections are being reported, particularly in immunocompromised individuals. Detection of Vibrio infections requires a good clinical history and the use of appropriate isolation and identification procedures by the laboratory to confirm illnesses attributed to Vibrio species. Except for Vibrio cholerae O1 and Vibrio parahaemolyticus, there is little direct evidence linking the production of a myriad of cell-associated or extracellular factors produced by each species with human disease and pathogenesis. Many questions regarding pathogenic Vibrio species remain unanswered, including their frequency and distribution in environmental specimens (water, shellfish), infective doses, virulence potential of individual isolates, and markers associated with such strains. Images PMID:3058295
2010-03-01
9 different Vibrio species were detected, 114 (41%) samples were positive for V. cholerae , and 5 (0.8%) samples were positive for the cholera toxin A... Vibrio species were detected, 114 (41%) samples were positive for V. cholerae , and 5 (0.8%) samples were positive for the cholera toxin A gene (ctxA...members include Vibrio cholerae , the causative agent of cholera , and Vibrio para- haemolyticus and Vibrio vulnificus, which have been implicated in
Cell surface characteristics of environmental and clinical isolates of Vibrio cholerae non-O1.
Chaudhuri, K; Bhadra, R K; Das, J
1992-01-01
The cell surfaces of several toxigenic and nontoxigenic environmental and clinical isolates of Vibrio cholerae non-O1 have been examined. The environmental strains, irrespective of toxigenicity, are significantly more resistant to antibiotics and detergents than are V. cholerae O1 strains. The clinical isolates of non-O1 vibrios are as sensitive to a wide variety of chemicals as the O1 vibrios. The environmental non-O1 strains are also less susceptible to lysis when treated with protein denaturants or neutral and anionic detergents than are O1 vibrios and the clinical non-O1 strains. In contrast to O1 vibrios, the environmental non-O1 vibrios do not have exposed phospholipids in their outer membranes. These features of the cell surfaces of environmental non-O1 vibrios might have a role in the better survival of these organisms under environmental fluctuations. Images PMID:1282793
Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.
Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K
2016-05-24
Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.
Kokashvili, Tamar; Whitehouse, Chris A.; Tskhvediani, Ana; Grim, Christopher J.; Elbakidze, Tinatin; Mitaishvili, Nino; Janelidze, Nino; Jaiani, Ekaterine; Haley, Bradd J.; Lashkhi, Nino; Huq, Anwar; Colwell, Rita R.; Tediashvili, Marina
2015-01-01
Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n = 657) and freshwater lakes around Tbilisi (n = 938). Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS) detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost 90% of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human-pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) were detected in 62.8, 37.8, and 21.4% of samples testing positive for Vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii), and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs. PMID:26528464
Azwai, S M; Alfallani, E A; Abolghait, S K; Garbaj, A M; Naas, H T; Moawad, A A; Gammoudi, F T; Rayes, H M; Barbieri, I; Eldaghayes, I M
2016-01-01
The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×10(4) CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×10(4) CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products.
Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.
2016-01-01
The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localities in Libya (Tripoli, Regdalin, Janzour and Tobruk). Vibrio spp. were detected by conventional cultural and molecular method using PCR and sequencing of 16S rDNA. Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6 % of samples of meat and meat products showed colonies on TCBS. Among cultured seafood samples, the highest bacterial count was recorded in clam with a count of 3.8 ×104 CFU\\g. Chicken burger samples showed the highest bacterial count with 6.5 ×104 CFU\\g. Molecular analysis of the isolates obtained in this study, showed that 11 samples out of 48 (22.9%) were Vibrio spp. Vibrio parahemolyticus was isolated from camel meat for the first time. This study is an initial step to provide a baseline for future molecular research targeting Vibrio spp. foodborne illnesses. This data will be used to provide information on the magnitude of such pathogens in Libyan seafood, meat and meat products. PMID:27004169
1988-02-22
results. First, that the predominant vibrio in Hawaiian waters is V. alginolyticus whereas the predominant vibrio in the gulf of Mexico is V...Classification) [l Assessing the Pathogenecity of Halophilic Vibrio Bacteria and Other Niicroorganisms for M1arine M0ammals Held in Captivity 12...GROUP Bacteria, Vibrio , iviarine iviammals, Disease, Pathogens 1 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 5 .The
Balcázar, José L; Gallo-Bueno, Alfonso; Planas, Miquel; Pintado, José
2010-02-01
Vibrio species isolated from diseased seahorses were characterized by PCR amplification of repetitive bacterial DNA elements (rep-PCR) and identified by 16S ribosomal RNA gene sequence analysis. The results demonstrated that Vibrio alginolyticus and Vibrio splendidus were predominant in the lesions of these seahorses. To our knowledge, this is the first time that these bacterial species have been associated with disease symptoms in captive-bred seahorses.
Fay, Johnna P.; Dickens, Keyana A.; Parent, Michelle A.; Soroka, Douglas S.; Boyd, E. Fidelma
2012-01-01
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters. PMID:22904049
Suspension of oysters reduces the populations of Vibrio parahaemolyticus and Vibrio vulnificus.
Cole, K M; Supan, J; Ramirez, A; Johnson, C N
2015-09-01
Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) are associated with the consumption of raw oysters and cause illnesses ranging from simple gastroenteritis to life-threatening septicaemia. These halophilic bacteria are frequently found in marine and estuarine systems, accumulating within the tissues of a number of aquatic organisms and passing on to humans after consumption, through contaminated water, or via open wounds. As benthic organisms capable of filtering 40 gallons of water per hour, sediment is an important source of potentially pathogenic vibrios in oysters destined for raw consumption. This research used off-bottom oyster culture to reduce vibrio concentrations in oysters. Colony hybridization was used to enumerate Vp and Vv in bottom and suspended oysters. Vv and Vp concentrations were generally lower in oysters suspended off-bottom, and suspension decreased vibrio loads in oysters by an average of 13%. Suspension of oysters reduced vibrio concentrations. This study found that oyster suspension significantly reduced some populations of potentially pathogenic vibrios. These results indicate that oyster suspension could be a viable approach for preharvest treatment to reduce illness in consumers of raw oysters. © 2015 The Society for Applied Microbiology.
Hatchery mortalities of larval oysters caused by Vibrio tubiashii and Vibrio coralliilyticus
USDA-ARS?s Scientific Manuscript database
Hatchery production of bivalve shellfish has been hampered by the occasional presence of opportunistic pathogens, particularly Vibrio coralliilyticus and Vibrio tubiashii. The present study reports the results of several avenues of research to better define these pathogens and the roles they play i...
Vibrio diversity and dynamics in the Monterey Bay upwelling region
Mansergh, Sarah; Zehr, Jonathan P.
2013-01-01
The Vibrionaceae (Vibrio) are a ubiquitous group of metabolically flexible marine bacteria that play important roles in biogeochemical cycling in the ocean. Despite this versatility, little is known about Vibrio diversity and abundances in upwelling regions. The seasonal dynamics of Vibrio populations was examined by analysis of 16S rRNA genes in Monterey Bay (MB), California from April 2006–April 2008 at two long term monitoring stations, C1 and M2. Vibrio phylotypes within MB were diverse, with subpopulations clustering with several different cultured representatives including Allivibrio spp., Vibrio penaecida, and Vibrio splendidus as well as with many unidentified marine environmental bacterial 16S rRNA gene sequences. Total Vibrio population abundances, as well as abundances of a Vibrio sp. subpopulation (MBAY Vib7) and an Allivibrio sp. subpopulation (MBAY Vib4) were examined in the context of environmental parameters from mooring station and CTD cast data. Total Vibrio populations showed some seasonal variability but greater variability was observed within the two subpopulations. MBAY Vib4 was negatively associated with MB upwelling indices and positively correlated with oceanic season conditions, when upwelling winds relax and warmer surface waters are present in MB. MBAY Vib7 was also negatively associated with upwelling indices and represented a deeper Vibrio sp. population. Correlation patterns suggest that larger oceanographic conditions affect the dynamics of the populations in MB, rather than specific environmental factors. This study is the first to target and describe the diversity and dynamics of these natural populations in MB and demonstrates that these populations shift seasonally within the region. PMID:24575086
USDA-ARS?s Scientific Manuscript database
Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio cora...
Kim, Yung Bu; Okuda, Jun; Matsumoto, Chiho; Takahashi, Naoki; Hashimoto, Satoru; Nishibuchi, Mitsuaki
1999-01-01
The DNA colony hybridization test with the polynucleotide probe for Vibrio parahaemolyticus toxR gene was performed. All 373 strains of V. parahaemolyticus gave positive results, and the strains belonging to four other Vibrio species including Vibrio alginolyticus gave weakly positive results, suggesting that toxR sequence variation may reflect the phylogenetic relationships of Vibrio species. We then established a toxR-targeted PCR protocol for the specific detection of V. parahaemolyticus. PMID:10074546
Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study
Magny, Guillaume Constantin de; Long, Wen; Brown, Christopher W.; Hood, Raleigh R.; Huq, Anwar; Murtugudde, Raghu; Colwell, Rita R.
2010-01-01
Vibrio cholerae, the causative agent of cholera, is a naturally occurring inhabitant of the Chesapeake Bay and serves as a predictor for other clinically important vibrios, including Vibrio parahaemolyticus and Vibrio vulnificus. A system was constructed to predict the likelihood of the presence of V. cholerae in surface waters of the Chesapeake Bay, with the goal to provide forecasts of the occurrence of this and related pathogenic Vibrio spp. Prediction was achieved by driving an available multivariate empirical habitat model estimating the probability of V. cholerae within a range of temperatures and salinities in the Bay, with hydrodynamically generated predictions of ambient temperature and salinity. The experimental predictions provided both an improved understanding of the in situ variability of V. cholerae, including identification of potential hotspots of occurrence, and usefulness as an early warning system. With further development of the system, prediction of the probability of the occurrence of related pathogenic vibrios in the Chesapeake Bay, notably V. parahaemolyticus and V. vulnificus, will be possible, as well as its transport to any geographical location where sufficient relevant data are available. PMID:20145974
Blackwell, Karen Dyer; Oliver, James D
2008-04-01
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.
NASA Astrophysics Data System (ADS)
Nawan Hasrimi, Adila; Budiharjo, Anto; Nur Jannah, Siti
2018-05-01
Vibrio parahaemolyticus is hallophilic gram-negative bacteria that live as natural inhabitant in aquatic environment. All Vibrio parahaemolyticus strain known to have thermolabile hemolysin encoded by tlh gene as species marker. Thermostable direct hemolysin encoded by tdh gene is responsible for regulating virulence factor in Vibrio parhaemolyticus. Aim of this research is to detect tlh and tdh gene from water of L. vannamei aquaculture in Rembang regency. Colonies of green-blueish bacteria grew from isolation of L. vannamei aquaculture water in CD-VP media which was identified as Vibrio parahaemolyticus. Colonies of V. parahaemolyticus grew to be small and green-blueish bacteria colonies in TCBS agar. Result of molecular analysis showed that bacteria isolated from water sample are specifically identified as Vibrio parahaemolyticus bacteria by the detection of tlh gene. Vibrio parahaemolyticus isolated from water of L. vannamei aquaculture detected as tdh negative that indicates tdh gene is not present in isolated bacteria. Vibrio parahaemolyticus isolate were cultured in Wagatsuma agar for tdh gene confirmation test that showed Kanagawa negative result, which indicated that V. parahaemolyticus did not produce thermostable direct hemolysin. These results showed that Vibrio parahaemolyticus isolated from aquatic environment of L. vannamei aquaculture in Rembang regency did not show virulence factors.
Vibrio hippocampi sp. nov., a new species isolated from wild seahorses (Hippocampus guttulatus).
Balcázar, José Luis; Pintado, José; Planas, Miquel
2010-06-01
A Gram-negative, facultatively anaerobic, motile and slightly curved rod-shaped bacterium (BFLP-4(T)) was isolated from the faeces of wild seahorses (Hippocampus guttulatus) captured in northwest Spain (Toralla, Galicia). Strain BFLP-4(T) grew at 10-35 degrees C and pH 5-9 (optimally at 20 degrees C and pH 7.2) and at salt concentrations in the range 0-7% w/v NaCl. The G+C content of the DNA was 49.3 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BFLP-4(T) was a member of the genus Vibrio, being most closely related to Vibrio ichthyoenteri (97.1%), Vibrio mediterranei (96.7%), Vibrio scophthalmi (96.7%) and Vibrio sinaloensis (96.6%). A phylogenetic analysis based on recA gene sequences also supported the affiliation of strain BFLP-4(T) to the genus Vibrio. Strain BFLP-4(T) could be readily differentiated from other closely related species by several phenotypic properties and fatty acid profiles. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain BFLP-4(T) represents a novel species within the genus Vibrio, for which the name Vibrio hippocampi sp. nov. is proposed. The type strain is BFLP-4(T) (=DSM 22717(T)=LMG 25354(T)).
Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System.
Semenza, Jan C; Trinanes, Joaquin; Lohr, Wolfgang; Sudre, Bertrand; Löfdahl, Margareta; Martinez-Urtaza, Jaime; Nichols, Gordon L; Rocklöv, Joacim
2017-10-10
Some Vibrio spp. are pathogenic and ubiquitous in marine waters with low to moderate salinity and thrive with elevated sea surface temperature (SST). Our objective was to monitor and project the suitability of marine conditions for Vibrio infections under climate change scenarios. The European Centre for Disease Prevention and Control (ECDC) developed a platform (the ECDC Vibrio Map Viewer) to monitor the environmental suitability of coastal waters for Vibrio spp. using remotely sensed SST and salinity. A case-crossover study of Swedish cases was conducted to ascertain the relationship between SST and Vibrio infection through a conditional logistic regression. Climate change projections for Vibrio infections were developed for Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. The ECDC Vibrio Map Viewer detected environmentally suitable areas for Vibrio spp. in the Baltic Sea in July 2014 that were accompanied by a spike in cases and one death in Sweden. The estimated exposure-response relationship for Vibrio infections at a threshold of 16°C revealed a relative risk (RR)=1.14 (95% CI: 1.02, 1.27; p=0.024) for a lag of 2 wk; the estimated risk increased successively beyond this SST threshold. Climate change projections for SST under the RCP 4.5 and RCP 8.5 scenarios indicate a marked upward trend during the summer months and an increase in the relative risk of these infections in the coming decades. This platform can serve as an early warning system as the risk of further Vibrio infections increases in the 21st century due to climate change. https://doi.org/10.1289/EHP2198.
Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System
Trinanes, Joaquin; Lohr, Wolfgang; Sudre, Bertrand; Löfdahl, Margareta; Martinez-Urtaza, Jaime; Nichols, Gordon L.; Rocklöv, Joacim
2017-01-01
Background: Some Vibrio spp. are pathogenic and ubiquitous in marine waters with low to moderate salinity and thrive with elevated sea surface temperature (SST). Objectives: Our objective was to monitor and project the suitability of marine conditions for Vibrio infections under climate change scenarios. Methods: The European Centre for Disease Prevention and Control (ECDC) developed a platform (the ECDC Vibrio Map Viewer) to monitor the environmental suitability of coastal waters for Vibrio spp. using remotely sensed SST and salinity. A case-crossover study of Swedish cases was conducted to ascertain the relationship between SST and Vibrio infection through a conditional logistic regression. Climate change projections for Vibrio infections were developed for Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. Results: The ECDC Vibrio Map Viewer detected environmentally suitable areas for Vibrio spp. in the Baltic Sea in July 2014 that were accompanied by a spike in cases and one death in Sweden. The estimated exposure–response relationship for Vibrio infections at a threshold of 16°C revealed a relative risk (RR)=1.14 (95% CI: 1.02, 1.27; p=0.024) for a lag of 2 wk; the estimated risk increased successively beyond this SST threshold. Climate change projections for SST under the RCP 4.5 and RCP 8.5 scenarios indicate a marked upward trend during the summer months and an increase in the relative risk of these infections in the coming decades. Conclusions: This platform can serve as an early warning system as the risk of further Vibrio infections increases in the 21st century due to climate change. https://doi.org/10.1289/EHP2198 PMID:29017986
Huff, Karleigh; Aroonnual, Amornrat; Littlejohn, Amy E. Fleishman; Rajwa, Bartek; Bae, Euiwon; Banada, Padmapriya P.; Patsekin, Valery; Hirleman, E. Daniel; Robinson, J. Paul; Richards, Gary P.; Bhunia, Arun K.
2012-01-01
Summary The three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water‐ and seafood‐related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label‐free forward light‐scattering sensor was developed to detect and identify colonies of these three pathogens in real time in the presence of other vibrios in food or water samples. Vibrio colonies grown on agar plates were illuminated by a 635 nm laser beam and scatter‐image signatures were acquired using a CCD (charge‐coupled device) camera in an automated BARDOT (BActerial Rapid Detection using Optical light‐scattering Technology) system. Although a limited number of Vibrio species was tested, each produced a unique light‐scattering signature that is consistent from colony to colony. Subsequently a pattern recognition system analysing the collected light‐scatter information provided classification in 1−2 min with an accuracy of 99%. The light‐scattering signatures were unaffected by subjecting the bacteria to physiological stressors: osmotic imbalance, acid, heat and recovery from a viable but non‐culturable state. Furthermore, employing a standard sample enrichment in alkaline peptone water for 6 h followed by plating on selective thiosulphate citrate bile salts sucrose agar at 30°C for ∼ 12 h, the light‐scattering sensor successfully detected V. cholerae, V. parahaemolyticus and V. vulnificus present in oyster or water samples in 18 h even in the presence of other vibrios or other bacteria, indicating the suitability of the sensor as a powerful screening tool for pathogens on agar plates. PMID:22613192
Saharan dust nutrients promote Vibrio bloom formation in marine surface waters
Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.
2016-01-01
Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.
Gao, Ya; Lin, Zhifen; Chen, Rui; Wang, Ting; Liu, Shushen; Yao, Zhifeng; Yin, Daqiang
2012-12-01
Vibrio fischeri is a marine luminous bacterium that has been widely used in toxicity bioassays, while Vibrio qinghaiensis sp.-Q67 is a newly found freshwater species which is more suitable for the tests on freshwater samples. However, there is a sensitive difference between these two species due to the media, chemical modes of action and the tested species. It remains unclear how these factors induce toxicity changes in luminous bioassays. Therefore, by using molecular docking between reactive chemicals and the target proteins of Vibrio fischeri and Vibrio qinghaiensis sp.-Q67 respectively, the sensitive difference was explored from the angle of amino acid residues that involved in the interactions. Mutation of amino acid residues was performed to investigate the role of these amino acids in the interactions and the most important amino acid residues in toxicity effect were found. The results suggested tat the most important amino acid residues in toxicity effect would affect the binding affinity between chemicals and target proteins of Vibrio fischeri and Vibrio qinghaiensis sp.-Q67, and then induce distinct toxic effect on them. As there are fewer toxicity data for freshwater Vibrio qinghaiensis sp.-Q67 than for Vibrio fischeri, this study helps to take advantage of the plentiful toxicity data of Vibrio fischeri to predict toxicities of freshwater samples. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Griffitt, Kimberly J; Grimes, D Jay
2013-04-01
In response to a major influx of freshwater to the Mississippi Sound following the opening of the Bonnet Carre Spillway, water samples were collected from three sites along the Mississippi shoreline to assess the impact of altered salinity on three pathogenic Vibrio species. Salinity readings across the affected area during the 2011 sample period ranged from 1.4 to 12.9 ppt (mean = 7.0) and for the 2012 sample period from 14.1 to 23.6 ppt (mean = 19.8). Analyses of the data collected in 2011 showed a reduction in densities of Vibrio parahaemolyticus and Vibrio vulnificus with a concurrent increase of Vibrio cholerae numbers, with V. cholerae becoming the only Vibrio detected once salinity readings dropped to 6 ppt. Follow-up samples taken in 2012 after recovery of the salinity in the sound showed that the relative densities of the three pathogenic vibrios had reverted back to normal levels. This study shows that although the spillway was open but a few weeks and the effects were therefore time limited, the Mississippi River water had a profound, if temporary, effect on Vibrio ecology in the Mississippi Sound.
Buck, J D; Spotte, S; Gadbaw, J J
1984-01-01
Bacteria were cultured for the first time from the teeth of a great white shark (Carcharodon carcharias). Isolates included Vibrio alginolyticus, Vibrio fluvialis, Vibrio parahaemolyticus, and other genera. All are common in the marine environment and some may be associated with wound infections in humans. Shark bite lacerations may serve as a source of these potentially infectious bacteria, particularly Vibrio spp., and should be treated immediately. Antibiotic susceptibility patterns are shown for representatives of Vibrio isolates and indicate that a variety of new agents may be appropriate chemotherapy for shark bite victims. PMID:6511869
Buck, J D; Spotte, S; Gadbaw, J J
1984-11-01
Bacteria were cultured for the first time from the teeth of a great white shark (Carcharodon carcharias). Isolates included Vibrio alginolyticus, Vibrio fluvialis, Vibrio parahaemolyticus, and other genera. All are common in the marine environment and some may be associated with wound infections in humans. Shark bite lacerations may serve as a source of these potentially infectious bacteria, particularly Vibrio spp., and should be treated immediately. Antibiotic susceptibility patterns are shown for representatives of Vibrio isolates and indicate that a variety of new agents may be appropriate chemotherapy for shark bite victims.
Di, Doris Y W; Lee, Anna; Jang, Jeonghwan; Han, Dukki; Hur, Hor-Gil
2017-02-01
Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that there are 1.4 to 4.3 million cases and 28,000 to 142,000 deaths per year worldwide caused by cholera disease. In South Korea alone, consumption is as much as 52.4 kg of fish and shellfish per year per capita. Our findings suggested that seasonally specific acceleration of these possible pathogenic Vibrio spp. may threaten seafood safety and increase the risk of illness in South Korea, where local people consume raw fish during warmer months. Copyright © 2017 American Society for Microbiology.
Di, Doris Y. W.; Lee, Anna; Jang, Jeonghwan; Han, Dukki
2016-01-01
ABSTRACT Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. IMPORTANCE The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that there are 1.4 to 4.3 million cases and 28,000 to 142,000 deaths per year worldwide caused by cholera disease. In South Korea alone, consumption is as much as 52.4 kg of fish and shellfish per year per capita. Our findings suggested that seasonally specific acceleration of these possible pathogenic Vibrio spp. may threaten seafood safety and increase the risk of illness in South Korea, where local people consume raw fish during warmer months. PMID:27836844
Ng, Charmaine; Goh, Shin Giek; Saeidi, Nazanin; Gerhard, William A; Gunsch, Claudia K; Gin, Karina Yew Hoong
2018-01-01
Ballast water discharges are potential sources for the spread of invasive and pathogenic aquatic organisms. Ballast waters from six ships docked in the Port of Singapore were tested to determine if indictor organisms fell within proposed standards for ballast water discharge according to regulation D-2 of the Ballast Water Management Convention (BWMC) guidelines. Vibrio species were cultured on media supplemented with beta-lactam antibiotics to determine the presence of antibiotic resistant Vibrio species in the ballast waters of these vessels. Indicator organisms were quantified using culture media Colilert-18 and Enterolert in ballast waters of six ships docked in a tropical harbor, with uptake from different geographical locations. Of the six ships, one had ballast water originating from the Persian Gulf, another from the East China Sea, and four from the South China Sea. Two of the six ships which carried ballast waters from the East China Sea and the South China Sea did not meet the D-2 stipulated requirements of the Ballast Water Management Convention for indicator organisms with Enterococci values more than three times higher than the acceptable limit of <100CFU/100mL. Using the most-probable-number-PCR (MPN-PCR) method for Vibrio species detection, non-toxigenic species of V. cholerae (2 MPN/100mL), Vibrio vulnificus (>110 MPN/100mL), and Vibrio parahaemolyticus (2 to >110 MPN/100mL) were detected in at least one of six ballast water samples. Using thiosulfate-citrate-bile salts-sucrose agar (TCBS) supplemented with beta-lactam antibiotics (meropenem, ceftazidime), 11 different Vibrio species, exhibiting resistance to beta-lactam antibiotics were isolated; with Vibrio campbellii (44%) and Vibrio alginolyticus (15%) the most detected antibiotic resistant Vibrio species. A practical approach of prioritized screening of high-risk vessels should be conducted to ensure that the water quality meets D-2 standards prior to discharge. Copyright © 2017 Elsevier B.V. All rights reserved.
Phippen, B.; Fowler, P.; Noble, R. T.; Oliver, J. D.
2016-01-01
ABSTRACT Filter feeding shellfish can concentrate pathogenic bacteria, including Vibrio vulnificus and Vibrio parahaemolyticus, as much as 100-fold from the overlying water. These shellfish, especially clams and oysters, are often consumed raw, providing a route of entry for concentrated doses of pathogenic bacteria into the human body. The numbers of foodborne infections with these microbes are increasing, and a better understanding of the conditions that might trigger elevated concentrations of these bacteria in seafood is needed. In addition, if bacterial concentrations in water are correlated with those in shellfish, then sampling regimens could be simplified, as water samples can be more rapidly and easily obtained. After sampling of oysters and clams, either simultaneously or separately, for over 2 years, it was concluded that while Vibrio concentrations in oysters and water were related, this was not the case for levels in clams and water. When clams and oysters were collected simultaneously from the same site, the clams were found to have lower Vibrio levels than the oysters. Furthermore, the environmental parameters that were correlated with levels of Vibrio spp. in oysters and water were found to be quite different from those that were correlated with levels of Vibrio spp. in clams. IMPORTANCE This study shows that clams are a potential source of infection in North Carolina, especially for V. parahaemolyticus. These findings also highlight the need for clam-specific environmental research to develop accurate Vibrio abundance models and to broaden the ecological understanding of clam-Vibrio interactions. This is especially relevant as foodborne Vibrio infections from clams are being reported. PMID:27793822
Kopprio, Germán A; Streitenberger, M Eugenia; Okuno, Kentaro; Baldini, Mónica; Biancalana, Florencia; Fricke, Anna; Martínez, Ana; Neogi, Sucharit B; Koch, Boris P; Yamasaki, Shinji; Lara, Rubén J
2017-02-01
The ecology of the most relevant Vibrio species for human health and their relation to water quality and biogeochemistry were studied in two estuaries in Argentinian Patagonia. Vibrio cholerae and Vibrio parahaemolyticus were reported in >29% of cases at the Río Colorado and Río Negro estuaries. Neither the pandemic serogroups of Vibrio cholerae O1, Vibrio cholerae O139 nor the cholera toxin gene were detected in this study. However, several strains of V. cholerae (not O1 or O139) are able to cause human disease or acquire pathogenic genes by horizontal transfer. Vibrio vulnificus was detected only in three instances in the microplankton fraction of the Río Negro estuary. The higher salinity in the Río Colorado estuary and in marine stations at both estuaries favours an abundance of culturable Vibrio. The extreme peaks for ammonium, heterotrophic bacteria and faecal coliforms in the Río Negro estuary supported a marked impact on sewage discharge. Generally, the more pathogenic strains of Vibrio have a faecal origin. Salinity, pH, ammonium, chlorophyll a, silicate and carbon/nitrogen ratio of suspended organic particulates were the primary factors explaining the distribution of culturable bacteria after distance-based linear models. Several effects of dissolved organic carbon on bacterial distribution are inferred. Global change is expected to increase the trophic state and the salinisation of Patagonian estuaries. Consequently, the distribution and abundance of Vibrio species is projected to increase under future changing baselines. Adaptation strategies should contribute to sustaining good water quality to buffer climate- and anthropogenic- driven impacts. Copyright © 2016 Elsevier B.V. All rights reserved.
Ciacci, C; Manti, A; Canonico, B; Campana, R; Camisassi, G; Baffone, W; Canesi, L
2017-06-01
Marine bivalves are exposed to different types of bacteria in the surrounding waters, in particular of the Vibrio genus. In the hemocytes of the mussel Mytilus spp. immune responses to different vibrios have been largely characterized. However, little information is available on the hemocyte responses to human pathogenic vibrios commonly detected in coastal waters and bivalve tissues that are involved in seafood-borne diseases. In this work, functional parameters of the hemocytes from the Mediterranean mussel M. galloprovincialis were evaluated in response to in vitro challenge with different vibrios isolated from environmental samples of the Adriatic sea (Italy): V. parahaemolyticus Conero, V. alginolyticus 1513 and V. vulnificus 509. V. parahaemolyticus ATCC 43996 was used for comparison. At the 50:1 bacteria hemocyte ratio, only V. parahaemolyticus strains induced significant lysosomal membrane destabilisation. Stimulation of extracellular lysozyme release, total ROS, O 2 - and NO production were observed, although to different extents and with distinct time courses for different vibrios, V. vulnificus 509 in particular. Further comparisons between V. parahaemolyticus Conero and V. vulnificus 509 showed that only the latter induced dysregulation of the phosphorylation state of p38 MAP Kinase and apoptotic processes. The results indicate that mussel hemocytes can mount an efficient immune response towards V. parahaemolyticus and V. alginolyticus strains, whereas V. vulnificus 509 may affect the hemocyte function. This is the first report on immune responses of mussels to local environmental isolates of human pathogenic vibrios. These data reinforce the hypothesis that Mytilus hemocytes show specific responses to different vibrio species and strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Froelich, B A; Phippen, B; Fowler, P; Noble, R T; Oliver, J D
2017-01-15
Filter feeding shellfish can concentrate pathogenic bacteria, including Vibrio vulnificus and Vibrio parahaemolyticus, as much as 100-fold from the overlying water. These shellfish, especially clams and oysters, are often consumed raw, providing a route of entry for concentrated doses of pathogenic bacteria into the human body. The numbers of foodborne infections with these microbes are increasing, and a better understanding of the conditions that might trigger elevated concentrations of these bacteria in seafood is needed. In addition, if bacterial concentrations in water are correlated with those in shellfish, then sampling regimens could be simplified, as water samples can be more rapidly and easily obtained. After sampling of oysters and clams, either simultaneously or separately, for over 2 years, it was concluded that while Vibrio concentrations in oysters and water were related, this was not the case for levels in clams and water. When clams and oysters were collected simultaneously from the same site, the clams were found to have lower Vibrio levels than the oysters. Furthermore, the environmental parameters that were correlated with levels of Vibrio spp. in oysters and water were found to be quite different from those that were correlated with levels of Vibrio spp. in clams. This study shows that clams are a potential source of infection in North Carolina, especially for V. parahaemolyticus These findings also highlight the need for clam-specific environmental research to develop accurate Vibrio abundance models and to broaden the ecological understanding of clam-Vibrio interactions. This is especially relevant as foodborne Vibrio infections from clams are being reported. Copyright © 2016 American Society for Microbiology.
Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R.
2015-01-01
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. PMID:26319881
Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick
2015-11-01
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador.
Sperling, L; Alter, T; Huehn, S
2015-11-01
The aim of this study was to investigate the prevalence of Vibrio spp. in shrimp at retail and in shrimp farms in Ecuador and to determine the antimicrobial agent resistance patterns of farm isolates. The presence of genes linked to early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) also was evaluated. Vibrio spp. were isolated from retail shrimps in Cuenca, Ecuador, and farm shrimps originating from provinces El Oro and Guayas, Ecuador. A total of 229 shrimp samples were collected, of which 71 originated from retail markets in Cuenca and 158 came from shrimp farms. Overall, 219 (95.6%) samples tested positive for Vibrio spp. Vibrio parahaemolyticus (80.8%) was the most common species detected, followed by Vibrio alginolyticus (50.2%), Vibrio cholerae (11.3%), and Vibrio vulnificus (3.5%). None of the V. parahaemolyticus isolates carried the virulence-associated tdh and trh genes. In V. parahaemolyticus shrimp farm isolates, high resistance was found to ampicillin (92.2%), and intermediate resistance was found to tetracycline (51.3%) and amikacin (22.1%). Of the V. parahaemolyticus strains, 68 were resistant to at least three antimicrobial agents, and 2 were resistant to seven antimicrobial agents simultaneously. Up to 18 resistant isolates were found for V. alginolyticus, whereas V. vulnificus and V. cholerae isolates were more susceptible. None of the V. parahaemolyticus isolates carried the EMS-AHPND plasmid. The results of this study revealed the ubiquitous occurrence of Vibrio spp. in shrimps at retail and on shrimp farms in Ecuador.
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.
Osunla, Charles A; Okoh, Anthony I
2017-10-07
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa
Osunla, Charles A.
2017-01-01
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153
Vibrio elicits targeted transcriptional responses from copepod hosts.
Almada, Amalia A; Tarrant, Ann M
2016-06-01
Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wendling, Carolin C.; Batista, Frederico M.; Wegner, K. Mathias
2014-01-01
Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods. PMID:24728233
QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species
2018-01-01
ABSTRACT Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. PMID:29382732
Yalcinkaya, Fadim; Ergin, Cagri; Agalar, Canan; Kaya, Selcuk; Aksoylar, M Yasar
2003-03-01
Monitoring of Vibrio species by blue crabs (Callinectes sapidus) was carried out during the winter period in a selected area of the Belek, Antalya Gulf. Eighty-three blue crabs were examined for Vibrio species. V. alginolyticus (30.1%), V. fluvialis (10.8%), V. damsela (9.6%), V. harveyi (3.6%), V. metschnikovii (3.6%) and V. vulnificus (2.4%) were isolated. V. vulnificus was the highest concentration (5 x 10(8) Vibrio ml(-1)) although it was only 2.4% isolated from blue crabs. The strains of different vibrio species were highly susceptible to doxycycline, tetracycline and ciprofloxacin.
Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios.
Lu, Renfei; Osei-Adjei, George; Huang, Xinxiang; Zhang, Yiquan
2018-03-01
Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.
González-Escalona, Narjol; Blackstone, George M.; DePaola, Angelo
2006-01-01
A Vibrio strain isolated from Alaskan oysters and classified by its biochemical characteristics as Vibrio alginolyticus possessed a thermostable direct hemolysin-related hemolysin (trh) gene previously reported only in Vibrio parahaemolyticus. This trh-like gene was cloned and sequenced and was 98% identical to the trh2 gene of V. parahaemolyticus. This gene seems to be functional since it was transcriptionally active in early-stationary-phase growing cells. To our knowledge, this is the first report of V. alginolyticus possessing a trh gene. PMID:17056701
Iron Limitation and the Role of Siderophores in Marine Synechococcus
2009-06-01
000 per cell) in Vibrio cholerae and E. coli and may buffer Fe(II). Fe storage is important cellular strategy for using transient increases in Fe and...DS40M6 Aquachelins Halomonas aquamarina Amphibactins Vibrio spp. Ochrobactins Ochrobacter sp. SP18 Synechobactins Synechococcus PCC7002 O NH O NH...Alterobactin A Pseudoalteromonas luteoviolacea Alterobactin B P. luteoviolacea Aerobactin Vibrio sp. strain DS40M5 Desferrioxamine G Vibrio sp
Comparison of the Heme Iron Utilization Systems of Pathogenic Vibrios
O’Malley, S. M.; Mouton, S. L.; Occhino, D. A.; Deanda, M. T.; Rashidi, J. R.; Fuson, K. L.; Rashidi, C. E.; Mora, M. Y.; Payne, S. M.; Henderson, D. P.
1999-01-01
Vibrio alginolyticus, Vibrio fluvialis, and Vibrio parahaemolyticus utilized heme and hemoglobin as iron sources and contained chromosomal DNA similar to several Vibrio cholerae heme iron utilization genes. A V. parahaemolyticus gene that performed the function of V. cholerae hutA was isolated. A portion of the tonB1 locus of V. parahaemolyticus was sequenced and found to encode proteins similar in amino acid sequence to V. cholerae HutW, TonB1, and ExbB1. A recombinant plasmid containing the V. cholerae tonB1 and exbB1D1 genes complemented a V. alginolyticus heme utilization mutant. These data suggest that the heme iron utilization systems of the pathogenic vibrios tested, particularly V. parahaemolyticus and V. alginolyticus, are similar at the DNA level, the functional level, and, in the case of V. parahaemolyticus, the amino acid sequence or protein level to that of V. cholerae. PMID:10348876
Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G M; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia
2017-01-01
Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.
Environmental Controls of Shellfish-Toxigenic Vibrio Bacteria in Oregon's Coasts and Estuaries
NASA Astrophysics Data System (ADS)
Gradoville, M. R.; Häse, C.; White, A. E.
2016-02-01
Vibrio species are a known and persistent concern for economically important aquaculture efforts. In Pacific Northwest shellfish hatcheries, vibriosis, caused by toxigenic Vibrio, has been responsible for major mortality events in recent decades — events that are often irregular and unpredictable. The success of shellfish hatcheries is critically linked to the chemical and biological composition of their seawater resources; thus, it is pertinent to understand the biogeochemical drivers of toxigenic Vibrio in their planktonic state. Recent evidence suggests that vibriosis outbreaks in Netarts Bay, Oregon may be related to wind-driven coastal upwelling, either through the advection of toxigenic Vibrio residing in upwelling source water, or through the creation of favorable growth conditions within the estuary. Here, we present data tracking shellfish-toxigenic Vibrio bacteria in Oregon estuaries and coastal waters through the 2015 upwelling season. Estuarine samples were collected from Netarts Bay and Yaquina Bay in May-October 2015 over a range of upwelling intensities, tidal heights, and biogeochemical conditions. Additionally, samples were collected at multiple depths from offshore coastal Oregon stations in order to test the hypothesis that toxigenic Vibrio reside in upwelling source waters. PCR-based methods were used to quantify the known shellfish pathogen V. coralliilyticus in estuary and seawater samples. These toxigenic Vibrio abundances were correlated to local environmental conditions, including temperature, salinity, carbonate chemistry, nutrients, and chlorophyll a concentrations, as well as coastal wind stress and upwelling intensity. Our analysis aims to define the environmental controls of toxigenic Vibrio in their free-living oceanic state, information that can be used to prevent future disease outbreaks in local shellfish hatcheries.
Ocean warming and spread of pathogenic vibrios in the aquatic environment.
Vezzulli, Luigi; Colwell, Rita R; Pruzzo, Carla
2013-05-01
Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.
Brackman, Gilles; Celen, Shari; Baruah, Kartik; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans J; Coenye, Tom
2009-12-01
The increase of disease outbreaks caused by Vibrio species in aquatic organisms as well as in humans, together with the emergence of antibiotic resistance in Vibrio species, has led to a growing interest in alternative disease control measures. Quorum sensing (QS) is a mechanism for regulating microbial gene expression in a cell density-dependent way. While there is good evidence for the involvement of auto-inducer 2 (AI-2)-based interspecies QS in the control of virulence in multiple Vibrio species, only few inhibitors of this system are known. From the screening of a small panel of nucleoside analogues for their ability to disturb AI-2-based QS, an adenosine derivative with a p-methoxyphenylpropionamide moiety at C-3' emerged as a promising hit. Its mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of Vibrio harveyi AI-2 QS mutants. Our results indicate that this compound, as well as a truncated analogue lacking the adenine base, block AI-2-based QS without interfering with bacterial growth. The active compounds affected neither the bioluminescence system as such nor the production of AI-2, but most likely interfered with the signal transduction pathway at the level of LuxPQ in V. harveyi. The most active nucleoside analogue (designated LMC-21) was found to reduce the Vibrio species starvation response, to affect biofilm formation in Vibrio anguillarum, Vibrio vulnificus and Vibrio cholerae, to reduce pigment and protease production in V. anguillarum, and to protect gnotobiotic Artemia from V. harveyi-induced mortality.
QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species.
Kim, Byoung Sik; Jang, Song Yee; Bang, Ye-Ji; Hwang, Jungwon; Koo, Youngwon; Jang, Kyung Ku; Lim, Dongyeol; Kim, Myung Hee; Choi, Sang Ho
2018-01-30
Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus , and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp ( Artemia franciscana ). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify QStatin, a potent and selective inhibitor of V. harveyi LuxR homologues, which are well-conserved master QS regulators in Vibrio species. Structural and biochemical analyses revealed that QStatin binds tightly to a putative ligand-binding pocket on SmcR, the LuxR homologue in V. vulnificus , and affects expression of QS-regulated genes. Remarkably, QStatin attenuated diverse QS-regulated phenotypes in various Vibrio species, including pathogenesis against brine shrimp, with no impact on bacterial viability. Taken together, the results suggest that QStatin may be a sustainable antivibriosis agent useful in aquacultures. Copyright © 2018 Kim et al.
2013-01-01
Background The emergence, resurgence and spread of human food-borne pathogenic Vibrios are one of the major contributors to disease burden and mortality particularly in developing countries with disputable sanitary conditions. Previous research on pathogenic Vibrio cholerae and Vibrio parahaemolitycus derived from clinical samples has proposed links between acquisition of virulence and multiple drug resistance traits and intercellular transmissibility of mobile genetic elements in the environment. To date, very few information is available on environmental Vibrio isolates. In this study, we characterized eleven Vibrio strains bearing the SXT/R391-like integrative and conjugative elements (ICEs) derived from aquatic products and environment in the Yangtze River Estuary, China. Results The eleven Vibrio strains were isolated in 2010 to 2011, and taxonomically identified, which included six Vibrio cholerae, three Vibrio parahaemolyticus, one Vibrio alginolyticus and one Vibrio natriegens. Most of the strains displayed strong resistance phenotypes to ampicillin, mercury and chromium. The majority of their ICEs, which belong to S and R exclusion system groups, contain ICEs-chromosome junction sequences and highly conserved core-genes required for ICE transfer. However, comparative sequence analysis uncovered interesting diversity in their mosaic accessory gene structures, which carry many novel genes that have not been described in any known ICEs to date. In addition, antibiotic resistance was transmitted by ICEVchChn6 and ICEVpaChn1 from V. cholerae, V. parahaemolyticus to E. coli MG1655 via conjugation, respectively. Our data also revealed that the ICEs characterized in this study are phylogenetically distant from most of the SXT/R391 ICEs reported previously, which may represent a novel cluster likely shaped by the ecological environment in the Yangtze River Estuary, China. Conclusions This study constitutes the first investigation of ICEs-positive Vibrio spp. in the Yangze River Estuary, China. The newly identified ICEs were characterized with mosaic accessory gene structures and many novel genes. The results demonstrated self-transmissibility of antibiotic resistance mediated by two of the ICEs from V. cholerae, V. parahaemolyticus to E. coli via conjugation, respectively. Our results also revealed that the ICEs examined in this study may represent a novel cluster in the SXT/R391 family. PMID:24074349
MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP
2006-12-01
From - To) 25-01-2007 THESIS 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP 5b. GRANT...CHARACTERIZATION OF VIBRIO CHOLERAE GENES FLGO AND FLGP by DAVID C. MORRIS, B.S. THESIS Presented to the Graduate Faculty of The University of Texas at San Antonio...U.S. Air Force for providing me the opportunity and means to complete the thesis. December 2006 v MOLECULAR CHARACTERIZATION OF VIBRIO CHOLERAE GENES
Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments
Mey, Alexandra R.; Wyckoff, Elizabeth E.
2015-01-01
SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001
Sferlazzo, Giovanni; Meloni, Domenico; Lamon, Sonia; Marceddu, Marta; Mureddu, Anna; Consolati, Simonetta Gianna; Pisanu, Margherita; Virgilio, Sebastiano
2018-09-01
The aim of the present study was to investigate the effect of short purification cycles on the safety of naturally contaminated Mytilus galloprovincialis from harvesting areas of the Gulf of Olbia (Sardinia, Italy). Samples from ten batches of mussels were collected before, during and after purification treatment at two purification centres (A-B). All the samples were analysed for Escherichia coli and Salmonella spp according to Council Regulation (EC) 2285/2015. Detection and enumeration of Vibrio spp were performed according to previously published methods. Presumptive identification of Vibrio spp isolates were performed by means of conventional biochemical tests and polymerase chain reaction. The presence of Hepatitis A virus was detected by nested reverse transcriptase-polymerase chain reaction. Environmental parameters (water temperature and salinity) were also recorded. The results of Escherichia coli counts showed the overall efficacy of the short purification cycles; a purification cycle of 8 h led to a rapid decline in the concentration. The decrease in Escherichia coli counts does not correlate with the presence of naturally occurring vibrios, the decline of which occurs at an even slower rate. The average contamination levels for Vibrio spp before purification were 8.20 ± 0.47 and 7.99 ± 0.62 Log 10 CFU/g in samples collected at purification plants A and B, respectively. After purification, the average contamination levels were 8.10 ± 0.60 Log 10 CFU/g at purification plant A and 7.85 ± 0.57 Log 10 CFU/g at purification plant B. The contaminated samples revealed the presence of Vibrio alginolyticus (n=21), Vibrio fluvialis (n=12), Vibrio cholerae (n=4), Vibrio parahaemolyticus (n=2) and Vibrio vulnificus (n=1). The Vibrio parahaemolyticus isolates carried the tdh or the trh genes. None of the isolates was tdh+/trh+. Salmonella spp and Hepatitis A virus were not detected. The adoption of short purification cycles for Mytilus galloprovincialis in the presence of pathogenic vibrios might not be sufficient to guarantee the safety of consumers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quiroz-Guzmán, Eduardo; Vázquez-Juárez, Ricardo; Luna-González, Antonio; Balcázar, José L; Barajas-Sandoval, Diana R; Martínez-Díaz, Sergio F
2018-04-11
In this study, we evaluated a consortium of probiotic bacteria as an environmentally-friendly strategy for controlling pathogenic Vibrio species during the brine shrimp incubation period. Probiotic strains were initially selected on basis of (i) their ability to colonize the cyst surfaces, (ii) their absence of cross-inhibitory effects, and (iii) no detrimental effect on cyst hatching. The cysts and nauplius surfaces were immediately colonized after the application of selected probiotic strains, without detrimental effects on survival. Ten probiotic strains were mixed at similar proportions (probiotic consortium) and evaluated at different concentrations into brine shrimp cultures during incubation and early stages of development. Subsequently, these cultures were challenged with Vibrio parahaemolyticus and Vibrio harveyi. The probiotic consortium was effective to reduce the abundance of pathogenic Vibrio species and to prevent the mortality during Vibrio challenges; however, its effect was concentration-dependent and was successful at a starting concentration of 1.8 × 10 6 CFU/ml. Our results suggest that this probiotic consortium offers an alternative to antimicrobial agents routinely used to reduce the incidence and prevalence of pathogenic Vibrio species in brine shrimp production.
Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis.
Gomez-Gil, B; Thompson, F L; Thompson, C C; Swings, J
2003-01-01
Five Gram-negative bacterial strains, oxidase-positive, motile by means of more than one polar flagella, facultative anaerobe, arginine dihydrolase-negative, lysine- and omithine decarboxylase-positive, sensitive to the vibriostatic agent O/129, were isolated from a flow-through rotifer culture system in Gent, Belgium, and previously characterized by fluorescent amplified fragment length polymorphism. Comparison of the 16S rDNA sequence of strain LMG 21460T indicated close relationships (approximately 99% similarity) to Vibrio campbellii, Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus. However, DNA hybridization experiments revealed similarity values below 70% with its closest species V. campbellii and V. harveyi. Additionally, the analysed strains differ from related Vibrio species by the utilization of melibiose and production of acid from L-arabinose and amygdalin. Among the strains analysed, differences were observed in some phenotypic characters, particularly susceptibility to ampicillin, polymyxin B and amikacin, and urease activity. The major fatty acids identified were 16:0, 18:1 omega7c, 14:0, 12:0 3-OH and 18:0. Vibrio rotiferianus sp. nov. is proposed, with type strain LMG 21460T (=CAIM 577T); it has a DNA G+C content of 44.5 +/- 0.01 mol%.
Fernández-Delgado, Milagro; Sanz, Virginia; Giner, Sandra; Suárez, Paula; Contreras, Monica; Michelangeli, Fabian; García-Amado
2016-07-01
Vibrio spp. are associated with waterbirds mainly in temperate latitudes. We evaluated the prevalence and distribution of Vibrio spp. from fecal samples of resident and migratory aquatic birds collected during October 2011 and March 2012 at two coastal sites in the tropical southern Caribbean Sea. We amplified DNA by PCR in 40% of samples, resulting in 47% and 36% estimated prevalence for resident and migratory birds in Cuare Wildlife Refuge, and 33% and 44% in Margarita Island, respectively. We found nontoxigenic Vibrio cholerae in Cuare Wildlife Refuge with a higher prevalence in resident birds (18%). Our PCR results for Vibrio and V. cholerae were not significantly different between sites or bird migratory status. The 16S rRNA phylogenetic analysis sequences from fecal samples from Cuare Wildlife Refuge were highly similar to V. cholerae and Vibrio vulnificus , whereas sequences from Margarita Island samples formed clusters with species related to the Harveyi clade. Our findings indicate that several species of Vibrio are common in aquatic birds along the southern Caribbean Sea and contribute to our understanding of the role of birds as possible reservoirs of potentially pathogenic bacteria.
Occurance and survival of Vibrio alginolyticus in Tamouda Bay (Morocco).
Sabir, M; Cohen, N; Boukhanjer, A; Ennaji, M M
2011-10-15
The objectives of this study were to investigate the spatial and seasonal fluctuations of Vibrio alginolyticus in marine environment of the Tamouda Bay on the Mediterranean coast of Morocco and to determine the dominant factors of the environment that govern these fluctuations. The samples (sea water, plankton, shellfish and sediment) were collected fortnightly for two years from three study sites on the coast Tamouda Bay in northern Morocco. The charge of Vibrio alginolyticus is determined by MPN method. The physicochemical parameters including temperature of sea water, pH, salinity, turbidity and chlorophyll a concentration were determined. Analysis of variance of specific variables and several principal component analyses showed that the temperature of seawater is the major determinant of seasonal distribution of Vibrio alginolyticus. The results showed a positive linear correlation between Vibrio alginolyticus and the water temperature, pH, turbidity and chlorophyll a. Similarly, there are seasonal variations and spatial of Vibrio alginolyticus in marine environment of the Tamouda bay and the highest concentrations were recorded in both years of study during the warm season whereas it was minimal during the cold season. Linear positive correlation was recorded between Vibrio alginolyticus populations in all ecological types of samples studied.
Carriage of Vibrio species by shrimps harvested from the coastal waters of South West Cameroon.
Ndip, R N; Akoachere, J F T K; Mokosso, D K; Ndip, L M; Anyangwe, I A N
2002-03-01
To determine the prevalence of Vibrio spp in unprocessed shrimps and their susceptibility to antibiotics. A prospective study of Vibrio spp associated with shrimps harvested from the coastal waters of South West Cameroon. A laboratory based study at the Department of Life Sciences, University of Buea. Two hundred and thirty six shrimps harvested from the coastal towns of Limbe and Tiko, Cameroon, were examined for the prevalence of Vibrio spp using standard microbiologic procedures. The antibiotic sensitivity of isolates was determined using the Kirby-Bauer disc diffusion technique. Of the 236 shrimps examined, 73 (30.9%) were contaminated with Vibrio spp. Further, a total of 125 Vibrio strains were isolated from the contaminated shrimps. Of this number, 33 (26.4%) were V. cholerae, 55 (44%) V. parahaemolyticus, 34 (27.2%) V. alginolyticus and three (2.4%) V. vulnificus. Antibiotic susceptibility generally ranged from 68.8% for polymyxin B to 99.2% for gentamycin. Multiple resistant strains were noted, especially with V. parahaemolyticus and V. alginolyticus Shrimps maintain a reservoir of potential Vibrio spp in the coastal area of South West Cameroon. This finding is of epidemiologic and clinical significance.
Draft Genome Sequence of Vibrio mimicus Strain CAIM 602T
Guardiola-Avila, Iliana; Acedo-Felix, Evelia; Yepiz-Plascencia, Gloria; Sifuentes-Romero, Itzel
2013-01-01
Vibrio mimicus is a Gram-negative bacterium associated with gastrointestinal diseases in humans around the world. We report the complete genome sequence of the Vibrio mimicus strain CAIM 602T (CDC1721-77, LMG 7896T, ATCC 33653T). PMID:23516211
Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G. M.; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J.; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia
2018-01-01
Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species. PMID:29375503
Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco
2013-01-01
Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822
Shaw, Kristi S; Sapkota, Amy R; Jacobs, John M; He, Xin; Crump, Byron C
2015-01-01
Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous in the marine-estuarine environment, but the magnitude of human non-ingestion exposure to these waterborne pathogens is largely unknown. We evaluated the magnitude of dermal exposure to V. vulnificus and V. parahaemolyticus among swimmers recreating in Vibrio-populated waters by conducting swim studies at four swimming locations in the Chesapeake Bay in 2009 and 2011. Volunteers (n=31) swam for set time periods, and surface water (n=25) and handwash (n=250) samples were collected. Samples were analyzed for Vibrio concentrations using quantitative PCR. Linear and logistic regressions were used to evaluate factors associated with recreational exposures. Mean surface water V. vulnificus and V. parahaemolyticus concentrations were 1128CFUmL(-1) (95% confidence interval (CI): 665.6, 1591.4) and 18CFUmL(-1) (95% CI: 9.8, 26.1), respectively, across all sampling locations. Mean Vibrio concentrations in handwash samples (V. vulnificus, 180CFUcm(-2) (95% CI: 136.6, 222.5); V. parahaemolyticus, 3CFUcm(-2) (95% CI: 2.4, 3.7)) were significantly associated with Vibrio concentrations in surface water (V. vulnificus, p<0.01; V. parahaemolyticus, p<0.01), but not with salinity or temperature (V. vulnificus, p=0.52, p=0.17; V. parahaemolyticus, p=0.82, p=0.06). Handwashing reduced V. vulnificus and V. parahaemolyticus on subjects' hands by approximately one log (93.9%, 89.4%, respectively). It can be concluded that when Chesapeake Bay surface waters are characterized by elevated concentrations of Vibrio, swimmers and individuals working in those waters could experience significant dermal exposures to V. vulnificus and V. parahaemolyticus, increasing their risk of infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Jinxia; Zeng, Jing; Liu, Li; Wei, Haiyan; Zhao, Xiaojuan; Zhang, Ximeng; Zhang, Lei; Zhang, Haiyu
2014-02-01
A novel method of Nano-Immunomagnetic Separation (Nano-IMS) plus Real-time PCR was established for detecting Vibrio cholerae. The Nano-Immunomagnetic Beads were created by using the monoclonal antibody of Vibrio cholerae, which was named Nano-IMB-Vc. Nano-IMB-Vc has specific adsorption of Vibrio cholerae, combined with Real-time PCR technology, a method for rapid detection of Vibrio cholerae was established. The capture specificity of Nano-IMB-Vc was tested by using 15 bacteria strains. The specificity of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria strains. The sensitivity of Nano-IMS plus Real-time PCR were tested in pure culture and in artificial samples and compared with NMKL No.156. The capture ratio of Nano-IMB-Vc was reached 70.2% at the level of 10(3) CFU/ml. In pure culture, the sensitivity of Nano-IMS plus Real-time PCR was reached at 5.4×10(2) CFU/ml. The specific of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria. The results showed that 102 strains of Vibrio cholerae test results were all positive, and the rest of the 101 strains of non-target bacteria test results were negative. No cross-reaction was founded. Add 1 CFU vibrio cholerae per 25 g sample, it could be detect with Nano-IMS plus Real-time PCR method after 8 hours enrichment. The Nano-IMS plus Real-time PCR method of Vibrio cholerae established in this study has good specificity and sensitivity, which could be applied to the rapid detection of Vibrio cholerae.
2017-01-01
A novel Vibrio strain, JCM 31412T, was isolated from seawater collected from the Inland Sea (Setonaikai), Japan, and characterized as a Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, ovoid-shaped bacterium with one polar flagellum. Based on 16S rDNA gene identity, strain JCM 31412T showed a close relationship with type strains of Vibrio brasiliensis (LMG 20546T, 98.2% identity), V. harveyi (NBRC 15634T, 98.2%), V. caribbeanicus (ATCC BAA-2122T, 97.8%) and V. proteolyticus (NBRC 13287T, 97.8%). The G+C content of strain JCM 31412T DNA was 46.8%. Multi-locus sequence analysis (MLSA) of eight loci (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; 5535bp) further clustered strain JCM 31412T in the Nereis clade, genus Vibrio. Phenotypically, strain JCM 31412T differed from the closest related Vibrio species in its utilization of melibiose and raffinose, and its lack of casein and gelatin hydrolysis. It was further differentiated based on its fatty acid composition, specifically properties of C12:03OH and summed features, which were significantly different from those of V. brasiliensis, V. nigripulchritudo and V. caribbeanicus type strains. Overall, the results of DNA-DNA hybridization, and physiological and biochemical analysis differentiated strain JCM 31412T from other described species of the genus Vibrio. Based on these polyphasic taxonomic findings, it was therefore concluded that JCM 31412T was a novel Vibrio species, for which the name Vibrio japonicus sp. nov. was proposed, with JCM 31412T (= LMG 29636T = ATCC TSD-62T) as the type strain. PMID:28231272
Crayfish: a newly recognized vehicle for vibrio infections.
Bean, N H; Maloney, E K; Potter, M E; Korazemo, P; Ray, B; Taylor, J P; Seigler, S; Snowden, J
1998-10-01
We conducted a 1-year case-control study of sporadic vibrio infections to identify risk factors related to consumption of seafood products in two coastal areas of Louisiana and Texas. Twenty-six persons with sporadic vibrio infections and 77 matched controls were enrolled. Multivariate analysis revealed that crayfish (P < 0.025) and raw oysters (P < 0.009) were independently associated with illness. Species-specific analysis revealed an association between consumption of cooked crayfish and Vibrio parahemolyticus infection (OR 9.24, P < 0.05). No crayfish consumption was reported by persons with V. vulnificus infection. Although crayfish had been suspected as a vehicle for foodborne disease, this is the first time to our knowledge that consumption of cooked crayfish has been demonstrated to be associated with vibrio infection.
A CAT-BITE WOUND INFECTED WITH VIBRIO ALGINOLYTICUS FOLLOWING USE OF SEA CUCUMBER OIL.
Mohamed, N A; Joseph, P G; Hussin, H; Hashim, R
2016-09-01
Vibrio alginolyticus is a halophilic gram-negative marine pathogen. The modes of transmission are mainly via direct contact with seawater and indirect contact through marine creatures. We report here a 28-year-old accountant diagnosed with right leg abscess after being bitten and scratched by a stray cat. Vibrio alginolyticus was isolated from the pus sample. The patient gave no history of contact with ocean water immediately before or after the cat scratch episode. The patient did apply commercial sea cucumber oil to the wound; we presume this is the cause of the Vibrio alginolyticus wound infection. To the best of our knowledge, this is the first reported case of Vibrio alginolyticus wound infection caused by commercially available sea cucumber oil.
Effects of Global Warming on Vibrio Ecology.
Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla
2015-06-01
Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.
Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles.
Kirstein, Inga V; Kirmizi, Sidika; Wichels, Antje; Garin-Fernandez, Alexa; Erler, Rene; Löder, Martin; Gerdts, Gunnar
2016-09-01
The taxonomic composition of biofilms on marine microplastics is widely unknown. Recent sequencing results indicate that potentially pathogenic Vibrio spp. might be present on floating microplastics. Hence, these particles might function as vectors for the dispersal of pathogens. Microplastics and water samples collected in the North and Baltic Sea were subjected to selective enrichment for pathogenic Vibrio species. Bacterial colonies were isolated from CHROMagar™Vibrio and assigned to Vibrio spp. on the species level by MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionisation - Time of Flight Mass Spectrometry). Respective polymers were identified by ATR FT-IR (Attenuated Total Reflectance Fourier Transform - Infrared Spectroscopy). We discovered potentially pathogenic Vibrio parahaemolyticus on a number of microplastic particles, e.g. polyethylene, polypropylene and polystyrene from North/Baltic Sea. This study confirms the indicated occurrence of potentially pathogenic bacteria on marine microplastics and highlights the urgent need for detailed biogeographical analyses of marine microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vibrios on the half shell: what the walrus and the carpenter didn't know.
Blake, P A
1983-10-01
At least nine Vibrio species have been associated with disease in the United States. Vibrio fluvialis, V. hollisae, V. mimicus, and V. parahaemolyticus cause diarrheal diseases, but may also be encountered in extraintestinal infections such as wound and ear infections, septicemia, and cholecystitis. Vibrio alginolyticus, V. damsela, V. metschnikovii, and V. vulnificus primarily cause extraintestinal disease. Toxigenic V. cholerae O1 is the cause of epidemic cholera, whereas nontoxigenic V. cholerae O1 and non-O1 V. cholerae have been associated with both diarrheal and extraintestinal diseases. Most reports of vibrio infections have come from states along the Atlantic Ocean and Gulf of Mexico and from Hawaii, and most of the infections have occurred during summer and fall. Wound and ear infections have occurred after exposure to salty or brackish water or to drippings from raw seafoods. Foodborne vibrio infections are almost all caused by seafoods, especially oysters eaten raw. Thorough cooking and careful handling will render seafoods safe for consumption.
Infection Vibrio sp. Bacteria on Kappaphycus Seaweed Varieties Brown and Green
NASA Astrophysics Data System (ADS)
Irmawati, Yuni; Sudirjo, Fien
2017-10-01
Disease in seaweed or ice-ice, until today is still a major problem in the cultivation of seaweed. Changes in extreme environmental conditions is a trigger factor of ice-ice, which can result in seaweed susceptible to infection with pathogenic microorganisms, such as bacteria Vibrio sp. This research aims to determine the bacteria Vibrio sp. infection in seaweed Kappaphycus varieties of brown and green. Vibrio sp. bacteria isolated in the infected seaweed thallus ice-ice, grown on TCBS media, purification, gram staining and biochemical tests. Vibrio sp. infected to seaweed Kappaphycus brown and green varieties in containers controlled by different density, 105 CFU/ml, 106 CFU/ml and 107CFU/ml. Observations were made to change clinical effect in thallus seaweed for 14 days of observation. The results obtained show that the levels of infection bacteria Vibrio sp. higher in seaweed Kappaphycus green varieties both in density 105 CFU/ml, 106 CFU/ml and 107CFU/ml, when compared with varieties brown.
Bowers, John C.; Griffitt, Kimberly J.; Molina, Vanessa; Clostio, Rachel W.; Pei, Shaofeng; Laws, Edward; Paranjpye, Rohinee N.; Strom, Mark S.; Chen, Arlene; Hasan, Nur A.; Huq, Anwar; Noriea, Nicholas F.; Grimes, D. Jay; Colwell, Rita R.
2012-01-01
Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST. PMID:22865080
Gao, Xiaojian; Zhang, Xiaojun; Lin, Li; Yao, Dongrui; Sun, Jingjing; Du, Xuedi; Li, Xiumei; Zhang, Yue
2016-01-01
Vibrio spp. are major causes of mortality in white shrimp (Litopenaeus vannamei) which is lacking adaptive immunity. Passive immunization with a specific egg yolk antibody (IgY) is a potential method for the protection of shrimp against vibriosis. In this study, immune effects of the specific egg yolk powders (IgY) against both V. harveyi and V. parahaemolyticus on white shrimp were evaluated. The egg yolk powders against V. harveyi and V. parahaemolyticus for passive immunization of white shrimp were prepared, while a tube agglutination assay and an indirect enzyme-linked immunosorbent assay (ELISA) were used for detection of IgY titer. Anti-Vibrio egg yolk was encapsulated by β-cyclodextrin, which could keep the activity of the antibody in the gastrointestinal tract of shrimp. The results showed that the anti-Vibrio egg powders had an inhibiting effect on V. harveyi and V. parahaemolyticus in vitro. Lower mortality of infected zoeae, mysis, and postlarva was observed in groups fed with anti-Vibrio egg powders, compared with those fed with normal egg powders. The bacterial load in postlarva fed with specific egg powders in seeding ponds was significantly lower than those fed with normal egg powders in seeding ponds. These results show that passive immunization by oral administration with specific egg yolk powders (IgY) may provide a valuable protection of vibrio infections in white shrimp. PMID:27196895
Phosphorus Physiology of the Marine Cyanobacterium Trichodesmium
2010-02-01
Ghosh, R.K., and Das, J. (1982) Monomeric alkaline phosphatase of Vibrio cholerae. J. Bacteriol. 150: 1033-1039. Sañudo-Wilhelmy, S.A., Kustka, A.B...proteins of Pseudomonas, Pasterella and Vibrio (PhoVC in Vibrio ) (Roy et al., 1982; Monds et al., 2006; Wu et al., 2007). Both phoX and phoX2 have a 39...identity over 99% of the translated gene to PhoVC in Vibrio . A Pho box has been identified in front of the putative phoX gene (Su et al., 2007), but
Radiobacteriolysis: a New Technique Using Chromium-51 for Assaying Anti- Vibrio cholerae Antibodies
Blachman, Uzy; Clark, W. R.; Pickett, M. J.
1973-01-01
A new method for detecting and quantitating antibodies against Vibrio cholerae is described. The reaction involves the release of radiochromium from prelabeled vibrios in the presence of specific antibody and complement. The entire assay can be completed within 5 hr. The method is highly reproducible, immunologically specific, temperature- and complement-dependent, and significantly more sensitive than other methods currently used for titration of anti-Vibrio cholerae antibodies. The technique is also potentially applicable to titration of antibodies against other gram-negative bacteria. PMID:4570279
Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.
You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing
2007-10-01
China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture.
Distribution of Vibrio alginolyticus-like species in Shenzhen coastal waters, China
Chen, Ming-Xia; Li, He-Yang; Li, Gang; Zheng, Tian-Ling
2011-01-01
We investigated the distribution of vibrios in Shenzhen coastal waters in order to obtain valuable information for the aquaculture industry and a health warning system. Quantities of vibrios from surface waters ranged from 0 to 4.40×104 CFUs mL-1 in April (spring), while from 0 to 2.57×103 CFUs mL-1 in September (autumn); the abundance of V. alginolyticus-like species from surface water ranged from 0 to 6.72×103 CFUs mL-1 in April (spring) and from 0 to 1.28×103 CFUs mL-1 in September (autumn); higher counts were observed in spring. The V. alginolyticus-like species was dominant in Shenzhen coastal waters, with the highest abundance in the clean region (stations YMK001 and GDN064) in April, suggesting that Vibrio spp. were naturally occurring bacteria in marine environments. The correlation between the abundance of vibrios (including V. alginolyticus-like species) and environmental factors varied in different regions and different seasons. There were no vibrios detected when the salinity was less than 11.15‰ in the Zhujiang River estuary, which indicated that salinity played a key role in the distribution of vibrios and V. alginolyticus-like species. PMID:24031704
Spatiotemporal Dynamics of Total Viable Vibrio spp. in a NW Mediterranean Coastal Area.
Girard, Léa; Peuchet, Sébastien; Servais, Pierre; Henry, Annabelle; Charni-Ben-Tabassi, Nadine; Baudart, Julia
2017-09-27
A cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis. Total viable and culturable cell counts showed the same temporal pattern during the warmer season, whereas the ratios between both methods were inverted during the colder seasons (<15°C), indicating that some of the vibrio community had entered into a viable but non-culturable (VBNC) state. We confirmed that Seawater Surface Temperature explained 51-62% of the total variance in culturable counts, and also showed that the occurrence of viable vibrios is controlled by two variables, pheopigment (15%) and phosphate (12%) concentrations, suggesting that other unidentified factors play a role in maintaining viability.
Haygood, M G
1990-01-01
Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a lux AB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase alpha subunit gene luxA) of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G + C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.
Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle
2015-01-01
Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294
Laczka, Olivier F; Labbate, Maurizio; Seymour, Justin R; Bourne, David G; Fielder, Stewart S; Doblin, Martina A
2014-01-01
Bacteria from the genus Vibrio are a common and environmentally important group of bacteria within coastal environments and include species pathogenic to aquaculture organisms. Their distribution and abundance are linked to specific environmental parameters, including temperature, salinity and nutrient enrichment. Accurate and efficient detection of Vibrios in environmental samples provides a potential important indicator of overall ecosystem health while also allowing rapid management responses for species pathogenic to humans or species implicated in disease of economically important aquacultured fish and invertebrates. In this study, we developed a surface immuno-functionalisation protocol, based on an avidin-biotin type covalent binding strategy, allowing specific sandwich-type detection of bacteria from the Vibrio genus. The assay was optimized on 12 diverse Vibrio strains, including species that have implications for aquaculture industries, reaching detection limits between 7×10(3) to 3×10(4) cells mL(-1). Current techniques for the detection of total Vibrios rely on laborious or inefficient analyses resulting in delayed management decisions. This work represents a novel approach for a rapid, accurate, sensitive and robust tool for quantifying Vibrios directly in industrial systems and in the environment, thereby facilitating rapid management responses.
Yamaichi, Yoshiharu; Duigou, Stéphane; Shakhnovich, Elizabeth A.; Waldor, Matthew K.
2009-01-01
The Vibrionaceae is comprised of numerous aquatic species and includes several human pathogens, such as Vibrio cholerae, the cause of cholera. All organisms in this family have two chromosomes, and replication of the smaller one depends on rctB, a gene that is restricted to the Vibrionaceae. Given the increasing prevalence of multi-drug resistance in pathogenic vibrios, there is a need for new targets and drugs to combat these pathogens. Here, we carried out a high throughput cell-based screen to find small molecule inhibitors of RctB. We identified a compound that blocked growth of an E. coli strain bearing an rctB-dependent plasmid but did not influence growth of E. coli lacking this plasmid. This compound, designated vibrepin, had potent cidal activity against V. cholerae and inhibited the growth of all vibrio species tested. Vibrepin blocked RctB oriCII unwinding, apparently by promoting formation of large non-functional RctB complexes. Although vibrepin also appears to have targets other than RctB, our findings suggest that RctB is an attractive target for generation of novel antibiotics that only block growth of vibrios. Vibrio-specific agents, unlike antibiotics currently used in clinical practice, will not engender resistance in the normal human flora or in non-vibrio environmental microorganisms. PMID:19936046
Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; de la Garza, Mireya; Reyes-Lopez, Magda; Zazueta-Beltran, Jorge; Nazmi, Kamran; Gomez-Gil, Bruno; Bolscher, Jan G
2009-01-01
Infections caused by Vibrio parahaemolyticus, an halophilic member of the genus Vibrio, have increased globally in the last 5 years. Diarrhea caused by V. parahaemolyticus results from eating raw or undercooked seafood. The aim of this work was to investigate whether lactoferrin and some lactoferrin-peptides have bactericidal activity against Vibrio parahaemolyticus ATCC 17802, the pandemic strain O3:K6, and the multidrug resistant isolate 727, as well as against Vibrio cholerae strains O1 and non-O1. Whereas both peptides lactoferricin (17-30) and lactoferrampin (265-284) did not have bactericidal activity, 40 microM of lactoferrin chimera (a fusion of the two peptides) inhibited the growth of all Vibrio tested to the same extent as the antibiotic gentamicin. The cidal effect of LFchimera showed a clear concentration response in contrast to bovine lactoferrin which showed higher inhibition at 10 microM than at 40 microM. FITC-labeled LFchimera bound to the bacterial membranes. Moreover LFchimera permeabilized bacterial cells and membranes were seriously damaged. Finally, in experiments with the multidrug resistant isolate 727, sub-lethal doses of LFchimera strongly reduced the concentrations of ampicillin, gentamicin or kanamicin needed to reach more than 95% growth inhibition, suggesting synergistic effects. These data indicate that LFchimera is a potential candidate to combat the multidrug resistant pathogenic Vibrio species.
Grodeska, Stephanie M; Jones, Jessica L; Arias, Covadonga R; Walton, William C
2017-08-01
The expansion of off-bottom aquaculture to the Gulf of Mexico has raised public health concerns for human health officials. High temperatures in the Gulf of Mexico are associated with high levels of Vibrio parahaemolyticus and Vibrio vulnificus. Routine desiccation practices associated with off-bottom aquaculture expose oysters to ambient air, allowing Vibrio spp. to proliferate in the closed oyster. Currently, there is limited research on the length of time needed for Vibrio spp. levels in desiccated oysters to return to background levels, defined as the levels found in oysters that remain continually submersed and not exposed to ambient air. This study determined the time needed to return V. parahaemolyticus, V. vulnificus, and Vibrio cholerae levels to background levels in oysters exposed to the following desiccation practices: 3-h freshwater dip followed by 24-h ambient air exposure, 27-h ambient air exposure, and control. All oysters were submerged at least 2 weeks prior to the beginning of each trial, with the control samples remaining submerged for the duration of each trial. Vibrio spp. levels were enumerated from samples collected on days 0, 1, 2, 3, 7, 10, and 14 after resubmersion using a three-tube most-probable-number enrichment followed by BAX PCR. V. cholerae levels were frequently (92%) below the limit of detection at all times, so they were not statistically analyzed. V. parahaemolyticus and V. vulnificus levels in the 27-h ambient air exposure and the 3-h freshwater dip followed by 24-h ambient air exposure samples were significantly elevated compared with background samples. In most cases, the Vibrio spp. levels in oysters in both desiccation treatments remained elevated compared with background levels until 2 or 3 days post-resubmersion. However, there was one trial in which the Vibrio spp. levels did not return to background levels until day 7. The results of this study provide scientific support that oyster farmers should be required to implement a minimum 7-day resubmersion regimen. This length of time allowed the Vibrio spp. levels to become not significantly different across all treatments.
Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico.
Johnson, C N; Flowers, A R; Noriea, N F; Zimmerman, A M; Bowers, J C; DePaola, A; Grimes, D J
2010-11-01
Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.
New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities
Rubio-Portillo, Esther; Yarza, Pablo; Peñalver, Cindy; Ramos-Esplá, Alfonso A; Antón, Josefa
2014-01-01
Bleaching of Oculina patagonica has been extensively studied in the Eastern Mediterranean Sea, although no studies have been carried out in the Western basin. In 1996 Vibrio mediterranei was reported as the causative agent of bleaching in O. patagonica but it has not been related to bleached or healthy corals since 2003, suggesting that it was no longer involved in bleaching of O. patagonica. In an attempt to clarify the relationship between Vibrio spp., seawater temperature and coral diseases, as well as to investigate the putative differences between Eastern and Western Mediterranean basins, we have analysed the seasonal patterns of the culturable Vibrio spp. assemblages associated with healthy and diseased O. patagonica colonies. Two sampling points located in the Spanish Mediterranean coast were chosen for this study: Alicante Harbour and the Marine Reserve of Tabarca. A complex and dynamic assemblage of Vibrio spp. was present in O. patagonica along the whole year and under different environmental conditions and coral health status. While some Vibrio spp. were detected all year around in corals, the known pathogens V. mediteranei and V. coralliilyticus were only present in diseased specimens. The pathogenic potential of these bacteria was studied by experimental infection under laboratory conditions. Both vibrios caused diseased signs from 24 °C, being higher and faster at 28 °C. Unexpectedly, the co-inoculation of these two Vibrio species seemed to have a synergistic pathogenic effect over O. patagonica, as disease signs were readily observed at temperatures at which bleaching is not normally observed. PMID:24621525
Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?
Starič, Nejc; Danevčič, Tjaša; Stopar, David
2010-10-01
The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.
Lydon, Keri Ann; Farrell-Evans, Melissa; Jones, Jessica L
2015-07-01
Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (<4.5°C) to reduce Vibrio growth. Ice slurries showed rapid internal cooling of oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P < 0.05) increases in median levels of fecal coliforms (9.5 most probable number [MPN]/100 ml), C. perfringens (280 MPN/100 ml), Vibrio vulnificus (11,250 MPN/ml), and total Vibrio parahaemolyticus (3,900 MPN/ml). The microbial load in oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P < 0.05) in levels of filth indicator (range, 250 to 720 MPN/100 g) or Vibrio spp. (range, 9,000 to 20,000 MPN/g) bacteria. These results support the use of ice slurries as a postharvest application for rapid cooling of oysters to minimize Vibrio growth.
Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina.
Pfeffer, Courtney S; Hite, M Frances; Oliver, James D
2003-06-01
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).
Banerjee, Swapan K; Rutley, Rebecca; Bussey, Jeff
2018-05-07
Vibrio s pecies are indigenous to the marine and estuarine environments around the world and are the leading cause of water and seafood-borne illnesses due to conditions favouring the transmission and growth of the species. Horizontal gene transfer, recombination and mutation enable Vibrio spp to adapt rapidly to environmental challenges from biotic and abiotic parameters, including temperature, salinity and nutrient status of the coastal waters. This surveillance study provides evidence of V. cholerae emerging in the temperate estuaries of Canada, thereby redefining the diversity and dynamics of its coastal Vibrio population. Presence of the pathogenic context in V. parahaemolyticus was also detected with an increasing trend during the study period. IMPORTANCE Proliferation and abundance of the harmful biotypes of Vibrio spp. in the estuaries of Canada indicate the possibility of producing contaminated seafood for human consumption. The findings of this surveillance study may lead to awareness which may help in efforts to reduce the occurrence of illnesses or outbreaks caused by Vibrio spp. in seafood. © Crown copyright 2018.
An insight of traditional plasmid curing in Vibrio species
Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han
2015-01-01
As the causative agent of foodborne related illness, Vibrio species causes a huge impact on the public health and management. Vibrio species is often associated with seafood as the latter plays a role as a vehicle to transmit bacterial infections. Hence, antibiotics are used not to promote growth but rather to prevent and treat bacterial infections. The extensive use of antibiotics in the aquaculture industry and environment has led to the emerging of antibiotic resistant strains. This phenomenon has triggered an alarming public health concern due to the increase number of pathogenic Vibrio strains that are resistant to clinically used antibiotics and is found in the environment. Antibiotic resistance and the genes location in the strains can be detected through plasmid curing assay. The results derived from plasmid curing assay is fast, cost effective, sufficient in providing insights, and influence the antibiotic management policies in the aquaculture industry. This presentation aims in discussing and providing insights on various curing agents in Vibrio species. To our best of knowledge, this is a first review written discussing on plasmid curing in Vibrio species. PMID:26347714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, S.; Lugo, T.; Hazen, T.C.
Water and shellfish samples collected from estuaries, mangroves, and beaches along the coast of Puerto Rico were examined for Vibrio vulnificus and Vibrio parahaemolyticus. An array of water quality parameters were also measured simultaneous with bacteria sampling. Both species of vibrio were associated with estuary and mangrove locations, and neither was isolated from sandy beaches. Densities of V. vulnificus were negatively correlated with salinity, 10--15 ppt being optimal. V. parahaemolyticus was isolated from sites with salinities between 20 and 35 ppt, the highest densities occurring at 20 ppt. Densities of Vibrio spp. and V. parahaemolyticus for a tropical estuary surpassedmore » those reported for temperate estuaries by several orders of magnitude. Both densities of total Vibrio spp. and V. parahaemolyticus in the water were directly related to densities of fecal coliforms, unlike V. vulnificus. The incidence of ONPG(+) strains among sucrose({minus}) Vibrio spp. served as an indicator of the frequency of V. vulnificus in this group. More than 63% of the V. vulnificus isolated were pathogenic. V. vulnificus and V. parahaemolyticus occupy clearly separate niches within the tropical estuarine-marine ecosystem.« less
Roux, Frédérique Le; Wegner, K. Mathias; Baker-Austin, Craig; Vezzulli, Luigi; Osorio, Carlos R.; Amaro, Carmen; Ritchie, Jennifer M.; Defoirdt, Tom; Destoumieux-Garzón, Delphine; Blokesch, Melanie; Mazel, Didier; Jacq, Annick; Cava, Felipe; Gram, Lone; Wendling, Carolin C.; Strauch, Eckhard; Kirschner, Alexander; Huehn, Stephan
2015-01-01
Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security. PMID:26322036
Increases in the amounts of Vibrio spp. in oysters upon addition of exogenous bacteria.
Froelich, Brett; Oliver, James
2013-09-01
The bacterial pathogen Vibrio vulnificus is found naturally in brackish coastal waters but can be greatly concentrated by filter-feeding organisms such as shellfish. Numerous experiments in which exogenous V. vulnificus cells are added to oysters in an attempt to measure uptake and depuration have been performed. In nearly all cases, results have shown that laboratory-grown bacteria are rapidly taken up by the oysters but ultimately eliminated, while naturally present Vibrio populations in oysters are resistant to depuration. In this study, oysters harvested during winter months, with low culturable Vibrio concentrations, were incubated in aquaria supplemented with strains of V. vulnificus that were either genotypically or phenotypically distinct from the background bacteria. These exogenous cells were eliminated from the oysters, as previously seen, but other vibrios already inhabiting the oysters responded to the V. vulnificus inoculum by rapidly increasing in number and maintaining a large stable population. The presence of such an oyster-adapted Vibrio population would be expected to prevent colonization by exogenous V. vulnificus cells, thus explaining the rapid depuration of these added bacteria.
Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei
Banerjee, Sanjoy; Ooi, Mei Chen; Shariff, Mohamed; Khatoon, Helena
2012-01-01
Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%), V. mimicus (16.7%), V. parahaemolyticus (10%), V. vulnificus (6.7%), and V. alginolyticus (1.7%). Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp. PMID:22619583
Protein expression in the stressed Vibrio strains.
Tóth, D; Ferianc, P; Karelová, E; Polek, B
1996-05-15
In a conjunction process using Escherichia coli SM10 (pLOF) KmR APR as donor and Vibrio S141 SmR as recipient, several mutants were constructed: Vibrio PH 101, V. PH 106, and V. PH 109 with lowered ability to synthesize poly-beta-hydroxybutyrate. The survival and metabolic activities of parent and mutant strains were estimated when they were subjected to stress conditions (starvation of carbon and energy sources and/or cadmium treatment). Using two-dimensional electrophoresis, the synthesis of stress proteins was demonstrated. Vibrio cultures consecutively exposed to CdCl2 and then to starvation or vice versa responded similarly metabolically. These results show increased proteosynthetic activity of the stressed Vibrio cells, indicating that the primary cadmium treatment induced the expression and synthesis of the protective proteins, enabling the cells to cope with the secondary stress.
Shaw, Kristi S.; Rosenberg Goldstein, Rachel E.; He, Xin; Jacobs, John M.; Crump, Byron C.; Sapkota, Amy R.
2014-01-01
Vibrio vulnificus and V. parahaemolyticus in the estuarine-marine environment are of human health significance and may be increasing in pathogenicity and abundance. Vibrio illness originating from dermal contact with Vibrio laden waters or through ingestion of seafood originating from such waters can cause deleterious health effects, particularly if the strains involved are resistant to clinically important antibiotics. The purpose of this study was to evaluate antimicrobial susceptibility among these pathogens. Surface-water samples were collected from three sites of recreational and commercial importance from July to September 2009. Samples were plated onto species-specific media and resulting V. vulnificus and V. parahaemolyticus strains were confirmed using polymerase chain reaction assays and tested for antimicrobial susceptibility using the Sensititre® microbroth dilution system. Descriptive statistics, Friedman two-way Analysis of Variance (ANOVA) and Kruskal-Wallis one-way ANOVA were used to analyze the data. Vibrio vulnificus (n = 120) and V. parahaemolyticus (n = 77) were isolated from all sampling sites. Most isolates were susceptible to antibiotics recommended for treating Vibrio infections, although the majority of isolates expressed intermediate resistance to chloramphenicol (78% of V. vulnificus, 96% of V. parahaemolyticus). Vibrio parahaemolyticus also demonstrated resistance to penicillin (68%). Sampling location or month did not significantly impact V. parahaemolyticus resistance patterns, but V. vulnificus isolates from St. Martin's River had lower overall intermediate resistance than that of the other two sampling sites during the month of July (p = 0.0166). Antibiotics recommended to treat adult Vibrio infections were effective in suppressing bacterial growth, while some antibiotics recommended for pediatric treatment were not effective against some of the recovered isolates. To our knowledge, these are the first antimicrobial susceptibility data of V. vulnificus and V. parahaemolyticus recovered from the Chesapeake Bay. These data can serve as a baseline against which future studies can be compared to evaluate whether susceptibilities change over time. PMID:24586914
Machado, A; Bordalo, A A
2014-09-01
Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions.
Tey, Yao Hsien; Jong, Koa-Jen; Fen, Shin-Yuan; Wong, Hin-Chung
2015-05-01
The occurrence of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae in a total of 72 samples from six aquaculture ponds for groupers, milk fish, and tilapia in southern Taiwan was examined by the membrane filtration and colony hybridization method. The halophilic V. parahaemolyticus was only recovered in seawater ponds, with a high isolation frequency of 86.1% and a mean density of 2.6 log CFU/g. V. cholerae was found in both the seawater and freshwater ponds but preferentially in freshwater ponds, with a frequency of 72.2% and a mean density of 1.65 log CFU/g. V. vulnificus was identified mainly in seawater ponds, with an isolation frequency of 27.8%. The density of V. parahaemolyticus in seawater ponds was positively related to water temperature (Pearson correlation coefficient, r = 0.555) and negatively related to salinity (r = 2 0.333). The density of V. cholerae in all six ponds was positively related to water temperature (r = 0.342) and negatively related to salinity (r = 2 0.432). Two putatively pathogenic tdh(+) V. parahaemolyticus isolates (1.4% of the samples) and no ctx(+) V. cholerae isolates were identified. The experimental results may facilitate assessments of the risk posed by these pathogenic Vibrio species in Taiwan, where aquaculture provides a large part of the seafood supply.
Tout, Jessica; Siboni, Nachshon; Messer, Lauren F.; Garren, Melissa; Stocker, Roman; Webster, Nicole S.; Ralph, Peter J.; Seymour, Justin R.
2015-01-01
Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2–3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2–3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems. PMID:26042096
Gulf of Maine Seals - Populations, Problems and Priorities
2010-06-01
3) rabies, (4) leptospirosis, (5) herpes, (6) toxoplasmosis, (7) pox, (8) lung worms, (9) Vibrio spp. and (10) harmful algal bloom toxins (HABs...Toxoplasmosis Pox Lungworms Vibrio HABs - We need to identify categories of disease and classify diseases opposed to simply stating that...infections Pox Vibrio Morbilli Pneumonia Dermatitis Alopecia Septicemia Body condition Dehydration Foreign body ingestion Natural
Nigro, Olivia D; Steward, Grieg F
2015-04-01
Plating environmental samples on vibrio-selective chromogenic media is a commonly used technique that allows one to quickly estimate concentrations of putative vibrio pathogens or to isolate them for further study. Although this approach is convenient, its usefulness depends directly on how well the procedure selects against false positives. We tested whether a chromogenic medium, CHROMagar Vibrio (CaV), used alone (single-plating) or in combination (double-plating) with a traditional medium thiosulfate-citrate-bile-salts (TCBS), could improve the discrimination among three pathogenic vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) and thereby decrease the number of false-positive colonies that must be screened by molecular methods. Assays were conducted on water samples from two estuarine environments (one subtropical, one tropical) in a variety of seasonal conditions. The results of the double-plating method were confirmed by PCR and 16S rRNA sequencing. Our data indicate that there is no significant difference in the false-positive rate between CaV and TCBS when using a single-plating technique, but determining color changes on the two media sequentially (double-plating) reduced the rate of false positive identification in most cases. The improvement achieved was about two-fold on average, but varied greatly (from 0- to 5-fold) and depended on the sampling time and location. The double-plating method was most effective for V. vulnificus in warm months, when overall V. vulnificus abundance is high (false positive rates as low as 2%, n=178). Similar results were obtained for V. cholerae (minimum false positive rate of 16%, n=146). In contrast, the false positive rate for V. parahaemolyticus was always high (minimum of 59%, n=109). Sequence analysis of false-positive isolates indicated that the majority of confounding isolates are from the Vibrionaceae family, however, members of distantly related bacterial groups were also able to grow on vibrio-selective media, even when using the double-plating method. In conclusion, the double-plating assay is a simple means to increase the efficiency of identifying pathogenic vibrios in aquatic environments and to reduce the number of molecular assays required for identity confirmation. However, the high spatial and temporal variability in the performance of the media mean that molecular approaches are still essential to obtain the most accurate vibrio abundance estimates from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.
2010-01-01
Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802
Ramos, Roberta Juliano; Miotto, Letícia Adélia; Miotto, Marília; Silveira Junior, Nelson; Cirolini, Andréia; Silva, Helen Silvestre da; Rodrigues, Dália dos Prazeres; Vieira, Cleide Rosana Werneck
2014-01-01
This research aimed to identify and quantify potentially pathogenic Vibrio from different cultivations of bivalve shellfish in the State of Santa Catarina, Brazil, and water regions in the South Bay, as well as correlate the incidence of these microorganisms with the physicochemical parameters of marine waters. Between October 2008 and March 2009, 60 oyster and seawater samples were collected from six regions of bivalve mollusk cultivation, and these samples were submitted for Vibrio counts. Twenty-nine (48.3%) oyster samples were revealed to be contaminated with one or more Vibrio species. The Vibrio parahaemolyticus and Vibrio vulnificus counts in the samples ranged from < 0.5 log10 Most Probable Number (MPN) g(-1) to 2.3 log10 MPN g(-1) oyster and from < 0.5 log10 MPN g(-1) to 2.1 log10 MPN g(-1) oyster, respectively. Of the 60 seawater samples analyzed, 44 (73.3%) showed signs of contamination with one or more vibrio species. The counts of V. parahaemolyticus and V. vulnificus in the samples ranged from < 0.3 log10 MPN·100mL(-1) to 1.7 log10MPN·100mL(-1) seawater and from < 0.3 log10 MPN·100mL(-1) to 2.0 log10 MPN·100mL(-1) seawater, respectively. A positive correlation between V. vulnificus counts and the seawater temperature as well as a negative correlation between the V. parahaemolyticus counts and salinity were observed. The results suggest the need to implement strategies to prevent vibrio diseases from being transmitted by the consumption of contaminated bivalve shellfish.
Poli, Annarita; Romano, Ida; Mastascusa, Vincenza; Buono, Lorena; Orlando, Pierangelo; Nicolaus, Barbara; Leone, Luigi; Hong, Kar Wai; Chan, Kok-Gan; Goh, Kian Mau; Pascual, Javier
2018-07-01
Strain Corallo1 T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1 T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1 T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1 T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1 T . A draft genome sequence of strain Corallo1 T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1 T are C 16:1 , n-C 16:0 and C 18:1 , and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1 T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1 T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1 T (= DSM 27495 T = CIP 110630 T ).
NASA Astrophysics Data System (ADS)
Wang, Jun; Su, Yongquan; Yan, Qingpi
2003-03-01
A fast and indirect fluorescent antibody assay for the Vibrio alginolyticus and V. parahaemolyticus infecting the large yellow croaker has been developed. The specific antisera for the two strains of vibrio were prepared with New Zealand rabbit and the antiserum and cross-reactive efficacy was tested by coagulation in tube. It showed that the goat anti-rabbit IgG had been labeled by fluorescence isothiocyanate (FITC). The results showed that positive reactions were 100% for the large yellow croaker Pseudosciaena crocea with typical symptom of vibrio infection, while the positive reaction to the pathogen in healthy yellow croakers reached 40%, but seemed negative for aquaculture water. The results demonstrated that this fast and indirect fluorescent antibody assay can be used not only to test the vibrio pathogen in diseased yellow croaker but also in infected animals with no symptom.
Drug-sensitivity of El Tor vibrio strains isolated in the Philippines in 1964 and 1965*
Kuwahara, Shogo; Goto, Sachiko; Kimura, Masatake; Abe, Hisao
1967-01-01
About 1500 strains of El Tor vibrios, isolated in 1964 and 1965 in the Philippines, were examined for their susceptibilities to 17 drugs. All the strains tested were highly sensitive to dihydroxymethyl-furalazine, and most were highly sensitive to tetracycline hydrochloride, chloramphenicol and erythromycin, and moderately sensitive to novobiocin, dihydrostreptomycin sulfate, kanamycin and neomycin. They showed a remarkable fluctuation of sensitivity to ampicillin, cefaloridine, cefalotin and sulfafurazole, and a high resistance to benzylpenicillin sodium, oleandomycin and spiramycin. Experimental confirmation was provided of the fact that El Tor vibrios and non-agglutinable vibrios can be distinguished from classical cholera vibrios by their resistance to polymyxin B and colistin. Highly streptomycin-resistant strains, and to a lesser extent ampicillin- and sulfafurazole-resistant strains, were relatively often isolated from cholera patients who had been treated with antibiotics. One patient yielded a strain resistant to tetracycline, chloramphenicol, streptomycin and sulfafurazole. PMID:4870079
[Environmental drivers of emergence and spreading of Vibrio epidemics in South America].
Gavilán, Ronnie G; Martínez-Urtaza, Jaime
2011-03-01
Vibrio cholerae and V. parahaemolyticus are the two Vibrio species with a major impact on human health. Diseases caused by both pathogens are acquiring increasing relevance due to their expansion at global scale. In this paper, we resume the ecological aspects associated with the arrival and spreading of infections caused by V. parahaemolyticus and V. cholerae in Peru from a South American perspective. Moreover, we discuss the similarities in the emergence in Peru of cholera cases in 1991 and V. parahaemolyticus infections in 1997. These constituted exceptional experiments to evaluate the relationships between the Vibrio epidemics and changes in the environment. The epidemic radiations of V. cholerae and V. parahaemolyticus constitute to clear examples supporting the oceanic dispersion of pathogenic vibrios and have enabled the identification of El Niño events as a potential mechanism for the spreading of diseases through the ocean.
Survival of Vibrio parahaemolyticus in Cooked Seafood at Refrigeration Temperatures
Bradshaw, Joe G.; Francis, David W.; Twedt, Robert M.
1974-01-01
The growth and survival of two strains of Vibrio parahaemolyticus isolated during food-borne gastroenteritis outbreaks in Japan and surface inoculated on cooked shrimp, shrimp with sauce, or cooked crab were tested at various refrigeration temperatures during a 48-h holding period. On cooked shrimp and crab, the vibrios grew well at 18.3 C, but their numbers declined gradually at 10 C and below. At 12.8 C, vibrios remained static for the most part. Thus, it appeared that 12.8 C was the borderline temperature for growth of the organism on cooked seafood. When cocktail sauce was added to surface-inoculated shrimp at a ratio of 2:1, the vibrio die-off rate was accelerated. In the shrimp and sauce few cells remained after 48 h, but in the sauce alone die-off was complete at 6 h. PMID:4825975
USDA-ARS?s Scientific Manuscript database
Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp), and two...
Annual Progress Report (SEATO Medical Research Laboratory)
1975-03-01
Vibrio porahemolyticus Infection in Thailand . 105 Cholera Study at Samutsongkram . . . . .. 110 Detection of Specific Bacterial Antigen by...clinical picture of the mild form of the disease needs to be described. Dehydration was not as severe as that seen in infection with Vibrio cholera ...co-trimoxazole, neomycin, erythromycin and streptomycin. Only 6 , and 62 % of the vibrios tested were sensitive to ampicillin and colistin
Senachai, Pachara; Chomvarin, Chariya; Namwat, Wises; Wongboot, Warawan; Wongwajana, Suwin; Tangkanakul, Waraluk
2013-03-01
A tetraplex PCR method was developed for simultaneous detection of Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus in cockle samples in comparison with conventional culture method. Specific primers targeting ompW of V. cholerae, tl of V. parahaemolyticus, hsp60 of V. vulnificus and sodB of V. mimicus were employed in the same PCR. Detection limit of the tetraplex PCR assay was 104 cfu/ml (400 cfu/PCR reaction) for pure cultures of all four species of Vibrio. In Vibrio spiked cockle samples, the limit of detection after 6 hours enrichment in alkaline peptone water was 1 cfu/10 g of cockle tissue for three Vibrio spp, except for V. mimicus that was 102 cfu/10 g of cockle tissue. When the tetraplex PCR and culture methods were applied to 100 cockle samples, V. parahaemolyticus, V. vulnificus, V. cholerae and V. mimicus were detected in 100, 98, 80 and 9% of the samples by tetraplex PCR and in 76, 42, 0 and 0% by the culture method, respectively. This developed tetraplex PCR method should be suitable for simultaneous and rapid detection of Vibrio species in food samples and for food safety assessment.
Non-Cholera Vibrios: The Microbial Barometer of Climate Change.
Baker-Austin, Craig; Trinanes, Joaquin; Gonzalez-Escalona, Narjol; Martinez-Urtaza, Jaime
2017-01-01
There is a growing interest in the role of climate change in driving the spread of waterborne infectious diseases, such as those caused by bacterial pathogens. One particular group of pathogenic bacteria - vibrios - are a globally important cause of diseases in humans and aquatic animals. These Gram-negative bacteria, including the species Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio cholerae, grow in warm, low-salinity waters, and their abundance in the natural environment mirrors ambient environmental temperatures. In a rapidly warming marine environment, there are greater numbers of human infections, and most notably outbreaks linked to extreme weather events such as heatwaves in temperate regions such as Northern Europe. Because the growth of pathogenic vibrios in the natural environment is largely dictated by temperature, we argue that this group of pathogens represents an important and tangible barometer of climate change in marine systems. We provide a number of specific examples of the impacts of climate change on this group of bacteria and their associated diseases, and discuss advanced strategies to improve our understanding of these emerging waterborne diseases through the integration of microbiological, genomic, epidemiological, climatic, and ocean sciences. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Snoussi, Mejdi; Noumi, Emira; Trabelsi, Najla; Flamini, Guido; Papetti, Adele; De Feo, Vincenzo
2015-08-07
Chemical composition, antioxidant and anti-Vibrio spp. activities of the essential oil isolated from the aerial parts of Mentha spicata L. (spearmint) are investigated in the present study. The effect of the essential oil on Vibrio spp. biofilm inhibition and eradication was tested using the XTT assay. A total of 63 chemical constituents were identified in spearmint oil using GC/MS, constituting 99.9% of the total identified compounds. The main components were carvone (40.8% ± 1.23%) and limonene (20.8% ± 1.12%). The antimicrobial activity against 30 Vibrio spp. strains (16 species) was evaluated by disc diffusion and microdilution assays. All microorganisms were strongly affected, indicating an appreciable antimicrobial potential of the oil. Moreover, the investigated oil exhibited high antioxidant potency, as assessed by four different tests in comparison with BHT. The ability of the oil, belonging to the carvone chemotype, to inhibit or reduce Vibrio spp. biofilm warrants further investigation to explore the use of natural products in antibiofilm adhesion and reinforce the possibility of its use in the pharmaceutical or food industry as a natural antibiotic and seafood preservative against Vibrio contamination.
Dunstan, Rhys A.; Heinz, Eva; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Purcell, Anthony W.; Evans, Timothy J.; Praszkier, Judyta; Robins-Browne, Roy M.; Strugnell, Richard A.; Korotkov, Konstantin V.; Lithgow, Trevor
2013-01-01
The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS. PMID:23326233
Kim, Ji Yeun; Lee, Jung-Lim
2014-10-01
This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.
Prevalence of potentially pathogenic Vibrio species in the seafood marketed in Malaysia.
Elhadi, Nasreldin; Radu, Son; Chen, Chien-Hsien; Nishibuchi, Mitsuaki
2004-07-01
Seafood samples obtained in seafood markets and supermarkets at 11 sites selected from four states in Malaysia were examined for the presence of nine potentially pathogenic species from the genus Vibrio between July 1998 and June 1999. We examined 768 sample sets that included shrimp, squid, crab, cockles, and mussels. We extensively examined shrimp samples from Selangor State to determine seasonal variation of Vibrio populations. Eight potentially pathogenic Vibrio species were detected, with overall incidence in the samples at 4.6% for V. cholerae, 4.7% for V. parahaemolyticus, 6.0% for V. vulnificus, 11% for V. alginolyticus, 9.9% for V. metschnikovii, 1.3% for V. mimicus, 13% for V. damsela, 7.6% for V. fluvialis, and 52% for a combined population of all of the above. As many as eight Vibrio species were detected in shrimp and only four in squid and peel mussels. The overall percent incidence of any of the eight vibrios was highest (82%) in cockles (Anadara granosa) among the seafoods examined and was highest (100%) in Kuching, Sarawak State, and lowest (25%) in Penang, Pulau Penang State, among the sampling sites. Of 97 strains of V. cholerae isolated, one strain belonged to the O1 serotype and 14 to the O139 serotype. The results indicate that the various seafood markets in Malaysia are contaminated with potentially pathogenic Vibrio species regardless of the season and suggest that there is a need for adequate consumer protection measures.
Castro, D; Pujalte, M J; Lopez-Cortes, L; Garay, E; Borrego, J J
2002-01-01
A numerical taxonomic study of halophilic Vibrio isolated from healthy and brown ring disease (BRD) affected manila clams (Ruditapes philippinarum), harvested from the Atlantic coast of south-western Spain, was performed. Characterization of 123 presumptive Vibrio spp. was carried out using 94 phenotypic tests. Simple matching and Jaccard similarity coefficients were used for numerical analysis. Cluster analysis by the unweighted pair group method with arithmetic averages yielded 15 phena defined at 0.81 similarity. Large phena corresponded to Vibrio tubiashii, V. splendidus biotype I and V. harveyi (phena 1, 5 and 9, respectively). The species V.splendidus biotype II, V. natriegens, V. mediterranei and V. alginolyticus were also represented. The inhibitory effect of diffusible extracellular products of the isolates against 27 strains of V.tapetis, the aetiological agent of BRD, was also investigated. Only five V. tubiashii isolates inhibited the growth of V. tapetis strains. The antimicrobial effect was inhibited by heating and depended on the culture medium. The main Vibrio species associated with manila clams were V. tubiashii, V.spendidus and V. harveyi. The antagonistic relationship established between V. tapetis and the Vibrio spp. clam microbiota may explain the failure of isolation in plating medium of V.tapetis from BRD-affected clams on the south Atlantic coast of Spain. Some of the strains isolated from manila clams correspond to agarolytic strains that constitute phenon 7 and they do not fit into any of the currently described Vibrio species.
Kim, Ji Yeun; Lee, Jung-Lim
2014-01-01
Background This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. Results The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL−1 in pure culture and seawater, and 10 CFU g−1 in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. Conclusion Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method. © 2014 The Authors. Journal of the Science of Food and Agriculture published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24752974
Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria
2005-06-01
Associations Abiotic Factors 3. Routes of Transmission Seafood Consumption Seawater Exposure Aerosol Exposure Marine Zoonoses 4. Indicators for Marine ...is a general feature of seawater environments. Overall, the effect of salinity, temperature, and nutrients on the proliferation of marine pathogens...diversity within coastal bacterioplankton using the genus Vibrio as a model system. Vibrios are ubiquitous marine bacteria, and include a variety of
Thompson, Cristiane C; Vicente, Ana Carolina P; Souza, Rangel C; Vasconcelos, Ana Tereza R; Vesth, Tammi; Alves, Nelson; Ussery, David W; Iida, Tetsuya; Thompson, Fabiano L
2009-01-01
Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding. PMID:19860885
Environmental Controls of Oyster-Pathogenic Vibrio spp. in Oregon Estuaries and a Shellfish Hatchery
Crump, Byron C.; Häse, Claudia C.; White, Angelicque E.
2018-01-01
ABSTRACT Vibrio spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state are poorly understood. Here, we present data tracking oyster-pathogenic Vibrio bacteria in Netarts Bay and Yaquina Bay in Oregon, USA, as well as in adjacent coastal waters and a local shellfish hatchery, through the 2015 upwelling season. Vibrio populations were quantified using a culture-independent approach of high-throughput Vibrio-specific 16S rRNA gene sequencing paired with droplet digital PCR, and abundances were analyzed in the context of local biogeochemistry. The most abundant putative pathogen in our samples was Vibrio coralliilyticus. Environmental concentrations of total Vibrio spp. and V. coralliilyticus were highest in Netarts Bay sediment samples and higher in seawater from Netarts Bay than from nearshore coastal waters or Yaquina Bay. In Netarts Bay, the highest V. coralliilyticus concentrations were observed during low tide, and abundances increased throughout the summer. We hypothesize that the warm shallow waters in estuarine mudflats facilitate the local growth of the V. coralliilyticus pathogen. Samples from larval oyster tanks in Whiskey Creek Shellfish Hatchery, which uses seawater pumped directly from Netarts Bay, contained significantly lower total Vibrio species concentrations, but roughly similar V. coralliilyticus concentrations, than did the bay water, resulting in a 30-fold increase in the relative abundance of the V. coralliilyticus pathogen in hatchery tanks. This suggests that the V. coralliilyticus pathogen is able to grow or persist under hatchery conditions. IMPORTANCE It has been argued that oyster-pathogenic Vibrio spp. have contributed to recent mortality events in U.S. shellfish hatcheries (R. A. Elston, H. Hasegawa, K. L. Humphrey, I. K. Polyak, and C. Häse, Dis Aquat Organ 82:119–134, 2008, https://doi.org/10.3354/dao01982); however, these events are often sporadic and unpredictable. The success of hatcheries is critically linked to the chemical and biological composition of inflowing seawater resources; thus, it is pertinent to understand the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state. Here, we show that Netarts Bay, the location of a local hatchery, is enriched in oyster-pathogenic V. coralliilyticus compared to coastal seawater, and we hypothesize that conditions in tidal flats promote the local growth of this pathogen. Furthermore, V. coralliilyticus appears to persist in seawater pumped into the local hatchery. These results improve our understanding of the ecology and environmental controls of the V. coralliilyticus pathogen and could be used to improve future aquaculture efforts, as multiple stressors impact hatchery success. PMID:29475863
Gradoville, Mary R; Crump, Byron C; Häse, Claudia C; White, Angelicque E
2018-05-01
Vibrio spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state are poorly understood. Here, we present data tracking oyster-pathogenic Vibrio bacteria in Netarts Bay and Yaquina Bay in Oregon, USA, as well as in adjacent coastal waters and a local shellfish hatchery, through the 2015 upwelling season. Vibrio populations were quantified using a culture-independent approach of high-throughput Vibrio- specific 16S rRNA gene sequencing paired with droplet digital PCR, and abundances were analyzed in the context of local biogeochemistry. The most abundant putative pathogen in our samples was Vibrio coralliilyticus Environmental concentrations of total Vibrio spp. and V. coralliilyticus were highest in Netarts Bay sediment samples and higher in seawater from Netarts Bay than from nearshore coastal waters or Yaquina Bay. In Netarts Bay, the highest V. coralliilyticus concentrations were observed during low tide, and abundances increased throughout the summer. We hypothesize that the warm shallow waters in estuarine mudflats facilitate the local growth of the V. coralliilyticus pathogen. Samples from larval oyster tanks in Whiskey Creek Shellfish Hatchery, which uses seawater pumped directly from Netarts Bay, contained significantly lower total Vibrio species concentrations, but roughly similar V. coralliilyticus concentrations, than did the bay water, resulting in a 30-fold increase in the relative abundance of the V. coralliilyticus pathogen in hatchery tanks. This suggests that the V. coralliilyticus pathogen is able to grow or persist under hatchery conditions. IMPORTANCE It has been argued that oyster-pathogenic Vibrio spp. have contributed to recent mortality events in U.S. shellfish hatcheries (R. A. Elston, H. Hasegawa, K. L. Humphrey, I. K. Polyak, and C. Häse, Dis Aquat Organ 82:119-134, 2008, https://doi.org/10.3354/dao01982); however, these events are often sporadic and unpredictable. The success of hatcheries is critically linked to the chemical and biological composition of inflowing seawater resources; thus, it is pertinent to understand the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state. Here, we show that Netarts Bay, the location of a local hatchery, is enriched in oyster-pathogenic V. coralliilyticus compared to coastal seawater, and we hypothesize that conditions in tidal flats promote the local growth of this pathogen. Furthermore, V. coralliilyticus appears to persist in seawater pumped into the local hatchery. These results improve our understanding of the ecology and environmental controls of the V. coralliilyticus pathogen and could be used to improve future aquaculture efforts, as multiple stressors impact hatchery success. Copyright © 2018 Gradoville et al.
Wang, R X; Wang, J Y; Sun, Y C; B L Yang; A L Wang
2015-12-30
546 Vibrio isolates from rearing seawater (292 strains) and intestines of abalone (254 strains) were tested to ten antibiotics using Kirby-Bauer diffusion method. Resistant rates of abalone-derived Vibrio isolates to chloramphenicol (C), enrofloxacin (ENX) and norfloxacin (NOR) were <28%, whereas those from seawater showed large fluctuations in resistance to each of the tested antibiotics. Many strains showed higher resistant rates (>40%) to kanamycin (KNA), furazolidone (F), tetracycline (TE), gentamicin (GM) and rifampin (RA). 332 isolates from seawater (n=258) and abalone (n=74) were resistant to more than three antibiotics. Peaked resistant rates of seawater-derived isolates to multiple antibiotics were overlapped in May and August. Statistical analysis showed that pH had an important effect on resistant rates of abalone-derived Vibrio isolates to RA, NOR, and ENX. Salinity and dissolved oxygen were negatively correlated with resistant rates of seawater-derived Vibrio isolates to KNA, RA, and PG. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Design and implementation of Geographical Information System on prevention and control of cholera].
Li, Xiu-jun; Fang, Li-qun; Wang, Duo-chun; Wang, Lu-xi; Li, Ya-pin; Li, Yan-li; Yang, Hong; Kan, Biao; Cao, Wu-chun
2012-04-01
To build the Geographical Information System (GIS) database for prevention and control of cholera programs as well as using management analysis and function demonstration to show the spatial attribute of cholera. Data from case reporting system regarding diarrhoea, vibrio cholerae, serotypes of vibrio cholerae at the surveillance spots and seafoods, as well as surveillance data on ambient environment and climate were collected. All the data were imported to system database to show the incidence of vibrio cholerae in different provinces, regions and counties to support the spatial analysis through the spatial analysis of GIS. The epidemic trends of cholera, seasonal characteristics of the cholera and the variation of the vibrio cholerae with times were better understood. Information on hotspots, regions and time of epidemics was collected, and helpful in providing risk prediction on the incidence of vibrio cholerae. The exploitation of the software can predict and simulate the spatio-temporal risks, so as to provide guidance for the prevention and control of the disease.
Ruckerbauer, Gerda M.; Malkin, K.; Mitchell, D.; Boulanger, P.
1974-01-01
Fluorescent conjugates were prepared from the sera of calves immunized with four Vibrio fetus strains and one Vibrio bubulus strain. The fluorescent antibody technique (FAT) was then used to detect vibrio organisms in preputial fluid collected from 67 bulls belonging to a Canadian artificial insemination (AI) unit. The V. fetus conjugates reacted with both V. fetus var venerealis and V. fetus var intestinalis. V. fetus was found in 20 animals (29.9%), 13 of which also harboured V. bubulus. In two cases, the FAT failed to detect V. fetus which was isolated by concurrent bacteriological examinations. It was concluded that the FAT can be a rapid method of detecting some carrier bulls but more reliable results are obtained when a combination of FAT and bacteriological methods is employed. It was found that a single sample giving negative results is inconclusive and additional tests are required before making a final diagnosis. The FAT can also be used to differentiate V. fetus isolates from V. bubulus. PMID:4277756
Septicemia caused by Vibrio parahemolyticus: a case report.
Hsu, G J; Young, T; Peng, M Y; Chang, F Y; Chou, M Y
1993-11-01
Vibrio parahemolyticus is a halophilic marine vibrio commonly associated with outbreaks of acute gastroenteritis which also sometimes causes serious wound infection. It is an uncommon cause of septicemia. A few reports suggest that patients with chronic liver disease and leukemia are more susceptible. A case of liver cirrhosis with septicemia caused by this organism is discussed. The patient's condition rapidly deteriorated, and he died 12 hours after admission.
Joint Program on Molecular Biology of Marine Organisms
1992-08-20
and lateral flagella formation in a marine vibrio (Belas and Colwell, 1982). Upon contact with a surface, the polar flagella of Vibrio ... parahemolyticus ceased to function. Shortl’ thereafter, lateral flagella formed around the cells, apparently mediating the "irreversible" attachment process. Pilus...Colwell. 1982. Adsorption kinetics of 18 Slaterally and polarly flagellated Vibrio . J. Bacteriol. 151:1568-1580. S-- Brown, C.M., D.C. Ellwood, and
Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013
Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto
2014-01-01
We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ. PMID:25359919
Dubert, J; Fernández-Pardo, A; Nóvoa, S; Barja, J L; Prado, S
2015-06-01
Outbreaks of disease caused by some Vibrio species represent the main production bottleneck in shellfish hatcheries. Although the phytoplankton used as food is one of the main sources of bacteria, studies of the associated bacterial populations, specifically vibrios, are scarce. The aim of the study was the microbiological monitoring of the microalgae as the first step in assessing the risk disease for bivalve cultures. Two phytoplankton production systems were sampled weekly throughout 1-year period in a bivalve hatchery. Quantitative analysis revealed high levels of marine heterotrophic bacteria in both systems throughout the study. Presumptive vibrios were detected occasionally and at low concentrations. In most of the cases, they belonged to the Splendidus and Harveyi clades. The early detection of vibrios in the microalgae may be the key for a successful bivalve culture. Their abundance and diversity were affected by factors related to the hatchery environment. This work represents the first long study where the presence of vibrios was evaluated rigorously in phytoplankton production systems and provides a suitable microbiological protocol to control and guarantee the quality of the algal cultures to avoid the risk of transferring potential pathogens to shellfish larvae and/or broodstock. © 2015 The Society for Applied Microbiology.
McNicol, L A; De, S P; Kaper, J B; West, P A; Colwell, R R
1983-01-01
A total of 165 strains of vibrios isolated from clinical and environmental sources in the United States, India, and Bangladesh, 11 reference cultures, and 4 duplicated cultures were compared in a numerical taxonomic study using 83 unit characters. Similarity between strains was computed by using the simple matching coefficient and the Jaccard coefficient. Strains were clustered by unweighted average linkage and single linkage algorithms. All methods gave similar cluster compositions. The estimated probability of error in the study was obtained from a comparison of the results of duplicated strains and was within acceptable limits. A total of 174 of the 180 organisms studied were divided into eight major clusters. Two clusters were identified as Vibrio cholerae, one as Vibrio mimicus, one as Vibrio parahaemolyticus, three as Vibrio species, and one as Aeromonas hydrophila. The V. mimicus cluster could be further divided into two subclusters, and the major V. cholerae group could be split into seven minor subclusters. Phenotypic traits routinely used to identify clinical isolates of V. cholerae can be used to identify environmental V. cholerae isolates. No distinction was found between strains of V. cholerae isolated from regions endemic for cholera and strains from nonendemic regions. PMID:6874901
NASA Astrophysics Data System (ADS)
Sarjito; Harjuno Condro Haditomo, Alfabetian; Desrina; Djunaedi, Ali; Budi Prayitno, Slamet
2018-02-01
Vibriosis out breaks frequently occur in extensive shrimps farming. The study were commenced to find out the clinical signs of white shrimp that was infected by the Vibrio and to identify the bacterial associated with vibriosis in the pacific white shrimp, Litopenaeus vannamei. Bacterial isolates were gained from hepatopancreas and telson of moribund shrimps that were collected from extensive shrimp ponds of Kendal District, Indonesia and cultured on Thiosulfate Citrate Bile Salts Sucrose Agar (TCBSA). Isolates were clustered and identified using repetitive sequence-based polymerase chain reaction (rep-PCR). Three representative isolates (SJV 03, SJV 05 and SJV 19) were amplified with PCR using primers for 16S rRNA, and sequence for further identification. The clinical signs of shrimps affected by vibrio were pale hepatopancreas, weak of telson, dark and reddish coloration of smouth, patches of red colour in part of the body on the carapace, periopods, pleuopods, and telson. A total of 19 isolates were obtained and belong to three groups of genus Vibrios. Result of the 16S DNA sequence analysis, the vibrio found in this study related to vibriosis in white shrimps from extensive shrimp ponds of Kendal were closely related to Vibrio harveyi (SJV 03); V. parahaemolyticus (SJV 05) and V. alginolyticus (SJV 19).
Leão, Jose Manuel; Lozano-Leon, Antonio; Giráldez, Jorge; Vilariño, Óscar; Gago-Martínez, Ana
2018-01-01
Tetrodotoxins (TTX) are a potent group of natural neurotoxins putatively produced by symbiotic microorganisms and affecting the aquatic environment. These neurotoxins have been recently found in some species of bivalves and gastropods along the European Coasts (Greece, UK, and The Netherlands) linked to the presence of high concentrations of Vibrio, in particular Vibrio parahaemolyticus. This study is focused on the evaluation of the presence of Vibrio species and TTX in bivalves (mussels, oysters, cockles, clams, scallops, and razor clams) from Galician Rias (northwest of Spain). The detection and isolation of the major Vibrio spp. and other enterobacterial populations have been carried out with the aim of screening for the presence of the pathways genes, poliketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) possibly involved in the biosynthesis of these toxins. Samples containing Vibrio spp. were analyzed by biochemical (API20E-galery) and genetic tests (PCR-RT). These samples were then screened for TTX toxicity by a neuroblastoma cell-based assay (N2a) and the presence of TTX was further confirmed by LC-MS/MS. TTX was detected in two infaunal samples. This is the first confirmation of the presence of TTX in bivalve molluscs from the Galician Rias. PMID:29509715
New Vibrio species associated to molluscan microbiota: a review
Romalde, Jesús L.; Dieguez, Ana L.; Lasa, Aide; Balboa, Sabela
2014-01-01
The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed. PMID:24427157
Savel'eva, I V; Khatsukov, K X; Savel'eva, E I; Moskvitina, S I; Kovalev, D A; Savel'ev, V N; Kulichenko, A N; Antonenko, A D; Babenyshev, B V
2015-01-01
Improvement of laboratory diagnostics of cholera taking into the account appearance of hybrid variants of cholera vibrio El Tor biovar in the 1990s. Phenotypic and molecular-genetic properties of typical toxigenic (151 strains) and hybrid (102 strains) variants of El Tor biovar cholera vibrios, isolated in the Caucuses in 1970-1990 and 1993-1998, respectively, were studied. Toxigenicity gene DNA fragments, inherent to El Tor biovars or classic, were detected by using a reagent kit "Genes of Vibrio cholerae variant ctxB-rstR-rstC, REF" developed by us. Reagent kit "Genes of V. cholerae variant ctxB-rstR-rstC, REF" is proposed to be used for laboratory diagnostics of cholera during study of material from humans or environmental objects and for identification of V. cholerae 01 on genome level in PCR-analysis as a necessary addition to the classic scheme of bacteriological analysis. Laboratory diagnostics of cholera due to genetically altered (hybrid) variants of cholera vibrio El Tor biovar is based on a complex study of material from humans and environmental objects by routine bacteriologic and PCR-analysis methods with the aim of detection of gene DNA fragments in the studied material, that determine biovar (classic or El Tor), identification of V. cholerae O1 strains with differentiation of El Tor vibrios into typical and altered, as well as determination of enterotoxin, produced by the specific cholera vibrio strain (by the presence ctxB(El) or ctxB(Cl) gene DNA fragment, coding biosynthesis of CT-2 or CT-1, respectively).
Traoré, S G; Bonfoh, B; Krabi, R; Odermatt, P; Utzinger, J; Rose, K-N; Tanner, M; Frey, J; Quilici, M-L; Koussémon, M
2012-06-01
The purpose of this study was to assess the risk of Vibrio spp. transmission from crustaceans to humans in two coastal towns of Côte d'Ivoire. Bacteriologic analysis was performed on 322 crustacean samples obtained from six markets in Abidjan and one in Dabou. Suspected Vibrio colonies were identified by morphological, cultural, biochemical, and molecular tests and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. PCR assays were used to further characterize Vibrio strains. A survey on consumption of crustaceans was conducted among 120 randomly selected households in Abidjan. Overall, Vibrio spp. were isolated from 7.8% of the crustacean samples studied, at levels as high as 6.3 log CFU/g. Of the Vibrio strains identified, 40% were V. alginolyticus, 36% were V. parahaemolyticus, and 24% were nontoxigenic V. cholerae; the latter two species can cause mild to severe forms of seafood-associated gastroenteritis. Among interviewed households, 11.7% reported daily consumption of crustaceans, confirming the high probability of exposure of human population to Vibrio spp., and 7.5% reported symptoms of food poisoning after consumption of crustaceans. The absence of genes encoding major virulence factors in the studied strains, i.e., cholera toxin (ctxA and ctxB) in V. cholerae and thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (trh) in V. parahaemolyticus, does not exclude the possibility of exposure to pathogenic strains. However, human infections are not common because most households (96.7%) boil crustaceans, usually for at least 45 min (85.9% of households) before consumption.
Ottaviani, Donatella; Chierichetti, Serena; Angelico, Gabriele; Forte, Claudio; Rocchegiani, Elena; Manuali, Elisabetta; Leoni, Francesca
2018-06-21
To detect marine Bdellovibrio and like organisms (BALOs) able to infect V.parahaemolyticus from seawater of the Adriatic, Italy. To test, prey specificity and predation efficiency of our Halobacteriovorax isolate, named HBXCO1, towards 17 Vibrio and 7 non-Vibrio strains linked to the Adriatic sea, Italy. Double layer agar plating technique was used to enumerate BALOs and to evaluate their prey specificity and predation efficiency. Transmission electron microscopy and 16S rRNA analysis were used to identify them. Means of BALOs counts ranged from 5.0 PFU/ml (March 2017) to 98.6 PFU/ml (August 2016). HBXCO1 had the ability to attack all tested prey strains of V. parahaemolyticus, V. cholerae nonO1/O139 and V. vulnificus, but it did not prey on non-Vibrio strains and V. alginolyticus under the tested conditions. BALOs capable of infecting pathogenic vibrios are naturally present in seawater of the Adriatic, Italy. Isolate HBXCO1 shows prey specificity preferentially for the Vibrio genus and high predatory efficiency towards a wide range of pathogenic strains. The public impact of V.parahaemolyticus, non O1/O139 V.cholerae and V.vulnificus in bivalves is relevant and current decontamination processes are not always effective. We believe that the predator HBXCO1 represents a potential candidate for the development of strategies of biocontrol of pathogenic vibrios in bivalves from harvesting to trade. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Yeung, Marie; Thorsen, Trevor
2016-11-08
Foodborne infections in the US caused by Vibrio species have shown an upward trend. In the genus Vibrio, V. parahaemolyticus is responsible for the majority of Vibrio-associated infections. Thus, accurate differentiation among Vibrio spp. and detection of V. parahaemolyticus is critically important to ensure the safety of our food supply. Although molecular techniques are increasingly common, culture-depending methods are still routinely done and they are considered standard methods in certain circumstances. Hence, a novel chromogenic agar medium was tested with the goal of providing a better method for isolation and differentiation of clinically relevant Vibrio spp. The protocol compared the sensitivity, specificity and detection limit for the detection of V. parahaemolyticus between the new chromogenic medium and a conventional medium. Various V. parahaemolyticus strains (n=22) representing diverse serotypes and source of origins were used. They were previously identified by Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC), and further verified in our laboratory by tlh-PCR. In at least four separate trials, these strains were inoculated on the chromogenic agar and thiosulfate-citrate-bile salts-sucrose (TCBS) agar, which is the recommended medium for culturing this species, followed by incubation at 35-37 °C for 24-96 hr. Three V. parahaemolyticus strains (13.6%) did not grow optimally on TCBS, nonetheless exhibited green colonies if there was growth. Two strains (9.1%) did not yield the expected cyan colonies on the chromogenic agar. Non-V. parahaemolyticus strains (n=32) were also tested to determine the specificity of the chromogenic agar. Among these strains, 31 did not grow or exhibited other colony morphologies. The mean recovery of V. parahaemolyticus on the chromogenic agar was ~96.4% relative to tryptic soy agar supplemented with 2% NaCl. In conclusion, the new chromogenic agar is an effective medium to detect V. parahaemolyticus and to differentiate it from other vibrios.
Kinsey, Thomas P; Lydon, Keri A; Bowers, John C; Jones, Jessica L
2015-08-01
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P < 0.001) from initial levels. After 7 days of resubmersion, Vv and total Vp levels (excluding total Vp in oysters stored for 5 h) were not significantly different (P < 0.1) from levels in background oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.
Hartnell, R E; Stockley, L; Keay, W; Rosec, J-P; Hervio-Heath, D; Van den Berg, H; Leoni, F; Ottaviani, D; Henigman, U; Denayer, S; Serbruyns, B; Georgsson, F; Krumova-Valcheva, G; Gyurova, E; Blanco, C; Copin, S; Strauch, E; Wieczorek, K; Lopatek, M; Britova, A; Hardouin, G; Lombard, B; In't Veld, P; Leclercq, A; Baker-Austin, C
2018-02-10
Globally, vibrios represent an important and well-established group of bacterial foodborne pathogens. The European Commission (EC) mandated the Comite de European Normalisation (CEN) to undertake work to provide validation data for 15 methods in microbiology to support EC legislation. As part of this mandated work programme, merging of ISO/TS 21872-1:2007, which specifies a horizontal method for the detection of V. parahaemolyticus and V. cholerae, and ISO/TS 21872-2:2007, a similar horizontal method for the detection of potentially pathogenic vibrios other than V. cholerae and V. parahaemolyticus was proposed. Both parts of ISO/TS 21872 utilized classical culture-based isolation techniques coupled with biochemical confirmation steps. The work also considered simplification of the biochemical confirmation steps. In addition, because of advances in molecular based methods for identification of human pathogenic Vibrio spp. classical and real-time PCR options were also included within the scope of the validation. These considerations formed the basis of a multi-laboratory validation study with the aim of improving the precision of this ISO technical specification and providing a single ISO standard method to enable detection of these important foodborne Vibrio spp.. To achieve this aim, an international validation study involving 13 laboratories from 9 countries in Europe was conducted in 2013. The results of this validation have enabled integration of the two existing technical specifications targeting the detection of the major foodborne Vibrio spp., simplification of the suite of recommended biochemical identification tests and the introduction of molecular procedures that provide both species level identification and discrimination of putatively pathogenic strains of V. parahaemolyticus by the determination of the presence of theromostable direct and direct related haemolysins. The method performance characteristics generated in this have been included in revised international standard, ISO 21872:2017, published in July 2017. Copyright © 2018. Published by Elsevier B.V.
1972-06-01
introduction of sewage from commercial or private structures -- Monthly sampling of sewage treatment effluents -- Resistance of Vibrio parahemolyticus in oyster...of microorganisms in animal diseases and the effect of V. parahemolyticus and other vibrios on recruitment of commercial mollusks and crustaceans 575...Microbiology; including a survey of areas of the Chesapeake Bay for Vibrio parahaemalyticus * 18 Barnard, Thomas Alexander MA Assistant Marine Scientist
2012-09-21
virus and Southampton virus, and II (GII), which includes Bristol virus, Lordsdale virus, Toronto virus, Mexico virus, Hawaii virus and Snow Mountain...Shigella flexneriATCC12022 1 Negative Shigella sonnei ATCC25931 1 Negative Vibrio cholera (NAG) (Culture) 2 Negative Vibrio cholera (Ogawa...Culture) 1 Negative Vibrio cholera (Inaga) (Culture) 1 Negative Sapovivus (Known specimen extract) 2 Negative Rotavirus (Known specimen extract) 2
Structure Function Analysis of the Ferric Uptake Regulator (Fur) of Helicobacter pylori
2010-03-17
Escherichia coli, Listeria monocytogenes, and Vibrio vulnificus and hemochromatosis (125). In addition, iron overload in haemodialysis patients is...transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae. Proc Natl Acad Sci U S A 88:1125-9. 89. Goodwin, C. S., J. A...via direct interaction of Fur in a pathogenic bacterium, Vibrio vulnificus. J Bacteriol 189:2629-36. 76 130. Lee, H. J., K. J. Park, A. Y
Oleic Acid Produced by a Marine Vibrio spp. Acts as an Anti-Vibrio parahaemolyticus Agent
Leyton, Yanett; Borquez, Jorge; Darias, José; Cueto, Mercedes; Díaz-Marrero, Ana R.; Riquelme, Carlos
2011-01-01
It is known that some strains of Vibrio parahaemolyticus are responsible for gastroenteric diseases caused by the ingestion of marine organisms contaminated with these bacterial strains. Organic products that show inhibitory activity on the growth of the pathogenic V. parahaemolyticus were extracted from a Vibrio native in the north of Chile. The inhibitory organic products were isolated by reverse phase chromatography and permeation by Sephadex LH20, and were characterized by spectroscopic and spectrometric techniques. The results showed that the prevailing active product is oleic acid, which was compared with standards by gas chromatography and high-performance liquid chromatography (HPLC). These active products might be useful for controlling the proliferation of pathogenic clones of V. parahaemolyticus. PMID:22073014
Chitovibrin: a chitin-binding lectin from Vibrio parahemolyticus.
Gildemeister, O S; Zhu, B C; Laine, R A
1994-12-01
A novel 134 kDa, calcium-independent chitin-binding lectin, 'chitovibrin', is secreted by the marine bacterium Vibrio parahemolyticus, inducible with chitin or chitin-oligomers. Chitovibrin shows no apparent enzymatic activity but exhibits a strong affinity for chitin and chito-oligomers > dp9. The protein has an isoelectric pH of 3.6, shows thermal tolerance, binds chitin with an optimum at pH 6 and is active in 0-4 M NaCl. Chitovibrin appears to be completely different from other reported Vibrio lectins and may function to bind V. parahemolyticus to chitin substrates, or to capture or sequester chito-oligomers. It may be a member of a large group of recently described proteins in Vibrios related to a complex chitinoclastic (chitinivorous) system.
Givens, C E; Bowers, J C; DePaola, A; Hollibaugh, J T; Jones, J L
2014-06-01
Vibrio vulnificus and Vibrio parahaemolyticus are Gram-negative marine bacteria naturally found in estuaries such as the Gulf of Mexico and can be pathogenic to humans. We quantified both of these organisms in fish, oyster, sediment, and water using culture-independent (quantitative PCR; qPCR) and culture-dependent (direct plating-colony hybridization; DP-CH) techniques during the transition period between winter and spring. We correlated these levels to environmental conditions and to abundance of total bacteria and total vibrio. By qPCR, fish intestine samples had the highest V. vulnificus densities and were 2·7, 3·5, and 4·2 logs greater than oyster, sediment and water samples, respectively. Densities of V. parahaemolyticus in fish samples by qPCR were 1·0, 2·1, and 3·1 logs greater than oyster, sediment and water samples, respectively. Similar differences between sample types were also observed by DP-CH. The difference between the more favourable and less favourable environmental conditions identified in this study was small (mean salinity 4·3 vs. 13 ppt). However, V. vulnificus and V. parahaemolyticus were consistently detected in fish intestines, but infrequently detected and at lower levels in oysters and during the less favourable period. This trend was observed by qPCR and DP-CH, indicating fish intestines are a significant source of pathogenic vibrios in the environment. This is the first study to report the densities of Bacteria 16S rRNA, Vibrio 16S rRNA, Vibrio vulnificus, and V. parahaemolyticus in fish intestine, oyster, sediment and water samples, as well as compare these values through culture-dependent and culture-independent methodology. Vibrio vulnificus and V. parahaemolyticus were detected in samples of fish intestines by qPCR and colony hybridization when conditions were less favourable for their occurrence in the environment. In contrast, V. vulnificus and V. parahaemolyticus were infrequently detected and at lower levels in other niches examined. These results indicate that fish intestinal tracts are a significant source of these pathogens. © 2014 Society for Applied Microbiology. This article has been contributed to by US Government employees and their work is in the public domain in the US.
Long-term effects of ocean warming on vibrios
NASA Astrophysics Data System (ADS)
Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.
2012-12-01
Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased in occurrence over the last half century in the southern North Sea, but also prevailed within the particle associated bacterial community of coastal marine waters. These findings provide support for the view that global warming may have a strong impact on the composition of marine bacterial communities with important implications for human and animal health into the future.
Zhou, Qian-Jin; Wang, Lei; Chen, Jiong; Wang, Rui-Na; Shi, Yu-Hong; Li, Chang-Hong; Zhang, De-Min; Yan, Xiao-Jun; Zhang, Yan-Jun
2014-09-01
Rapid, low-cost, and user-friendly strategies are urgently needed for early disease diagnosis and timely treatment, particularly for on-site screening of pathogens in aquaculture. In this study, we successfully developed a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP), which was capable of simultaneously detecting 10 pathogenic bacteria in aquatic animals, i.e., Nocardia seriolae, Pseudomonas putida, Streptococcus iniae, Vibrio alginolyticus, Vibrio anguillarum, Vibrio fluvialis, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio rotiferianus, and Vibrio vulnificus. The assay provided a nearly-automated approach, with only a single pipetting step per chip for sample dispensing. This technique could achieve limits of detection (LOD) ranging from 0.40 to 6.42pg per 1.414μL reaction in less than 30 min. The robust reproducibility was demonstrated by a little variation among duplications for each bacterium with the coefficient of variation (CV) for time to positive (Tp) value less than 0.10. The clinical sensitivity and specificity of this on-chip LAMP assay in detecting field samples were 96.2% and 93.8% by comparison with conventional microbiological methods. Compared with other well-known techniques, on-chip LAMP assay provides low sample and reagent consumption, ease-of-use, accelerated analysis, multiple bacteria and on-site detection, and high reproducibility, indicating that such a technique would be applicable for on-site detection and routine monitoring of multiple pathogens in aquaculture. Copyright © 2014 Elsevier B.V. All rights reserved.
Fri, Justine; Ndip, Roland Ndip; Njom, Henry Akum; Clarke, Anna Maria
2017-01-01
Background: Seafood-borne Vibrio infections, often linked to contaminated seafood and water, are of increasing global public health concern. The aim of this study was to evaluate the prevalence of human pathogenic vibrios and their associated virulence genes isolated from fish and water samples from 2 commercial dusky kob farms and Kareiga estuary, South Africa. Methods: A total of 200 samples including dusky kob fish (n = 120) and seawater (n = 80) were subjected to Vibrio screening on thiosulfate-citrate-bile salts-sucrose agar (TCBS). Presumptive isolates were confirmed and delineated to V. cholerae, V. parahaemolyticus, V. vulnificus, and V. fluvialis by PCR. Various pathogenic gene markers were screened: V. parahaemolyticus (trh and tdh), V. vulnificus (vcgE and vcgC) and V. fluvialis (stn, vfh, hupO, vfpA). Restriction Fragment Length Polymorphism (RFLP) of the vvhA gene of V. vulnificus strains was performed to determine the associated biotypes. Results: Total Vibrio prevalence was 59.4% (606/1020) of which V. fluvialis was the most predominant 193 (31.85%), followed by Vibrio vulnificus 74 (12.21%) and V. parahaemolyticus 33 (5.45%). No V. cholerae strain was detected. One of the V. parahaemolyticus strains possessed the trh gene 7 (9.46%) while most (91.9%; 68/74) V. vulnificus isolates were of the E-type genotype. V. fluvialis virulence genes detected were stn (13.5%), hupO (10.4%) and vfpA (1.0%). 12.16% (9/74) of V. vulnificus strains exhibited a biotype 3 RFLP pattern. Conclusions: This is the first report of potentially pathogenic vibrios from healthy marine fish in the study area, and therefore a public health concern. PMID:28946684
Abundance and antibiotic susceptibility of Vibrio spp. isolated from microplastics
NASA Astrophysics Data System (ADS)
Laverty, A. L.; Darr, K.; Dobbs, F. C.
2016-02-01
In recent years, there has been a growing concern for `microplastics' (particles < 5 mm) in the marine environment. Since plastics degrade very slowly, they remain in the environment on much longer timescales than most natural substrates and can thus provide a novel habitat for colonization by microbial communities (Zettler et al. 2013 Environ. Sci. Technol. 47:7137). The full spectrum of relationships between microplastics and bacteria, however, is little understood. In summer 2015, we examined microplastics collected from a tributary of the lower Chesapeake Bay and determined the presence, abundance, and antibiotic-resistance profiles of Vibrio spp. found on them. We collected 22 microplastic pieces, paired seawater samples, and from them cultured 44 putative Vibrio spp. isolates, 18 of which were PCR-confirmed as V. parahaemolyticus and 3 as V. vulnificus. There were no PCR-confirmed V. cholerae isolates. We used the Kirby-Bauer disk diffusion susceptibility test to examine the isolates' response to six antibiotics: chloramphenicol (30μg), gentamicin (10μg), ampicillin (10μg), streptomycin (10μg), tetracycline (30μg), and rifampin (5μg). Vibrio isolates were susceptible to three or more of the six antibiotics tested and all were susceptible to tetracycline and chloramphenicol. There were no apparent differences between the antibiotic susceptibilities of vibrios isolated from microplastics compared to those from the water column. In every instance tested, vibrios on microplastics were enriched by at least two orders of magnitude compared to those from paired seawater samples. This study demonstrates that microplastic particles serve as a habitat for Vibrio species, in particular V. vulnificus and V. parahaemolyticus, confirming the conjecture of Zettler et al. (2013) that plastics may serve as a vector for these and other potentially pathogenic bacteria.
DeLorenzo, M E; Brooker, J; Chung, K W; Kelly, M; Martinez, J; Moore, J G; Thomas, M
2016-04-01
Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities. © 2014 Wiley Periodicals, Inc.
Culturable microbiota of ranched southern bluefin tuna (Thunnus maccoyii Castelnau).
Valdenegro-Vega, V; Naeem, S; Carson, J; Bowman, J P; Tejedor del Real, J L; Nowak, B
2013-10-01
The Australian tuna industry is based on the ranching of wild southern bluefin tuna (SBT, Thunnus maccoyii). Within this industry, only opportunistic pathogens have been reported infecting external wounds of fish. This study aimed to identify different culturable bacteria present in three cohorts of SBT and to determine normal bacteria and potential pathogens in isolates from harvest fish and moribund/dead fish. Post-mortem changes in the microbiota were also studied. Moribund/dead showed a greater proportion of members from the family Vibrionaceae than harvested fish; the latter presented mainly non-Vibrio species. In harvested fish spleens, Vibrio splendidus I complex was the most commonly identified group among Vibrio isolates, while most groups from the family Vibrionaceae were isolated from gills. For moribund/dead, Vibrio chagasii and Photobacterium damselae subsp. damselae were common in gill, spleen and kidney samples. Non-Vibrio isolates from gills were characterized using 16S rRNA sequencing as Flavobacteriaceae and classes Gammaproteobacteria and Alphaproteobacteria, mainly from the genera Winogradskyella and Tenacibaculum. Post-mortem changes showed dynamic shifts in bacterial dominance in gills, with Vibrionaceae and non-Vibrio spp. found in similar proportions initially and types related to Pseudoalteromonas ruthenica prevailing after 27 h. Spleen samples showed little bacterial growth until 5 h post-mortem, while various Vibrio-associated species were isolated 27 h post-mortem. Bacterial isolates found include a range of potentially pathogenic bacteria that should be monitored though most of them have yet to be associated with disease in tuna. This study forms a foundation for future research into the bacterial population dynamics under different culture conditions of SBT. An understanding of the bacterial compositions in SBT is necessary to evaluate the effects of some bacterial species on their health. © 2013 The Society for Applied Microbiology.
Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013.
Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto
2014-10-30
We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ. Copyright © 2014 Díaz-Quiñonez et al.
2004-06-23
Vibrio cholerae ) + — — — + Unknown Salmonella Typhimurium + — + — — Unknown Typhoid fever (Salmonella Typhi) + O — — — Unknown Source: This...disseminated by contamination of food or drink. Cholera bb ( Vibrio cholerae ) Cholera occurs in many of the developing countries of Africa and Asia...diseaseinfo/cholera_g.htm]; the Health Canada Material Safety Data Sheet - Infectious Substances for Vibrio cholerae , found online at [http://www.hc-sc.gc.ca
2011-03-16
to enter the VBNC state [17,18,19,20]. In addition, many other bacterial pathogens, including Francisella tularensis, Vibrio cholerae, and Escherichia...sterilized distilled water microcosms at 4uC after 21 days [31]. Likewise, Linder and Oliver reported that Vibrio vulnificus entered the VBNC state... Vibrio cholerae, and Escherichia coli enter the VBNC state [12,21]. In addition, the two closest pathogenic relatives of Y. pestis, namely Y
Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.
Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C
2014-11-01
Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Manju, Sivalingam; Malaikozhundan, Balasubramanian; Withyachumnarnkul, Boonsirm; Vaseeharan, Baskaralingam
2016-05-01
The anti-Vibrio activity of essential oils (EOs) of nine medicinal plants was tested against 28 Vibrio spp. isolated from diseased Fenneropenaeus indicus. EO of Nigella sativa exhibited anti-Vibrio activity against all Vibrio spp. and greater inhibition was noted for the isolate V2 which was identified as Vibrio parahaemolyticus Dahv2. Further, EO of N. sativa effectively inhibited V. parahaemolyticus Dahv2 with an inhibition zone of 23.9mm at 101.2μgml(-1). Moreover, EO of N. sativa revealed anti-biofilm activity at 101.2μgml(-1) against V. parahaemolyticus Dahv2 and inhibited the growth of V. parahaemolyticus Dahv2 at 100μgml(-1).In vivo experimental infection studies showed that the survival of Artemia spp. infected with V. parahaemolyticus Dahv2 at 1×10(3)cfuml(-1) was only 40%. However, the survival of Artemia spp. was significantly increased after challenge with 100μgml(-1) of EO of N. sativa. EO of N. sativa showed higher anti-oxidant potential and total phenol content than other EOs tested. The anti-oxidant activity of EO of N. sativa was highly correlated to their total phenolic contents (r=0.836, P<0.05). This observation suggests that EO of N. sativa protected the Artemia spp. after experimental infection of V. parahaemolyticus Dahv2. Copyright © 2016 Elsevier Inc. All rights reserved.
Kalatzis, Panos G.; Bastías, Roberto; Kokkari, Constantina; Katharios, Pantelis
2016-01-01
Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them. PMID:26950336
Ripabelli, G; Sammarco, M L; Fanelli, I; Grasso, G M
2004-01-01
Infections transmitted through consumption of contaminated seafood is a significant source of human morbidity. The aim of this study was to compare the detection of Salmonella, Listeria, Vibrio, and Yersinia enterocolitica in frozen seafood with results from enumeration of conventional faecal indicators. A total of 213 crustaceans or molluscs were purchased from local vendors in Italy: 74% were harvested in Italy, 25% from other European countries and 1% from outside Europe. Listeria spp. was isolated from 20% of samples, Vibrio spp. from 11%, Salmonella from 3% and Y. enterocolitica from 1%. Listeria species isolated were L. monocytogenes, L. innocua, L. welshimeri, L. ivanovii and L. seeligeri. Vibrio species isolated were V. alginolyticus and V. fluvialis. The most contaminated shellfish for both faecal indicator microrganism and pathogens were hen clams (6% contained Salmonella, 27% Listeria spp. and 3% Y. enterocolitica), while from 27% of shrimps Vibrio spp. was recovered. Higher levels of faecal indicators were recovered from samples harvested outside Europe, and 66% of samples harvested in Thailand were contaminated from Salmonella. Significant differences were found in the levels of contamination of seafoods depending upon the freezing regime, but there was a limited association between presence of potential pathogens (particularly Vibrio spp.) and conventional faecal indicators. Hence, we suggest reconsideration of current legal parameters to evaluate microbiological quality of seafood.
Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."
ERIC Educational Resources Information Center
Slock, James
1995-01-01
Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)
21 CFR 866.3930 - Vibrio cholerae serological reagents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera... (salts) depletion, and by vomiting, muscle cramps, and prostration. If untreated, the severe dehydration...
21 CFR 866.3930 - Vibrio cholerae serological reagents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera... (salts) depletion, and by vomiting, muscle cramps, and prostration. If untreated, the severe dehydration...
21 CFR 866.3930 - Vibrio cholerae serological reagents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera... (salts) depletion, and by vomiting, muscle cramps, and prostration. If untreated, the severe dehydration...
Diversity of Vibrio spp in Karstic Coastal Marshes in the Yucatan Peninsula
2015-01-01
Coastal bodies of water formed by the combination of seawater, underground rivers and rainwater comprise the systems with the greatest solar energy flow and biomass production on the planet. These characteristics make them reservoirs for a large number species, mainly microorganisms. Bacteria of the genus Vibrio are natural inhabitants of these environments and their presence is determined by variations in the nutrient, temperature and salinity cycles generated by the seasonal hydrologic behavior of these lagoon systems. This study determined the diversity of the genus Vibrio in 4 coastal bodies of water on the Yucatan Peninsula (Celestun Lagoon, Chelem Lagoon, Rosada Lagoon and Sabancuy Estuary). Using the molecular technique of 454 pyrosequencing, DNA extracted from water samples was analyzed and 32,807 reads were obtained belonging to over 20 culturable species of the genus Vibrio and related genera. OTU (operational taxonomic unit) richness and Chao2 and Shannon Weaver diversity indices were obtained with the database from this technique. Physicochemical and environmental parameters were determined and correlated with Vibrio diversity measured in OTUs. PMID:26252792
Elmahdi, Sara; DaSilva, Ligia V; Parveen, Salina
2016-08-01
Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood associated infections and mortality in the United States. The main syndromes caused by these pathogens are gastroenteritis, wound infections, and septicemia. This article reviewed the antibiotic resistance profile of V. parahaemolyticus and V. vulnificus in the United States and other countries including Italy, Brazil, Philippines, Malaysia, Thailand, China, India, Iran, South Africa and Australia. The awareness of antimicrobial resistance of these two pathogens is not as well documented as other foodborne bacterial pathogens. Vibrio spp. are usually susceptible to most antimicrobials of veterinary and human significance. However, many studies reported that V. vulnificus and V. parahaemolyticus showed multiple-antibiotic resistance due to misuse of antibiotics to control infections in aquaculture production. In addition, both environmental and clinical isolates showed similar antibiotic resistance profiles. Most frequently observed antibiotic resistance profiles involved ampicillin, penicillin and tetracycline regardless of the countries. The presence of multiple-antibiotic resistant bacteria in seafood and aquatic environments is a major concern in fish and shellfish farming and human health. Copyright © 2016. Published by Elsevier Ltd.
Taniguchi, H; Ohta, H; Ogawa, M; Mizuguchi, Y
1985-05-01
Two hemolysin genes of Vibrio parahaemolyticus WP1, a thermostable direct (TSD) hemolysin gene and a thermolabile hemolysin gene, were cloned into the pBR322 vector in Escherichia coli K-12 C600. A large amount of the TSD hemolysin produced in E. coli K-12 accumulated in the periplasmic space. The TSD hemolysin gene was localized on a 0.9-kilobase HindIII-BamHI fragment by identifying qualitatively the production of the TSD hemolysin by a reverse passive hemagglutination assay in the osmotic shock fluid. The thermolabile hemolysin gene was isolated on a 1.3-kilobase HindIII-PstI fragment by selection with the hemolysin on blood agar. Southern blot hybridization and colony hybridization experiments indicated that the TSD hemolysin gene was present in the chromosomal DNA of 15 Kanagawa phenomenon-positive strains but not in 14 negative strains, whereas the thermolabile hemolysin gene was detected in all strains. No homologous DNA sequences to TSD and thermolabile hemolysin genes were detected in the chromosomes of Vibrio cholerae, Vibrio vulnificus, non-O1 V. cholerae, and Vibrio anguillarum.
León Robles, A; Acedo Félix, E; Gomez-Gil, B; Quiñones Ramírez, E I; Nevárez-Martínez, M; Noriega-Orozco, L
2013-12-01
Members of the genus Vibrio are common in aquatic environments. Among them are V. cholerae, V. vulnificus, V. parahaemolyticus and V. mimicus. Several studies have shown that environmental factors, such as temperature, salinity, and dissolved oxygen, are involved in their epidemiology. Therefore, the main objective of this study is to determine if there is a correlation between the presence/amount of V. cholerae, V, vulnificus, V. parahaemolyticus and V. mimicus and the environmental conditions of the seawater off the coast of Guaymas, México. Quantification of all four pathogenic bacteria was performed using the most probable number method, and suspected colonies were identified by polymerase chain reaction (PCR). Correlations were found using principal component analysis. V. parahaemolyticus was the most abundant and widely distributed bacteria, followed by V. vulnificus, V. mimicus and V. cholerae. Positive correlations between V. parahaemolyticus, V. vulnificus and V. mimicus with temperature, salinity, electric conductivity, and total dissolved solids were found. The abundance of V. cholerae was mainly affected by the sampling site and not by physicochemical parameters.
Production of Bioactive Secondary Metabolites by Marine Vibrionaceae
Mansson, Maria; Gram, Lone; Larsen, Thomas O.
2011-01-01
Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation. PMID:22131950
A biochemical protocol for the isolation and identification of current species of Vibrio in seafood.
Ottaviani, D; Masini, L; Bacchiocchi, S
2003-01-01
We report a biochemical method for the isolation and identification of the current species of vibrios using just one operative protocol. The method involves an enrichment phase with incubation at 30 degrees C for 8-24 h in alkaline peptone water and an isolation phase on thiosulphate-citrate-salt sucrose agar plates incubating at 30 degrees C for 24 h. Four biochemical tests and Alsina's scheme were performed for genus and species identification, respectively. All biochemical tests were optimized as regards conditions of temperature, time of incubation and media composition. The whole standardized protocol was always able to give a correct identification when applied to 25 reference strains of Vibrio and 134 field isolates. The data demonstrated that the assay method allows an efficient recovery, isolation and identification of current species of Vibrio in seafood obtaining results within 2-7 days. This method based on biochemical tests could be applicable even in basic microbiology laboratories, and can be used simultaneously to isolate and discriminate all clinically relevant species of Vibrio.
Ethanolamine utilization in Vibrio alginolyticus
2012-01-01
Abstract Ethanolamine is used as an energy source by phylogenetically diverse bacteria including pathogens, by the concerted action of proteins from the eut-operon. Previous studies have revealed the presence of eutBC genes encoding ethanolamine-ammonia lyase, a key enzyme that breaks ethanolamine into acetaldehyde and ammonia, in about 100 bacterial genomes including members of gamma-proteobacteria. However, ethanolamine utilization has not been reported for any member of the Vibrio genus. Our comparative genomics study reveals the presence of genes that are involved in ethanolamine utilization in several Vibrio species. Using Vibrio alginolyticus as a model system we demonstrate that ethanolamine is better utilized as a nitrogen source than as a carbon source. Reviewers This article was reviewed by Dr. Lakshminarayan Iyer and Dr. Vivek Anantharaman (nominated by Dr. L Aravind). PMID:23234435
Jones, J L; Kinsey, T P; Johnson, L W; Porso, R; Friedman, B; Curtis, M; Wesighan, P; Schuster, R; Bowers, J C
2016-08-01
Vibrio parahaemolyticus and Vibrio vulnificus can grow rapidly in shellfish subjected to ambient air conditions, such as during intertidal exposure. In this study, levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and total V. vulnificus were determined in oysters collected from two study locations where intertidal harvest practices are common. Samples were collected directly off intertidal flats, after exposure (ambient air [Washington State] or refrigerated [New Jersey]), and after reimmersion by natural tidal cycles. Samples were processed using a most-probable-number (MPN) real-time PCR method for total and pathogenic V. parahaemolyticus or V. vulnificus In Washington State, the mean levels of V. parahaemolyticus increased 1.38 log MPN/g following intertidal exposure and dropped 1.41 log MPN/g after reimmersion for 1 day, but the levels were dependent upon the container type utilized. Pathogenic V. parahaemolyticus levels followed a similar trend. However, V. vulnificus levels increased 0.10 log MPN/g during intertidal exposure in Washington but decreased by >1 log MPN/g after reimmersion. In New Jersey, initial levels of all vibrios studied were not significantly altered during the refrigerated sorting and containerizing process. However, there was an increase in levels after the first day of reimmersion by 0.79, 0.72, 0.92, and 0.71 log MPN/g for total, tdh(+) and trh(+) V. parahaemolyticus, and V. vulnificus, respectively. The levels of all targets decreased to those similar to background after a second day of reimmersion. These data indicate that the intertidal harvest and handling practices for oysters that were studied in Washington and New Jersey do not increase the risk of illness from V. parahaemolyticus or V. vulnificus Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-associated infectious morbidity and mortality in the United States. Vibrio spp. can grow rapidly in shellfish subjected to ambient air conditions, such as during periods of intertidal exposure. When oysters are submersed with the incoming tide, the vibrios can be purged. However, data on the rates of increase and purging during intertidal harvest are scarce, which limits the accuracy of risk assessments. The objective of this study was to help fill these data gaps by determining the levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and V. vulnificus in oysters from two locations where intertidal harvest practices are common, using the current industry practices. The data generated provide insight into the responses of Vibrio spp. to relevant practices of the industry and public health, which can be incorporated into risk management decisions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
1981-09-01
pathogens that lack CFA/I including enteropathogenic E. coli, some ETEC ana Vibrio cholerae (Figure 1). The mean change in net O.D. between the paired...intestine. In a further analogy, we have found that 20% of 50 recipients of a highly ad- hesive non-toxigenic Vibrio cholerae attenuated iaccine strain...and Characteristics of a Vibrio cholerae Mutant Lacking the A (ADP-Ribosylating) Portion of the Cholera Enterotoxin. Proc. Nat. Acad. Sci. USA 76:2052
2004-05-20
Unknown Cholera ( Vibrio cholerae ) + — — — + Unknown Salmonella Typhimurium + — + — — Unknown Typhoid fever (Salmonella Typhi) + O — — — Unknown... Cholera bb ( Vibrio cholerae ) Cholera occurs in many of the developing countries of Africa and Asia, especially where sanitary conditions are not optimal...Safety Data Sheet - Infectious Substances for Vibrio cholerae , found online at [http://www.hc-sc.gc.ca/pphb-dgspsp/msds-ftss/msds164e.html]; D. Hank
Influence of Environmental Factors on Vibrio spp. in Coastal Ecosystems.
Johnson, Crystal N
2015-06-01
Various studies have examined the relationships between vibrios and the environmental conditions surrounding them. However, very few reviews have compiled these studies into cohesive points. This may be due to the fact that these studies examine different environmental parameters, use different sampling, detection, and enumeration methodologies, and occur in diverse geographic locations. The current article is one approach to compile these studies into a cohesive work that assesses the importance of environmental determinants on the abundance of vibrios in coastal ecosystems.
A Tetrodotoxin-Producing Vibrio Strain, LM-1, from the Puffer Fish Fugu vermicularis radiatus
Lee, Myoung-Ja; Jeong, Dong-Youn; Kim, Woo-Seong; Kim, Hyun-Dae; Kim, Cheorl-Ho; Park, Won-Whan; Park, Yong-Ha; Kim, Kyung-Sam; Kim, Hyung-Min; Kim, Dong-Soo
2000-01-01
Identification of tetrodotoxin (TTX) and its derivatives produced from a Vibrio strain in the intestine of the puffer fish Fugu vermicularis radiatus was performed by thin-layer chromatography, electrophoresis, high-performance liquid chromatography, and gas chromatography-mass spectrometry, together with a mouse bioassay for toxicity. It was demonstrated that the isolated bacterium produced TTX, 4-epi-TTX, and anhTTX during cultivation, suggesting that Vibrio strains are responsible for the toxification of the puffer fish. PMID:10742263
Bukharin, O V; Boĭko, A V; Zhuravleva, L A
1998-01-01
Factors of persistence and/or pathogenicity in Vibrio parahaemolyticus and Aeromonas hydrophila (hemolytic, lipase, lecithin, DNAase, RNAase, antilysozyme, "anti-interferon", anticomplementary activities and capacity for absorbing Congo red) were studied. The study revealed the interspecific and subpopulation (hospital and extraorganismal parts of the population) differences in the activity of the manifestation of these factors. Strong dependence of the whole complex of persistence and pathogenicity factors of their belonging to the hostal part of Vibrio and Aeromonas populations was shown.
Caburlotto, Greta; Suffredini, Elisabetta; Toson, Marica; Fasolato, Luca; Antonetti, Paolo; Zambon, Michela; Manfrin, Amedeo
2016-03-02
Infections due to the pathogenic human vibrios, Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, are mainly associated with consumption of raw or partially cooked bivalve molluscs. At present, little is known about the presence of Vibrio species in crustaceans and the risk of vibriosis associated with the consumption of these products. The aim of the present study was to evaluate the prevalence and concentration of the main pathogenic Vibrio spp. in samples of crustaceans (n=143) commonly eaten in Italy, taking into account the effects of different variables such as crustacean species, storage conditions and geographic origin. Subsequently, the potential pathogenicity of V. parahaemolyticus strains isolated from crustaceans (n=88) was investigated, considering the classic virulence factors (tdh and trh genes) and four genes coding for relevant proteins of the type III secretion systems 2 (T3SS2α and T3SS2β). In this study, the presence of V. cholerae and V. vulnificus was never detected, whereas 40 samples (28%) were positive for V. parahaemolyticus with an overall prevalence of 41% in refrigerated products and 8% in frozen products. The highest prevalence and average contamination levels were detected in Crangon crangon (prevalence 58% and median value 3400 MPN/g) and in products from the northern Adriatic Sea (35%), with the samples from the northern Venetian Lagoon reaching a median value of 1375 MPN/g. While genetic analysis confirmed absence of the tdh gene, three of the isolates contained the trh gene and, simultaneously, the T3SS2β genes. Moreover three possibly clonal tdh-negative/trh-negative isolates carried the T3SS2α apparatus. The detection of both T3SS2α and T3SS2β apparatuses in V. parahaemolyticus strains isolated from crustaceans emphasised the importance of considering new genetic markers associated with virulence besides the classical factors. Moreover this study represents the first report dealing with Vibrio spp. in crustaceans in Italy, and it may provide useful information for the development of sanitary surveillance plans to prevent the risk of vibriosis in seafood consumers. Copyright © 2016 Elsevier B.V. All rights reserved.
Kiran, George Seghal; Lipton, Anuj Nishanth; Priyadharshini, Sethu; Anitha, Kumar; Suárez, Lucia Elizabeth Cruz; Arasu, Mariadhas Valan; Choi, Ki Choon; Selvin, Joseph; Al-Dhabi, Naif Abdullah
2014-08-13
Vibrio pathogens are causative agents of mid-culture outbreaks, and early mortality syndrome and secondary aetiology of most dreadful viral outbreaks in shrimp aquaculture. Among the pathogenic vibrios group, Vibrio alginolyticus and V. harveyi are considered as the most significant ones in the grow-out ponds of giant black tiger shrimp Penaeus monodon in India. Use of antibiotics was banned in many countries due to the emergence of antibiotic-resistant strains and accumulation of residual antibiotics in harvested shrimp. There is an urgent need to consider the use of alternative antibiotics for the control of vibriosis in shrimp aquaculture. Biofilm formation is a pathogenic and/or establishment mechanism of Vibrio spp. This study aims to develop novel safe antibiofilm and/or antiadhesive process using PHB to contain vibrios outbreaks in shrimp aquaculture. In this study a poly-hydroxy butyrate (PHB) polymer producing bacterium Brevibacterium casei MSI04 was isolated from a marine sponge Dendrilla nigra and production of PHB was optimized under submerged-fermentation (SmF) conditions. The effect of carbon, nitrogen and mineral sources on PHB production and enhanced production of PHB by response surface methods were demonstrated. The maximum PHB accumulation obtained was 6.74 g/L in the optimized media containing 25 g/L starch as carbon source, 96 h of incubation, 35°C and 3% NaCl. The highest antiadhesive activity upto 96% was recorded against V. vulnificus, and V. fischeri, followed by 92% against V. parahaemolyticus and V. alginolyticus and 88% inhibition was recorded against V. harveyi. In this study, a thermostable biopolymer was chemically characterized as PHB based on 1HNMR spectra, FT-IR and GC-MS spectra. The NMR spectra revealed that the polymer was an isocratic homopolymer and it also confirmed that the compound was PHB. The antiadhesive activity of PHB was determined in microtitre plate assay and an effective concentration (EC) of PHB (200 μl containing 0.6 mg PHB) was confirmed by confocal laser scanning microscopic analysis of vibrio biofilm on pre-treated glass and polystyrene surfaces. This is a first report on anti-adhesive activity of PHB against prominent vibrio pathogens in shrimp aquaculture.
Baumeister, Leslie; Hochman, Mona E; Schwarz, John R; Brinkmeyer, Robin
2014-10-01
Dorsal and pectoral fin spines from two species of sea catfishes (Bagre marinus and Ariopsis felis) landed at 54 sites in Galveston Bay, Texas, and its sub-bays from June to October 2005 were screened with traditional cultivation-based assays and quantitative PCR assays for Vibrio vulnificus and Vibrio parahaemolyticus. V. vulnificus was present on 51.2% of fish (n = 247), with an average of 403 ± 337 SD cells g(-1). V. parahaemolyticus was present on 94.2% (n = 247); 12.8% tested positive for the virulence-conferring tdh gene, having an average 2,039 ± 2,171 SD cells g(-1). The increasing trend in seafood consumption of "trash fishes" from lower trophic levels, such as sea catfishes, warrants evaluation of their life histories for association with pathogens of concern for human consumption.
Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P
2009-04-01
This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.
Thompson, Fabiano L.; Iida, Tetsuya; Swings, Jean
2004-01-01
Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years. PMID:15353563
Kanungo, Reba; Shashikala; Karunasagar, I; Srinivasan, S; Sheela, Devi; Venkatesh, K; Anitha, P
2007-12-01
Potentially pathogenic members of the Vibrionaceae family including Vibrio cholerae and Vibrio parahemolyticus were isolated from domestic sources of drinking water in coastal villages following sea water inundation during the tsunami in Southern India. Phenotypic and genotypic studies were done to confirm the identity and detection of toxins. Vibrio-gyr (gyrase B gene) was detected in all sixteen vibrio isolates. Toxin regulating genes i.e.: ctx gene, tdh gene, and trh gene, however were not detected in any of the strains, thereby ruling out presence of toxins which could endanger human life. Other potentially pathogenic bacteria Aeromonas and Plesiomonas were also isolated from hand pumps and wells, in a few localities. There was no immediate danger in the form of an outbreak or sporadic gastroenteritis at the time of the study. Timely chlorination and restoration of potable water supply to the flood affected population by governmental and nongovernmental agencies averted waterborne gastroenteritis. Assessment of quality of water and detection of potential virulent organisms is an important public health activity following natural disasters. This work highlights the importance of screening water sources for potentially pathogenic microorganisms after natural disasters to avert outbreaks of gastroenteritis and other infectious diseases.
Al-Othrubi, Saleh M; Hanafiah, Alfizah; Radu, Son; Neoh, Humin; Jamal, Rahaman
2011-04-01
To find out the prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus in seafoods and environmental sources. The study was carried out at the Center of Excellence for Food Safety Research, University Putra Malaysia; Universiti Kebangsaan Malaysia; Medical Molecular Biology Institute; and University Kebansaan Malaysia Hospital, Malaysia between January 2006 and August 2008. One hundred and forty-four isolates from 400 samples of seafood (122 isolates) and seawater sources (22 isolates) were investigated for the presence of thermostable direct hemolysin (tdh+) and TDH-related hemolysin (trh+) genes using the standard methods. The E-test method was used to test the antimicrobial susceptibility. The study indicates low occurrence of tdh+ (0.69%) and trh+ isolates (8.3%). None of the isolates tested posses both virulence genes. High sensitivity was observed against tetracycline (98%). The mean minimum inhibitory concentration (MIC) of the isolates toward ampicillin increased from 4 ug/ml in 2004 to 24 ug/ml in 2007. The current study demonstrates a low occurrence of pathogenic Vibrio parahaemolyticus in the marine environment and seafood. Nonetheless, the potential risk of vibrio infection due to consumption of Vibrio parahaemolyticus contaminated seafood in Malaysia should not be neglected.
NASA Astrophysics Data System (ADS)
Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro
2008-06-01
An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.
Pougnet, Laurence; Pougnet, Richard; Voarino, Audrey; Sapin, Jeanne; Drouillard, Isabelle; Quilici, Marie Laure; Désidéri-Vaillant, Catherine
2018-01-01
This is a case report about a 54-year-old man with hypovolemic shock, due to diarrhea and major vomiting after his return from India. The isolation of Vibrio cholerae serogroup O1 (Ogawa serotype) explains this typical clinical presentation of cholera, seen in 10% of cholera cases only. The patient had co-infection with Vibrio cholerae and Campylobacter coli. Co-infections appear to be frequent in endemic areas. The purpose of this case report is to recall the relevance of Vibrio isolation when the clinical context is evocative (diarrhea on travel return, raw sea food consumption).
[Isolation of Listeria spp., Aeromonas spp., and Vibrio spp. from seafood products].
Scoglio, M E; Di Pietro, A; Mauro, A; Picerno, I; Laganà, P; Delia, S A
2000-01-01
Forty-one strains of Listeria, Aeromonas and Vibrio have been isolated in 71 samples of seafood, both raw and ready to eat and frozen. L. monocytogenes, detected by PCR also, is found in the smoked salmon only. Aeromonas spp. and Vibrio spp. are isolated in the raw products (shrimps and shellfish). No relationship is found between the presence of such microrganisms and the common indicator bacteria. Finally, the health hazard related to strong contamination and the need to diversify the food safety assurance programmes, for the various products, are underlined.
Velázquez, Claudia; Correa-Basurto, José; Garcia-Hernandez, Normand; Barbosa, Elizabeth; Tesoro-Cruz, Emiliano; Calzada, Samuel; Calzada, Fernando
2012-09-28
Chiranthodendron pentadactylon Larreat is frequently used in Mexican traditional medicine as well as in Guatemalan for several medicinal purposes, including their use in the control of diarrhea. This work was undertaken to obtain additional information that support the traditional use of Chiranthodendron pentadactylon Larreat, on pharmacological basis using the major antisecretory isolated compound from computational, in vitro and in vivo experiments. (-)-Epicatechin was isolated from ethyl acetate fraction of the plant crude extract. In vivo toxin (Vibrio cholera or Escherichia coli)-induced intestinal secretion in rat jejunal loops models and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on Vibrio cholera toxin were used in experimental studies while the molecular docking technique was used to conduct computational study. The antisecretory activity of epicatechin was tested against Vibrio cholera and Escherichia coli toxins at oral dose 10 mg/kg in the rat model. It exhibited the most potent activity on Vibrio cholera toxin (56.9% of inhibition). In the case of Escherichia coli toxin its effect was moderate (24.1% of inhibition). SDS-PAGE analysis revealed that both (-)-epicatechin and Chiranthodendron pentadactylon extract interacted with the Vibrio cholera toxin at concentration from 80 μg/mL and 300 μg/mL, respectively. Computational molecular docking showed that epicatechin interacted with four amino acid residues (Asn 103, Phe 31, Phe 223 and The 78) in the catalytic site of Vibrio cholera toxin, revealing its potential binding mode at molecular level. The results derived from computational, in vitro and in vivo experiments on Vibrio cholera and Escherichia coli toxins confirm the potential of epicatechin as a new antisecretory compound and give additional scientific support to anecdotal use of Chiranthodendron pentadactylon Larreat in Mexican traditional medicine to treat gastrointestinal disorders such as diarrhea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection
NASA Astrophysics Data System (ADS)
Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji
2018-03-01
One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.
Patil, P K; Gopal, C; Panigrahi, A; Rajababu, D; Pillai, S M
2014-03-01
Larval rearing in hatcheries and highly intensive grow-out culture practices followed in shrimp production systems favour the growth of potential pathogenic bacterial loads. This study reports the efficacy of formalin-killed vibrio bacterin on growth, survival and protection to challenge with virulent Vibrio harveyi and Vibrio anguillarum in juveniles of banana shrimp Fenneropenaeus merguiensis. Postlarvae 15 (0·24 ± 0·01 g) were administered orally in different concentrations of bacterial preparation (0, 10(6) , 10(8) , 10(10) and 10(12 ) CFU kg(-1) feed) for a period of 6 weeks. Physicochemical and microbial quality of water in larval rearing tanks, and growth and survival of the postlarvae were monitored at regular intervals, and body composition was estimated at the end of the experiment. Shrimps were challenged with V. harveyi and V. anguillarum, and cumulative mortality was calculated. The group receiving 10(8) CFU kg(-1) feed showed highest average weight gain (162·66 ± 22·94 mg) and survival (90·33 ± 4·5%) and lowest cumulative mortality following the challenge with V. anguillarum (26%) and V. harveyi (36·67%). The results of the study suggest that formalized vibrio administered orally to F. merguiensis postlarvae could induce both homologous and heterologous protection against V. anguillarum and V. harveyi. 'Vaccination' of shrimp postlarvae at hatcheries would help in preventing the losses due to vibriosis and the most susceptible stages of shrimp development. The study demonstrates the cross-protection offered by the oral feeding of formalin-killed Vibrio anguillarum against pathogenic V. harveyi challenge at the early developmental stages of banana shrimp, Fenneropenaeus merguiensis. © 2013 The Society for Applied Microbiology.
Chimetto Tonon, Luciane A; Silva, Bruno Sergio de O; Moreira, Ana Paula B; Valle, Cecilia; Alves, Nelson; Cavalcanti, Giselle; Garcia, Gizele; Lopes, Rubens M; Francini-Filho, Ronaldo B; de Moura, Rodrigo L; Thompson, Cristiane C; Thompson, Fabiano L
2015-01-01
We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and several benthic hosts in the SAO. The benthopelagic coupling observed here stands out the importance of vibrios in the global ocean health.
Silva, Bruno Sergio de O.; Moreira, Ana Paula B.; Valle, Cecilia; Alves, Nelson; Cavalcanti, Giselle; Garcia, Gizele; Lopes, Rubens M.; Francini-Filho, Ronaldo B.; de Moura, Rodrigo L.; Thompson, Cristiane C.
2015-01-01
We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and several benthic hosts in the SAO. The benthopelagic coupling observed here stands out the importance of vibrios in the global ocean health. PMID:25699199
VIBRIO VULNIFICUS EDUCATION WORKSHOPS / MATERIALS
This project will promote Vibrio vulnificus education on-line continuing medical education units to health care professionals that counsel and care for at-risk individuals. The Florida Department of Agriculture and Consumer Services will purchase advertisement and promotion in me...
Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei
2016-12-02
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10-100 CFU mL -1 with a detection limit of 10 CFU mL -1 , and a good specificity for the detection of Vibrio alginolyticus . This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures.
NASA Astrophysics Data System (ADS)
Khandeparker, Rakhee; Verma, Preeti; Meena, Ram M.; Deobagkar, Deepti D.
2011-12-01
Coastal and estuarine waters are highly productive and dynamic ecosystems. The complex carbohydrate composition of the ecosystem would lead to colonisation of microbial communities with abilities to produce an array of complex carbohydrate degrading enzymes. We have examined the abundance and phylogenetic diversity of culturable bacteria with abilities to produce complex carbohydrate degrading enzymes in the Mondovi and Zuari eustauri. It was interesting to note that 65% of isolated bacteria could produce complex carbohydrate degrading enzymes. A majority of these bacteria belonged to Bacillus genera followed by Vibrio, Marinobacter, Exiquinobacterium, Alteromonas, Enterobacter and Aeromonas. Most abundant bacterial genus to degrade hemicellulose and cellulose were Bacillus and Vibrio respectively. Most abundant bacterial genus to degrade hemicellulose and cellulose were Bacillus and Vibrio respectively. It was seen that 46% of Bacillus had ability to degrade both the substrate while only 14% of Vibrio had bifunctionality.
NASA Astrophysics Data System (ADS)
Ekawati, ER; Yusmiati, S. N. H.
2018-01-01
Blood cockle (Anadara granosa) has high level of zinc and protein, which is beneficial for therapeutic function for malnourished particularly stunting case in children. Zinc in animal foods is more absorbable than that from vegetable food. Blood cockle (Anadara granosa) is rich in nutrient and an excellent environment for the growth of microorganisms. This research aimed to identify the contamination of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa). This was observation research with laboratory analysis. Salmonella sp. and Vibrio sp. were detected from blood cockle. Total plate count was determine of the total amount of the bacteria. Results detected from 20 samples of blood cockle showed that all samples were negative of Salmonella sp. and 1 sample positive Vibrio sp. The result of total plate count bacteria was < 5 x 105 colony/g sample.
Quorum Sensing Gene Regulation by LuxR/HapR Master Regulators in Vibrios
Ball, Alyssa S.; Chaparian, Ryan R.
2017-01-01
ABSTRACT The coordination of group behaviors in bacteria is accomplished via the cell-cell signaling process called quorum sensing. Vibrios have historically been models for studying bacterial communication due to the diverse and remarkable behaviors controlled by quorum sensing in these bacteria, including bioluminescence, type III and type VI secretion, biofilm formation, and motility. Here, we discuss the Vibrio LuxR/HapR family of proteins, the master global transcription factors that direct downstream gene expression in response to changes in cell density. These proteins are structurally similar to TetR transcription factors but exhibit distinct biochemical and genetic features from TetR that determine their regulatory influence on the quorum sensing gene network. We review here the gene groups regulated by LuxR/HapR and quorum sensing and explore the targets that are common and unique among Vibrio species. PMID:28484045
Hu, Xiaoke; Jiang, Xiaolu; Hwang, Huey-Min
2006-08-01
Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.
Insights into Bacteriophage Application in Controlling Vibrio Species
Letchumanan, Vengadesh; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Goh, Bey-Hing; Ab Mutalib, Nurul-Syakima; Lee, Learn-Han
2016-01-01
Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages – viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy. PMID:27486446
Protective antigens from El Tor vibrios
Watanabe, Yoshikazu; Verwey, W. F.
1965-01-01
A biochemically and immunologically homogeneous antigenic fraction having the properties of a lipopolysaccharide has been isolated from the culture supernatant of an El Tor vibrio (Ogawa subtype). This antigen was very specifically protective for mice challenged with Ogawa strains of either El Tor vibrios or Vibrio cholerae. Rabbit antisera prepared against the antigen were passively protective for mice and highly vibriocidal but had little agglutinating activity. However, the antigen was able specifically to absorb agglutinins, as well as mouse-protective and vibriocidal antibody from serum prepared against whole bacterial cells. The specific protective activity of this lipopolysaccharide was much greater than that of vaccines made from whole bacterial cells, and its toxicity in animals was about equivalent to that of whole cells. The relationship of activity to toxicity therefore represented an improvement over the vaccines that were studied. ImagesFIG. 1FIG. 3FIG. 4FIG. 5 PMID:5294306
Lan, Jiang-Feng; Wei, Shun; Wang, Yu-Qing; Dai, Yun-Jia; Tu, Jia-Gang; Zhao, Li-Juan; Li, Xin-Cang; Qin, Qi-Wei; Chen, Nan; Lin, Li
2016-10-01
Tolls and Toll-like receptors (TLRs) play an important role in host immune defenses by regulating the expression of antimicrobial peptides (AMPs) and cytokines, but the functional differences of crustacean Tolls from Drosophila Tolls or Mammal TLRs are largely unknown. A novel Toll receptor, named PcToll3, was identified from red swamp crayfish, Procambarus clarkii. It was widely expressed in all detected tissues, and its transcript in hemocytes was up-regulated at 12 h after Vibrio parahemolyticus (Vibrio) injection or at 24 h post white spot syndrome virus (WSSV) challenge. After knockdown of PcToll3, the activity of bacterial clearance was inhibited, and the expression levels of AMPs including Crustin1 (Cru1), Anti-lippopolysaccharide factor 1 (ALF1), and Lysozymes1 (Lys1), which could be up-regulated by Vibrio, were all affected. Meanwhile, PcToll3 silencing influenced the expression of myeloid differentiation factor 88 (PcMyd88), tumor necrosis factor-associated factor 6 (PcTRAF6), and PcDorsal, which were the counterparts of Drosophila Toll signaling pathway. Interestingly, PcToll3 silencing inhibited translocation of PcDorsal from cytoplasm to nucleus. Furthermore, the knockdown of PcDorsal also impaired the expression of AMPs after Vibrio challenge. Hence, we concluded that, besides participating in antiviral immunity, PcToll3 might also regulate the expression of Cru1 and Lys1 to participate in anti-Vibrio immune responses by promoting PcDorsal translocation into nucleus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barrera-Escorcia, Guadalupe; Wong-Chang, Irma; Fernández-Rendón, Carlos Leopoldo; Botello, Alfonso Vázquez; Gómez-Gil, Bruno; Lizárraga-Partida, Marcial Leonardo
2016-11-01
Oysters can accumulate potentially pathogenic water bacteria. The objective of this study was to compare two procedures to quantify Vibrio species present in oysters to determine the most sensitive method. We analyzed oyster samples from the Gulf of Mexico, commercialized in Mexico City. The samples were inoculated in tubes with alkaline peptone water (APW), based on three tubes and four dilutions (10 -1 to 10 -4 ). From these tubes, the first quantification of Vibrio species was performed (most probable number (MPN) from tubes) and bacteria were inoculated by streaking on thiosulfate-citrate-bile salts-sucrose (TCBS) petri dishes. Colonies were isolated for a second quantification (MPN from dishes). Polymerase chain reaction (PCR) was used to determine species with specific primers: ompW for Vibrio cholerae, tlh for Vibrio parahaemolyticus, and VvhA for Vibrio vulnificus. Simultaneously, the sanitary quality of oysters was determined. The quantification of V. parahaemolyticus was significantly higher in APW tubes than in TCBS dishes. Regarding V. vulnificus counts, the differences among both approaches were not significant. In contrast, the MPNs of V. cholerae obtained from dishes were higher than from tubes. The quantification of MPNs through PCR of V. parahaemolyticus and V. vulnificus obtained from APW was sensitive and recommendable for the detection of both species. In contrast, to quantify V. cholerae, it was necessary to isolate colonies on TCBS prior PCR. Culturing in APW at 42 °C could be an alternative to avoid colony isolation. The MPNs of V. cholerae from dishes was associated with the bad sanitary quality of the samples.
Schaeck, M; Duchateau, L; Van den Broeck, W; Van Trappen, S; De Vos, P; Coulombet, C; Boon, N; Haesebrouck, F; Decostere, A
2016-03-15
Due to the mounting awareness of the risks associated with the use of antibiotics in aquaculture, treatment with probiotics has recently emerged as the preferred environmental-friendly prophylactic approach in marine larviculture. However, the presence of unknown and variable microbiota in fish larvae makes it impossible to disentangle the efficacy of treatment with probiotics. In this respect, the recent development of a germ-free culture model for European sea bass (Dicentrarchus labrax L.) larvae opened the door for more controlled studies on the use of probiotics. In the present study, 206 bacterial isolates, retrieved from sea bass larvae and adults, were screened in vitro for haemolytic activity, bile tolerance and antagonistic activity against six sea bass pathogens. Subsequently, the harmlessness and the protective effect of the putative probiotic candidates against the sea bass pathogen Vibrio harveyi were evaluated in vivo adopting the previously developed germ-free sea bass larval model. An equivalence trial clearly showed that no harmful effect on larval survival was elicited by all three selected probiotic candidates: Bacillus sp. LT3, Vibrio lentus and Vibrio proteolyticus. Survival of Vibrio harveyi challenged larvae treated with V. lentus was superior in comparison with the untreated challenged group, whereas this was not the case for the larvae supplemented with Bacillus sp. LT3 and V. proteolyticus. In this respect, our results unmistakably revealed the protective effect of V. lentus against vibriosis caused by V. harveyi in gnotobiotic sea bass larvae, rendering this study the first in its kind. Copyright © 2016. Published by Elsevier B.V.
Vibrio infections and surveillance in Maryland, 2002-2008.
Jones, Erin H; Feldman, Katherine A; Palmer, Amanda; Butler, Erin; Blythe, David; Mitchell, Clifford S
2013-01-01
Vibrio is a naturally occurring waterborne pathogen with potential occupational, recreational, and commercial impacts. During the last 15 years in the U.S. and in Maryland, the incidence of vibriosis has increased. Due to the increase in cases in Maryland, warming water temperatures, and public concern about human health effects resulting from exposure to the Chesapeake Bay, we reviewed cases of vibriosis and evaluated the Vibrio surveillance system in Maryland for timeliness and data quality, attributes necessary for successful outbreak investigation and illness prevention. The evaluation included (1) informal qualitative surveys of state and local personnel who report and manage Vibrio cases and (2) a review of Vibrio surveillance data from 2002 through 2008 for data quality and timeliness of the system. From 2002 to 2008, 188 laboratory-confirmed cases of vibriosis were reported in Maryland with an annual average of 27 cases. The species of Vibrio that were most frequently responsible for infection, regardless of clinical presentation, were V. parahaemolyticus (43.6%), V. vulnificus (23.9%), V. alginolyticus (9.6%), and non-toxigenic V. cholerae (9.0%). The case fatality rate fluctuated during the study period, but the number of cases increased. The surveillance system in Maryland is flexible and captures cases of vibriosis where specimens were collected for testing; however, the system may not adequately capture mild, self-limiting infections. Better integration of data collection for clinical, laboratory, and environmental information and improved completion of variables for shellfish harvest or water exposure locations could improve the system. Quarterly meetings comprising surveillance, public health laboratory, and food-control personnel could direct and ensure the success of improvement efforts.
Hasegawa, Hiroaki; Lind, Erin J.; Boin, Markus A.; Häse, Claudia C.
2008-01-01
Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the structural genes responsible for these proteins have yet to be identified, and it is uncertain which extracellular products play a role in pathogenicity. We investigated the effects of the metalloprotease and hemolysin secreted by V. tubiashii on its ability to kill Pacific oyster (Crassostrea gigas) larvae. While V. tubiashii supernatants treated with metalloprotease inhibitors severely reduced the toxicity to oyster larvae, inhibition of the hemolytic activity did not affect larval toxicity. We identified structural genes of V. tubiashii encoding a metalloprotease (vtpA) and a hemolysin (vthA). Sequence analyses revealed that VtpA shared high homology with metalloproteases from a variety of Vibrio species, while VthA showed high homology only to the cytolysin/hemolysin of Vibrio vulnificus. Compared to the wild-type strain, a VtpA mutant of V. tubiashii not only produced reduced amounts of protease but also showed decreased toxicity to C. gigas larvae. Vibrio cholerae strains carrying the vtpA or vthA gene successfully secreted the heterologous protein. Culture supernatants of V. cholerae carrying vtpA but not vthA were highly toxic to Pacific oyster larvae. Together, these results suggest that the V. tubiashii extracellular metalloprotease is important in its pathogenicity to C. gigas larvae. PMID:18456850
Colwell, Rita
2018-05-14
Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Vibrio parahaemolyticus strains altered in motility or colonial morphology (opaque versus translucent), Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, or phospholipase activities, and Vibrio vulnificus strains, possessing and lacking capsules we...
Pulmonary cholera due to infection with a non-O1 Vibrio cholerae strain.
Shannon, Jack D; Kimbrough, Robert C
2006-09-01
We present 2 cases of primary pulmonary non-O1 Vibrio cholerae infection. We believe that these are the first documented cases of primary pulmonary infection due to this organism from a freshwater source.
EFFECT OF AGGREGATION ON VIBRIO CHOLERAE INACTIVATION
Extensive research has shown that microorganisms exhibit increased resistance due to clumping, aggregation, particle association, or modification of antecedent growth conditions. During the course of investigating a major water-borne Vibrio cholerae outbreak in Peru, U.S. EPA inv...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colwell, Rita
Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Jones, J L; Lydon, K A; Kinsey, T P; Friedman, B; Curtis, M; Schuster, R; Bowers, J C
2017-07-17
Vibrio vulnificus (Vv) and V. parahaemolyticus (Vp) illnesses are typically acquired through the consumption of raw molluscan shellfish, particularly oysters. As Vibrio spp. are naturally-occurring bacteria, one means of mitigation of illness is achieved by limiting post-harvest growth. In this study, effects of ambient air storage, refrigeration, and icing of oysters on Vibrio spp. abundances were examined at two sites in Alabama (AL) [Dog River (DR) and Cedar Point (CP)] and one site in Delaware Bay, New Jersey (NJ). As the United States shellfish program recommendations include testing for total these organisms and gene targets, Vv and total (tlh) and pathogenic (tdh+ and trh+) Vp were enumerated from samples using MPN-real-time-PCR approaches. Mean Vv and Vp abundances in oysters from AL-DR were lowest in immediately iced samples (2.3 and -0.1 log MPN/g, respectively) and highest in the 5h ambient then refrigerated samples (3.4 and 0.5 log MPN/g, respectively). Similarly, in AL-CP Vv and Vp mean levels in oysters were lowest in immediately iced samples (3.6 and 1.2 log MPN/g, respectively) and highest in 5h ambient then refrigerated samples (5.1 and 3.2 log MPN/g, respectively). Mean levels of pathogenic Vp from AL sites were frequently below the limit of detection (<0.3 MPN/g). In NJ, Vv and Vp mean abundances in oysters were highest in samples which were held for 7h in the shade (5.3 and 4.8 log MPN/g, respectively). Mean pathogenic Vp levels in oysters at initial harvest were also highest in oysters 7h in the shade (2.1 and 2.2 log MPN/g for tdh+ and trh+ Vp). Regardless of sampling location, Vibrio spp. levels were generally significantly (p<0.05) greater in oysters exposed to 5h of air storage compared to the initially harvested samples. In addition, the data demonstrated that the use of layered ice resulted in lower Vibrio spp. levels in oysters, compared to those that were refrigerated post-harvest. These results suggest vibriosis risk can be mitigated by shorter storage times and more rapid cooling of oysters, providing data regulatory authorities can use to evaluate Vibrio spp. control plans. Published by Elsevier B.V.
Spira, W M; Huq, A; Ahmed, Q S; Saeed, Y A
1981-09-01
Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh.
Bacterial uptake by oysters (Crassostrea virginica) and bactericidal activity of oyster hemocytes were studied using four environmental isolates and three clinical isolates of Vibrio parahaemolyticus. Clinical isolates (2030, 2062, 2107) were obtained from gastroenteritis patien...
Pseudomonas piscicida kills vibrios by two distinct mechanisms
USDA-ARS?s Scientific Manuscript database
Pseudoalteromonas piscicida is a naturally-occurring marine bacterium which kills competing bacteria, including vibrios. In studies by Richards et al. (AEM00175-17), three strains of P. piscicida were isolated and characterized. Strains secreted proteolytic enzymes which likely killed competing or...
Vibrios from Fish Pen Slime Which Mimic Escherichia coli on Violet Red Bile Agar
Rosen, A.; Levin, R. E.
1970-01-01
Organisms from fish pen slime which mimicked coliforms and Escherichia coli on Violet Red Bile Agar were identified as members of the genus Vibrio on the basis of metabolic and morphological characteristics. Images PMID:4195607
Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y
1992-07-01
A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.
Zhao, Feng; Meng, Songsong; Zhou, Deqing
2016-02-04
To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.
Das, Sumon Kumar; Klontz, Erik H; Azmi, Ishrat J; Ud-Din, Abu I M S; Chisti, Mohammod Jobayer; Afrad, Mokibul Hassan; Malek, Mohammad Abdul; Ahmed, Shahnawaz; Das, Jui; Talukder, Kaisar Ali; Salam, Mohammed Abdus; Bardhan, Pradip Kumar; Faruque, Abu Syed Golam; Klontz, Karl C
2013-12-22
We determined the frequency of multidrug resistant (MDR) infections with Shigella spp. and Vibrio cholerae O1 at an urban (Dhaka) and rural (Matlab) hospital in Bangladesh. We also compared sociodemographic and clinical features of patients with MDR infections to those with antibiotic-susceptible infections at both sites. Analyses were conducted using surveillance data from the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), for the years 2000-2012. Compared to patients with antibiotic-susceptible for Shigella infections, those in Dhaka with MDR shigellosis were more likely to experience diarrhea for >24 hours, while, in Matlab, they were more likely to stay inhospital >24 hours. For MDR shigellosis, Dhaka patients were more likely than those in Matlab to have dehydration, stool frequency >10/day, and diarrheal duration >24 hours. Patients with MDR Vibrio cholerae O1 infections in Dhaka were more likely than those in Matlab to experience dehydration and stool frequency >10/day. Thus, patients with MDR shigellosis and Vibrio cholerae O1 infection exhibited features suggesting more severe illness than those with antibiotic-susceptible infections. Moreover, Dhaka patients with MDR shigellosis and Vibrio cholerae O1 infections exhibited features indicating more severe illness than patients in Matlab.
Duperthuy, Marylise; Schmitt, Paulina; Garzón, Edwin; Caro, Audrey; Rosa, Rafael D.; Le Roux, Frédérique; Lautrédou-Audouy, Nicole; Got, Patrice; Romestand, Bernard; de Lorgeril, Julien; Kieffer-Jaquinod, Sylvie; Bachère, Evelyne; Destoumieux-Garzón, Delphine
2011-01-01
OmpU porins are increasingly recognized as key determinants of pathogenic host Vibrio interactions. Although mechanisms remain incompletely understood, various species, including the human pathogen Vibrio cholera, require OmpU for host colonization and virulence. We have shown previously that OmpU is essential for virulence in the oyster pathogen Vibrio splendidus LGP32. Here, we showed that V. splendidus LGP32 invades the oyster immune cells, the hemocytes, through subversion of host-cell actin cytoskeleton. In this process, OmpU serves as an adhesin/invasin required for β-integrin recognition and host cell invasion. Furthermore, the major protein of oyster plasma, the extracellular superoxide dismutase Cg-EcSOD, is used as an opsonin mediating the OmpU-promoted phagocytosis through its RGD sequence. Finally, the endocytosed bacteria were found to survive intracellularly, evading the host defense by preventing acidic vacuole formation and limiting reactive oxygen species production. We conclude that (i) V. splendidus is a facultative intracellular pathogen that manipulates host defense mechanisms to enter and survive in host immune cells, and (ii) that OmpU is a major determinant of host cell invasion in Vibrio species, used by V. splendidus LGP32 to attach and invade oyster hemocytes through opsonisation by the oyster plasma Cg-EcSOD. PMID:21282662
Lafisca, Andrea; Pereira, Christiane Soares; Giaccone, Valério; Rodrigues, Dalia dos Prazeres
2008-01-01
The aquatic ecosystem is the natural habitat of microorganisms including Vibrio and Aeromonas genus which are pathogenic to human and animals. In the present investigation the frequency of these bacteria and the enzymatic characteristics of 34 Vibrio alginolyticus strains isolated from bivalves harvested in Venice Lagoon (Italy) and Guanabara Bay (Brazil) were carried out from November 2003 to February 2004. The mussels' samples were submitted to enrichment in Alkaline Peptone Water (APW) added with 1% of sodium chloride (NaCl) and APW plus 3% NaCl incubated at 37 degrees C for 18-24 h. Following the samples were streaked onto TCBS Agar (Thiossulfate Citrate Bile Sucrose Agar) and the suspected colonies were submitted to biochemical characterization. Also, the Vibrio alginolyticus strains were evaluated to collagenase, elastase and chondroitinase production. The results showed the isolation of 127 microorganisms distributed as follows: 105 Vibrio strains such as V. alginolyticus (32.4%), V. harveyi (19%) and V. parahaemolyticus (7.6%), 20 Aeromonas strains and two Plesiomonas shigelloides were the main pathogens isolated. We observed the production of the three enzymes from V. alginolyticus strains considered as the main virulence factors of the bacteria, especially in cases of human dermatological infection.
Spira, William M.; Huq, Anwarul; Ahmed, Qazi Shafi; Saeed, Yusuf A.
1981-01-01
Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh. PMID:7294788
INFLUENCE OF SEASONAL FACTORS ON OYSTER HEMOCYTE KILLING OF VIBRIO PARAHEMOLYTICUS
Seasonal variation of cellular defenses of oyster Crassostrea virginica against Vibrio parahaemolyticus were examined from June 1997 to December 1998 using a recently developed bactericidal assay that utilizes a tetrazolium dye. Mean hemocyte numbers, plasma lysozyme, and P. mari...
Yang, Na; Sun, Chaomin
2016-01-01
Vibrio sp. is the most serious pathogen in marine aquaculture, and the development of anti-Vibrio agents is urgently needed. However, it is extreme lack of high-throughput screening (HTS) model for searching anti-Vibrio compounds. Here, we established a protein-based HTS screening model to identify agents targeting peptide deformylase (PDF) of Vibrio anguillarum. To find potential anti-Vibrio compounds, crude extracts derived from marine actinomycetes were applied for screening with this model. Notably, crude extract of strain Streptomyces sp. NHF165 inhibited dramatically both on V. anguillarum PDF (VaPDF) activity and V. anguillarum cell growth. And actinonin was further identified as the functional component. Anti-VaPDF and anti-V. anguillarum activities of actinonin were dose-dependent, and the IC50 values were 6.94 and 2.85 μM, respectively. To understand the resistance of V. anguillarum against actinonin, spontaneous V. anguillarum mutants with resistance against actinonin were isolated. Surprisingly, for the resistant strains, the region between 774 and 852 base pairs was found to be absent in the gene folD which produces 10-formyl-tetrahydrofolate, a donor of N-formyl to Met-tRNAfmet. When compared to the wild type strain, ΔfolD mutant showed eight times of minimum inhibition concentration on actinonin, however, the folD complementary strain could not grow on the medium supplemented with actinonin, which suggested that folD gene mutation was mainly responsible for the actinonin resistance. To our knowledge, this is the first report showing that marine derived Streptomyces sp. could produce actinonin with anti-VaPDF activity and the resistance against actinonin by V. anguillarum is mediated by mutation in folD gene. PMID:27679625
Dillon, Marcus M; Sung, Way; Sebra, Robert; Lynch, Michael; Cooper, Vaughn S
2017-01-01
The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10 - 3 /genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Offret, Clément; Rochard, Vincent; Laguerre, Hélène; Mounier, Jérôme; Huchette, Sylvain; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick
2018-02-06
The hemolymph of healthy marine invertebrates is known to harbor antibiotic-producing bacteria belonging to the genus Pseudoalteromonas. Such strains are potential probiotics to control infectious diseases in aquaculture. In the present study, we screened a collection of Pseudoalteromonas strains isolated from the hemolymph of oyster and mussel for antimicrobial activity against Vibrio harveyi, a pathogenic species responsible for high mortality in abalone. Subsequently, the protective efficacy of the most active strain named hCg-6 was investigated in abalone culture faced with a Vibrio harveyi ORM4 infection. First, we have controlled the Pseudoalteromonas hCg-6 safety for abalone health. To that end, animals were immersed for 4 h in Pseudoalteromonas hCg-6 suspensions in seawater. The abalone viability was monitored and Pseudoalteromonas hCg-6 was tracked by quantitative-PCR in abalone hemolymph. After immersion, no abalone death occurred while the strain hCg-6 was significantly detected in hemolymph. Therefore, the strain hCg-6 was considered safe for abalone and evaluated for its ability to protect abalone against V. harveyi (injection of 1 × 10 3 Vibrio per animal). A 4-h long immersion of abalone in a seawater suspension of Pseudoalteromonas hCg-6 (1 × 10 6 CFU mL -1 ) prior to infection with Vibrio harveyi significantly improved the abalone viability. Indeed, 15 days post infection, the hCg-6 treatment used increased the abalone survival rate from 16% in untreated animals to 40% in treated abalone. We hypothesized that Pseudoalteromonas hCg-6 antibacterial activity increased the hemomicrobiota shielding effect. In conclusion, Pseudoalteromonas hCg-6 is a promising anti-Vibrio strain for abalone culture.
Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal
2011-04-01
Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p < 0.05) than in the control. Further, there was no significant difference (p > 0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.
Ciacci, Caterina; Betti, Michele; Canonico, Barbara; Citterio, Barbara; Roch, Philippe; Canesi, Laura
2010-09-01
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated. In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components. Copyright 2010 Elsevier Inc. All rights reserved.
Kirs, M; Depaola, A; Fyfe, R; Jones, J L; Krantz, J; Van Laanen, A; Cotton, D; Castle, M
2011-05-27
A microbiological survey was conducted to determine the levels of total and pathogenic Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) in Pacific oysters (Crassostrea gigas) collected from commercial growing areas in the North Island, New Zealand. The survey was intended to be geographically representative of commercial growing areas of Pacific oysters in New Zealand, while selecting the time frame most likely to coincide with the increased abundance of pathogenic vibrio species. Vp was detected in 94.8% of oyster samples examined (n=58) with a geometric mean concentration of 99.3 MPN/g, while Vv was detected in 17.2% of oyster samples examined with a geometric mean concentration of 7.4 MPN/g. The frequency of Vp positive samples was 1.7 fold greater than reported in a study conducted three decades ago in New Zealand. Potentially virulent (tdh positive) Vp was detected in two samples (3.4%, n=58) while no trh (another virulence marker) positive samples were detected. 16S rRNA genotype could be assigned only to 58.8% of Vv isolates (8:1:1 A:B:AB ratio, n=10). There was a good agreement [98.2% of Vp (n=280) and 94.4% of Vv (n=18) isolates] between molecular tests and cultivation based techniques used to identify Vibrio isolates and there was a significant (R(2)=0.95, P<0.001, n=18) linear relationship between the MPN estimates by real-time PCR and cultivation. There was no significant correlation between any of the environmental parameters tested and Vp or Vv concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.
Amin, A.K. M. R.; Feng, Gao; Al-saari, Nurhidayu; Meirelles, Pedro M.; Yamazaki, Yohei; Mino, Sayaka; Thompson, Fabiano L.; Sawabe, Toko; Sawabe, Tomoo
2016-01-01
Coral reefs perform a major role in regulating marine biodiversity and serve as hotspot for highly dynamic and diverse microbiomes as holobionts. Corals around Ishigaki, however, are at risk due to tremendous stressors including elevation of seawater temperature, eutrophication and so on. However, no information is currently available on how Vibrio diversity fluctuates spatially and temporally due to environmental determinants in Ishigaki coral reef ecosystems. The aim of this study is to elucidate spatiotemporal Vibrio diversity dynamic at both community and population levels and to assess the environmental drivers correlated to Vibrio abundance and diversity. The Vibrio community identified based on pyrH gene phylogeny of 685 isolates from seawater directly connecting to Ishigaki coral holobionts consisted of 22 known and 12 potential novel Vibrionaceae species. The most prominent species were V. hyugaensis, V. owensii and V. harveyi followed by V. maritimus/V. variabillis, V. campbellii, V. coralliilyticus, and Photobacterium rosenbergii. The Vibrio community fluctuations, assessed by PCoA with UniFrac distance and clustering with Euclidiean distance were varied less not only by year but also by site. Interestingly, significant positive correlation was observed between rising seawater temperature and the abundance of V. campbellii (r = 0.62; P < 0.05) whereas the opposite was observed for V. owensii (r = -0.58; P < 0.05) and the C6 group of V. hyugaensis (r = -0.62; P < 0.05). AdaptML-based microhabitat differentiation revealed that V. harveyi, V. campbellii, P. rosenbergii, and V. coralliilyticus populations were less-ecologically distinctive whereas V. astriarenae and V. ishigakensis were ecologically diverse. This knowledge could be important clue for the future actions of coral conservation. PMID:27551278
Fang, Lei; Wolmarans, Bernhard; Kang, Minyoung; Jeong, Kwang C; Wright, Anita C
2015-01-01
Human Vibrio infections associated with consumption of raw shellfish greatly impact the seafood industry. Vibrio cholerae-related disease is occasionally attributed to seafood, but V. vulnificus and V. parahaemolyticus are the primary targets of postharvest processing (PHP) efforts in the United States, as they pose the greatest threat to the industry. Most successful PHP treatments for Vibrio reduction also kill the molluscs and are not suitable for the lucrative half-shell market, while nonlethal practices are generally less effective. Therefore, novel intervention strategies for Vibrio reduction are needed for live oyster products. Chitosan is a bioactive derivative of chitin that is generally recognized as safe as a food additive by the FDA, and chitosan microparticles (CMs) were investigated in the present study as a potential PHP treatment for live oyster applications. Treatment of broth cultures with 0.5% (wt/vol) CMs resulted in growth cessation of V. cholerae, V. vulnificus, and V. parahaemolyticus, reducing culturable levels to nondetectable amounts after 3 h in three independent experiments. Furthermore, a similar treatment in artificial seawater at 4, 25, and 37°C reduced V. vulnificus levels by ca. 7 log CFU/ml after 24 h of exposure, but 48 h of exposure and elevated temperature were required to achieve similar results for V. parahaemolyticus and V. cholerae. Live oysters that either were artificially inoculated or contained natural populations of V. vulnificus and V. parahaemolyticus showed significant and consistent reductions following CM treatment (5%) compared to the amounts in the untreated controls. Thus, the results strongly support the promising potential for the application of CMs as a PHP treatment to reduce Vibrio spp. in intact live oysters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Jones, Jessica L; Lüdeke, Catharina H M; Bowers, John C; DeRosia-Banick, Kristin; Carey, David H; Hastback, William
2014-12-01
Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)-real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n = 30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and -0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Koralage, Madura Sanjeevani Gonsal; Alter, Thomas; Pichpol, Duangporn; Strauch, Eckhard; Zessin, Karl-Hans; Huehn, Stephan
2012-10-01
This study investigated the prevalence and molecular characteristics of Vibrio spp. in farmed shrimp (Penaeus monodon) in Sri Lanka. A total of 170 shrimp samples (100 g of whole shrimp each) taken from individual ponds from 54 farms were collected 1 week prior to harvest from the North Western Province of Sri Lanka. Overall, 98.1% of the farms and 95.1% of the ponds were positive for Vibrio spp. in shrimp; at the pond level, V. parahaemolyticus (91.2%) was most common, followed by V. alginolyticus (18.8%), V. cholerae non-O1/non-O139 (4.1%), and V. vulnificus (2.4%). Multiple Vibrio spp. were detected in 20.6% of the ponds. None of the V. parahaemolyticus isolates (n = 419) were positive for the virulence-associated tdh (thermostable direct hemolysin) and trh (TDH-related hemolysin) genes. V. cholerae was confirmed by the presence of ompW, and all isolates (n = 8) were negative for the cholera toxin (ctxA) gene. V. cholerae isolates were serogrouped by PCR and identified as V. cholerae non-O1/non-O139. All four V. vulnificus strains, isolated from different ponds of two geographical regions, showed pathogenic potential; they belonged to vcgC sequence type, type B 16S rRNA genotype and contained a pilF polymorphism associated with human pathogenicity. The results of this study revealed the ubiquitous nature of vibrios in farmed shrimp. To minimize the potential risk of Vibrio infections due to handling or consumption of raw or undercooked seafood products, good manufacturing practices as well as proper handling and processing should be addressed.
Melody, Kevin; Senevirathne, Reshani; Janes, Marlene; Jaykus, Lee Ann; Supan, John
2008-07-01
The focus of this research was to investigate the efficacy of icing as a postharvest treatment for reduction of the levels of Vibrio vulnificus and Vibrio parahaemolyticus in commercial quantities of shellstock oysters. The experiments were conducted in June and August of 2006 and consisted of the following treatments: (i) on-board icing immediately after harvest; (ii) dockside icing approximately 1 to 2 h prior to shipment; and (iii) no icing (control). Changes in the levels of pathogenic Vibrio spp. during wholesale and retail handling for 2 weeks postharvest were also monitored. On-board icing achieved temperature reductions in all sacks in accordance with the National Shellfish Sanitation Program standard, but dockside icing did not meet this standard. Based on one-way analysis of variance, the only statistically significant relationship between Vibrio levels and treatment occurred for samples harvested in August; in this case, the levels of V. vulnificus in the noniced oysters were significantly higher (P < 0.05) than were the levels in the samples iced on-board. When analyzing counts over the 14-day storage period, using factorial analysis, there were statistically significant differences in V. vulnificus and V. parahaemolyticus levels by sample date and/or treatment (P < 0.05), but these relationships were not consistent. Treated (iced) oysters had significantly higher gaping (approximately 20%) after 1 week in cold storage than did noniced oysters (approximately 10%) and gaping increased significantly by day 14 of commercial storage. On-board and dockside icing did not predictably reduce the levels of V. vulnificus or V. parahaemolyticus in oysters, and icing negatively impacted oyster survival during subsequent cold storage.
Three clinical (2030, 2062, and 2107) and three environmental (1094, 1163, and ATCC 17802) isolates of Vibrio parahaemolyticus were exposed to hemocytes and plasma collected from oysters (Crassostrea virginica) to determine their susceptibility to putative oyster defenses. Clinic...
High pressure processing of bivalve shellfish and HPP's potential use as a virus intervention
USDA-ARS?s Scientific Manuscript database
Bivalve shellfish readily bioconcentrate pathogenic microbes and substance, such as algal and dinoflagulate toxins, fecal viruses and bacteria, and naturally present vibrio bacteria. High pressure processing (HPP) is currently used as an intervention for Vibrio vulnificus bacteria within molluscan ...
USDA-ARS?s Scientific Manuscript database
Streptococcus iniae, a Gram-positive bacterium, and Vibrio vulnificus, a halophilic Gram-negative bacterium, have been associated with severe disease impacting tilapia aquaculture. Recent reports suggest both bacteria have been associated independently and concomitantly with disease on commercial f...
Twedt, Robert M.; Spaulding, Procter L.; Hall, Herbert E.
1969-01-01
Morphological, cultural, biochemical, and serological characteristics of 79 strains of Vibrio parahemolyticus isolated from patients suffering from gastroenteric disease in Japan were compared with 17 suspected V. parahemolyticus cultures isolated from wound infections and 14 nonpathogenic vibrios isolated from an estuarine environment in the United States. These groups were differentiated on the basis of several key reactions which included: the range of growth temperature and salt tolerance; the production of catalase and acetoin; the hydrolysis of starch; the fermentation and utilization as single carbon source of sucrose, cellobiose, and arabinose; and the ability to swarm on 1% agar. The separation of the groups on the basis of cultural and biochemical analyses was confirmed by means of slide agglutinations with specific anti-K antisera. The results of this study strongly suggest that the wound infection isolates are V. parahemolyticus species which are easily distinguished from the nonpathogenic estuarine vibrios. PMID:5784207
Twedt, R M; Spaulding, P L; Hall, H E
1969-05-01
Morphological, cultural, biochemical, and serological characteristics of 79 strains of Vibrio parahemolyticus isolated from patients suffering from gastroenteric disease in Japan were compared with 17 suspected V. parahemolyticus cultures isolated from wound infections and 14 nonpathogenic vibrios isolated from an estuarine environment in the United States. These groups were differentiated on the basis of several key reactions which included: the range of growth temperature and salt tolerance; the production of catalase and acetoin; the hydrolysis of starch; the fermentation and utilization as single carbon source of sucrose, cellobiose, and arabinose; and the ability to swarm on 1% agar. The separation of the groups on the basis of cultural and biochemical analyses was confirmed by means of slide agglutinations with specific anti-K antisera. The results of this study strongly suggest that the wound infection isolates are V. parahemolyticus species which are easily distinguished from the nonpathogenic estuarine vibrios.
Ayrapetyan, M.; Fowler, P.; Oliver, J. D.; Noble, R. T.
2014-01-01
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance. PMID:25452288
Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei
2016-01-01
A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10–100 CFU mL−1 with a detection limit of 10 CFU mL−1, and a good specificity for the detection of Vibrio alginolyticus. This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures. PMID:27918423
Bowden, T J; Bricknell, I R; Preziosi, B M
2018-01-01
Juvenile Atlantic halibut (~100 mg, Hippoglossus hippoglossus) were exposed to Vibrio proteolyticus, a Vibrio spp. isolate, Photobacterium damselae ssp. damselae and five different isolates of Aeromonas salmonicida ssp. achromogenes via an hour-long bath immersion to ascertain their variation in pathogenicity to this fish species. Results were analysed using Kaplan-Meier survival analysis. Analysis of the data from challenges using A. salmonicida ssp. achromogenes revealed three survival values of zero and a spread of values from 0 to 28.43. Challenges using a Vibrio spp isolate, V. proteolyticus and P. damselae resulted in Kaplan-Meier survival estimates of 31.21, 50.41 and 57.21, respectively. As all bacterial species tested could induce juvenile halibut mortalities, they must all be considered as potential pathogens. However, the degree of pathogenicity of A. salmonicida is isolate dependent. © 2017 John Wiley & Sons Ltd.
The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.
Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S
2006-12-01
The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.
Populations of Vibrio parahaemolyticus in the environment can be influenced by numerous factors. We assessed the correlation of total (tl+) and potentially virulent (tdh+) V. parahaemolyticus in water with three harmful algal bloom (HAB) genera (Pseudo-nitzschia, Alexandrium and ...
Outbreak-associated Vibrio cholerae genotypes with identical pulsotypes, Malaysia, 2009.
Teh, Cindy Shuan Ju; Suhaili, Zarizal; Lim, King Ting; Khamaruddin, Muhamad Afif; Yahya, Fariha; Sajili, Mohd Hailmi; Yeo, Chew Chieng; Thong, Kwai Lin
2012-07-01
A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.
Beuchat, L. R.
1973-01-01
Thermal resistance and minimal pH and temperature conditions for growth of Vibrio parahaemolyticus in artificial media containing 3 and 7% sodium chloride were studied. Growth was observed at pH 4.8 and at 5 C. PMID:4715562
Vibrio natriegens: A Rapidly Growing Micro-Organism Ideally Suited for Class Experiments
ERIC Educational Resources Information Center
Mullenger, L.; Gill, Nijole R.
1973-01-01
Describes five microbiological experiments using the marine organism Vibrio natriegens. This organism is highly suitable for laboratory work because it is non-pathogenic and grows extremely rapidly, having the distinction of the lowest mean generation time yet recorded (9.8 minutes). (JR)
Factors affecting infection of corals and larval oysters by vibrio coralliilyticus
USDA-ARS?s Scientific Manuscript database
The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated...
Interactions of Vibrio parahaemolyticus with oysters and oyster hemocytes were studied using three environmental isolates (1094, 1163 and ATCC 17802) and three clinical isolates (2030, 2062, 2107). Clinical isolates were from patients who became ill during the June 1998 food pois...
Humans or Animals? Global March of the Resistant Microbe
USDA-ARS?s Scientific Manuscript database
Antimicrobial resistance continues to be a global problem. Pathogens are global regardless of whether they are food borne or not. An example of an early century pathogen is Vibrio cholera and related species. Vibrio were primarily associated with water sources and foodstuffs contaminated with wat...
76 FR 37815 - Cooperative Agreement To Support Shellfish Safety Assistance Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
...; funding support to research the influence of water and air temperature, dissolved oxygen, and nutrients on... controls to reduce the risk of illness associated with molluscan shellfish consumption, including Vibrio... professionals concerning Vibrio illness and shellfish consumption; 9. Development and maintenance of a World...
Genome Sequence of a Canadian Vibrio parahaemolyticus Isolate with Unique Mobilizing Capacity.
Bioteau, Audrey; Huguet, Kévin; Burrus, Vincent; Banerjee, Swapan
2018-06-14
Vibrio parahaemolyticus is a clinically significant marine bacterium implicated in gastroenteritis among consumers of raw or undercooked seafood. This report presents the whole-genome sequence of a unique strain of V. parahaemolyticus isolated from oysters harvested in Canada. © Crown copyright 2018.
Chimetto, Luciane A; Cleenwerck, Ilse; Alves, Nelson; Silva, Bruno Sergio; Brocchi, Marcelo; Willems, Anne; De Vos, Paul; Thompson, Fabiano L
2011-02-01
Eight Vibrio isolates originating from the marine corals Mussismilia hispida and Phyllogorgia dilatata and the zoanthids Palythoa caribaeorum and Palythoa variabilis in Brazil and the Pacific white shrimp (Litopenaeus vannamei) in Ecuador were studied by means of a polyphasic approach. The novel isolates formed a tight monophyletic group in the genus Vibrio and were closely related to species of the Vibrio harveyi group, to which they showed more than 99 % 16S rRNA gene sequence similarity. Analysis based on concatenated sequences of the following seven genes, 16S rRNA, gyrB, recA, rpoA, topA, pyrH and mreB (5633 bp in length), showed clear separation between the isolates and species of the V. harveyi group. Amplified fragment length polymorphism (AFLP) analysis, performed previously, revealed that a representative isolate of this group, LMG 20370, was clearly separate from known Vibrio species (it belonged to the so-called AFLP cluster A31). DNA-DNA hybridization (DDH) experiments with representative isolates and type strains of the V. harveyi species group revealed high DDH between the novel isolates (more than 74 %) and less than 70 % DDH towards type strains of related Vibrio species, proving the novel species status of the isolates. Phenotypically, the novel species belongs to the arginine dihydrolase (A)-negative, lysine decarboxylase (L)-positive and ornithine decarboxylase (O)-positive (A-/L+/O+) cluster reported previously. Most species of the V. harveyi group (i.e. Vibrio rotiferianus, V. harveyi, V. parahaemolyticus and V. alginolyticus) also belong to this A-/L+/O+ cluster. However, several phenotypic features can be used for the identification of the novel species. In contrast to its closest phylogenetic neighbours, the novel species exhibits esterase (C4) and N-acetyl-β-glucosaminidase activities, but it does not produce acetoin, does not use citrate, α-ketoglutaric acid or propionic acid and does not ferment melibiose. The novel species can also be differentiated on the basis of the presence of the fatty acids C(17 : 0,) C(17 : 1)ω8c, iso-C(17 : 0) and iso-C(13 : 0) and the absence of the fatty acid C(18 : 0). The name Vibrio communis sp. nov. is proposed for this taxon. Strain R-40496(T) (=LMG 25430(T) =CAIM 1816(T)) is the type strain.
[Cytotoxic effect of Vibrio cholerae non-O1 on Vero cells].
Figueroa-Arredondo, P; García-Lozano, H; Gutiérrez-Cogco, L; Valdespino-Gómez, J L
1994-01-01
At the present time there is still in Mexico a diarrhoeal outbreak due to Vibrio cholerae O1. In INDRE we have isolated from the same outbreak last year (jan-apr), 70 strains of Vibrio cholerae Non-O1. These were isolated from patients with a diarrhoeal illness different from cholera. Patients were of different ages and sex, and from various geographic areas. The isolated strains were confirmed by serological agglutination test with polyclonal antisera, and they neither belong to O1 serogroup or O139. We assayed all the 70 strains in Vero cells, searching for cytotoxic effect, probably attributed to cholera toxin, or any other toxin. The strains were screened by PCR for cholera toxin gene detection, and negative results were obtained. We have found only one CT-producer strain, but it was a rough one so, we are not able to affirm that is not a V. cholerae O1 serotype. Vibrio cholerae Non-O1 strains, tested in Vero cells assay, produced cytotoxic effect within 24 h. It was found that 48/70 strains (66.6%), had cytotoxic activity, showing rounding and then lysis of cells. From our results we concluded that this cytotoxic effect, is not cholera toxin related, instead we propose it could be due to an unknown virulence factor, probably a different toxin in mexican Vibrio cholerae Non-O1 strains.
Vezzulli, Luigi; Grande, Chiara; Reid, Philip C.; Hélaouët, Pierre; Edwards, Martin; Höfle, Manfred G.; Brettar, Ingrid; Colwell, Rita R.; Pruzzo, Carla
2016-01-01
Climate change is having a dramatic impact on marine animal and plant communities but little is known of its influence on marine prokaryotes, which represent the largest living biomass in the world oceans and play a fundamental role in maintaining life on our planet. In this study, for the first time to our knowledge, experimental evidence is provided on the link between multidecadal climatic variability in the temperate North Atlantic and the presence and spread of an important group of marine prokaryotes, the vibrios, which are responsible for several infections in both humans and animals. Using archived formalin-preserved plankton samples collected by the Continuous Plankton Recorder survey over the past half-century (1958–2011), we assessed retrospectively the relative abundance of vibrios, including human pathogens, in nine areas of the North Atlantic and North Sea and showed correlation with climate and plankton changes. Generalized additive models revealed that long-term increase in Vibrio abundance is promoted by increasing sea surface temperatures (up to ∼1.5 °C over the past 54 y) and is positively correlated with the Northern Hemisphere Temperature (NHT) and Atlantic Multidecadal Oscillation (AMO) climatic indices (P < 0.001). Such increases are associated with an unprecedented occurrence of environmentally acquired Vibrio infections in the human population of Northern Europe and the Atlantic coast of the United States in recent years. PMID:27503882
Yingkajorn, Mingkwan; Sermwitayawong, Natthawan; Palittapongarnpimp, Prasit; Nishibuchi, Mitsuaki; Robins, William P; Mekalanos, John J; Vuddhakul, Varaporn
2014-05-01
Correlation between the numbers of Vibrio parahaemolyticus and its specific bacteriophages in cockles was investigated from June 2009 to May 2010 in Hat Yai, Songkhla, Thailand. Cockles obtained monthly from a local market were sampled to determine the numbers of V. parahaemolyticus and bacteriophages that could form plaques on ten strains of pandemic and nonpandemic V. parahaemolyticus. In addition, V. parahaemolyticus isolates from clinical samples from Hat Yai hospital over the same period were investigated. All 139 cockles sampled were positive for V. parahaemolyticus. However, only 76 of them were positive for bacteriophages. During the testing period, the number of bacteriophages was not significantly correlated with the incidence of V. parahaemolyticus-infected patients, but the numbers of V. parahaemolyticus isolates from the cockle samples were closely related to the number of infected patients. The bacteriophages isolated from V. parahaemolyticus also infected Vibrio alginolyticus and Vibrio mimicus, suggesting that the broad host range of phages may be a factor of providing the possibility of their participation in the processes of genetic exchange between V. parahaemolyticus and closely related Vibrio spp. In conclusion, this study indicated that the number of V. parahaemolyticus in cockles may be a useful tool for predicting the relative risk of infection by V. parahaemolyticus in this area of Thailand.
Soto, W.; Punke, E. B.; Nishiguchi, M. K.
2013-01-01
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal–bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000–20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation. PMID:22519773
Hasegawa, N; Matsumoto, Y; Hoshino, A; Iwashita, K
1999-08-01
Lean tuna meat suspensions (LEAN), with a fat content of 0.006%, and fatty tuna meat suspension (FATTY), with a fat content of 3.0% were inoculated with four strains of Vibrio parahaemolyticus and wasabi (Wasabia japonica Matsumura) or allyl isothiocyanate (AIT) was added before incubation at 37 degrees C. During the incubation, viable Vibrio counts were determined on TCBS agar plates. Both LEAN and FATTY suspensions were inoculated with V. parahaemolyticus AOTO-81, (1.28+/-0.20) x 10(2) CFU/ml, followed by addition of 20 mg wasabi/ml, and incubation for 8 h. The viable Vibrio counts were (7.76+/-5.93) x 10(5) CFU/ml in LEAN and (3.50+/-2.65) x 10(1) CFU/ml in FATTY. When the same strain, at (1.18+/-0.22) x 10(2) CFU/ml, was incubated for 8 h with 50.9 microg AIT/ml, viable Vibrio counts were (4.79+/-1.78) x 10(4) CFU/ml in LEAN and (1.80+/-1.30) x 10(1) CFU/ml in FATTY. Growth of the other three strains with wasabi or AIT was shown to be less in FATTY than in LEAN. These results indicate that growth of V. parahaemolyticus is inhibited more in FATTY than in LEAN by wasabi and allyl isothiocyanate.
Zouiten, Amina; Mehri, Ines; Beltifa, Asma; Ghorbel, Asma; Sire, Olivier; Van Loco, Joris; Abdenaceur, Hassen; Reyns, Tim; Ben Mansour, Hedi
2017-05-01
Vibrio is characterized by a large number of species and some of them are human pathogens causing gastro intestinal and wound infections through the ingestion or manipulation of contaminated fishes including Vibrio parahaemolyticus and Vibrio alginolyticus. In this study, we reported the phenotypic and molecular characterization of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from wild and farm sea bream (Sparus aurata L.) along the Tunisian coast from December 2015 to April 2016. Therefore, the antibiograms indicate a difference between farmed and wild fish. Resistance against amoxicillin antibiotic appears for the bacteria isolated from wild fish, while those from aquaculture farming presented sensitivity to amoxicillin and resistance to antibiotics colistin and fusidic acid. The chloramphenicol antibiotic exhibited a high sensitivity in all isolated bacteria. In fact, traces of amoxicillin in the organs of the fish from Hergla farm were detected by UPLC-MS/MS analysis during December 2016 to April 2016. In addition, antibiotics were detected in January 2014 with high concentration of norfloxacin 2262 ng/g in fish from Hergla coast. The results obtained in this work indicated that the use and presence of antibiotics in water impacts on the occurrence of resistant bacteria and the detection of antibiotic in fish. Copyright © 2017. Published by Elsevier Ltd.
Thaller, Maria C; Ciambotta, Marco; Sapochetti, Manuela; Migliore, Luciana; Tapia, Whashington; Cedeño, Virna; Gentile, Gabriele
2010-02-01
The presence of Vibrio isolates was investigated in cloacal swabs from the Galápagos marine iguana (Amblyrhyncus cristatus). Such unique iguana is endemic to the Galápagos Archipelago, it is listed as vulnerable in the IUCN Red List (2009), and is strictly protected by CITES and Ecuador laws. Our results revealed an uneven isolation frequency of vibrios from animals living in different settings: maximal among the Santa Fe population, scarce at Bahía Tortuga but practically absent in the samples from Puerto Ayora and Plaza Sur. A 16S sequencing confirmed that the isolates belonged to the genus Vibrio, placing them within the V. alginolyticus group; the biochemical identification was, indeed, consistent with V. alginolyticus features. The reason of the observed discrepancy is not clear, but could be either linked to a higher pollution in the inhabited or more touristic places or to differential influence of chemical and physical parameters at a local scale. As V. alginolyticus is an opportunistic pathogen for man and it is known to cause disease in sea-living animals, the ability of these vibrios to enter and persist to a certain extent in the marine iguana gut should be regarded as a risk for health of both the animals and the human personnel involved in monitoring activities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Daniels, R. M.; Jacobs, J. M.; Paranjpye, R.; Lanerolle, L. W.
2016-02-01
The Pathogens group of the NOAA Ecological Forecasting Roadmap has begun a range of efforts to monitor and predict potential pathogen occurrences in shellfish and in U.S. Coastal waters. NOAA/NCOSS along with NMFS/NWFSC have led the Pathogens group and the development of web based tools and forecasts for both Vibrio vulnificus and Vibrio parahaemolyticus. A strong relationship with FDA has allowed the team to develop forecasts that will serve U.S. shellfish harvesters and consumers. NOAA/NOS/CSDL has provided modeling expertise to help the group use the hydrodynamic models and their forecasts of physical variables that drive the ecological predictions. The NOAA/NWS/Ocean Prediction Center has enabled these ecological forecasting efforts by providing the infrastructure, computing knowledge and experience in an operational culture. Daily forecasts have been demonstrated and are available from the web for the Chesapeake Bay, Delaware Bay, Northern Gulf of Mexico, Tampa Bay, Puget Sound and Long Island Sound. The forecast systems run on a daily basis being fed by NOS model data from the NWS/NCEP super computers. New forecast tools including V. parahaemolyticus post harvest growth and doubling time in ambient air temperature will be described.
Al-Saari, Nurhidayu; Gao, Feng; Rohul, Amin A K M; Sato, Kazumichi; Sato, Keisuke; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Meirelles, Pedro M; Thompson, Fabiano L; Thompson, Cristiane; Filho, Gilberto M A; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo
2015-01-01
Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT 5085T, V. hangzhouensis JCM 15146T V. maritimus LMG 25439T, and V. variabilis LMG 25438T). In silico DDH data also supported the genomic relationship. The strains C7T also had less than 95% average amino acid identity (AAI) and average nucleotide identity (ANI) towards V. maritimus C210, V. variabilis C206, and V. mediterranei AK1T, V. brasiliensis LMG 20546T, V. orientalis ATCC 33934T, and V. sinaloensis DSM 21326. The name Vibrio astriarenae sp. nov. is proposed with C7 as the type strains. Both V. agarivorans CECT 5058T and V. astriarenae C7T are members of the newest clade of Vibrionaceae named Agarivorans.
Three draft genomes of Vibrio coralliilyticus strains isolated from bivalve hatcheries
USDA-ARS?s Scientific Manuscript database
Reported here are the draft genomes of three Vibrio coralliilyticus isolates RE87, AIC-7, and 080116A. Each strain was isolated in association with diseased oyster larvae in commercial aquaculture systems. These draft genomes will be useful for further studies in understanding the genomic features...
1988-08-01
following initial incubation of the inoculum in lactose broth. The presence of Vibrio parahemolyticus was determined using trypticase citrate 0 bile salts...SaZmonella (enteritis), SalmonelZa typhosa (typhoid fever), ShigeZla (dysentery), and Vibrio cholerae (cholera). The organisms causing these diseases do not
Outbreak-associated Vibrio cholerae Genotypes with Identical Pulsotypes, Malaysia, 2009
Teh, Cindy Shuan Ju; Suhaili, Zarizal; Lim, King Ting; Khamaruddin, Muhamad Afif; Yahya, Fariha; Sajili, Mohd Hailmi; Yeo, Chew Chieng
2012-01-01
A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures. PMID:22709679
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a pathogen most frequently implicated in foodborne outbreaks linked to the consumption of seafood in the coastal cities of China. The pathogenicity of environmental V. parahaemolyticus is mostly correlated with the production of thermostable direct hemolysin (TDH). In orde...
Molecular epidemiology of Vibrio cholerae in Hong Kong.
Yam, W C; Lung, M L; Ng, K Y; Ng, M H
1989-01-01
We studied restriction fragment length polymorphism of the enterotoxin genes of isolates of Vibrio cholerae El Tor, indistinguishable by bacteriophage typing, which were collected in Hong Kong since 1978. Using this approach, we could distinguish indigenous and exogenous strains obtained from different sources and epidemiological settings. Images PMID:2570082
USDA-ARS?s Scientific Manuscript database
Vibrio anguillarum is an aggressive and halophilic bacterial pathogen commonly found in seawater. Its presence in aquaculture facilities causes significant morbidity and mortality among aquaculture species primarily from hemorrhaging of the body and skin of the infected fish that eventually leads t...
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a gram-negative bacterium that inhabits coastal and marine environments. Thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and the type III secretion system are considered the potential virulent factors of pathogenic V. parahaemolyticus. The frequency of str...
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a marine and estuarine bacterium that poses a large threat to human health worldwide. It has been the leading bacterial cause of seafood-borne illness. This study investigated the prevalence and drug resistance of V. parahaemolyticus isolated from retail shellfish in Shang...
Survival of Vibrio parahaemolyticus in Fish Homogenate During Storage at Low Temperatures
Matches, Jack R.; Liston, J.; Daneault, Louis P.
1971-01-01
Fish homogenate inoculated with Japanese strains of Vibrio parahaemolyticus were either stored at 0.6 C or frozen and stored at −18 and −34 C. Greater survival of the organisms was obtained at 0.6 C than at the lower temperatures. PMID:5574328
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...
An assay was developed to assess the ability of oyster, Crassostrea virginica, hemocytes to kill the human pathogenic bacterium, Vibrio parahaemolyticus (ATCC 17802). Bacterial killing was estimated colorimetrically by the enzymatic reduction of a tetrazolium dye, 3-(4,5-dimethyl...
USDA-ARS?s Scientific Manuscript database
Vibrio vulnificus causes disease in economically important aquaculture raised fish and is an opportunistic human pathogen. This study reports on the isolation of V. vulnificus from diseased hybrid tilapia (Oreochromis niloticus X O. aureus) cultured in a North American water reuse facility. Our ob...
2016-10-15
Mutation rates may be nonuniform because of greater rates of damage, asymmetric nucleotide pools, structural differences affecting polymerase fidelity...strains of these two significant bacterial species. In the MMR-deficient strains, mutation rates were nonuniform among genome regions and varied in pat
Outbreak of Vibrio parahaemolyticus Sequence Type 120, Peru, 2009.
Gonzalez-Escalona, Narjol; Gavilan, Ronnie G; Toro, Magaly; Zamudio, Maria L; Martinez-Urtaza, Jaime
2016-07-01
In 2009, an outbreak of Vibrio parahaemolyticus occurred in Piura, Cajamarca, Lambayeque, and Lima, Peru. Whole-genome sequencing of clinical and environmental samples from the outbreak revealed a new V. parahaemolyticus clone. All the isolates identified belonged to a single clonal complex described exclusively in Asia before its emergence in Peru.
Outbreak of Vibrio parahaemolyticus Sequence Type 120, Peru, 2009
Gonzalez-Escalona, Narjol; Gavilan, Ronnie G.; Toro, Magaly; Zamudio, Maria L.
2016-01-01
In 2009, an outbreak of Vibrio parahaemolyticus occurred in Piura, Cajamarca, Lambayeque, and Lima, Peru. Whole-genome sequencing of clinical and environmental samples from the outbreak revealed a new V. parahaemolyticus clone. All the isolates identified belonged to a single clonal complex described exclusively in Asia before its emergence in Peru. PMID:27315090
A Two-Step Synthesis of Virstatin, a Virulence Inhibitor of "Vibrio cholerae"
ERIC Educational Resources Information Center
McDonald, Chriss E.
2009-01-01
Virstatin, an "N"-butanoic acid substituted naphthalimide, inhibits the ability of "Vibrio cholerae" to cause disease. A three-week experiment involving synthesis, purification, and spectral characterization of this compound is described. This experiment is appropriate for organic chemistry. It has been performed with three lab sections of about…
Effect of Heat (Arrhenius Effect) on Crude Hemolysin of Vibrio parahaemolyticus
Miwatani, Toshio; Takeda, Yoshifumi; Sakurai, Jun; Yoshihara, Akiko; Taga, Sekiko
1972-01-01
Crude hemolysins prepared from various strains of Vibrio parahaemolyticus, which give positive Kanagawa phenomenon, were partly inactivated by heating at 60 C, but not inactivated significantly by heating at 80 to 90 C. The similar phenomenon has been reported as the Arrhenius effect in staphylococcal alpha toxin. Images PMID:4638496
The protective activity of tea catechins against experimental infection by Vibrio cholerae O1.
Toda, M; Okubo, S; Ikigai, H; Suzuki, T; Suzuki, Y; Hara, Y; Shimamura, T
1992-01-01
Tea catechins inhibited the fluid accumulation induced by cholera toxin in sealed adult mice. The catechins also reduced fluid accumulation by Vibrio cholerae O1 in ligated intestinal loops of rabbits. These findings suggest that tea catechins may possess protective activity against V. cholerae O1.
Johnson, Shannon Lyn; Khiani, A.; Bishop-Lilly, K. A.; ...
2015-05-14
We report the completed genome sequences for two non-O1/non-O139 Vibrio cholerae isolates. Each isolate has only a single chromosome, as opposed to the normal paradigm of two chromosomes found in all other V. cholerae isolates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Shannon Lyn; Khiani, A.; Bishop-Lilly, K. A.
We report the completed genome sequences for two non-O1/non-O139 Vibrio cholerae isolates. Each isolate has only a single chromosome, as opposed to the normal paradigm of two chromosomes found in all other V. cholerae isolates.
Isolation of Vibrio cholerae Serotype Ogawa from a Florida Estuary
Motes, M. L.; Zywno, S. R.; DePaola, A.; Becker, R. E.; Presnell, M. W.
1983-01-01
Vibrio cholerae serotype Ogawa was recently isolated from the estuarine waters of Apalachicola Bay, Fla., in areas that are subject to consistent fecal contamination and in areas that are remote from any apparent source of contamination. The significance of these organisms in the environment has not been determined. PMID:6824323
Development of a rapid and simple immunochromatographic assay to identify Vibrio parahaemolyticus.
Sakata, Junko; Kawatsu, Kentaro; Iwasaki, Tadashi; Kumeda, Yuko
2015-09-01
To rapidly and simply determine whether or not bacterial colonies growing on agar were Vibrio parahaemolyticus, we developed an immunochromatographic assay (VP-ICA) using two different monoclonal antibodies (designated mAb-VP34 and mAb-VP109) against the delta subunit of V. parahaemolyticus-F0F1 ATP synthase. The epitopes recognized by mAb-VP34 and mAb-VP109 were mapped to sequences of eight ((47)LLTSSFSA(54)) and six amino acid residues ((16)FDFAVD(21)), respectively. An amino acid sequence similarity search of the NCBI database using BLASTP showed that both epitopic amino acid sequences were present together only in V. parahaemolyticus. When 124 V. parahaemolyticus strains and 94 strains of 27 other Vibrio species or 35 non-Vibrio species were tested using the VP-ICA, the VP-ICA identified V. parahaemolyticus with 100% accuracy. The VP-ICA rapidly and simply identified the pathogen directly from a single agar colony within 30 min, indicating that VP-ICA will greatly reduce labor and time required to identify V. parahaemolyticus compared with conventional biochemical tests. Copyright © 2015. Published by Elsevier B.V.
Yang, Huan-Lan; Wei, Shuang; Gooneratne, Ravi; Mutukumira, Anthony N; Ma, Xue-Jun; Tang, Shu-Ze; Wu, Xi-Yang
2018-04-01
A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 10 3 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.
Wang, Yi; Li, Hui; Li, Dongxun; Li, Kewei; Wang, Yan; Xu, Jianguo; Ye, Changyun
2016-01-01
Vibrio parahaemolyticus (V. parahaemolyticus) is a marine seafood-borne pathogen causing severe illnesses in humans and aquatic animals. In the present study, multiple cross displacement amplification was combined with a lateral flow biosensor (MCDA-LFB) to detect the toxR gene of V. parahaemolyticus in DNA extracts from pure cultures and spiked oyster homogenates. Amplification was carried out at a constant temperature (62°C) for only 30 min, and amplification products were directly applied to the biosensor. The entire process, including oyster homogenate processing (30 min), isothermal amplification (30 min) and results indicating (∼2 min), could be completed within 65 min. Amplification product was detectable from as little as 10 fg of pure V. parahaemolyticus DNA and from approximately 4.2 × 102 CFU in 1 mL of oyster homogenate. No cross-reaction with other Vibrio species and with non-Vibrio species was observed. Therefore, the MCDA-LFB method established in the current report is suitable for the rapid screening of V. parahaemolyticus in clinical, food, and environmental samples. PMID:28066368
Menezes, Francisca G R DE; Rodriguez, Marina T T; Carvalho, Fátima C T DE; Rebouças, Rosa H; Costa, Renata A; Sousa, Oscarina V DE; Hofer, Ernesto; Vieira, Regine H S F
2017-01-01
Detection of virulent strains associated with aquatic environment is a current concern for the management and control of human and animal health. Thus, Vibrio diversity was investigated in four estuaries from state of Ceará (Pacoti, Choró, Pirangi and Jaguaribe) followed by antimicrobial susceptibility to different antimicrobials used in aquaculture and detection of main virulence factors to human health. Isolation and identification were performed on TCBS agar (selective medium) and dichotomous key based on biochemical characteristics, respectively. Nineteen strains of genus Vibrio were catalogued. Vibrio parahaemolyticus (Choró River) and V. alginolyticus (Pacoti River) were the most abundant species in the four estuaries. All strains were submitted to disk diffusion technique (15 antimicrobials were tested). Resistance was found to: penicillin (82%), ampicillin (54%), cephalotin (7%), aztreonan (1%), gentamicin, cefotaxime and ceftriaxone (0.5%). Five pathogenic strains were chosen to verification of virulence factors. Four estuaries showed a high abundance of species. High number of tested positive strains for virulence is concerning, since some of those strains are associated to human diseases, while others are known pathogens of aquatic organisms.
Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan
2011-01-01
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623
Froelich, B A; Ayrapetyan, M; Fowler, P; Oliver, J D; Noble, R T
2015-02-01
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar
2017-09-01
Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.
Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro
2012-04-01
Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max) ≈ 490 to λ(max) ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Pineda, Carlos; MacRae, Thomas H.; Sorgeloos, Patrick; Bossier, Peter
2008-01-01
Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority. PMID:18347942
Effects of several immunostimulants on phenoloxidase and hemocytes of the crab Charybdis japonica
NASA Astrophysics Data System (ADS)
Fan, Tingjun; Yu, Miaomiao; Yang, Lingling; Shi, Zhenping; Sun, Wenjie; Cong, Rishan; Yang, Xiuxia; Jiang, Guojian
2009-09-01
To investigate the stimulating effects of immunostimulants on the autogenous immunocompetence of crabs and the possible mechanisms involved, the immunostimulating effects of β-1,3-glucan, lipopolysaccharide (LPS), inactivated Vibrio harveyi and Vibrio anguillarum on phenoloxidase (PO) and hemocytes of Charybdis japonica were investigated in this study. It was found that the yields and the enzymatic activities of purified PO in C. japonica increased significantly after the crabs were treated with immunostimulants, while the unit enzymatic activities remained almost the same. After treatment with β-1,3-glucan and LPS, the amount of rough endoplasmic reticulum (RER) and the number of mitochondria in both semigranular cells and granular cells increased greatly, and the number of cytoplasmic granules decreased but with enlarged volume. However, the corresponding characteristics of hyaline cells remained almost the same. On the other hand, the number of granules in semigranular cells decreased greatly, and the number of mitochondria of hyaline cells increased greatly, after treatment with inactivated vibrios. It may be concluded that the effect of polysaccharide immunostimulants on the innate immune system of C. japonica is different from that of inactivated vibrio immunostimulants. The immunity-enhancing mechanism of polysaccharides in crab autogenous immunocompetence is probably accomplished by the increased yields of PO and total PO activities, while that of inactivated vibrios is probably accomplished by the partially increased yields of PO and total PO activities as well as the significantly improved phagocytotic abilities of semigranular cells and hyaline cells.
A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum.
Croxatto, Antony; Pride, John; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L
2004-06-01
Many bacterial cells communicate using diffusible signal molecules to monitor cell population density via a process termed quorum sensing. In marine Vibrio species, the Vibrio harveyi-type LuxR protein is a key player in a quorum-sensing phosphorelay cascade, which controls the expression of virulence, symbiotic and survival genes. Previously, we characterized Vibrio anguillarum homologues of LuxR (VanT) and LuxMN (VanMN) and, in this study, we have identified homologues of LuxPQ (VanPQ) and LuxOU (VanOU). In contrast to other Vibrio species, vanT was expressed at low cell density and showed no significant induction as the cell number increased. In addition, although the loss of VanO increased vanT expression, the loss of VanU, unexpectedly, decreased it. Both VanN and VanQ were required for repression of vanT even in a vanU mutant, suggesting an alternative route for VanNQ signal transduction other than via VanU. VanT negatively regulated its own expression by binding and repressing the vanT promoter and by binding and activating the vanOU promoter. The signal relay results in a cellular response as expression of the metalloprotease, empA, was altered similar to that of vanT in all the mutants. Consequently, the V. anguillarum quorum-sensing phosphorelay systems work differently from those of V. harveyi and may be used to limit rather than induce vanT expression.
RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT.
Weber, Barbara; Croxatto, Antony; Chen, Chang; Milton, Debra L
2008-03-01
In vibrios, regulation of the Vibrio harveyi-like LuxR transcriptional activators occurs post-transcriptionally via small regulatory RNAs (sRNAs) that destabilize the luxR mRNA at a low cell population, eliminating expression of LuxR. Expression of the sRNAs is modulated by the vibrio quorum-sensing phosphorelay systems. However, vanT mRNA, which encodes a LuxR homologue in Vibrio anguillarum, is abundant at low and high cell density, indicating that VanT expression may be regulated via additional mechanisms. In this study, Western analyses showed that VanT was expressed throughout growth with a peak of expression during late exponential growth. VanO induced partial destabilization of vanT mRNA via activation of at least one Qrr sRNA. Interestingly, the sigma factor RpoS significantly stabilized vanT mRNA and induced VanT expression during late exponential growth. This induction was in part due to RpoS repressing expression of Hfq, an RNA chaperone. RpoS is not part of the quorum-sensing regulatory cascade since RpoS did not regulate expression or activity of VanO, and RpoS was not regulated by VanO or VanT. VanT and RpoS were needed for survival following UV irradiation and for pigment and metalloprotease production, suggesting that RpoS works with the quorum-sensing systems to modulate expression of VanT, which regulates survival and stress responses.
Vibrio trends in the ecology of the Venice lagoon.
Rahman, Mohammad Shamsur; Martino, Maria Elena; Cardazzo, Barbara; Facco, Pierantonio; Bordin, Paola; Mioni, Renzo; Novelli, Enrico; Fasolato, Luca
2014-04-01
Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization.
Vibrio Trends in the Ecology of the Venice Lagoon
Rahman, Mohammad Shamsur; Cardazzo, Barbara; Facco, Pierantonio; Bordin, Paola; Mioni, Renzo; Novelli, Enrico; Fasolato, Luca
2014-01-01
Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization. PMID:24487545
Vibrios Associated with Litopenaeus vannamei Larvae, Postlarvae, Broodstock, and Hatchery Probionts
Vandenberghe, Johan; Verdonck, Linda; Robles-Arozarena, Rocio; Rivera, Gabriel; Bolland, Annick; Balladares, Marcos; Gomez-Gil, Bruno; Calderon, Jorge; Sorgeloos, Patrick; Swings, Jean
1999-01-01
Several bacteriological surveys were performed from 1994 to 1996 at different Litopenaeus vannamei hatcheries (in Ecuador) and shrimp farms (in Mexico). Samples were taken from routine productions of healthy and diseased L. vannamei larvae, postlarvae, and their culture environment and from healthy and diseased juveniles and broodstock. In Ecuador, the dominant bacterial flora associated with shrimp larvae showing symptoms of zoea 2 syndrome, mysis mold syndrome, and bolitas syndrome has been determined. Strains were characterized by Biolog metabolic fingerprinting and identified by comparison to a database of 850 Vibrio type and reference strains. A selection of strains was further genotypically fine typed by AFLP. Vibrio alginolyticus is predominantly present in all larval stages and is associated with healthy nauplius and zoea stages. AFLP genetic fingerprinting shows high genetic heterogeneity among V. alginolyticus strains, and the results suggest that putative probiotic and pathogenic strains each have specific genotypes. V. alginolyticus was found to be associated with larvae with the zoea 2 syndrome and the mysis mold syndrome, while different Vibrio species (V. alginolyticus and V. harveyi) are associated with the bolitas syndrome. V. harveyi is associated with diseased postlarvae, juveniles, and broodstock. The identities of the strains identified as V. harveyi by the Biolog system could not be unambiguously confirmed by AFLP genomic fingerprinting. Vibrio strain STD3-988 and one unidentified strain (STD3-959) are suspected pathogens of only juvenile and adult stages. V. parahaemolyticus, Photobacterium damselae, and V. mimicus are associated with juvenile and adult stages. PMID:10347048
Doi, Hidetaka; Chinen, Akito; Fukuda, Hiroo; Usuda, Yoshihiro
2016-08-01
An agarose- and alginate-assimilating, Gram-reaction-negative, non-motile, rod-shaped bacterium, designated strain SA2T, was isolated from the gut of a turban shell sea snail (Turbo cornutus) collected near Noto Peninsula, Ishikawa Prefecture, Japan. The 16S rRNA gene sequence of strain SA2T was 99.59 % identical to that of Vibrio rumoiensis DSM 19141T and 98.19 % identical to that of Vibrio litoralis DSM 17657T. This suggested that strain SA2T could be a subspecies of V. rumoiensis or V. litoralis. However, DNA-DNA hybridization results showed only 37.5 % relatedness to DSM 19141T and 44.7 % relatedness to DSM 17657T, which was far lower than the 70 % widely accepted to define common species. Strain SA2T could assimilate agarose as a sole carbon source, whereas strains DSM 19141T and DSM 17657T could not assimilate it at all. Furthermore, results using API 20NE and API ZYM kits indicated that their enzymic and physiological phenotypes were also different. These results suggested that strain SA2T represented a novel species within the genus Vibrio. The major isoprenoid quinone in SA2T was Q-8, and its major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were summed feature 3, (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0, and summed feature 8 (comprising C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content of SA2T was 40.7 mol%. The name proposed for this novel species of the genus Vibrio is Vibrio algivorus sp. nov., with the type strain designated SA2T (=DSM 29824T=NBRC 111146T).
Zhao, Guang-Ying; Ma, Chao; Li, Jian-Rong
2010-01-01
To improve the key technology of immunesensors in immobilizing bio-sensitive element and keeping its bioactivity, an enzyme immunosensor based on chitosan-SiO(2) (CS-Sio(2)) hybrid membrane was fabricated. To estimate the new immunosensor Vibrio parahaemolyticus which was the main pathogens of aquatic products. A CS-SiO(2) hybrid membrane was prepared using sol-gel method. The enzyme immunosensor was fabricated by coating the membrane and horseradish peroxidase labeled Vibrio parahaemolyticus antibody (HRP-anti-VP) on the surface of four-channel screen-printed carbon electrode. The immunosensor was characterized by cyclic voltammetry. Vibrio parahaemolyticus could be detected according to the decrease percentage (DP) of peak current before and after immune response, while cyclic voltammetry was used as an electrochemical mean to detect the products of the enzymatic reaction. Seven kinds of bacteria, like Vibrio alginolyticus, were selected for specific experiments. By studying the infrared spectrum of three kinds of films, the CS-SiO(2) hybrid membrane was prepared and HRP-anti-VP was fixed in the hybrid membrane. Under the optimum conditions of immunoreaction and electrochemical detection, the DP of peak current before and after immune response showed a linear relation with lgC in the range of 10(4) - 10(9) cfu/ml, while the linear regression equation was: DP = 6.5 lgC-3.319, the correlation coefficient was 0.9958 and the detection limit was 6.9 x 10(3) cfu/ml (S/N = 3). The immunosensor possessed acceptable specificity, reproducibility (RSD < 6%), stability (the amperometric response was 95% of the initial response after a week) and accuracy (96.7% of the results obtained by the immunosensor were in agreement with those obtained by GB/T 4789.7-2003). The enzyme immunosensor based on CS-SiO(2) hybrid membrane gave a good performance in rapid detection of Vibrio parahaemolyticus.
Moravec, Anna R.; Siv, Andrew W.; Hobby, Chelsea R.; Lindsay, Emily N.; Norbash, Layla V.; Shults, Daniel J.; Symes, Steven J. K.
2017-01-01
ABSTRACT The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B. PMID:28864654
Vibrio parahaemolyticus and Vibrio vulnificus Recovered from Oysters during an Oyster Relay Study.
Elmahdi, Sara; Parveen, Salina; Ossai, Sylvia; DaSilva, Ligia V; Jahncke, Michael; Bowers, John; Jacobs, John
2018-02-01
Vibrio parahaemolyticus and Vibrio vulnificus are naturally occurring estuarine bacteria and are the leading causes of seafood-associated infections and mortality in the United States. Though multiple-antibiotic-resistant V. parahaemolyticus and V. vulnificus strains have been reported, resistance patterns in vibrios are not as well documented as those of other foodborne bacterial pathogens. Salinity relaying (SR) is a postharvest processing (PHP) treatment to reduce the abundances of these pathogens in shellfish harvested during the warmer months. The purpose of this study was to evaluate the antimicrobial susceptibility (AMS), pathogenicity, and genetic profiles of V. parahaemolyticus and V. vulnificus recovered from oysters during an oyster relay study. Isolates ( V. parahaemolyticus [ n = 296] and V. vulnificus [ n = 94]) were recovered from oysters before and during the 21-day relaying study to detect virulence genes ( tdh and trh ) and genes correlated with virulence ( vcgC ) using multiplex quantitative PCR (qPCR). AMS to 20 different antibiotics was investigated using microbroth dilution, and pulsed-field gel electrophoresis (PFGE) was used to study the genetic profiles of the isolates. Twenty percent of V. vulnificus isolates were vcgC + , while 1 and 2% of V. parahaemolyticus were tdh + and trh + , respectively. More than 77% of the V. vulnificus isolates and 30% of the V. parahaemolyticus isolates were resistant to at least one antimicrobial. Forty-eight percent of V. vulnificus and 8% of V. parahaemolyticus isolates were resistant to two or more antimicrobials. All isolates demonstrated a high genetic diversity, even among those isolated from the same site and having a similar AMS profile. No significant effects of the relaying process on AMS, virulence genes, or PFGE profiles of V. vulnificus and V. parahaemolyticus were observed. IMPORTANCE Analysis of the antibiotic resistance profiles of V. vulnificus and V. parahaemolyticus isolated from oysters during this study indicated that more than 48% of V. vulnificus isolates were resistant to two or more antimicrobials, including those recommended by the CDC for treating Vibrio infections. Also, the V. parahaemolyticus isolates showed high MICs for some of the Vibrio infection treatment antibiotics. Monitoring of AMS profiles of this bacterium is important to ensure optimal treatment of infections and improve food safety. Our study showed no significant differences in the AMS profiles of V. vulnificus ( P = 0.26) and V. parahaemolyticus ( P = 0.23) isolated from the oysters collected before versus after relaying. This suggests that the salinity of the relaying sites did not affect the AMS profiles of the Vibrio isolates, although it did reduce the numbers of these bacteria in oysters (S. Parveen et al., J Food Sci 82:484-491, 2017, https://doi.org/10.1111/1750-3841.13584). Copyright © 2018 American Society for Microbiology.
Clonal origins of Vibrio cholerae O1 El Tor strains, Papua New Guinea, 2009-2011.
Horwood, Paul F; Collins, Deirdre; Jonduo, Marinjho H; Rosewell, Alexander; Dutta, Samir R; Dagina, Rosheila; Ropa, Berry; Siba, Peter M; Greenhill, Andrew R
2011-11-01
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region.
Complete genome sequence of the larval shellfish pathogen Vibrio Tubiashii type strain ATCC 19109
USDA-ARS?s Scientific Manuscript database
Vibrio tubiashii is a larval shellfish pathogen. Here we report the first closed genome sequence for this species (American Type Culture Collection type strain 19109), which has two chromosomes (3,294,490 and 1,766,582 bp), two megaplasmids (251,408 and 122,808 bp) and two plasmids (57,076 and 47,9...
USDA-ARS?s Scientific Manuscript database
The effect of storage conditions on subsequent high-hydrostatic pressure (HHP) inactivation of V. parahaemolyticus and V. vulnificus in oyster meat was investigated. Live oysters were inoculated with V. parahaemolyticus or V. vulnificus to ca. 7-8 log MPN/g by feeding and stored at different conditi...
A conserved chemical dialog of mutualism: lessons from squid and vibrio
Schwartzman, Julia A.; Ruby, Edward G.
2015-01-01
Microorganisms shape, and are shaped by, their environment. In host-microbe associations, this environment is defined by tissue chemistry, which reflects local and organism-wide physiology, as well as inflammatory status. We review how, in the squid-vibrio mutualism, both partners shape tissue chemistry, revealing common themes governing tissue homeostasis in animal-microbe associations. PMID:26384815
USDA-ARS?s Scientific Manuscript database
The steadily increased consumption of raw oysters in Taiwan warrants an assessment of the risk (probability of illness) of raw oyster consumption attributed by Vibrio parahaemolyticus. The aim of this study was to estimate the risk of V. parahaemolyticus infection associated with raw oyster consumpt...
USDA-ARS?s Scientific Manuscript database
The three most common pathogenic species of Vibrio, V. cholerae, V. parahemolyticus and V. vulnificus, are of major concern as water- and food-borne pathogens because of an increasing incidence of water and seafood related outbreaks and illnesses worldwide. Current methods are time-consuming and req...
Vibrio bacteria in raw oysters: managing risks to human health.
Froelich, Brett A; Noble, Rachel T
2016-03-05
The human-pathogenic marine bacteria Vibrio vulnificus and V. parahaemolyticus are strongly correlated with water temperature, with concentrations increasing as waters warm seasonally. Both of these bacteria can be concentrated in filter-feeding shellfish, especially oysters. Because oysters are often consumed raw, this exposes people to large doses of potentially harmful bacteria. Various models are used to predict the abundance of these bacteria in oysters, which guide shellfish harvest policy meant to reduce human health risk. Vibrio abundance and behaviour varies from site to site, suggesting that location-specific studies are needed to establish targeted risk reduction strategies. Moreover, virulence potential, rather than simple abundance, should be also be included in future modeling efforts. © 2016 The Author(s).
An unusual case of sepsis with both Vibrio vulnificus and Enterococcus casseliflavus.
Saumya, Bhagat; Abhijeet, Yadav; Nagpal, Stuti; Sartor, Oliver
2010-01-01
An 87-year-old man with metastatic prostate cancer on prior dexamethasone and chemotherapy presented to the emergency department with fever, hypotension and diarrhea. Blood cultures at the time of admission revealed both Vibrio vulnificus and Enterococcus casseliflavus. Raw oysters harvested from a Louisiana marsh were consumed 12 and 13 days pre-admission. V. vulnificus sepsis typically manifests within one to three days of exposure, though prior reports have indicated infections as late as seven days later. These bacteria particularly grow in warmer saline waters, and infections are less common in winter. Warming trends in US weather and in particular warming trends in the coastal marshes where oysters are grown and harvested may create less seasonal variation and higher rates of Vibrio infection.
Vibrio parahemolyticus septicaemia in a liver transplant patient: a case report
2011-01-01
Introduction Vibrio parahemolyticus is the leading cause of vibrio-associated gastroenteritis in the United States of America, usually related to poor food handling; only rarely has it been reported to cause serious infections including sepsis and soft tissue infections. In contrast, Vibrio vulnificus is a well-known cause of septicaemia, especially in patients with cirrhosis. We present a patient with V. parahemolyticus sepsis who had an orthotic liver transplant in 2007 and was on immunosuppression for chronic rejection. Clinical suspicion driven by patient presentation, travel to Gulf of Mexico and soft tissue infection resulted in early diagnosis and institution of appropriate antibiotic therapy. Case presentation A 48 year old Latin American man with a history of chronic kidney disease, orthotic liver transplant in 2007 secondary to alcoholic end stage liver disease on immunosuppressants, and chronic rejection presented to the emergency department with fever, vomiting, abdominal pain, left lower extremity swelling and fluid filled blisters after a fishing trip in the Gulf of Mexico. Samples from the blister and blood grew V. parahemolyticus. The patient was successfully treated with ceftriaxone and ciprofloxacin. Conclusion Febrile patients with underlying liver disease and/or immunosuppression should be interviewed regarding recent travel to a coastal area and seafood ingestion. If this history is obtained, appropriate empiric antibiotics must be chosen. Patients with liver disease and/or immunosuppresion should be counselled to avoid eating raw or undercooked molluscan shellfish. People can prevent Vibrio sepsis and wound infections by proper cooking of seafood and avoiding exposure of open wounds to seawater or raw shellfish products. PMID:21548914
Vibrio parahemolyticus septicaemia in a liver transplant patient: a case report.
Fernando, Rajeev R; Krishnan, Sujatha; Fairweather, Morgan G; Ericsson, Charles D
2011-05-06
Vibrio parahemolyticus is the leading cause of vibrio-associated gastroenteritis in the United States of America, usually related to poor food handling; only rarely has it been reported to cause serious infections including sepsis and soft tissue infections. In contrast, Vibrio vulnificus is a well-known cause of septicaemia, especially in patients with cirrhosis. We present a patient with V. parahemolyticus sepsis who had an orthotic liver transplant in 2007 and was on immunosuppression for chronic rejection. Clinical suspicion driven by patient presentation, travel to Gulf of Mexico and soft tissue infection resulted in early diagnosis and institution of appropriate antibiotic therapy. A 48 year old Latin American man with a history of chronic kidney disease, orthotic liver transplant in 2007 secondary to alcoholic end stage liver disease on immunosuppressants, and chronic rejection presented to the emergency department with fever, vomiting, abdominal pain, left lower extremity swelling and fluid filled blisters after a fishing trip in the Gulf of Mexico. Samples from the blister and blood grew V. parahemolyticus. The patient was successfully treated with ceftriaxone and ciprofloxacin. Febrile patients with underlying liver disease and/or immunosuppression should be interviewed regarding recent travel to a coastal area and seafood ingestion. If this history is obtained, appropriate empiric antibiotics must be chosen. Patients with liver disease and/or immunosuppresion should be counselled to avoid eating raw or undercooked molluscan shellfish. People can prevent Vibrio sepsis and wound infections by proper cooking of seafood and avoiding exposure of open wounds to seawater or raw shellfish products.
Wei, Yu-Hong; Chen, Wei-Chuan; Wu, Ho-Shing; Janarthanan, Om-Murugan
2011-01-01
Polyhydroxybutyrate (PHB) is one of the polyhydroxyalkanoates (PHAs) which has biodegradable and biocompatible properties. They are adopted in the biomedical field, in, for example, medical implants and drug delivery carriers. This study seeks to promote the production of PHB by Vibrio sp. BM-1, isolated from a marine environment by improving constituents of medium and implementing an appropriate fermentation strategy. This study successfully developed a glycerol-yeast extract-tryptone (GYT) medium that can facilitate the growth of Vibrio sp. BM-1 and lead to the production of 1.4 g/L PHB at 20 h cultivation. This study also shows that 1.57 g/L PHB concentration and 16% PHB content were achieved, respectively, when Vibrio sp. BM-1 was cultivated with MS-GYT medium (mineral salts-supplemented GYT medium) for 12 h. Both cell dry weight (CDW) and residual CDW remained constant at around 8.2 g/L and 8.0 g/L after the 12 h of cultivation, until the end of the experiment. However, both 16% of PHB content and 1.57 g/L of PHB production decreased rapidly to 3% and 0.25 g/L, respectively from 12 h of cultivation to 40 h of cultivation. The results suggest that the secretion of PHB depolymerase that might be caused by the addition of mineral salts reduced PHB after 12 h of cultivation. However, work will be done to explain the effect of adding mineral salts on the production of PHB by Vibrio sp. BM-1 in the near future. PMID:21731553
Wei, Yu-Hong; Chen, Wei-Chuan; Wu, Ho-Shing; Janarthanan, Om-Murugan
2011-01-01
Polyhydroxybutyrate (PHB) is one of the polyhydroxyalkanoates (PHAs) which has biodegradable and biocompatible properties. They are adopted in the biomedical field, in, for example, medical implants and drug delivery carriers. This study seeks to promote the production of PHB by Vibrio sp. BM-1, isolated from a marine environment by improving constituents of medium and implementing an appropriate fermentation strategy. This study successfully developed a glycerol-yeast extract-tryptone (GYT) medium that can facilitate the growth of Vibrio sp. BM-1 and lead to the production of 1.4 g/L PHB at 20 h cultivation. This study also shows that 1.57 g/L PHB concentration and 16% PHB content were achieved, respectively, when Vibrio sp. BM-1 was cultivated with MS-GYT medium (mineral salts-supplemented GYT medium) for 12 h. Both cell dry weight (CDW) and residual CDW remained constant at around 8.2 g/L and 8.0 g/L after the 12 h of cultivation, until the end of the experiment. However, both 16% of PHB content and 1.57 g/L of PHB production decreased rapidly to 3% and 0.25 g/L, respectively from 12 h of cultivation to 40 h of cultivation. The results suggest that the secretion of PHB depolymerase that might be caused by the addition of mineral salts reduced PHB after 12 h of cultivation. However, work will be done to explain the effect of adding mineral salts on the production of PHB by Vibrio sp. BM-1 in the near future.
Wind direction and its linkage with Vibrio cholerae dissemination.
Paz, Shlomit; Broza, Meir
2007-02-01
The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.
Defoirdt, Tom; Sorgeloos, Patrick
2012-12-01
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.
Defoirdt, Tom; Sorgeloos, Patrick
2012-01-01
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627
Mukherjee, Debadrita; Pal, Aritrika; Chakravarty, Devlina; Chakrabarti, Pinak
2015-02-18
HlyU, a transcriptional regulator common in many Vibrio species, activates the hemolysin gene hlyA in Vibrio cholerae, the rtxA1 operon in Vibrio vulnificus and the genes of plp-vah1 and rtxACHBDE gene clusters in Vibrio anguillarum. The protein is also proposed to be a potential global virulence regulator for V. cholerae and V. vulnificus. Mechanisms of gene control by HlyU in V. vulnificus and V. anguillarum are reported. However, detailed elucidation of the interaction of HlyU in V. cholerae with its target DNA at the molecular level is not available. Here we report a 17-bp imperfect palindrome sequence, 5'-TAATTCAGACTAAATTA-3', 173 bp upstream of hlyA promoter, as the binding site of HlyU. This winged helix-turn-helix protein binds necessarily as a dimer with the recognition helices contacting the major grooves and the β-sheet wings, the minor grooves. Such interactions enhance hlyA promoter activity in vivo. Mutations affecting dimerization as well as those in the DNA-protein interface hamper DNA binding and transcription regulation. Molecular dynamic simulations show hydrogen bonding patterns involving residues at the mutation sites and confirmed their importance in DNA binding. On binding to HlyU, DNA deviates by ∼68º from linearity. Dynamics also suggest a possible redox control in HlyU. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii
Lux, Thomas M.; Lee, Rob; Love, John
2014-01-01
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change. PMID:25191313
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii.
Lux, Thomas M; Lee, Rob; Love, John
2014-01-01
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Clonal Origins of Vibrio cholerae O1 El Tor Strains, Papua New Guinea, 2009–2011
Collins, Deirdre; Jonduo, Marinjho H.; Rosewell, Alexander; Dutta, Samir R.; Dagina, Rosheila; Ropa, Berry; Siba, Peter M.; Greenhill, Andrew R.
2011-01-01
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region. PMID:22099099
In vitro anti-Vibrio cholerae activity of essential oil from Lepechinia caulescens.
Acevedo, J G Avila; López, J L Muñoz; Cortés, A Martínez; Bores, A M García; Cortés, G Martínez; Castro, I Peñalosa
2005-01-01
Lepechinia caulescens is a plant employed by the Purepecha (a Mexican ethnic group) to treat infectious gastrointestinal ailments. The essential oil of this species was active against some strains of Vibrio cholerae with 4 microl/ml MIC and 6 microl/ml MBC. The major components of the oil found by GC-MS were borneol, camphor and trans-caryophyllene.
Genetic characterization of Vibrio vulnificus strains from tilapia aquaculture in Bangladesh.
Mahmud, Zahid H; Wright, Anita C; Mandal, Shankar C; Dai, Jianli; Jones, Melissa K; Hasan, Mahmud; Rashid, Mohammad H; Islam, Mohammad S; Johnson, Judith A; Gulig, Paul A; Morris, J Glenn; Ali, Afsar
2010-07-01
Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.
Ellis, Crystal N.; Schuster, Brian M.; Striplin, Megan J.; Jones, Stephen H.; Whistler, Cheryl A.
2012-01-01
Risk of gastric infection with Vibrio parahaemolyticus increases with favorable environmental conditions and population shifts that increase prevalence of infective strains. Genetic analysis of New Hampshire strains revealed a unique population with some isolates similar to outbreak-causing strains and high-level diversity that increased as waters warmed. PMID:22407686
Ellis, Crystal N; Schuster, Brian M; Striplin, Megan J; Jones, Stephen H; Whistler, Cheryl A; Cooper, Vaughn S
2012-05-01
Risk of gastric infection with Vibrio parahaemolyticus increases with favorable environmental conditions and population shifts that increase prevalence of infective strains. Genetic analysis of New Hampshire strains revealed a unique population with some isolates similar to outbreak-causing strains and high-level diversity that increased as waters warmed.
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a non-polar mutation in toxRS to determi...
NASA Technical Reports Server (NTRS)
Urquhart, Erin A.; Zaitchik, Benjamin F.; Waugh, Darryn W.; Guikema, Seth D.; Del Castillo, Carlos E.
2014-01-01
The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4 C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.
Okeyo, Allisen N; Nontongana, Nolonwabo; Fadare, Taiwo O; Okoh, Anthony I
2018-06-15
Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical) may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.
Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung
2016-01-01
Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.
Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung
2016-01-01
Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873
Genetic analysis of Vibrio parahaemolyticus intestinal colonization.
Hubbard, Troy P; Chao, Michael C; Abel, Sören; Blondel, Carlos J; Abel Zur Wiesch, Pia; Zhou, Xiaohui; Davis, Brigid M; Waldor, Matthew K
2016-05-31
Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited. We used transposon-insertion sequencing to screen for genes that contribute to viability of V. parahaemolyticus in vitro and in the mammalian intestine. Our analysis enumerated and controlled for the host infection bottleneck, enabling robust assessment of genetic contributions to in vivo fitness. We identified genes that contribute to V. parahaemolyticus colonization of the intestine independent of known virulence mechanisms in addition to uncharacterized components of T3SS2. Our study revealed that toxR, an ancestral locus in Vibrio species, is required for V. parahaemolyticus fitness in vivo and for induction of T3SS2 gene expression. The regulatory mechanism by which V. parahaemolyticus ToxR activates expression of T3SS2 resembles Vibrio cholerae ToxR regulation of distinct virulence elements acquired via lateral gene transfer. Thus, disparate horizontally acquired virulence systems have been placed under the control of this ancestral transcription factor across independently evolved human pathogens.
Martinez, Joval N; Padilla, Philip Ian P
2016-08-01
Gracilariopsis heteroclada Zhang et Xia (Gracilariaceae, Rhodophyta) is one of the most studied marine seaweeds due to its economic importance. This has been cultivated extensively on commercial scale in the Philippines and other Asian countries. However, sustainable production of G. heteroclada in the Philippines could not be maximized due to the occurrence of rotten thallus disease. Thus, isolation and characterization of agar-digesting bacteria from the rotten thalli of G. heteroclada was conducted. A total of seven representative bacterial isolates were randomly selected based on their ability to digest agar as evidenced by the formation of depressions around the bacterial colonies on nutrient agar plates supplemented with 1.5% NaCl and liquefaction of agar. Gram-staining and biochemical characterization revealed that isolates tested were gram-negative rods and taxonomically identified as Vibrio parahaemolyticus (86-99.5%) and Vibrio alginolyticus (94.2-97.7%), respectively. It is yet to be confirmed whether these agar-digesting vibrios are involved in the induction and development of rotten thallus disease in G. heteroclada in concomitance with other opportunistic bacterial pathogens coupled with adverse environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emerging Vibrio risk at high latitudes in response to ocean warming
NASA Astrophysics Data System (ADS)
Baker-Austin, Craig; Trinanes, Joaquin A.; Taylor, Nick G. H.; Hartnell, Rachel; Siitonen, Anja; Martinez-Urtaza, Jaime
2013-01-01
There is increasing concern regarding the role of climate change in driving bacterial waterborne infectious diseases. Here we illustrate associations between environmental changes observed in the Baltic area and the recent emergence of Vibrio infections and also forecast future scenarios of the risk of infections in correspondence with predicted warming trends. Using multidecadal long-term sea surface temperature data sets we found that the Baltic Sea is warming at an unprecedented rate. Sea surface temperature trends (1982-2010) indicate a warming pattern of 0.063-0.078°Cyr-1 (6.3-7.8°C per century; refs , ), with recent peak temperatures unequalled in the history of instrumented measurements for this region. These warming patterns have coincided with the unexpected emergence of Vibrio infections in northern Europe, many clustered around the Baltic Sea area. The number and distribution of cases correspond closely with the temporal and spatial peaks in sea surface temperatures. This is among the first empirical evidence that anthropogenic climate change is driving the emergence of Vibrio disease in temperate regions through its impact on resident bacterial communities, implying that this process is reshaping the distribution of infectious diseases across global scales.
Nealson, K. H.; Wimpee, B.; Wimpee, C.
1993-01-01
Hybridization probes specific for the luxA genes of four groups of luminous bacteria were used to screen luminous isolates obtained from the Persian Gulf, near Al Khiran, Kuwait Nine of these isolates were identified as Vibrio harveyi, a commonly encountered planktonic isolate, while three others showed no hybridization to any of the four probes (V. harveyi, Vibrio fischeri, Photobacterium phosphoreum, or Photobacterium leiognathi) under high-stringency conditions. Polymerase chain reaction amplification was used to prepare a luxA probe against one of these isolates, K-1, and this probe was screened under high-stringency conditions against a collection of DNAs from luminous bacteria; it was found to hybridize specifically to the DNA of the species Vibrio splendidus. A probe prepared against the type strain of V. splendidus (ATCC 33369) was tested against the collection of luminous bacterial DNA preparations and against the Kuwait isolates and was found to hybridize only against the type strain and the three unidentified Kuwait isolates. Extensive taxonomic analysis by standard methods confirmed the identification of the 13 isolates. Images PMID:16349023
Han, Junping; Huang, Yayan; Ye, Jing; Xiao, Meitian
2015-09-04
To screen and identify a bacterium capable of converting agar to neoagaro oligosaccharides. We took samples of porphyra haitanensis and nearby seawater, and then used the medium containing 1 per thousand agar to enrich the target bacteria. The target isolates were obtained by dilution-plate method, of which crude enzymes were further obtained by liquid culture. We adopted DNS method to determine the target bacteria which can convert agar to neoagaro oligosaccharides. The phylogenetics was identified by analyzing 16S rDNA sequence and combining the strain's morphological and bacterial colonial physiological biochemical characteristics. We isolated a gram-negative bacterial strain HJPHYXJ-1 capable of transforming agar to neoagaro oligosaccharides. Basic Local Alignment Search Tool (BLAST) search of HJPHYXJ-1's 16S rDNA sequence on GenBank suggested that the similarity between this strain and Vibrio natriegens reached 99% . In addition, the morphological and physiological biochemical characteristics of HJPHYXJ-1 also showed highly similarity to Vibrio natriegens. So we identified HJPHYXJ-1 as Vibrio natriegens. The results of HPLC suggested that the metabolite of enzymatic degradation was neoagaro oligosaccharides. HJPHYXJ-1 or the new isolate of Vibrio natriegens was capable of converting agar to neoagaro oligosaccharides.
Cardoso, M D; Lemos, L S; Roges, E M; de Moura, J F; Tavares, D C; Matias, C A R; Rodrigues, D P; Siciliano, S
2018-05-01
To perform a microbiological survey regarding the presence, prevalence and characterization of Aeromonas sp. and Vibrio sp. in debilitated wrecked marine birds recovered from the centre-north coast of the state of Rio de Janeiro, Brazil. Swabs obtained from 116 alive and debilitated wrecked marine birds, comprising 19 species, from the study area were evaluated by biochemical methods. Antimicrobial susceptibility tests and pathogenicity gene screening were performed for bacterial strains of public health importance. Vibrio sp. and Aeromonas sp. were identified, as well as certain pathogenic genes and resistance to selected antimicrobials. This study demonstrates that the identified bacteria, mainly Vibrio sp., are fairly prevalent and widespread among several species of seabirds and highlights the importance of migratory birds in bacterial dispersion. In addition, it demonstrates the importance of the bacterial strains regarding their pathogenic potential. Therefore, seabirds can act as bacterial reservoirs, and their monitoring is of the utmost importance in a public health context. The study comprehensively evaluates the importance of seabirds as bacteria of public health importance reservoirs, since birds comprising several pathogenic bacterial species were evaluated. © 2018 The Society for Applied Microbiology.
Martínez-Govea, A; Ambrosio, J; Gutiérrez-Cogco, L; Flisser, A
2001-07-01
Cholera is caused only by O1 and O139 Vibrio cholerae strains. For diagnosis, 3 working days are needed for bacterial isolation from human feces and for biochemical characterization. Here we describe the purification of bacterial outer membrane proteins (OMP) from V. cholerae O1 Ogawa, O1 Inaba, and O139 strains, as well as the production of specific antisera and their use for fecal Vibrio antigen detection. Anti-OMP antisera showed very high reactivity and specificity by enzyme-linked immunosorbent assay (ELISA) and dot-ELISA. An inmunodiagnostic assay for V. cholerae detection was developed; this assay avoids preenrichment and costly equipment and can be used for epidemiological surveillance and clinical diagnosis of cases, considering that prompt and specific identification of bacteria is mandatory in cholera.
Goh, Shin Giek; Bayen, Stéphane; Burger, David; Kelly, Barry C; Han, Ping; Babovic, Vladan; Gin, Karina Yew-Hoong
2017-01-15
Water quality in Singapore's coastal area was evaluated with microbial indicators, pathogenic vibrios, chemical tracers and physico-chemical parameters. Sampling sites were grouped into two clusters (coastal sites at (i) northern and (ii) southern part of Singapore). The coastal sites located at northern part of Singapore along the Johor Straits exhibited greater pollution. Principal component analysis revealed that sampling sites at Johor Straits have greater loading on carbamazepine, while turbidity poses greater influence on sampling sites at Singapore Straits. Detection of pathogenic vibrios was also more prominent at Johor Straits than the Singapore Straits. This study examined the spatial variations in Singapore's coastal water quality and provided the baseline information for health risk assessment and future pollution management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holm, Kåre Olav; Nilsson, Kristina; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L
2015-01-01
Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.
Genome-wide characterization of vibrio phage ϕpp2 with unique arrangements of the mob-like genes
2012-01-01
Background Vibrio parahaemolyticus is associated with gastroenteritis, wound infections, and septicemia in human and animals. Phages can control the population of the pathogen. So far, the only one reported genome among giant vibriophages is KVP40: 244,835 bp with 26% coding regions that have T4 homologs. Putative homing endonucleases (HE) were found in Vibrio phage KVP40 bearing one segD and Vibrio cholerae phage ICP1 carrying one mobC/E and one segG. Results A newly isolated Vibrio phage ϕpp2, which was specific to the hosts of V. parahaemolyticus and V. alginolyticus, featured a long nonenveloped head of ~90 × 150 nm and tail of ~110 nm. The phage can survive at 50°C for more than one hour. The genome of the phage ϕpp2 was sequenced to be 246,421 bp, which is 1587 bp larger than KVP40. 383 protein-encoding genes (PEGs) and 30 tRNAs were found in the phage ϕpp2. Between the genomes of ϕpp2 and KVP40, 254 genes including 29 PEGs for viral structure were of high similarity, whereas 17 PEGs of KVP40 and 21 PEGs of ϕpp2 were unmatched. In both genomes, the capsid and tail genes have been identified, as well as the extensive representation of the DNA replication, recombination, and repair enzymes. In addition to the three giant indels of 1098, 1143 and 3330 nt, ϕpp2 possessed unique proteins involved in potassium channel, gp2 (DNA end protector), tRNA nucleotidyltransferase, and mob-type HEs, which were not reported in KVP40. The ϕpp2 PEG274, with strong promoters and translational initiation, was identified to be a mobE type, flanked by NrdA and NrdB/C homologs. Coincidently, several pairs of HE-flanking homologs with empty center were found in the phages of Vibrio phages ϕpp2 and KVP40, as well as in Aeromonas phages (Aeh1 and Ae65), and cyanophage P-SSM2. Conclusions Vibrio phage ϕpp2 was characterized by morphology, growth, and genomics with three giant indels and different types of HEs. The gene analysis on the required elements for transcription and translation suggested that the ϕpp2 PEG274 was an active mobE gene. The phage was signified to be a new species of T4-related, differing from KVP40. PMID:22676552
Disinfection of Water by Ultrasound: Application to Ballast Water Treatment
2006-10-01
fluorescens, Salmonella typhimurium, enteropathogenic E. coli, Vibrio cholerae and Shigella flexneri. Treatment by sonication alone did not...CULTURE CONDITIONS Escherichia coli (ATCC 11775) and Vibrio cholerae (ATCC 15748) were grown to mid- log phase (A600 = 0.5-0.8) at room temperature (20...17 Figure 9. Survival of V. cholerae as a function of exposure time to low intensity (12 W·cm-2
Changes in coral-associated microbial communities during a bleaching event.
Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn
2008-04-01
Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were revealed by both clone libraries and DGGE profiling. Despite Vibrio species being previously implicated in bleaching of specific coral species, it is unsure if the relative increase in retrieved Vibrio sequences is due to bacterial infection or an opportunistic response to compromised health and changing environmental parameters of the coral host. This study provides the first molecular-based study demonstrating changes in coral-associated bacterial assemblages during a bleaching event on a natural reef system.
Momtaz, Hassan; Dehkordi, Farhad Safarpoor; Rahimi, Ebrahim; Asgarifar, Amin
2013-06-07
The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health problem in Isfahan, Iran.
2013-01-01
Background The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. Methods A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. Results The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. Conclusions This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health problem in Isfahan, Iran. PMID:23742181
Dubert, Javier; Nelson, David R; Spinard, Edward J; Kessner, Linda; Gomez-Chiarri, Marta; da Costa, Fiz; Prado, Susana; Barja, Juan L
2016-01-01
Vibriosis represents the main bottleneck for the larval production process in shellfish aquaculture. While the signs of this disease in bivalve larvae are well known, the infection process by pathogenic Vibrio spp. during episodes of vibriosis has not been elucidated. To investigate the infection process in bivalves, the pathogens of larvae as V. tubiashii subsp. europaensis, V. neptunius and V. bivalvicida were tagged with green fluorescent protein (GFP). Larvae of Manila clam (Ruditapes philippinarum) were inoculated with the GFP-labeled pathogens in different infection assays and monitored by microscopy. Manila clam larvae infected by distinct GFP-tagged Vibrio spp. in different challenges showed the same progression in the infection process, defining three infection stages. GFP-tagged Vibrio spp. were filtered by the larvae through the vellum and entered in the digestive system through the esophagus and stomach and colonized the digestive gland and particularly the intestine, where they proliferated during the first 2h of contact (Stage I), suggesting a chemotactic response. Then, GFP-tagged Vibrio spp. expanded rapidly to the surrounding organs in the body cavity from the dorsal to ventral region (Stage II; 6-8h), colonizing the larvae completely at the peak of infection (Stage III) (14-24h). Results demonstrated for the first time that the vibriosis is asymptomatic in Manila clam larvae during the early infection stages. Thus, the early colonization and the rapid proliferation of Vibrio pathogens within the body cavity supported the sudden and fatal effect of the vibriosis, since the larvae exhibited the first signs of disease when the infection process is advanced. As a first step in the elucidation of the potential mechanisms of bacterial pathogenesis in bivalve larvae the enzymatic activities of the extracellular products released from the wild type V. neptunius, V. tubiashii subsp. europaensis and V. bivalvicida were determined and their cytotoxicity was demonstrated in fish and homeothermic cell lines for the first time. That activity was lost after heat treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Larsen, A M; Rikard, F S; Walton, W C; Arias, C R
2015-01-02
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are opportunistic human pathogens naturally associated with the Eastern oyster Crassostrea virginica. The abundances of both pathogens in oysters are positively correlated with temperature, thus ingestion of raw oysters during the warm summer months is a risk factor for contracting illness from these bacteria. Current post-harvest processing (PHP) methods for elimination of these pathogens are expensive and kill the oyster, changing their organoleptic properties and making them less appealing to some consumers. High salinity has proven effective in reducing Vv numbers in the wild and our research aims at developing an indoor recirculating system to reduce pathogenic Vibrios while maintaining the taste and texture of live oysters. The goal of this study was to determine the influence of temperature on the efficacy of high salinity depuration. Vv was enumerated as most probable number (MPN) per gram of oyster tissue using the FDA-approved modified cellobiose polymyxin colistin (mCPC) protocol and with an alternative Vibrio specific media CHROMagar™ Vibrio (CaV). CaV was also used to quantify Vp. Oysters were held at 35 psu for 10 days at three temperatures: low (20°C), mid (22.5°C) and high (25°C). There was no difference in MPN/g of Vv between media; however more Vv isolates were obtained from mCPC than CaV. There was no significant effect of temperature on reduction of Vv or Vp throughout depuration but there was a tendency for low temperatures to be less effective than the higher ones. High salinity resulted in a significant decrease in Vv by day 3 and again by day 10, and a decrease in Vp by day 3. Oyster condition indices were maintained throughout depuration and mortality was low (4% across three trials). Overall these results support the use of mCPC for Vv enumeration and demonstrate the promise of high salinity depuration for PHP of the Eastern oyster. The trend for lower temperatures to be less effective is surprising and indicates a potential interaction between salinity and temperature that should be further investigated. Copyright © 2014. Published by Elsevier B.V.
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus.
Lubin, Jean-Bernard; Kingston, Joseph J; Chowdhury, Nityananda; Boyd, E Fidelma
2012-05-01
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Richards, Gary P; Watson, Michael A; Needleman, David S; Church, Karlee M; Häse, Claudia C
2015-01-01
Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 10(4) to 3.0 × 10(4) CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 10(4) and 4.0 × 10(4) CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 10(4) CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lee, Choon Weng; Ng, Angie Yee Fang; Bong, Chui Wei; Narayanan, Kumaran; Sim, Edmund Ui Hang; Ng, Ching Ching
2011-02-01
Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella. © 2010 Elsevier Ltd. All rights reserved.
Nigro, Olivia D; Hou, Aixin; Vithanage, Gayatri; Fujioka, Roger S; Steward, Grieg F
2011-08-01
We investigated the abundance, distribution, and virulence gene content of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in the waters of southern Lake Pontchartrain in Louisiana on four occasions from October 2005 to September 2006, using selective cultivation and molecular assays. The three targeted pathogenic vibrios were generally below the detection level in January 2006, when the water was cold (13°C), and most abundant in September 2006, when the lake water was warmest (30°C). The maximum values for these species were higher than reported previously for the lake by severalfold to orders of magnitude. The only variable consistently correlated with total vibrio abundance within a single sampling was distance from shore (P = 0.000). Multiple linear regression of the entire data set revealed that distance from shore, temperature, and turbidity together explained 82.1% of the variability in total vibrio CFU. The log-transformed mean abundance of V. vulnificus CFU in the lake was significantly correlated with temperature (P = 0.014), but not salinity (P = 0.625). Virulence-associated genes of V. cholerae (ctx) and V. parahaemolyticus (trh and tdh) were not detected in any isolates of these species (n = 128 and n = 20, respectively). In contrast, 16S rRNA typing of V. vulnificus (n = 298) revealed the presence of both environmental (type A) and clinical (type B) strains. The percentage of the B-type V. vulnificus was significantly higher in the lake in October 2005 (35.8% of the total) than at other sampling times (P ≤ 0.004), consistent with the view that these strains represent distinct ecotypes.
Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins
De, Swastik; Kaus, Katherine; Sinclair, Shada
2018-01-01
Vibrio cholerae is an aquatic gram-negative microbe responsible for cholera, a pandemic disease causing life-threatening diarrheal outbreaks in populations with limited access to health care. Like most pathogenic bacteria, V. cholerae secretes virulence factors to assist colonization of human hosts, several of which bind carbohydrate receptors found on cell-surfaces. Understanding how pathogenic virulence proteins specifically target host cells is important for the development of treatment strategies to fight bacterial infections. Vibrio cholerae cytolysin (VCC) is a secreted pore-forming toxin with a carboxy-terminal β-prism domain that targets complex N-glycans found on mammalian cell-surface proteins. To investigate glycan selectivity, we studied the VCC β-prism domain and two additional β-prism domains found within the V. cholerae biofilm matrix protein RbmC. We show that the two RbmC β-prism domains target a similar repertoire of complex N-glycan receptors as VCC and find through binding and modeling studies that a branched pentasaccharide core (GlcNAc2-Man3) represents the likely footprint interacting with these domains. To understand the structural basis of V. cholerae β-prism selectivity, we solved high-resolution crystal structures of fragments of the pentasaccharide core bound to one RbmC β-prism domain and conducted mutagenesis experiments on the VCC toxin. Our results highlight a common strategy for cell-targeting utilized by both toxin and biofilm matrix proteins in Vibrio cholerae and provide a structural framework for understanding the specificity for individual receptors. Our results suggest that a common strategy for disrupting carbohydrate interactions could affect multiple virulence factors produced by V. cholerae, as well as similar β-prism domains found in other vibrio pathogens. PMID:29432487
Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays.
Panicker, Gitika; Call, Douglas R; Krug, Melissa J; Bej, Asim K
2004-12-01
This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers.
Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays
Panicker, Gitika; Call, Douglas R.; Krug, Melissa J.; Bej, Asim K.
2004-01-01
This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50°C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 102 to 103 CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers. PMID:15574946
Carda-Diéguez, Miguel; Ghai, Rohit; Rodríguez-Valera, Francisco; Amaro, Carmen
2017-12-21
Fish skin mucosal surfaces (SMS) are quite similar in composition and function to some mammalian MS and, in consequence, could constitute an adequate niche for the evolution of mucosal aquatic pathogens in natural environments. We aimed to test this hypothesis by searching for metagenomic and genomic evidences in the SMS-microbiome of a model fish species (Anguilla Anguilla or eel), from different ecosystems (four natural environments of different water salinity and one eel farm) as well as the water microbiome (W-microbiome) surrounding the host. Remarkably, potentially pathogenic Vibrio monopolized wild eel SMS-microbiome from natural ecosystems, Vibrio anguillarum/Vibrio vulnificus and Vibrio cholerae/Vibrio metoecus being the most abundant ones in SMS from estuary and lake, respectively. Functions encoded in the SMS-microbiome differed significantly from those in the W-microbiome and allowed us to predict that successful mucus colonizers should have specific genes for (i) attachment (mainly by forming biofilms), (ii) bacterial competence and communication, and (iii) resistance to mucosal innate immunity, predators (amoeba), and heavy metals/drugs. In addition, we found several mobile genetic elements (mainly integrative conjugative elements) as well as a series of evidences suggesting that bacteria exchange DNA in SMS. Further, we isolated and sequenced a V. metoecus strain from SMS. This isolate shares pathogenicity islands with V. cholerae O1 from intestinal infections that are absent in the rest of sequenced V. metoecus strains, all of them from water and extra-intestinal infections. We have obtained metagenomic and genomic evidence in favor of the hypothesis on the role of fish mucosal surfaces as a specialized habitat selecting microbes capable of colonizing and persisting on other comparable mucosal surfaces, e.g., the human intestine.
Lyon, W. J.
2001-01-01
Vibrio cholerae is recognized as a leading human waterborne pathogen. Traditional diagnostic testing for Vibrio is not always reliable, because this bacterium can enter a viable but nonculturable state. Therefore, nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, a TaqMan PCR assay is presented for quantitative detection of V. cholerae in pure cultures, oysters, and synthetic seawater. Primers and probe were designed from the nonclassical hemolysin (hlyA) sequence of V. cholerae strains. This probe was applied to DNA from 60 bacterial strains comprising 21 genera. The TaqMan PCR assay was positive for all of the strains of V. cholerae tested and negative for all other species of Vibrio tested. In addition, none of the other genera tested was amplified with the TaqMan primers and probe used in this study. The results of the TaqMan PCR with raw oysters and spiked with V. cholerae serotypes O1 and O139 were comparable to those of pure cultures. The sensitivity of the assay was in the range of 6 to 8 CFU g−1 and 10 CFU ml−1 in spiked raw oyster and synthetic seawater samples, respectively. The total assay could be completed in 3 h. Quantification of the Vibrio cells was linear over at least 6 log units. The TaqMan probe and primer set developed in this study can be used as a rapid screening tool for the presence of V. cholerae in oysters and seawater without prior isolation and characterization of the bacteria by traditional microbiological methods. PMID:11571173
Temperature affects species distribution in symbiotic populations of Vibrio spp.
Nishiguchi, M K
2000-08-01
The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.
Temperature Affects Species Distribution in Symbiotic Populations of Vibrio spp.
Nishiguchi, Michele K.
2000-01-01
The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26°C. In contrast, strains of V. logei grew faster at 18°C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26°C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26°C, whereas strains of V. logei were present in greater concentrations at 18°C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity. PMID:10919820
NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.
Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N
1999-05-01
NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.
Nigro, Olivia D.; Hou, Aixin; Vithanage, Gayatri; Fujioka, Roger S.; Steward, Grieg F.
2011-01-01
We investigated the abundance, distribution, and virulence gene content of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in the waters of southern Lake Pontchartrain in Louisiana on four occasions from October 2005 to September 2006, using selective cultivation and molecular assays. The three targeted pathogenic vibrios were generally below the detection level in January 2006, when the water was cold (13°C), and most abundant in September 2006, when the lake water was warmest (30°C). The maximum values for these species were higher than reported previously for the lake by severalfold to orders of magnitude. The only variable consistently correlated with total vibrio abundance within a single sampling was distance from shore (P = 0.000). Multiple linear regression of the entire data set revealed that distance from shore, temperature, and turbidity together explained 82.1% of the variability in total vibrio CFU. The log-transformed mean abundance of V. vulnificus CFU in the lake was significantly correlated with temperature (P = 0.014), but not salinity (P = 0.625). Virulence-associated genes of V. cholerae (ctx) and V. parahaemolyticus (trh and tdh) were not detected in any isolates of these species (n = 128 and n = 20, respectively). In contrast, 16S rRNA typing of V. vulnificus (n = 298) revealed the presence of both environmental (type A) and clinical (type B) strains. The percentage of the B-type V. vulnificus was significantly higher in the lake in October 2005 (35.8% of the total) than at other sampling times (P ≤ 0.004), consistent with the view that these strains represent distinct ecotypes. PMID:21642406
Gatidou, Georgia; Stasinakis, Athanasios S; Iatrou, Evangelia I
2015-01-01
Single and joint toxicity of three substituted urea herbicides, namely monolinuron [3-(4-chlorophenyl)-1-methoxy-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and diuron [1-(3,4 dichlorophenyl)-3,3 dimethyl urea], were studied. The duckweed Lemna minor and the luminescent bacterium Vibrio fischeri were used for the toxicity assessment and they were exposed to various concentrations of the herbicides, individually and in binary mixtures. The exposure time was 7d for the duckweed and 30 min for the bacterium. Estimation of EC50 values was performed by frond counting and reduction in light output for Lemna minor and Vibrio fischeri, respectively. Lemna minor was found to be much more sensitive than Vibrio fischeri to target compounds. The toxicity of the three herbicides applied solely was estimated to be in decreasing order: diuron (EC50=28.3 μg L(-1))≈linuron (EC50=30.5 μg L(-1))>monolinuron (EC50=300 μg L(-1)) for the duckweed and linuron (EC50=8.2 mg L(-1))>diuron (EC50=9.2 mg L(-1))>monolinuron (EC50=11.2 mg L(-1)) for the bacterium. Based on the environmental concentrations reported in the literature and EC50 values obtained from Lemna minor experiments, Risk Quotients (RQ) much higher than 1 were calculated for diuron and linuron. In Lemna minor experiments, combination of target compounds resulted to additive effects due to their same mode of phenylurea action on photosynthetic organisms. Regarding Vibrio fischeri, synergistic, additive and antagonistic effects were observed, which varied according to the concentrations of target compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Akinyele, Taiwo Adesola; Okoh, Omobola Oluranti; Akinpelu, David Ayinde; Okoh, Anthony Ifeanyi
2011-03-03
The increasing numbers of cases of antibiotic resistance among pathogenic bacteria such as Vibrio species poses a major problem to the food and aquaculture industries, as most antibiotics are no longer effective in controlling pathogenic bacteria affecting these industries. Therefore, this study was carried out to assess the antibacterial potentials of crude aqueous and n-hexane extracts of the husk of Cocos nucifera against some selected Vibrio species and other bacterial pathogens including those normally implicated in food and wound infections. The crude extracts were screened against forty-five strains of Vibrio pathogens and twenty-five other bacteria isolates made up of ten Gram positive and fifteen Gram negative bacteria. The aqueous extract was active against 17 of the tested bacterial and 37 of the Vibrio isolates; while the n-hexane extract showed antimicrobial activity against 21 of the test bacteria and 38 of the test Vibrio species. The minimum inhibitory concentrations (MICs) of the aqueous and n-hexane extracts against the susceptible bacteria ranged between 0.6-5.0 mg/mL and 0.3-5.0 mg/mL respectively, while the time kill study result for the aqueous extract ranged between 0.12 Log₁₀ and 4.2 Log₁₀ cfu/mL after 8 hours interaction in 1 x MIC and 2 x MIC. For the n-hexane extract, the log reduction ranged between 0.56 Log₁₀ and 6.4 Log₁₀ cfu/mL after 8 hours interaction in 1 x MIC and 2 x MIC. This study revealed the huge potential of C. nucifera extracts as alternative therapies against microbial infections.
Flärdh, K; Axberg, T; Albertson, N H; Kjelleberg, S
1994-01-01
In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The amino acid sequences are 64% identical, and they share some completely conserved regions. A delta relA::kan allele was generated by replacing 53% of the open reading frame with a kanamycin resistance gene. The Vibrio relA mutants displayed a relaxed control of RNA synthesis and failed to accumulate ppGpp during amino acid limitation. During carbon and energy starvation, a relA-dependent burst of ppGpp synthesis concomitant with carbon source depletion and growth arrest was observed. Also, in the absence of the relA gene, there was an accumulation of ppGpp during carbon starvation, but this was slower and smaller than that which occurred in the stringent strains, and it was preceded by a marked decrease in the [ATP]/[ADP] ratio. In both the wild-type and the relaxed strains, carbon source depletion caused an immediate decrease in the size of the GTP pool and a block of net RNA accumulation. The relA mutation did not affect long-term survival or the development of resistance against heat, ethanol, and oxidative stress during carbon starvation of Vibrio sp. strain S14. PMID:7928955
Ren, Tingting; Su, Yi-Cheng
2006-08-01
Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 x 10(7) CFU/ml) and V. vulnificus (8.69 x 10(7) CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (> 6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 10(4) and 10(6) most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8 h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (> 12 h) of oysters in EO water containing high levels of chlorine (> 30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to 6 h to avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.
Croxatto, Antony; Chalker, Victoria J.; Lauritz, Johan; Jass, Jana; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L.
2002-01-01
Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum ΔvanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the ΔvanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an l-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum ΔvanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production. PMID:11872713
Croxatto, Antony; Chalker, Victoria J; Lauritz, Johan; Jass, Jana; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L
2002-03-01
Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.
Santhakumari, Sivasubramanian; Jayakumar, Rengarajan; Logalakshmi, Ravichandran; Prabhu, Narayanan Marimuthu; Abdul Nazar, Abdul Kuthus; Karutha Pandian, Shunmugiah; Veera Ravi, Arumugam
2018-05-25
This study unveils the in vitro and in vivo antibiofilm potential of 2,6-Di-tert-butyl-4-methylphenol (DTBMP) from Chroococcus turgidus against Vibrio spp. In the preliminary study, cell free culture supernatant (CFCS) of C. turgidus inhibited the violacein production in biomarker strain Chromobacterium violaceum and its mutant strain CV026 in a dose dependent manner. The effective biofilm inhibitory concentration (BIC) of pure compound DTBMP from C. turgidus was identified as 250 μg/ml concentration in tested Vibrio species. Furthermore, DTBMP proved to effectively inhibit the bioluminescence production in V. harveyi and other biofilm related virulence traits such as exopolysaccharides (EPS) production, hydrophobicity index, swimming and swarming motility at its BIC concentration in three major pathogenic vibrios: V. harveyi, V. parahaemolyticus and V. vulnificus. The antibiofilm potential of DTBMP was validated through light, confocal laser scanning and scanning electron microscopic analyses. In addition, the non-bactericidal effect of DTBMP was determined through growth curve and 2,3-bis (2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Real-time PCR studies revealed the down-regulation of master quorum sensing (QS) regulator genes of V. harveyi such as luxR, luxS, luxP, luxQ and luxO on treatment with DTBMP. In vivo results confirmed that DTBMP augmented the survival rate of Litopenaeus vannamei larvae up to 75, 88 and 66% upon infection with V. harveyi, V. parahaemolyticus and V. vulnificus, respectively. The results of this study ascertain the promising effects of DTBMP as an antibiofilm agent, which could be positively explored to treat biofilm-associated vibrios infections in aquaculture. Copyright © 2018 Elsevier B.V. All rights reserved.
Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level
Takemura, Alison F.; Chien, Diana M.; Polz, Martin F.
2013-01-01
The Vibrionaceae, which encompasses several potential pathogens, including V. cholerae, the causative agent of cholera, and V. vulnificus, the deadliest seafood-borne pathogen, are a well-studied family of marine bacteria that thrive in diverse habitats. To elucidate the environmental conditions under which vibrios proliferate, numerous studies have examined correlations with bulk environmental variables—e.g., temperature, salinity, nitrogen, and phosphate—and association with potential host organisms. However, how meaningful these environmental associations are remains unclear because data are fragmented across studies with variable sampling and analysis methods. Here, we synthesize findings about Vibrio correlations and physical associations using a framework of increasingly fine environmental and taxonomic scales, to better understand their dynamics in the wild. We first conduct a meta-analysis to determine trends with respect to bulk water environmental variables, and find that while temperature and salinity are generally strongly predictive correlates, other parameters are inconsistent and overall patterns depend on taxonomic resolution. Based on the hypothesis that dynamics may better correlate with more narrowly defined niches, we review evidence for specific association with plants, algae, zooplankton, and animals. We find that Vibrio are attached to many organisms, though evidence for enrichment compared to the water column is often lacking. Additionally, contrary to the notion that they flourish predominantly while attached, Vibrio can have, at least temporarily, a free-living lifestyle and even engage in massive blooms. Fine-scale sampling from the water column has enabled identification of such lifestyle preferences for ecologically cohesive populations, and future efforts will benefit from similar analysis at fine genetic and environmental sampling scales to describe the conditions, habitats, and resources shaping Vibrio dynamics. PMID:24575082
Visual Analytics of Surveillance Data on Foodborne Vibriosis, United States, 1973–2010
Sims, Jennifer N.; Isokpehi, Raphael D.; Cooper, Gabrielle A.; Bass, Michael P.; Brown, Shyretha D.; St John, Alison L.; Gulig, Paul A.; Cohly, Hari H.P.
2011-01-01
Foodborne illnesses caused by microbial and chemical contaminants in food are a substantial health burden worldwide. In 2007, human vibriosis (non-cholera Vibrio infections) became a notifiable disease in the United States. In addition, Vibrio species are among the 31 major known pathogens transmitted through food in the United States. Diverse surveillance systems for foodborne pathogens also track outbreaks, illnesses, hospitalization and deaths due to non-cholera vibrios. Considering the recognition of vibriosis as a notifiable disease in the United States and the availability of diverse surveillance systems, there is a need for the development of easily deployed visualization and analysis approaches that can combine diverse data sources in an interactive manner. Current efforts to address this need are still limited. Visual analytics is an iterative process conducted via visual interfaces that involves collecting information, data preprocessing, knowledge representation, interaction, and decision making. We have utilized public domain outbreak and surveillance data sources covering 1973 to 2010, as well as visual analytics software to demonstrate integrated and interactive visualizations of data on foodborne outbreaks and surveillance of Vibrio species. Through the data visualization, we were able to identify unique patterns and/or novel relationships within and across datasets regarding (i) causative agent; (ii) foodborne outbreaks and illness per state; (iii) location of infection; (iv) vehicle (food) of infection; (v) anatomical site of isolation of Vibrio species; (vi) patients and complications of vibriosis; (vii) incidence of laboratory-confirmed vibriosis and V. parahaemolyticus outbreaks. The additional use of emerging visual analytics approaches for interaction with data on vibriosis, including non-foodborne related disease, can guide disease control and prevention as well as ongoing outbreak investigations. PMID:22174586
Parveen, Salina; Jahncke, Michael; Elmahdi, Sara; Crocker, Helen; Bowers, John; White, Chanelle; Gray, Stephanie; Morris, Amanda C; Brohawn, Kathy
2017-02-01
Cases of Vibrio infections in the United States have tripled from 1996 to 2009 and these infections are most often associated with the consumption of seafood, particularly oysters (Crassostrea virginica). Information is needed on how to reduce numbers of Vibrio parahaemolyticus and Vibrio vulnificus in bi-valve molluscan shellfish (for example, oysters). The purpose of this study was to evaluate the effectiveness of high salinity relaying or treatment in recirculating aquaculture systems (RASs) as methods to reduce the abundance of V. parahaemolyticus and V. vulnificus in oysters. For relaying field trials, oysters were collected from approved harvest waters, temperature abused outside under a tarp for 4 h, and then transferred to high (29 to 33 ppt.) and moderate (12 to 19 ppt.) salinities. For RAS treatment trial, oysters were transferred to 32 to 34 ppt. salinity at 15 °C. After 7, 14, 21, and in some instances 28 d, oysters were collected and analyzed for V. parahaemolyticus and V. vulnificus levels using multiplex real-time PCR. Initial levels of V. parahaemolyticus and V. vulnificus ranged from 3.70 to 5.64 log 10 MPN/g, and were reduced by 2 to 5 logs after 21 to 28 d in high salinity water (29 to 34 ppt.). Oyster mortalities averaged 4% or less, and did not exceed 7%. Relaying of oysters to high salinity field sites or transfer to high salinity RAS tanks was more effective in reducing V. vulnificus compared with V. parahaemolyticus. These results suggest that high salinity relaying of oysters is more effective in reducing V. vulnificus than V. parahaemolyticus in the oyster species used in this study. © 2016 Institute of Food Technologists®.
Serratore, Patrizia; Ostanello, Fabio; Passalacqua, Pier Luca; Zavatta, Emanuele; Bignami, Giorgia; Serraino, Andrea; Giacometti, Federica
2016-09-20
The present work describes a retrospective study aiming to verify a possible correlation between the environmental conditions (temperature, salinity and dissolved oxygen), the abundance of Vibrio spp., and the prevalence of V. parahaemolyticus and V. vulnificus in the Manila clam R. philippinarum harvested in Sacca di Goro, Emilia-Romagna Region, Northern Italy. On the whole, 104 samples, collected in the period 2007-2015 and submitted to microbiological analyses (isolation and genotyping), have been reconsidered for Vibrio spp. load, V. parahaemolyticus prevalence (total, gene marker toxRP; potentially pathogenic, gene markers tdh and/or trh) and V. vulnificus prevalence (total, gene markers vvh A and hsp) together with environmental data obtained from the monitoring activity of the Emilia-Romagna Regional Agency for the Prevention, the Environment and the Energy. Environmental data have been processed to calculate the median of each, assessing the seasonal range of seawater temperature (warmer months: April-October, T°C >16.45°C; cooler months November-March, T°C <16.45°C), salinity (
Suginta, Wipa; Chumjan, Watcharin; Mahendran, Kozhinjampara R.; Janning, Petra; Schulte, Albert; Winterhalter, Mathias
2013-01-01
Background Chitin is the most abundant biopolymer in marine ecosystems. However, there is no accumulation of chitin in the ocean-floor sediments, since marine bacteria Vibrios are mainly responsible for a rapid turnover of chitin biomaterials. The catabolic pathway of chitin by Vibrios is a multi-step process that involves chitin attachment and degradation, followed by chitooligosaccharide uptake across the bacterial membranes, and catabolism of the transport products to fructose-6-phosphate, acetate and NH3. Principal Findings This study reports the isolation of the gene corresponding to an outer membrane chitoporin from the genome of Vibrio harveyi. This porin, expressed in E. coli, (so called VhChiP) was found to be a SDS-resistant, heat-sensitive trimer. Immunoblotting using anti-ChiP polyclonal antibody confirmed the expression of the recombinant ChiP, as well as endogenous expression of the native protein in the V. harveyi cells. The specific function of VhChiP was investigated using planar lipid membrane reconstitution technique. VhChiP nicely inserted into artificial membranes and formed stable, trimeric channels with average single conductance of 1.8±0.13 nS. Single channel recordings at microsecond-time resolution resolved translocation of chitooligosaccharides, with the greatest rate being observed for chitohexaose. Liposome swelling assays showed no permeation of other oligosaccharides, including maltose, sucrose, maltopentaose, maltohexaose and raffinose, indicating that VhChiP is a highly-specific channel for chitooligosaccharides. Conclusion/Significance We provide the first evidence that chitoporin from V. harveyi is a chitooligosaccharide specific channel. The results obtained from this study help to establish the fundamental role of VhChiP in the chitin catabolic cascade as the molecular gateway that Vibrios employ for chitooligosaccharide uptake for energy production. PMID:23383078
Wang, Hongxia; Silva, Anisia J.; Benitez, Jorge A.
2017-01-01
A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation. PMID:28392408
Hally, R J; Rubin, R A; Fraimow, H S; Hoffman-Terry, M L
1995-06-01
Vibrio parahemolyticus has been well documented to cause outbreaks of infectious diarrhea, usually related to poor food handling; only rarely has it been reported to cause fetal septicemia. In contrast, Vibrio vulnificus is a well-known cause of septicemia, especially in patients with cirrhosis. A 31-year-old woman with cirrhosis who developed fatal V. parahemolyticus sepsis after ingesting raw seafood is described. We review the clinical syndromes associated with sepsis caused by these two organisms. Leg pain and bullous skin lesions may be a clue to the diagnosis. Febrile patients with cirrhosis should be questioned regarding recent seafood ingestion, and appropriate antibiotics chosen if this history is obtained. Physicians should inform patients at risk to avoid raw seafood in an attempt to prevent this potentially lethal syndrome.
Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, P.A.; Okpokwasili, G.C.; Brayton, P.R.
1984-11-01
Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (S/sub J/) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains.more » Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. 22 references, 1 figure, 2 tables.« less
Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions
Sussman, Meir; Mieog, Jos C.; Doyle, Jason; Victor, Steven; Willis, Bette L.; Bourne, David G.
2009-01-01
Background Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology. Methodology/Principal Findings Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens. Conclusion/Significance These findings demonstrate a common virulence factor from four phylogenetically related coral pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals. PMID:19225559
Gene cloning and prokaryotic expression of recombinant flagellin A from Vibrio parahaemolyticus
NASA Astrophysics Data System (ADS)
Yuan, Ye; Wang, Xiuli; Guo, Sheping; Liu, Yang; Ge, Hui; Qiu, Xuemei
2010-11-01
The Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. Bacteria flagellins play an important role during infection and induction of the host immune response. Thus, flagellin proteins are an ideal target for vaccines. We amplified the complete flagellin subunit gene ( flaA) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 62.78 kDa. We purified and characterized the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for further studies into the utility of the FlaA protein as a vaccine candidate against infection by Vibrio parahaemolyticus. In addition, the purified FlaA protein can be used for further functional and structural studies.
Analysis of Small Deformation of Helical Flagellum of Swimming Vibrio alginolyticus
NASA Astrophysics Data System (ADS)
Takano, Yasunari; Yoshida, Kazuki; Kudo, Seishi; Nishitoba, Megumi; Magariyama, Yukio
The deformation of a flagellum of Vibrio alginolyticus, single-flagellate bacteria, is analyzed theoretically assuming the shape of the flagellum to be a circular helix. The viscous force exerted on the flagellum in aqueous fluid is estimated applying the resistive-force theory based on the Stokes flow. The moment of force in the flagellum are described in analytical expressions and also the curvature and the torsion of the deformed flagellum are expressed analytically according to the Kirchhoff rod model. The deformation of the flagellum is obtained numerically solving evolution equations which determine a space curve from the curvature and the torsion. Comparing variations of the pitch of helical flagella between the numerical solutions and the results of measurement, the flexural rigidity or the elastic bending coefficient for the flagellum of Vibrio alginolyticus is estimated.
Symposium on Human Health and Global Climate Change.
1996-03-01
Cholera epidemics are typically associated with seacoasts and rivers, for instance, where the cholera organism, Vibrio cholerae , survives by...everywhere. These blooms represent "environmental reservoirs" for microbes, such as Vibrio cholerae , the cause of cholera in humans. Similarly, insect and...nowadays. We find them in New Mexico , in Minnesota, in Virginia, and in New York. Around the world there is a resurgence of cholera , malaria, and yellow
LaPorte, Jason P.; Spinard, Edward J.; Gomez-Chiarri, Marta; Rowley, David C.; Mekalanos, John J.
2018-01-01
ABSTRACT Bowmanella denitrificans strain JL63 was isolated from a whiteleg shrimp (Litopenaeus vannamei) and was determined to have antibacterial activity against an acute hepatopancreatic necrosis disease (AHPND) strain of Vibrio parahaemolyticus. Here, we report the draft genome sequence of this strain and identify genes that are potentially involved in its antibacterial activity. PMID:29622614
Prol García, M. J.; D'Alvise, P. W.
2013-01-01
Quorum sensing (QS) regulates Phaeobacter gallaeciensis antagonism in broth systems; however, we demonstrate here that QS is not important for antagonism in algal cultures. QS mutants reduced Vibrio anguillarum to the same extent as the wild type. Consequently, a combination of probiotic Phaeobacter and QS inhibitors is a feasible strategy for aquaculture disease control. PMID:23811510
Sources of Vibrio mimicus Contamination of Turtle Eggs
Acuña, María T.; Díaz, Gerardo; Bolaños, Hilda; Barquero, Candy; Sánchez, Olga; Sánchez, Luz M.; Mora, Grettel; Chaves, Anny; Campos, Elena
1999-01-01
Vibrio mimicus contamination of sand increased significantly during the arrival of the olive ridley sea turtles (Lepidochelys olivacea) at Ostional anidation beach, Costa Rica. Statistical analysis supports that eggs are contaminated with V. mimicus by contact with the sand nest. V. mimicus was isolated from eggs of all nests tested, and ctxA+ strains were found in 31% of the nests, all of which were near the estuary. PMID:9872804
Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation.
Shime-Hattori, Akiko; Iida, Tetsuya; Arita, Michiko; Park, Kwon-Sam; Kodama, Toshio; Honda, Takeshi
2006-11-01
Vibrio parahaemolyticus RIMD2210633 has two sets of type IV-A pilus genes. One set is similar to that found in other Gram-negative bacteria, such as Pseudomonas aeruginosa, Vibrio cholerae (chitin-regulated pilus; ChiRP), and Vibrio vulnificus. The other is homologous to the genes for the mannose-sensitive hemagglutinin (MSHA) pilus. In this study, we analyzed the effects of the deletions in the pilin genes for each type IV pilus (the ChiRP and the MSHA pilus) on biofilm formation. Although the MSHA pilin mutant formed aggregates, the number of bacteria that attached directly to the coverslip was reduced, suggesting that this pilus contributes to the bacterial attachment to the surface of the coverslip. In contrast, the ChiRP mutant attached to the surface of the coverslip, but did not form aggregates, suggesting that ChiRP plays a role in bacterial agglutination during biofilm formation. These results suggest that the two type IV pili of V. parahaemolyticus contribute to biofilm formation in different ways. Both mutants showed a lower fitness for adsorption onto chitin particles than that of the wild type. Collectively, these data suggest that the use of two type IV pili is a refined strategy of V. parahaemolyticus for survival in natural environments.
Wendling, Carolin C.; Wegner, K. Mathias
2015-01-01
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges. PMID:25716784
Woodring, Joseph; Srijan, Apichai; Puripunyakom, Paksathorn; Oransathid, Wilawan; Wongstitwilairoong, Boonchai; Mason, Carl
2012-01-01
Uncooked seafood samples were collected from open markets and supermarkets in Bangkok, Thailand, and were examined for the presence of Vibrio, Salmonella, and Aeromonas species from January to February 2008. From 120 samples, 272 bacterial isolates were identified through biochemical testing. Of all sea bass, shrimp, oyster, and blood cockle samples (30 of each) that were processed for culture, 114 (95%) samples had at least one detectable isolate of Vibrio, Salmonella, or Aeromonas, leaving only 6 (5%) samples free of them. All oyster sample (100%) had at least one pathogen, followed by sea bass (97%), blood cockles (97%), and shrimp (90%). Overall, 111 (92%) of all samples had detectable Vibrio spp., 32 (27%) had detectable Aeromonas spp., and 25 (21%) had detectable Salmonella enterica. There was no overall difference between positive samples collected from fresh markets versus supermarkets (relative risk, 0.97; 95% CI, 0.89 to 1.05). Resistance to ampicillin among isolated pathogens was relatively high (56%), while resistance to 12 other antibiotics, including azithromycin, ciprofloxacin, and trimethoprim-sulfamethoxazole, was relatively low (0, 0, and 3%, respectively). Study results indicate that uncooked seafood in Bangkok, Thailand, commonly harbors enteric pathogens and that consumption of uncooked seafood should be avoided to reduce foodborne illnesses.
Sánchez, J; Castillo, G; Medrano, A I; Martinez-Palomo, A; Rodríguez, M H
1995-01-01
We report on the physiological response of Vibrio cholerae upon growth on bacteria-free intestinal fluids prepared from feces of individuals in the acute phase of cholera. Sterilized stool fluids supported growth of V. cholerae to reach 0.3-0.4 O.D. units (600 nm) at 37 degrees C. Scanning electron microscopy showed vibrios to be slender and elongated as compared to bacteria in synthetic media. Growth in stool fluid apparently induced expression of several immunoreactive proteins using cholera convalescent sera. Supernatants of fluid-grown vibrios had undetectable cholera toxin (CT) concentrations. Soluble hemagglutinins and soluble proteases were much less reduced when compared to cultures in Syncase or AKI media while cell-associated mannose-sensitive hemagglutinin (MSHA) was expressed at good levels. Lack of production of CT in fluid devoid of tissue may be due to absence of stimulating elements in intact intestine. Alternatively, culturing V. cholerae in stool fluid might resemble a late proliferation stage where downregulation of toxin might occur. Irrespectively, concomitant production of other virulence factors represents a phenomenon of differential regulation by fluid. Efforts are now underway to determine if this response depends upon factors in stool fluid acting through known genetic regulatory cascades or other. Attempts are also geared to identify fluid-induced proteins and their genes.
NASA Astrophysics Data System (ADS)
Kada, N. M.; Raju, M.; Perumal, K.; Chatragadda, R.
2016-02-01
Oceans are of prime part in the life of human beings since their origin and many human settlements from the ancient period took near to the oceans as they are source of fishing, transport and trade. Human impact on the health of ocean has drastically changed time to time with increase in human derived discharges and recreational activities near to the seas leading to entry of human pathogens into it causing severe damage to aquatic life thriving in it. A study is made on the occurrence of Vibrio sp. in the biotic and abiotic components such as seaweeds, finfishes, shell fishes, cyanobacterial blooms, seawater and sediments of Andaman Islands, India. PCR based methods along with 16S rRNA and pyrH sequencing were employed to identify the isolates to species level. Human pathogens such as Vibrio alginolyticus was found to be abundant in majority of the samples screened followed by V. parahaemolyticus, V. harveyi and V. metschnikovii. Besides these V. campbellii and V. owensii are also available from some of the samples. This study is first of its kind from these pristine islands and stand as a baseline data on the occurrence and abundance of Vibrios from these islands for future researchers.
Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland
Chen, Arlene J.; Hasan, Nur A.; Haley, Bradd J.; Taviani, Elisa; Tarnowski, Mitch; Brohawn, Kathy; Johnson, Crystal N.; Colwell, Rita R.; Huq, Anwar
2017-01-01
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus, with 10 encoding both tdh and trh and 6 encoding only trh. Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness. PMID:29375492
Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland.
Chen, Arlene J; Hasan, Nur A; Haley, Bradd J; Taviani, Elisa; Tarnowski, Mitch; Brohawn, Kathy; Johnson, Crystal N; Colwell, Rita R; Huq, Anwar
2017-01-01
Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus , with 10 encoding both tdh and trh and 6 encoding only trh . Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness.
A single regulatory gene is sufficient to alter Vibrio aestuarianus pathogenicity in oysters.
Goudenège, David; Travers, Marie Agnès; Lemire, Astrid; Petton, Bruno; Haffner, Philippe; Labreuche, Yannick; Tourbiez, Delphine; Mangenot, Sophie; Calteau, Alexandra; Mazel, Didier; Nicolas, Jean Louis; Jacq, Annick; Le roux, Frédérique
2015-11-01
Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan
2015-07-17
Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway.
Gao, Qiong; Liao, Meijie; Wang, Yingeng; Li, Bin; Zhang, Zheng; Rong, Xiaojun; Chen, Guiping; Wang, Lan
2015-01-01
Vibrio splendidus is identified as one of the major pathogenic factors for the skin ulceration syndrome in sea cucumber (Apostichopus japonicus), which has vastly limited the development of the sea cucumber culture industry. In order to screen the immune genes involving Vibrio splendidus challenge in sea cucumber and explore the molecular mechanism of this process, the related transcriptome and gene expression profiling of resistant and susceptible biotypes of sea cucumber with Vibrio splendidus challenge were collected for analysis. A total of 319,455,942 trimmed reads were obtained, which were assembled into 186,658 contigs. After that, 89,891 representative contigs (without isoform) were clustered. The analysis of the gene expression profiling identified 358 differentially expression genes (DEGs) in the bacterial-resistant group, and 102 DEGs in the bacterial-susceptible group, compared with that in control group. According to the reported references and annotation information from BLAST, GO and KEGG, 30 putative bacterial-resistant genes and 19 putative bacterial-susceptible genes were identified from DEGs. The qRT-PCR results were consistent with the RNA-Seq results. Furthermore, many DGEs were involved in immune signaling related pathways, such as Endocytosis, Lysosome, MAPK, Chemokine and the ERBB signaling pathway. PMID:26193268
Gopal, Shubha; Otta, Subhendu K; Kumar, Sanath; Karunasagar, Indrani; Nishibuchi, Matsuaki; Karunasagar, Iddya
2005-07-15
The occurrence of various Vibrio species in water, sediment and shrimp samples from multiple shrimp farm environments from the east and west coast of India was studied. The relative abundance was higher in west coast farms (ca. 10(4) cfu/ml water) when compared to the east coast (ca. 10(2) cfu/ml water). Vibrio alginolyticus (3-19%), V. parahaemolyticus (2-13%), V. harveyi (1-7%) and V. vulnificus (1-4%) were the predominant Vibrio species identified by standard biochemical testing. In some cases, V. cholerae could be found, but all isolates were negative for the cholera toxin (ctx) gene that is associated with choleragenic strains. The biochemical identification of V. parahaemolyticus, the other human pathogen among the species mentioned above, was confirmed by PCR targeting the toxR gene and a 387 bp chromosomal locus specific for this species. Furthermore, the presence of the virulence-associated tdh (thermostable direct haemolysin) and trh (TDH-related haemolysin) genes in the V. parahaemolyticus isolates was also detected by PCR. Only 2 out of 47 isolates were tdh positive and one contained the trh gene. However, since V. cholerae, V. parahaemolyticus and V. vulnificus species are recognized as a major cause of seafood-borne illness, it is important to pay attention to post-harvest handling and adequate cooking.
Septic Shock due to Vibrio alginolyticus in a Cirrhotic Patient: The First Case in Korea
Lee, Dong-Young; Moon, Soo-Youn; Lee, Sang-Oh; Yang, Hee-Young; Lee, Hee-Joo
2008-01-01
We describe a case of septic shock due to Vibrio alginolyticus presenting with fever and bilateral leg pain. Despite intensive management with antibiotics and inotropic agents, the patient died from septic shock 1 day after hospitalization. V. alginolyticus was isolated from both leg wounds and a blood culture. To the best of our knowledge, this is the first reported case of V. alginolyticus bacteremia in Korea. PMID:18452273
Worldwide Emerging Environmental Issues Affecting the U.S. Military. February 2007 Report
2007-02-01
coast of Canada, sickening humans and animals. Oysters in Alaska are being infected by the bacterium Vibrio parahaemolyticus specific to warmer...waters, like the Gulf of Mexico . In Africa, mosquitoes are causing malaria in high villages at Mt. Kenya that had never been exposed to it before...CORDOVA, ALASKA — Oysterman Jim Aguiar had never had to deal with the bacterium Vibrio parahaemolyticus in his 25 years working the frigid waters
2014-10-01
media so only adherent/close proximity bacterial cells were harvested . Cells were then treated with RNAprotect Cell Reagent (Qiagen) to immediately...2004, 32:2386-2395. 4. Chen Y, Stine OC, Badger JH, Gil AI, Nair GB, Nishibuchi M, Fouts DE: Comparative Genomic Analysis of Vibrio ...antigen biosynthesis regions in Vibrio cholerae. Applied and environmental microbiology 2011, 77:2247-2253. 6. Jacobsen A, Hendriksen RS, Aaresturp FM
Kumar, Ballamoole Krishna; Deekshit, Vijaya Kumar; Rai, Praveen; Gurtler, Volker; Karunasagar, Iddya; Karunasagar, Indrani
2014-06-26
Vibrio parahaemolyticus is a seafood-borne pathogen autochthonous to the marine and estuarine ecosystem, which is responsible for gastroenteritis due to the consumption of contaminated raw seafood. Here, we report the draft genome sequence of V. parahaemolyticus VP-49, isolated from seafood, to identify the different virulence attributes and to study the mechanisms that enhance its environmental fitness. Copyright © 2014 Kumar et al.
Wang, Hongxia; Silva, Anisia J; Benitez, Jorge A
2017-06-01
A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus.
Rivera-Cancel, Giomar; Orth, Kim
2017-07-04
Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins.
West, B C; Silberman, R; Otterson, W N
1998-03-01
The first case of septicemic acute acalculous cholecystitis caused by non-O1 Vibrio cholerae is described in a healthy traveler, and biliary tract infections from V. cholerae are reviewed. Immediately after a vacation in Cancun, Mexico, a 55-year-old man developed acute cholecystitis. Blood and bile cultures grew non-O1 V. cholerae. At surgery, the gallbladder was acalculous, inflamed, distended, and nearly ruptured. Pathogenetic factors may have included diarrhea prophylaxis with bismuth subsalicylate, distension of the gallbladder from illness-induced fasting, and bacterial toxins in the gallbladder. The patient received i.v. cephapirin, followed by oral cephradine for a total of 10 days, and he made a quick and complete recovery. V. cholerae should be considered in the differential diagnosis of persons from endemic areas who present with cholecystitis or acute jaundice.
A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus.
He, Peiyan; Wang, Henghui; Luo, Jianyong; Yan, Yong; Chen, Zhongwen
2018-05-23
Foodborne disease caused by Vibrio parahaemolyticus is a serious public health problem in many countries. Molecular typing has a great scientific significance and application value for epidemiological research of V. parahaemolyticus. In this study, a real-time PCR with melting curve analysis was established for molecular typing of V. parahaemolyticus. Eighteen large variably presented gene clusters (LVPCs) of V. parahaemolyticus which have different distributions in the genome of different strains were selected as targets. Primer pairs of 18 LVPCs were distributed into three tubes. To validate this newly developed assay, we tested 53 Vibrio parahaemolyticus strains, which were classified in 13 different types. Furthermore, cluster analysis using NTSYS PC 2.02 software could divide 53 V. parahaemolyticus strains into six clusters at a relative similarity coefficient of 0.85. This method is fast, simple, and conveniently for molecular typing of V. parahaemolyticus.
Characterization of clinical Vibrio parahaemolyticus strains in Zhoushan, China, from 2013 to 2014.
Wang, Hongling; Tang, Xiaoyang; Su, Yi-Cheng; Chen, Jiabei; Yan, Jianbo
2017-01-01
Vibrio parahaemolyticus is recognized as major cause of foodborne illness of global public health concern. This study collected 107 strains of V. parahaemolyticus during active surveillance of diarrheal diseases in hospitals in Zhoushan during 2013 to 2014 and investigated their serotypes, virulence genes (tdh, trh, and orf8), antimicrobial resistance, and genotypes. The dominant serotypes of the 107 clinical strains were O3:K6, O4:K8, and O4:KUT with 87.9% and 3.7% of the strains carrying the virulence genes tdh and trh, respectively. Molecular typing by pulsed-field gel electrophoresis indicated divergence among the clinical strains. Most isolates were sensitive to the common antimicrobial agents used against the Vibrio species except ampicillin. We conclude that continuous surveillance of V. parahaemolyticus in diarrhea patients is a public health priority and is useful for conducting risk assessment of foodborne illnesses caused by V. parahaemolyticus.
Microfluidic systems for investigating host-microbe relationship
NASA Astrophysics Data System (ADS)
Bhattacharjee, Arunima; Vincent, Lionel; Nawroth, Janna; Ruby, Ned; McFall-Ngai, Margaret; Kanso, Eva; Biodynamics Laboratory Collaboration; Pacific Biosciences Research Center Collaboration
2017-11-01
The symbiosis between the bioluminescent bacterium, Vibrio fisheri, and the Hawaiian bobtail squid, Euprymna scolopes, has been widely studied, and this association is used as a model system for studying bacterial colonization of ciliated host tissues. The recruitment of Vibrio fisheri to a specialized light organ in the nascent squid is facilitated by various chemosensing and mechanosensing events. To decipher the effects of such environmental and host-derived sensors on bacterial physiology, we use specifically designed microfluidic channels to engineer chemical and mechanical fields similar to those observed in the light organ of the squid. These in vitrostudies are aimed at complementing ongoing in vivo studies in the system squid-vibrio system. This approach enables us, for the first time, to isolate the effect of mechanical and chemical cues on bacterial motility in this symbiosis and to quantify the bacterial response to these cues. NSF Inspire.
The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri
NASA Astrophysics Data System (ADS)
Barron, Addie; Hagen, Steve; Son, Minjun
2015-03-01
Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.
The squid-Vibrio symbioses: from demes to genes.
Kimbell, Jennifer R; McFall-Ngai, Margaret J
2003-04-01
The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from characterizations of the harvesting mechanisms by which the host ensures colonization by the appropriate symbiont to identification of bacteria-induced changes in host gene expression that accompany the establishment and maintenance of the relationship. Studies of this model have been enhanced by extensive collaboration with microbiologists, who are able to manipulate the genetics of the bacterial symbiont. The results of our studies have indicated that initiation and persistence of the association requires a complex, reciprocal molecular dialogue between these two phylogenetically distant partners.
Some observations on the cholera (El Tor) epidemic in 1961-62
Felsenfeld, Oscar
1963-01-01
The author discusses some of the features of the cholera epidemic caused by El Tor vibrios in 1961-62 in the Western Pacific. The disease originated in the Celebes and spread from there to other parts of Indonesia, to Sarawak and, possibly, to Kwangtung. Hong Kong and Macau were most probably infected from Kwangtung. Subsequently the disease reached the Philippines, progressing from Manila southwards to the other islands, whence it invaded British Borneo. The El Tor epidemic did not differ clinically or epidemiologically from other cholera outbreaks observed during the past decade. The disease attacked poor, under-nourished people living under insanitary conditions. It spread along the coastline and, to a limited extent, along inland waterways. The authorities in the affected territories recommended that the quarantine regulations, sanitary measures and treatment methods used against cholera caused by the so-called “true” cholera vibrios be applied also to cholera caused by El Tor vibrios. PMID:13962884
Clam-associated vibriosis, USA, 1988-2010.
Slayton, R B; Newton, A E; Depaola, A; Jones, J L; Mahon, B E
2014-05-01
Infections with Vibrio spp. have frequently been associated with consumption of bivalve molluscs, especially oysters, but illness associated with clams has also been well documented. We describe the 2312 domestically acquired foodborne Vibrio infections reported to the Cholera and Other Vibrio Illness Surveillance system from 1988 to 2010. Clams were associated with at least 4% (93 persons, 'only clams') and possibly as many as 24% (556 persons, 'any clams') of foodborne cases. Of those who consumed 'only clams', 77% of infections were caused by V. parahaemolyticus. Clam-associated illnesses were generally similar to those associated with other seafood consumption. Clams associated with these illnesses were most frequently harvested from the Atlantic coastal states and eaten raw. Our study describes the contribution of clams to the overall burden of foodborne vibriosis and indicates that a comprehensive programme to prevent foodborne vibriosis need to address the risks associated with clams.
Clam-associated vibriosis, USA, 1988–2010
Slayton, R. B.; Newton, A. E.; Depaola, A.; Jones, J. L.; Mahon, B. E.
2015-01-01
SUMMARY Infections with Vibrio spp. have frequently been associated with consumption of bivalve molluscs, especially oysters, but illness associated with clams has also been well documented. We describe the 2312 domestically acquired foodborne Vibrio infections reported to the Cholera and Other Vibrio Illness Surveillance system from 1988 to 2010. Clams were associated with at least 4% (93 persons, ‘only clams’) and possibly as many as 24% (556 persons, ‘any clams’) of foodborne cases. Of those who consumed ‘only clams’, 77% of infections were caused by V. parahaemolyticus. Clam-associated illnesses were generally similar to those associated with other seafood consumption. Clams associated with these illnesses were most frequently harvested from the Atlantic coastal states and eaten raw. Our study describes the contribution of clams to the overall burden of foodborne vibriosis and indicates that a comprehensive programme to prevent foodborne vibriosis need to address the risks associated with clams. PMID:23920418
2005-08-25
tests currently available are the same as BTA with the inclusion of Vibrio cholerae O1. The detection limits of bacteria are 10 cfu/mL and for...spp., Burkholderia spp., Campylobacter spp., Clostridium perfringens, E. coli O157:H7, Francisella tularensis, Salmonella typhi, Shigella spp., Vibrio ... cholerae O1, Yersinia pestis, Y. enterocolitica Viruses Caliciviruses, Enteroviruses, Hepatitis A/E, Variola, Venezuelan equine encephalitis virus
Lin, Yu-San; Hung, Min-Hsiang; Chen, Chi-Chung; Huang, Kuo-Feng; Ko, Wen-Chien; Tang, Hung-Jen
2016-02-01
Necrotizing fasciitis caused by Vibrio vulnificus is rarely reported in children. We describe a 12-year-old immunocompetent boy with necrotizing fasciitis caused by V. vulnificus. He was cured by radical and serial debridement and salvage therapy with intravenous cefpirome plus tigecycline. The in vitro antibacterial activity of combination regimens and a literature review of pediatric V. vulnificus infection are described. Copyright © 2013. Published by Elsevier B.V.
1981-01-01
We used an immunocytoadherence assay to monitor the response of antigen-binding cells (ABC) in the peripheral blood of sockeye salmon, Oncorhynchus nerka, after immersion in, or intraperitoneal injection of, Vibrio anguillarum LS 1–74 bacterin. Both methods initiated an elevated ABC response in less than one day; this response persisted one week longer in the injected than in the immersed fish.
Reguera, Gemma; Kolter, Roberto
2005-01-01
The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP− biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place. PMID:15866944
Toxic dinoflagellates and Vibrio spp. act independently in bivalve larvae.
De Rijcke, M; Van Acker, E; Nevejan, N; De Schamphelaere, K A C; Janssen, C R
2016-10-01
Harmful algal blooms (HABs) and marine pathogens - like Vibrio spp. - are increasingly common due to climate change. These stressors affect the growth, viability and development of bivalve larvae. Little is known, however, about the potential for interactions between these two concurrent stressors. While some mixed exposures have been performed with adult bivalves, no such work has been done with larvae which are generally more sensitive. This study examines whether dinoflagellates and bacteria may interactively affect the viability and immunological resilience of blue mussel Mytilus edulis larvae. Embryos were exposed to environmentally relevant concentrations (100, 500, 2500 & 12,500 cells ml(-1)) of a dinoflagellate (Alexandrium minutum, Alexandrium ostenfeldii, Karenia mikimotoi, Protoceratium reticulatum, Prorocentrum cordatum, P. lima or P. micans), a known pathogen (Vibrio coralliilyticus/neptunius-like isolate or Vibrio splendidus; 10(5) CFU ml(-1)), or both. After five days of exposure, significant (p < 0.05) adverse effects on larval viability and larval development were found for all dinoflagellates (except P. cordatum) and V. splendidus. Yet, despite the individual effect of each stressor, no significant interactions were found between the pathogens and harmful algae. The larval viability and the phenoloxidase innate immune system responded independently to each stressor. This independence may be related to a differential timing of the effects of HABs and pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Characterization of haemolysis of the Vibrio parahaemolyticus no.93].
Su, S C; Lee, C Y
1997-02-01
Vibrio parahaemolyticus is a causative bacterium of food poisoning, and the haemolysin produced by this organism has been considered as one of the important virulence factors. In order to understand the pathogenic mechanism of this bacterium, the characteristics of haemolysin from Vibrio parahaemolyticus isolated from Taiwan were studied. One of the clinical strains, V. parahaemolyticus No.93, presents a weak hemolytic zone on 7% NaCl-Wagatsuma medium. The DNA hybridization results show that V. parahemolyticus has neither tdh nor trh gene. V. parahaemolyticus No.93 shows obviously hemolytic zone on 3%-NaCl Wagatsuma medium (human blood). The crude extracellular protein of V. parahaemolyticus No. 93 was evaluated for its heat tolerance and enzyme activities by media assay. The results show that this crude extracellular protein is thermolabile. The crude extracellular protein of V. parahaemolyticus No.93 was analyzed on 10% SDS-PAGE and an apparent band of 64 kDa protein was observed. Furthermore, the crude extracellular protein was analyzed by running gelatin-SDS-PAGE and hemoglobin-SDS-PAGE, and three clear zones on 62 kDa, 52 kDa and 41 kDa were observed on both SDS-PAGEs. Thus we propose that the crude extracellular protein of the V. parahaemolyticus No.93 can degrade gelatin as well as hemoglobin. Whether these protease being the virulence factors of Vibrio parahaemolyticus No.93 needs to be further studied.
Occurrence of Vibrio cholerae serogroups other than O1 and O139 in Austria.
Huhulescu, Steliana; Indra, Alexander; Feierl, Gebhard; Stoeger, Anna; Ruppitsch, Werner; Sarkar, Banwarial; Allerberger, Franz
2007-01-01
From 2000 to 2005, 13 infections due to non-O1/non-O139 Vibrio cholerae were documented in Austria. Twelve patients (8 years to 65 years old; 7 male) had symptomatic infections: diarrhea x 5, otitis x 6, septicemia once. All 5 patients who acquired their infections abroad, suffered from diarrhea. The 8 persons without travel history outside of Austria had otitis media (n = 4) or otitis externa (n = 2); the lethal case of septicemia affected a fisherman with underlying malignancy. One isolate was from an asymptomatic child. Detailed data on travel history inside Austria was available for 5 of these 8 patients: all 5 had visited or lived near Austria's largest lake. The concentration of salt in this westernmost steppe lake in Europe is approximately one-twentieth of that of sea water. Why otitis and not diarrhea is the dominating manifestation of non-O1/non-O139 infection acquired in Austria remains to be elucidated. We hypothesize that diarrhea due to Vibrio cholerae serogroups other than O1 and O139 acquired in Austria may simply be unrecognized by the standard operating procedures employed in clinical microbiology laboratories. Testing for Vibrio cholerae is not considered necessary for domestically acquired diarrhea. Only in patients who acquired diarrhea abroad, do physicians sometimes consider cholera as a differential diagnosis, thereby prompting the laboratory to use thiosulfate citrate bile salt sucrose (TCBS) agar plates.
McAuliffe, Gary N.; Hennessy, Jann; Baird, Robert W.
2015-01-01
Vibrio, Aeromonas, Chromobacterium violaceum, and Shewanella (VACS) are water-associated Gram-negative organisms that can cause a variety of infections. The frequency, patient characteristics, and antimicrobial susceptibilities for 468 isolates from 442 patients from the Northern Territory were reviewed. Aeromonas spp. (312 of 468; 67%) were most commonly isolated followed by Vibrio spp. (71 of 468; 15%), Shewanella spp. (61 of 468; 13%), and C. violaceum (24 of 468; 5%). A strong male predominance was found (male to female ratio of 2.3:1). Skin and soft tissue isolations (373 of 468; 80%) from lower limb infections (222 of 371; 60%) were the most common clinical manifestation. The episodes were usually polymicrobial (281 of 468; 60%). Coisolates included Staphylococcus aureus (137 of 468; 29%), β-hemolytic streptococci (74 of 468; 16%), enterobacteriaceae (111 of 468; 24%), non-fermentative Gram-negative bacilli (35 of 468; 7%), and other VACS organisms (37 of 468; 8%). Antimicrobial resistance of VACS organisms to ciprofloxacin (0–4%), cefepime (0–3%), and gentamicin (0–0.8%) and Vibrio spp., Aeromonas spp., and Shewanella to cotrimoxazole (0–3%) was rarely shown. For water-associated lower limb skin and soft tissue infections in the tropics, clinicians should consider empirical antimicrobial therapy with agents active against S. aureus and VACS organisms. PMID:25548380
Xing, Mengxin; Hou, Zhanhui; Yuan, Jianbo; Liu, Yuan; Qu, Yanmei; Liu, Bin
2013-12-01
Metagenomics combined with 16S rRNA gene sequence analyses was applied to unveil the taxonomic composition and functional diversity of the farmed adult turbot gastrointestinal (GI) microbiome. Proteobacteria and Firmicutes which existed in both GI content and mucus were dominated in the turbot GI microbiome. 16S rRNA gene sequence analyses also indicated that the turbot GI tract may harbor some bacteria which originated from associated seawater. Functional analyses indicated that the clustering-based subsystem and many metabolic subsystems were dominant in the turbot GI metagenome. Compared with other gut metagenomes, quorum sensing and biofilm formation was overabundant in the turbot GI metagenome. Genes associated with quorum sensing and biofilm formation were found in species within Vibrio, including Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus. In farmed fish gut metagenomes, the stress response and protein folding subsystems were over-represented and several genes concerning antibiotic and heavy metal resistance were also detected. These data suggested that the turbot GI microbiome may be affected by human factors in aquaculture. Additionally, iron acquisition and the metabolism subsystem were more abundant in the turbot GI metagenome when compared with freshwater fish gut metagenome, suggesting that unique metabolic potential may be observed in marine animal GI microbiomes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Khalifa, Hazim O; Kamimoto, Maki; Shimamoto, Toshi; Shimamoto, Tadashi
2015-11-01
The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae. Copyright © 2015 John Wiley & Sons, Ltd.
Schauer, Sonja; Sommer, Regina; Farnleitner, Andreas H.
2012-01-01
A new protocol for rapid, specific, and sensitive cell-based quantification of Vibrio cholerae/Vibrio mimicus in water samples was developed. The protocol is based on catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with solid-phase cytometry. For pure cultures, we were able to quantify down to 6 V. cholerae cells on one membrane with a relative precision of 39% and down to 12 cells with a relative precision of 17% after hybridization with the horseradish peroxidase (HRP)-labeled probe Vchomim1276 (specific for V. cholerae and V. mimicus) and signal amplification. The corresponding position of the probe on the 16S rRNA is highly accessible even when labeled with HRP. For the first time, we were also able to successfully quantify V. cholerae/V. mimicus via solid-phase cytometry in extremely turbid environmental water samples collected in Austria. Cell numbers ranged from 4.5 × 101 cells ml−1 in the large saline lake Neusiedler See to 5.6 × 104 cells ml−1 in an extremely turbid shallow soda lake situated nearby. We therefore suggest CARD-FISH in combination with solid-phase cytometry as a powerful tool to quantify V. cholerae/V. mimicus in ecological studies as well as for risk assessment and monitoring programs. PMID:22885749
Evolution of a Vegetarian Vibrio: Metabolic Specialization of V. breoganii to Macroalgal Substrates.
Corzett, Christopher H; Elsherbini, Joseph; Chien, Diana M; Hehemann, Jan-Hendrik; Henschel, Andreas; Preheim, Sarah P; Yu, Xiaoqian; Alm, Eric J; Polz, Martin F
2018-04-09
While most Vibrionaceae are considered generalists that thrive on diverse substrates including animal-derived material, we show that V. breoganii has specialized for the consumption of marine macroalgae-derived substrates. Genomic and physiological comparison of V. breoganii with other Vibrionaceae isolates revealed the ability to degrade alginate, laminarin, and additional glycans present in algal cell walls. Moreover, the widely conserved ability to hydrolyze animal-derived polymers including chitin and glycogen was lost along with the ability to efficiently grow on a variety of amino acids. Ecological data showing associations with particulate algal material but not zooplankton further support this shift in niche preference, and the loss of motility appears to reflect a sessile macroalgal-associated lifestyle. Together, these findings indicate algal polysaccharides have become a major source of carbon and energy in V. breoganii , and these ecophysiological adaptations may facilitate transient commensal associations with marine invertebrates that feed on algae. Importance: Vibrios are often considered animal specialists or generalists. Here we show that Vibrio breoganii has undergone massive genomic changes to become specialized on algal carbohydrates. Accompanying genomic changes include massive gene import and loss. These vibrios may help better understand how algal biomass is degraded in the environment and may serve as a blueprint how to optimize conversion of algae to biofuels. Copyright © 2018 American Society for Microbiology.
Hall-Spencer, Jason M; Pike, James; Munn, Colin B
2007-06-29
The first recorded incidence of cold-water coral disease was noted in Eunicella verrucosa, a coral on the international 'red list' of threatened species, at a marine protected area in SW England in 2002. Video surveys of 634 separate colonies at 13 sites revealed that disease outbreaks were widespread in SW England from 2003 to 2006. Coenchyme became necrotic in diseased specimens, leading to tissue sloughing and exposing skeletal gorgonin to settlement by fouling organisms. Sites where necrosis was found had significantly higher incidences of fouling. No fungi were isolated from diseased or healthy tissue, but significantly higher concentrations of bacteria occurred in diseased specimens. Of 21 distinct bacteria isolated from diseased tissues, 19 were Vibrionaceae, 15 were strains of Vibrio splendidus and 2 others closely matched Vibrio tasmaniensis. Vibrios isolated from E. verrucosa did not induce disease at 15 degrees C, but, at 20 degrees C, controls remained healthy and test gorgonians became diseased, regardless of whether vibrios were isolated from diseased or healthy colonies. Bacteria associated with diseased tissue produced proteolytic and cytolytic enzymes that damaged E. verrucosa tissue and may be responsible for the necrosis observed. Monitoring at the site where the disease was first noted showed new gorgonian recruitment from 2003 to 2006; some individuals had died and become completely overgrown, whereas others had continued to grow around a dead central area.
Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu
2017-12-01
It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Colwell, R.
2010-12-01
An environmental source of cholera was hypothesized as early as the late nineteenth century by Robert Koch. Standard bacteriological procedures for isolation of vibrios from environmental samples, including water, between epidemics generally were unsuccessful because Vibrio cholerae, a marine vibrio, enters into a dormant, "viable but nonculturable stage," when conditions are unfavorable for growth and reproduction. An association of Vibrio cholerae with zooplankton, notably copepods, has been established. Furthermore, the sporadicity and erraticity of cholera epidemics have been correlated with El Niño. Since zooplankton harbor the bacterium and zooplankton blooms follow phytoplankton blooms, remote sensing can be employed to predict cholera epidemics from sea surface temperature (SST), ocean height (OH), chlorophyll, and turbidity data. Cholera occurs seasonally in Bangladesh, with two annual peaks in the number of cases. From clinical remote sensing data, it has been found that SST, OH, and blooms of phytoplankton and zooplankton are correlated with cholera epidemics. Thus, selected climatological factors and incidence of V. cholerae can be recorded, bringing the potential of predicting conditions conducive to cholera outbreaks to reality. A simple filtration intervention takes into account the association of V. cholerae with plankton, and has proven to be a simple solution to the age-old problem of controlling this waterborne disease for villagers in remote regions of Bangladesh.
[Pathogenic factors of vibrios with special emphasis on Vibrio vulnificus].
Shinoda, Sumio
2005-07-01
Bacteria of the genus Vibrio are normal habitants of the aquatic environment and play roles for biocontrole of aquatic ecosystem, but some species are believed to be human pathogens. These species can be classified into two groups according to the types of diseases they cause: the gastrointestinal infections and the extraintestinal infections. The pathogenic species produce various pathogenic factors including enterotoxin, hemolysin, cytotoxin, protease, siderophore, adhesive factor, and hemagglutinin. We studied various pathogenic factors of vibrios with special emphasis on protease and hemolysin of V. vulnificus. V. vulnificus is now recognized as being among the most rapidly fatal of human pathogens, although the infection is appeared in patients having underlying disease(s) such as liver dysfunction, alcoholic cirrhosis or haemochromatosis. V. vulnificus protease (VVP) is thought to be a major toxic factor causing skin damage in the patients having septicemia. VVP is a metalloprotease and degrades a number of biologically important proteins including elastin, fibrinogen, and plasma proteinase inhibitors of complement components. VVP causes skin damages through activation of the Factor XII-plasma kallikrein-kinin cascade and/or exocytotic histamine release from mast cells, and a haemorrhagic lesion through digestion of the vascular basement membrane. Thus, the protease is the most probable candidate for tissue damage and bacterial invasion during an infection. Pathogenic roles and functional mechanism of other factors including hemolysins of V. vulnificus and V. mimicus are also shown in this review article.
Azarian, Taj; Ali, Afsar; Johnson, Judith A; Jubair, Mohammad; Cella, Eleonora; Ciccozzi, Massimo; Nolan, David J; Farmerie, William; Rashid, Mohammad H; Sinha-Ray, Shrestha; Alam, Meer T; Morris, J Glenn; Salemi, Marco
2016-10-27
Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6 th and 7 th pandemic lineages, and diverge from "modern" cholera strains around 1548 C.E. [95% HPD: 1532-1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTXϕ.
Snoussi, Mejdi; Dehmani, Ameni; Noumi, Emira; Flamini, Guido; Papetti, Adele
2016-01-01
In this study, we evaluated the antibacterial activity of parsley and basilic essential oils tested against Vibrio strains and their abilities to inhibit and eradicate the mature biofilm using the XTT assay. Petroselinum crispum essential oil was characterized by 1,3,8-p-menthatriene (24.2%), β-phellandrene (22.8%), apiol (13.2%), myristicin (12.6%) and terpinolene (10.3%) as a major constituents. While, in the basilic oil, linalool (42.1%), (E)-methylcinnamate (16.9%) and 1-8 cineole (7.6%) were the main ones. These two essential oils exhibit high anti-Vibrio spp. activity with varying magnitudes. All microorganisms were strongly affected indicating an appreciable antimicrobial potential of basilic with a diameter of inhibition zones growth ranging from 8.67 to 23.33 mm and MIC and MBC values ranging from (0.023-0.047 mg/ml) and (>3->24 mg/ml), respectively. The two essential oils can inhibit and eradicate the mature biofilm formed on polystyrene surface even at low concentrations, with high magnitude for Ocimum basilicum essential oil. This study gives a better insight into the anti-Vibrio activity of parsley and basilc oils and the possibility of their use to prevent and eradicate contamination of sea products by these strains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism
Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray
1999-01-01
There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206
Cholera Outbreaks in Urban Bangladesh In 2011
Haque, Farhana; Hossain, M. Jahangir; Kundu, Subodh Kumar; Naser, Abu Mohd.; Rahman, Mahmudur; Luby, Stephen P.
2015-01-01
Background In 2011, a multidisciplinary team investigated two diarrhoea outbreaks affecting urban Bangladeshi communities from the districts of Bogra and Kishorganj to identify etiology, pathways of transmission, and factors contributing to these outbreaks. Methods We defined case-patients with severe diarrhoea as residents from affected communities admitted with ≥3 loose stools per day. We listed case-patients, interviewed and examined them, and collected rectal swabs. We visited the affected communities to explore the water and sanitation infrastructure. We tested the microbial load of water samples from selected case household taps, tube wells, and pump stations. We conducted anthropological investigations to understand community perceptions regarding the outbreaks. Results We identified 21 case-patients from Bogra and 84 from Kishorganj. The median age in Bogra was 23 years, and 21 years in Kishorganj. There were no reported deaths. We isolated Vibrio in 29% (5/17) of rectal swabs from Bogra and in 40% (8/20) from Kishorganj. We found Vibrio in 1/8 tap water samples from Bogra and in both of the samples from Kishorganj. We did not find Vibrio in water samples from pumps or tube wells in either outbreak. Ground water extracted through deep tube wells was supplied intermittently through interconnected pipes without treatment in both areas. We found leakages in the water pipes in Bogra, and in Kishorganj water pipes passed through open sewers. Conclusion The rapid onset of severe diarrhoea predominantly affecting adults and the isolation of cholera in rectal swabs confirmed that these outbreaks were caused by Vibrio cholerae. The detection of Vibrio in water samples organisms from taps but not from pumps or tube wells, suggested contamination within the pipes. Safe water provision is difficult in municipalities where supply is intermittent, and where pipes commonly leak. Research to develop and evaluate water purification strategies could identify appropriate approaches for ensuring safe drinking water in resource-poor cities. PMID:26702366
Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon
Soonthornchai, Wipasiri; Chaiyapechara, Sage; Jarayabhand, Padermsak; Söderhäll, Kenneth; Jiravanichpaisal, Pikul
2015-01-01
Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids. PMID:26285030
Cholera Outbreaks in Urban Bangladesh In 2011.
Haque, Farhana; Hossain, M Jahangir; Kundu, Subodh Kumar; Naser, Abu Mohd; Rahman, Mahmudur; Luby, Stephen P
In 2011, a multidisciplinary team investigated two diarrhoea outbreaks affecting urban Bangladeshi communities from the districts of Bogra and Kishorganj to identify etiology, pathways of transmission, and factors contributing to these outbreaks. We defined case-patients with severe diarrhoea as residents from affected communities admitted with ≥3 loose stools per day. We listed case-patients, interviewed and examined them, and collected rectal swabs. We visited the affected communities to explore the water and sanitation infrastructure. We tested the microbial load of water samples from selected case household taps, tube wells, and pump stations. We conducted anthropological investigations to understand community perceptions regarding the outbreaks. We identified 21 case-patients from Bogra and 84 from Kishorganj. The median age in Bogra was 23 years, and 21 years in Kishorganj. There were no reported deaths. We isolated Vibrio in 29% (5/17) of rectal swabs from Bogra and in 40% (8/20) from Kishorganj. We found Vibrio in 1/8 tap water samples from Bogra and in both of the samples from Kishorganj. We did not find Vibrio in water samples from pumps or tube wells in either outbreak. Ground water extracted through deep tube wells was supplied intermittently through interconnected pipes without treatment in both areas. We found leakages in the water pipes in Bogra, and in Kishorganj water pipes passed through open sewers. The rapid onset of severe diarrhoea predominantly affecting adults and the isolation of cholera in rectal swabs confirmed that these outbreaks were caused by Vibrio cholerae . The detection of Vibrio in water samples organisms from taps but not from pumps or tube wells, suggested contamination within the pipes. Safe water provision is difficult in municipalities where supply is intermittent, and where pipes commonly leak. Research to develop and evaluate water purification strategies could identify appropriate approaches for ensuring safe drinking water in resource-poor cities.
Luo, Shengwei; Huang, Youhua; Xie, Fuxing; Huang, Xiaohong; Liu, Yuan; Wang, Weina; Qin, Qiwei
2015-04-01
PPAR gamma was a key nuclear receptor, playing an important role in the immune defense and the anti-inflammatory mechanism. In this study, the full-length PPAR gamma (EcPPAR gamma) was obtained, containing a 5'UTR of 133 bp, an ORF of 1602 bp and a 3'UTR of 26 bp besides the poly (A) tail. The EcPPAR gamma gene encoded a protein of 533 amino acids with an estimated molecular mass of 60.02 KDa and a predicted isoelectric point (pI) of 6.26. The deduced amino acid sequence showed that EcPPAR gamma consisted of the conserved residues and the domains known to be critical for the PPAR gamma function. The quantitative real-time PCR analysis revealed that EcPPAR gamma transcript was expressed in all the examined tissue, while the strong expression was observed in intestine, followed by the expression in liver, gill, spleen heart, kidney and muscle. Vibrio challenge could stimulate the inflammatory response in grouper and induce a sharp increase of pro-inflammatory cytokines expression, lipid peroxidation and DNA damage, while the up-regulation of vibrio-induced inflammation could also increase the non-specific immune defense. The groupers challenged with Vibrio alginolyticus showed a sharp increase of EcPPAR gamma transcript in immune tissues. Subcellular localization analysis revealed that EcPPAR gamma was distributed in the nucleus. Furthermore, overexpression of EcPPAR gamma could down-regulated the expression of IL1b, IL6, TNF1 and TNF2. In addition, the administration of PPAR gamma antagonist, GW9662, could up-regulate the expression of pro-inflammatory genes, including IL1b, IL6, TNF1 and TNF2. Together, these results indicated that EcPPAR gamma serving as a negative regulator of pro-inflammatory cytokines may play an important role in the immune defense against vibrio-induced inflammation in grouper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Panicker, Gitika; Bej, Asim K
2005-10-01
We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (C(T)) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 10(3) V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 x 10(3) CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths.
Soler Bistué, Alfonso J. C.; Martín, Fernando A.; Petroni, Alejandro; Faccone, Diego; Galas, Marcelo; Tolmasky, Marcelo E.; Zorreguieta, Angeles
2006-01-01
A ca. 150-kbp Vibrio cholerae O1 biotype El Tor plasmid includes blaCTX-M-2 and a variant of aac(6′)-Ib within InV117, an orf513-bearing class 1 integron. InV117 is linked to a tnp1696 module in which IRl carries an insertion of IS4321R. The complete structure could be a potential mobile element. PMID:16641475
Existence of Two Distinct Hemolysins in Vibrio parahaemolyticus
Sakurai, Jun; Matsuzaki, Akiko; Takeda, Yoshifumi; Miwatani, Toshio
1974-01-01
Two distinct hemolysins were demonstrated in Vibrio parahaemolyticus. A thermostable direct hemolysin purified from V. parahemolyticus WP-1, a Kanagawa phenomenon (KP)-positive strain, is antigenically different from a thermolabile hemolysin produced by V. parahaemolyticus T-3454, a KP-negative strain. The thermostable direct hemolysin was found in KP-positive strains but not in KP-negative strains. On the other hand, the thermolabile hemolysins were found in both KP-positive and -negative strains, although some KP-positive strains did not produce this hemolysin. Images PMID:4207513
A rare case of necrotizing fasciitis caused by Vibrio cholerae O8 in an immunocompetent patient.
Dobrović, Karolina; Rudman, Franjo; Ottaviani, Donatella; Šestan Crnek, Sandra; Leoni, Francesca; Škrlin, Jasenka
2016-10-01
We report a case of necrotizing fasciitis of the leg caused by Vibrio cholerae O8 in a 63-year-old immunocompetent man after he had been fishing in a lake on a Croatian island. The strain was cytotoxic, invasive and adhesive and contained a fragment of the gene for El Tor-like hemolysin (El Tor hlyA). After surgical and antibiotic treatment, the patient fully recovered.
Occurrence of Vibrio parahaemolyticus in Estuarine Waters and Oysters of New Hampshire
Bartley, Clara H.; Slanetz, L. W.
1971-01-01
Vibrio parahaemolyticus was isolated from water and oysters collected from seven different sampling stations in the Great Bay and Little Bay estuarine areas of New Hampshire. The morphological and biochemical characteristics of 50 isolates conformed in general to those described for this organism in the literature. All isolates produced hemolysis on blood-agar. To date, there have been no reports of V. parahaemolyticus food poisoning outbreaks due to the consumption of fish or shellfish harvested from this estuarine region. PMID:5574329
The protective activity of tea against infection by Vibrio cholerae O1.
Toda, M; Okubo, S; Ikigai, H; Suzuki, T; Suzuki, Y; Shimamura, T
1991-02-01
Extracts of black tea exhibited bactericidal activity against Vibrio cholerae O1. The tea extract inhibited the haemolysin activity of V. cholerae O1, El Tor and the morphological changes of Chinese hamster ovary cells induced by cholera toxin. Tea extract also reduced fluid accumulation induced by cholera toxin in sealed adult mice and by V. cholerae O1 in ligated intestinal loops of rabbits. These findings suggest that tea has protective activity against V. cholerae O1.
Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing
2007-07-01
of genes. Acyl-HSL sig- naling was first identified in the luminescent marine bacterium Vibrio fischeri, which produces blue light at high cell...with shaking at 16°C, cells were harvested by centrifugation at 2,750 g for 20 min. Cell pellets were frozen, thawed at room temperature, suspended in...the Vibrio fischeri strain ATCC7744. Proc. Natl. Acad. Sci. USA 86:5688–5692. 11. Engebrecht, J., and M. Silverman. 1984. Identification of genes and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chisholm, Sally; Polz, Martin F.; Alm, Eric J
Our overarching goal with this proposal was to develop a deep understanding of the design of Prochlorococcus and Vibrio cells, the variations in their designs, and the constraints that have shaped this variation at the cell-environment interface. That is, we wanted to develop our understanding of the biology of these microbes at all scales of biological organization, from individual cell design to the dynamics of large populations.
Societal Interactions in Ovarian Cancer Metastases: A Quorum Sensing Hypothesis
2007-11-01
subsequent studies we found that the density of the cells in culture at the time of harvest for injection did have a significant effect on their...VJ (2003) From motility to virulence: sensing and responding to environmental signals in Vibrio chol- erae. Curr Opin Microbiol 6:186–190. doi:10.1016...of luminescence in Vibrio har- veyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286. doi:10.1111/j.1365
Antibiotic resistance of vibrio cholerae: special considerations of R-plasmids.
Kuwahara, S
1978-09-01
Studies on the transmission of R plasmid by conjugation between enterobacteria and vibrio or related bacteria were reviewed. The majority of the reports confirmed successful transmission from enterobacteria to Vibrio cholerae and related species, although the transmission frequencies were extremely low and the transmitted R plasmid was very unstable except for thermosensitive kanamycin plasmid and usual R plasmid coexisting with P plasmid. Strains of V. cholerae and Aeromonas liquefaciens as well as A. salmonicida bearing R plasmid were detected in nature. R plasmid was relatively unstable in V. cholerae strains with which transmission of R plasmid to enterobacteria was confirmed. At present, only 3 R plasmids have been obtained from naturally occurring strains of V. cholerae. Although the 2 European plasmids belong to the C incompatibility group with 98 megadalton closed covalent circular DNA molecule, one plasmid belongs to the J group with more than 25 megadalton molecular weight, and no CCC of satelite DNA was detected in bacteria harboring this plasmid.
Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson
2012-01-01
Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632
Pretreatment of macroalgae for volatile fatty acid production.
Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee
2013-10-01
In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dileep, V; Kumar, H S; Kumar, Y; Nishibuchi, M; Karunasagar, Indrani; Karunasagar, Iddya
2003-01-01
To study the incidence of Vibrio parahaemolyticus in seafoods, water and sediment by molecular techniques vs conventional microbiological methods. Of 86 samples analysed, 28 recorded positive for V. parahaemolyticus by conventional microbiological method, while 53 were positive by the toxR-targeted PCR, performed directly on enrichment broth lysates. While one sample of molluscan shellfish was positive for tdh gene, trh gene was detected in three enrichment broths of molluscan shellfish. Direct application of PCR to enrichment broths will be useful for the rapid and sensitive detection of potentially pathogenic strains of V. parahemolyticus in seafoods. Vibrio parahaemolyticus is an important human pathogen responsible for food-borne gastroenteritis world-wide. As, both pathogenic and non-pathogenic strains of V. parahaemolyticus exist in the seafood, application of PCR specific for the virulence genes (tdh & trh) will help in detection of pathogenic strains of V. parahaemolyticus and consequently reduce the risk of food-borne illness.
Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus
2017-01-01
ABSTRACT Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins. PMID:28129014
Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson
2012-01-01
Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.
New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects
Dubert, Javier; Barja, Juan L.; Romalde, Jesús L.
2017-01-01
Hatcheries constitute nowadays the only viable solution to support the husbandry of bivalve molluscs due to the depletion and/or overexploitation of their natural beds. Hatchery activities include the broodstock conditioning and spawning, rearing larvae and spat, and the production of microalgae to feed all stages of the production cycle. However, outbreaks of disease continue to be the main bottleneck for successful larval and spat production, most of them caused by different representatives of the genus Vibrio. Therefore, attention must be paid on preventive and management measures that allow the control of such undesirable bacterial populations. The present review provides an updated picture of the recently characterized Vibrio species associated with disease of bivalve molluscs during early stages of development, including the controversial taxonomic affiliation of some of them and relevant advances in the knowledge of their virulence determinants. The problematic use of antibiotics, as well as its eco-friendly alternatives are also critically discussed. PMID:28515714
Mizan, Md Furkanur Rahaman; Bang, Hyeon-Jo; Sadekuzzaman, Mohammad; Lee, Nari; Kim, Tae-Jo; Ha, Sang-Do
2017-05-01
Vibrio parahaemolyticus is an inhabitant of marine and estuarine environments and causes seafood-borne gastroenteritis in humans. In this study, an UltraFast LabChip Real-Time PCR assay was evaluated for rapid detection and quantification of pathogenic V. parahaemolyticus isolates. Escherichia coli and Vibrio harveyi were used as negative controls. Twenty-six tdh-positive, biofilm-producing V. parahaemolyticus isolates were analyzed by repetitive extragenic palindromic-polymerase chain reaction (REP-PCR). REP-PCR analysis showed that the majority of the V. parahaemolyticus isolates originated from seafood and that clinical specimens formed two major clusters at 92.8% and 32% similarity levels. The presence and quantification of Autoinducer-2 was carried out using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) after derivatization of Autoinducer-2 with 2, 3-diaminonaphthalene. The presence of tdh-positive V. parahaemolyticus in marine samples highlights the need for constant environmental monitoring to protect public health.
Crab, R; Lambert, A; Defoirdt, T; Bossier, P; Verstraete, W
2010-11-01
To study the potential biocontrol activity of bioflocs technology. Glycerol-grown bioflocs were investigated for their antimicrobial and antipathogenic properties against the opportunistic pathogen Vibrio harveyi. The bioflocs did not produce growth-inhibitory substances. However, bioflocs and biofloc supernatants decreased quorum sensing-regulated bioluminescence of V. harveyi. This suggested that the bioflocs had biocontrol activity against this pathogen because quorum sensing regulates virulence of vibrios towards different hosts. Interestingly, the addition of live bioflocs significantly increased the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged to V. harveyi. Bioflocs grown on glycerol as carbon source inhibit quorum sensing-regulated bioluminescence in V. harveyi and protect brine shrimp larvae from vibriosis. The results presented in this study indicate that in addition to water quality control and in situ feed production, bioflocs technology could help in controlling bacterial infections within the aquaculture pond. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.
Zhang, Dongyan; Takahashi, Junko; Seno, Taiko; Tani, Yoshihiko; Honda, Takeshi
1999-01-01
El Tor hemolysin (ETH), a pore-forming toxin secreted by Vibrio cholerae O1 biotype El Tor and most Vibrio cholerae non-O1 isolates, is able to lyse erythrocytes and other mammalian cells. To study the receptor for this toxin or the related molecule(s) on erythrocyte, we first isolated a monoclonal antibody, B1, against human erythrocyte membrane, which not only blocks the binding of ETH to human erythrocyte but also inhibits the hemolytic activity of ETH. Biochemical characterization and immunoblotting revealed that this antibody recognized an epitope on the extracellular domain of glycophorin B, a sialoglycoprotein of erythrocyte membrane. Erythrocytes lacking glycophorin B but not glycophorin A were less sensitive to the toxin than were normal human erythrocytes. These results indicate that glycophorin B is a receptor for ETH or at least an associated molecule of the receptor for ETH on human erythrocytes. PMID:10496913
Cellular localization and export of the soluble haemolysin of Vibrio cholerae El Tor.
Mercurio, A; Manning, P A
1985-01-01
The cellular location of the haemolysin of Vibrio cholerae El Tor strain 017 has been analyzed. This protein is found both in the periplasmic space and the extracellular medium in Vibrio cholerae. However, when the cloned gene, present on plasmid pPM431, is introduced into E. coli K-12 this protein remains localized predominantly in the periplasmic space with no activity detected in the extracellular medium. Mutants of E. coli K-12 (tolA and tolB) which leak periplasmic proteins mimic excretion and release the haemolysin into the growth medium. Secretion of haemolysin into the periplasm is independent of perA (envZ) and in fact, mutants in perA (envZ) harbouring pPM431 show hyperproduction of periplasmic haemolysin. These results in conjunction with those for other V. cholerae extracellular proteins suggest that although E. coli K-12 can secrete these proteins into the periplasm, it lacks a specific excretion mechanism, present in V. cholerae, for the release of soluble proteins into the growth medium.
NASA Astrophysics Data System (ADS)
Gong, Liang; Wu, Yu; Jian, Qijie; Yin, Chunxiao; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming
2018-01-01
Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485 nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500 bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.
Changchai, Nuttawee; Saunjit, Sudarat
2014-05-01
Occurrence, population density and virulence of Vibrio parahaemolyticus and V. vulnificus in 240 retail raw oysters collected monthly between March 2010 and February 2011 from Ang Sila coast, Chon Buri Province, Thailand were determined using most probable number (MPN) multiplex PCR. Multiplex PCR detected V. parahaemolyticus in 219 raw oyster samples, of which 29 samples contained the virulence tdh. MPN values for V. parahaemolyticus and pathogenic strains in most samples ranged from 10 to 10(2) and from 3 to 10 MPN/g, respectively. The presence of V. vulnificus was found in 53 oyster samples in amounts between 10 and 10(2) MPN/g. Of 1,087 V. parahaemolyticus isolates, 14 and 2 isolates carried tdh and virulence trh, respectively but none with both genes. However, none of the presumptive isolates was shown to be V. vulnificus. The detection of pathogenic V. parahaemolyticus and V. vulnificus in raw oysters has rendered high awareness of risk in consumption of raw or undercooked oysters.
Lee, Saeyoung; Yun, Eun Ju; Kim, Kyoung Heon; Kim, Hye Yeon; Choi, In Geol
2017-09-01
3,6-Anhydro-L-galactonate cycloisomerase (ACI), which is found in the marine bacterium Vibrio sp. strain EJY3, converts 3,6-anhydro-L-galactonate into 2-keto-3-deoxygalactonate. ACI is a key enzyme in the metabolic pathway of 3,6-anhydro-L-galactose (AHG). Study of AHG metabolism is important for the efficient fermentation of agar and biofuel production, because AHG is a sugar that is non-fermentable by commercial microorganisms. The aci gene from Vibrio sp. strain EJY3 was cloned, and the recombinant protein was overexpressed and crystallized in order to determine the structure and understand the function of the protein. The crystals diffracted to 2.2 Å resolution and belonged to space group P4 1 2 1 2 or P4 3 2 1 2, with unit-cell parameters a = b = 87.9, c = 143.5 Å. The Matthews coefficient was 2.3 Å 3 Da -1 , with a solvent content of 47%.
Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang
2014-01-01
Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165
Reynaud, Yann; Saulnier, Denis; Mazel, Didier; Goarant, Cyrille; Le Roux, Frédérique
2008-01-01
Vibrio nigripulchritudo, the etiological agent of Litopenaeus stylirostris summer syndrome, is responsible for mass mortalities of shrimp in New Caledonia. Epidemiological studies led to the suggestion that this disease is caused by an emergent group of pathogenic strains. Genomic subtractive hybridization was carried out between two isolates exhibiting low and high virulence. Our subtraction library was constituted of 521 specific fragments; 55 of these were detected in all virulent isolates from our collection (n = 32), and 13 were detected only in the isolates demonstrating the highest pathogenicity (n = 19), suggesting that they could be used as genetic markers for high virulence capacity. Interestingly, 10 of these markers are carried by a replicon of 11.2 kbp that contains sequences highly similar to those of a plasmid detected in Vibrio shilonii, a coral pathogen. The detection of this plasmid was correlated with the highest pathogenicity status of the isolates from our collection. The origin and consequence of this plasmid acquisition are discussed. PMID:18359828
Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui
2018-01-01
Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.
Huang, Jianfeng; Zhao, Guangying; Dou, Wenchao
2011-04-01
To explore a new rapid detection method for detecting of Food pathogens. We used the Smartongue, to determine the composition informations of the liquid culture samples and combined with soft independent modelling of class analogies (SIMCA) to analyze their respective species, then set up a Smartongue -SIMCA model to discriminate the V. parahaemolyticus. The Smartongue has 6 working electrodes and three frequency segments, we can built 18 discrimination models in one detection. After comparing all the 18 discrimination models, the optimal working electrodes and frequency segments were selected out, they were: palladium electrode in 1 Hz frequency segment, tungsten electrode in 100 Hz and silver electrode in 100 Hz. Then 10 species of pathogenic Vibrio were discriminated by the 3 models. The V. damsela, V. metschnikovii, V. alginalyticus, V. cincinnatiensis, V. metschnikovii and V. cholerae O serogroup samples could be discriminated by the SIMCA model of V. parahaemolyticus with palladium electrode 1 Hz frequency segment; V. mimicus and V. vulnincus samples could be discriminated by the SIMCA model of V. parahaemolyticus with tungsten electrode 100 Hz frequency segment; V. carcariae and V. cholerae non-O serogroup samples could be discriminated with the SIMCA model of V. parahaemolyticus in silver electrode 100 Hz frequency segment. The accurate discrimination of ten species of Vibrio samples is 100%. The Smartongue combined with SIMCA can discriminate V. parahaemolyticus with other pathogenic Vibrio effectively. It has a promising future as a new rapid detection method for V. parahaemolyticus.
Williams, Tiffany C; Froelich, Brett A; Phippen, Britney; Fowler, Patricia; Noble, Rachel T; Oliver, James D
2017-06-01
Monitoring of Vibrio vulnificus and V. parahaemolyticus abundance is pertinent due to the ability of these species to cause disease in humans through aquatic vectors. Previously, we performed a multiyear investigation tracking Vibrio spp. levels in five sites along the southeastern North Carolina coast. From February 2013 to October 2015, total V. vulnificus and V. parahaemolyticus abundance was measured in water, oysters and clams. In the current study, pathogenic subpopulations were identified in these isolates using molecular markers, revealing that 5.3% of V. vulnificus isolates possessed the virulence-correlated gene (vcgC), and 1.9% of V. parahaemolyticus isolates harbored one or both of the virulence-associated hemolysin genes (tdh and trh). Total V. parahaemolyticus abundance was not sufficient to predict the abundance of pathogenic subpopulations. Specifically, pathogenic V. parahaemolyticus isolates were more often isolated in cooler waters and were sometimes isolated when no other V. parahaemolyticus strains were detectable. Vibrio vulnificus clinical (C-) genotypes correlated with total V. vulnificus; however, salinity, water depth and total suspended solids influenced C- and E-genotypes differently. Lastly, we documented individual oysters harboring significantly higher V. vulnificus levels for which there was no ecological explanation, a phenomenon that deserves closer attention due to the potentially elevated health hazard associated with these 'hot' shellfish. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Crystal Structure of VC0702 at 2.0 angstrom: A Conserved Hypothetical Protein from Vibrio Cholerae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Shuisong; Forouhar, Farhad; Bussiere, Dirksen E.
2006-06-01
VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a putative three-gene operon containing the MbaA gene, which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0? and refined to Rwork=22.8% and Rfree=26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C2221 space group with dimensions of a=66.61 ?, b=88.118 ?, and c=118.35 ? with a homodimer in the asymmetric unit. VC0702 belongs to the Pfam DUF84 and COG1986 family of proteins. Sequence conservation within the DUF84 and COG1986 families wasmore » used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeshii, which has been identified as a novel NTPase. The NTP-binding site in Mj0226 is similarly located in comparison to the conserved patch of surface residues in VC0702. Furthermore, the NTP binds to MJ0226 in a cleft and deep cavity, features that are present in the VC0702 structure as well, suggesting that VC0702 may have a biochemical function involving NTP binding that is associated with a cellular function of regulating biofilm formation in Vibrio cholerae.« less
Petton, Bruno; Bruto, Maxime; James, Adèle; Labreuche, Yannick; Alunno-Bruscia, Marianne; Le Roux, Frédérique
2015-01-01
Successive disease outbreaks in oyster (Crassostrea gigas) beds in France have resulted in dramatic losses in production, and subsequent decline in the oyster-farming industry. Deaths of juvenile oysters have been associated with the presence of a herpes virus (OsHV-1 μvar) and bacterial populations of the genus Vibrio. Although the pathogenicity of OsHV-1 μvar, as well as several strains of Vibrio has been demonstrated by experimental infections, our understanding of the complexity of infections occurring in the natural environment remains limited. In the present study, we use specific-pathogen-free (SPF) oysters infected in an estuarine environment to study the diversity and dynamics of cultured microbial populations during disease expression. We observe that rapid Vibrio colonization followed by viral replication precedes oyster death. No correlation was found between the vibrio concentration and viral load in co-infected animals. We show that the quantity of viral DNA is a predictor of mortality, however, in the absence of bacteria, a high load of herpes virus is not sufficient to induce the full expression of the disease. In addition, we demonstrate that juvenile mortalities can occur in the absence of herpes virus, indicating that the herpes virus appears neither essential nor sufficient to cause juvenile deaths; whereas bacteria are necessary for the disease. Finally, we demonstrate that oysters are a reservoir of putative pathogens, and that the geographic origin, age, and cultivation method of oysters influence disease expression.
Elston, Ralph A; Hasegawa, Hiroaki; Humphrey, Karen L; Polyak, Ildiko K; Häse, Claudia C
2008-11-20
During 2006 and 2007, we documented the re-emergence of severe episodes of vibriosis caused by Vibrio tubiashii in shellfish hatcheries on the west coast of North America. Lost larval and juvenile production included 3 previously undescribed hosts, Pacific (Crassostrea gigas) and Kumamoto (C. sikamea) oysters and geoduck clams Panope abrupta, with a 2007 decline in larval oyster production of approximately 59% in one hatchery. Losses of larval and juvenile bivalves were linked to V. tubiashii blooms in the coastal environment, which were associated with the apparent mixing of unusually warm surface seawater and intermittently upwelled cooler, nutrient- and Vibrio spp.- enriched seawater. The ocean temperature elevation anomaly in 2007 was not clearly linked to an El Niño event, as was a similar episode in 1998. Concentrations of the dominant shellfish-pathogenic vibrios were as high as 1.6 x 10(5) cfu ml(-1) in the cold, upwelled water. The bacteria possessed the genes coding for a protease and hemolysin described for V. tubiashii, and pathogenic isolates secreted these peptides. Lesions resulting from a classic invasive disease and a toxigenic noninvasive disease occurred in oyster and geoduck clam larvae. Management and prevention require reduction of incoming concentrations of the bacteria, reduction of contamination in water and air supplies and in stock chemical solutions, removal of bacterial toxins, and interruption of the cycle of bacterial amplification in the hatchery and in microalgal food supplies.
Wood, R R; Arias, C R
2012-07-01
The effect of refrigeration on the seafood-borne pathogen Vibrio vulnificus was investigated in terms of genotype selection and persistence in refrigerated oysters. Naturally occurring numbers of V. vulnificus in oysters from two different locations were compared during a 2-week period under refrigeration conditions. At different time points, V. vulnificus isolates were recovered from oysters and ascribed to 16S rRNA gene type A, B or AB using restriction fragment length polymorphism. Initial V. vulnificus numbers were higher than 10(4) most probable number (MPN) g(-1) and remained unchanged throughout the duration of the study. 16S rRNA gene type B isolates accounted for 53% of the isolates recovered. Amplified fragment length polymorphism analysis confirmed the high genetic variability previously observed within this species but revealed the presence of two main genetic groups within the species that matched 16S rRNA gene ascription. Vibrio vulnificus numbers in oysters did not significantly declined over the shelf life of the product and refrigeration did not select for specific V. vulnificus types. The prevalence of V. vulnificus 16S rRNA gene type B in oysters was higher than previously reported from the same geographic area and was not significantly reduced during the storage period. Vibrio vulnificus is divided into two clear genotypes, regardless of the genetic marker used. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Esculin hydrolysis by Vibrio vulnificus.
Tison, D L
1986-01-01
A clinical isolate of Vibrio vulnificus was found to hydrolyze esculin when tested on bile-esculin-azide agar during the initial characterization of the strain. Reports in the literature of esculin hydrolysis by V. vulnificus are conflicting. We tested herein 52 strains of V. vulnificus from clinical and environmental sources for the ability to hydrolyze esculin. Seventy-eight percent of the strains hydrolyzed esculin on bile-esculin-azide agar, whereas all strains of V. vulnificus tested were positive for esculin hydrolysis in a noninhibitory medium, whereas some strains failed to hydrolyze esculin on media containing inhibitory compounds.
[Vibrio cholerae sepsis in the neonate].
Santamaría Muñoz, R; Ramírez Aguilera, P; Pansza, R; Acevedo, E; Hernández Estrada, E
2002-10-01
Vibrio cholerae sepsis is infrequent, especially in neonates although sporadic cases have been reported in older patients. We report the case of a neonate who was admitted to the intensive care unit for hypovolemic shock secondary to diarrhea caused by V. cholerae that developed into bacteremia. The predisposing factors were low socioeconomic status, home delivery, delayed presentation at the health center, and active maternal gastrointestinal infection with V. cholerae. The organism identified in blood and feces culture was identified as V. cholerae 0 -1, biotype Thor, serotype Ogawa, which correlated with the clinical presentation.
Vibrio damsela. A cause of fulminant septicemia.
Perez-Tirse, J; Levine, J F; Mecca, M
1993-08-09
A previously healthy 70-year-old man presented with a rapidly progressive and fulminant infection due to Vibrio damsela after suffering a knife cut while filleting bluefish at the New Jersey Shore. Despite appropriate antibiotic therapy and localized wound exploration, the patient died. To our knowledge, this is the first reported case of V damsela sepsis with simultaneous isolation of the organism from both blood and wound. We are reporting this case to heighten physicians' awareness of this infection and the importance of early management with antibiotics and surgical consultation.
Chiou, Jiachi; Li, Ruichao
2015-01-01
Vibrio parahaemolyticus is commonly resistant to ampicillin, yet the mechanisms underlying this phenomenon are not clear. In this study, a novel class A carbenicillin-hydrolyzing β-lactamase (CARB) family of β-lactamases, blaCARB-17, was identified and found to be responsible for the intrinsic penicillin resistance in V. parahaemolyticus. Importantly, blaCARB-17-like genes were present in all 293 V. parahaemolyticus genome sequences available in GenBank and detectable in all 91 V. parahaemolyticus food isolates, further confirming the intrinsic nature of this gene. PMID:25801555
2013-01-01
developed by the degradation of a variety of food products creating a competition for the destination of the crops harvested . To eliminate this problem it...short bacillus (Figure 33.A), a vibrio (Figure 33.B) and a long bacillus (Figure 33.C). These three morphologies were also present in other colonies...CPF4 (Figure 34). The fourth colony (CPF4) contained three morphologies: a vibrio (Figure 35.A), a possible spirochete (Figure 35.B) and a long
2012-01-10
flow cytometry, locked nucleic acid, sRNA, Vibrio , Date Published: 1/10/2012 This is an open-access article distributed under the terms of the Creative...solubilization process to maintain a 10 mL volume. Aliquot the 60% dextran sulfate solution and store at -20 °C until use. 1. Harvest 1x108 cells of...bioluminescent Vibrio campbellii or your bacteria of interest and transfer them into a 1.5 mL microcentrifuge tube. This quantity of cells provides
2013-07-01
FabI, but share low sequence identity and are poorly inhibited by triclosan.25,26 S. pneumoniae and P. aeruginosa contain FabK,24 and Vibrio cholerae,27...with 0.2 mM IPTG. The cells were harvested after an overnight induction period at 17 °C. The cells were lysed and sonicated and loaded onto a nickel...of enoyl- (acyl-carrier protein) reductase, FabV, from Vibrio fischeri. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2012, 68, 78−80. (27
A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.
Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright
2005-12-30
A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.
Gómez-León, J.; Villamil, L.; Lemos, M. L.; Novoa, B.; Figueras, A.
2005-01-01
Two episodes of mortality of cultured carpet shell clams (Ruditapes decussatus) associated with bacterial infections were recorded during 2001 and 2002 in a commercial hatchery located in Spain. Vibrio alginolyticus was isolated as the primary organism from moribund clam larvae that were obtained during the two separate events. Vibrio splendidus biovar II, in addition to V. alginolyticus, was isolated as a result of a mixed Vibrio infection from moribund clam larvae obtained from the second mortality event. The larval mortality rates for these events were 62 and 73%, respectively. Mortality was also detected in spat. To our knowledge, this is the fist time that these bacterial species have been associated with larval and juvenile carpet shell clam mortality. The bacterial strains were identified by morphological and biochemical techniques and also by PCR and sequencing of a conserved region of the 16S rRNA gene. In both cases bacteria isolated in pure culture were inoculated into spat of carpet shell clams by intravalvar injection and by immersion. The mortality was attributed to the inoculated strains, since the bacteria were obtained in pure culture from the soft tissues of experimentally infected clams. V. alginolyticus TA15 and V. splendidus biovar II strain TA2 caused similar histological lesions that affected mainly the mantle, the velum, and the connective tissue of infected organisms. The general enzymatic activity of both live cells and extracellular products (ECPs), as evaluated by the API ZYM system, revealed that whole bacterial cells showed greater enzymatic activity than ECPs and that the activity of most enzymes ceased after heat treatment (100°C for 10 min). Both strain TA15 and strain TA2 produced hydroxamate siderophores, although the activity was greater in strain TA15. ECPs from both bacterial species at high concentrations, as well as viable bacteria, caused significant reductions in hemocyte survival after 4 h of incubation, whereas no significant differences in viability were observed during incubation with heat-killed bacteria. PMID:15640176
NASA Astrophysics Data System (ADS)
Zhang, Xiaojing; Song, Xiaoling; Huang, Jie
2016-11-01
White spot syndrome virus (WSSV) is an important viral pathogen that infects farmed penaeid shrimp, and the threat of Vibrio parahaemolyticus infection to shrimp farming has become increasingly severe. Viral and bacterial cross or superimposed infections may induce higher shrimp mortality. We used a feeding method to infect Litopenaeus vannamei with WSSV and then injected a low dose of V. parahaemolyticus (WSSV+Vp), or we first infected L. vannamei with a low-dose injection of V. parahaemolyticus and then fed the shrimp WSSV to achieve viral infection (Vp+WSSV). The eff ect of V. parahaemolyticus and WSSV co-infection on survival of L. vannamei was evaluated by comparing cumulative mortality rates between experimental and control groups. We also spread L. vannamei hemolymph on thiosulfate citrate bile salt sucrose agar plates to determine the number of Vibrio, and the WSSV copy number in L. vannamei gills was determined using an absolute quantitative polymerase chain reaction (PCR) method. LvMyD88 and Lvakt gene expression levels were detected in gills of L. vannamei by real-time PCR to determine the cause of the diff erent mortality rates. Our results show that (1) the cumulative mortality rate of L. vannamei in the WSSV+Vp group reached 100% on day 10 after WSSV infection, whereas the cumulative mortality rate of L. vannamei in the Vp+WSSV group and the WSSV-alone control group approached 100% on days 11 and 13 of infection; (2) the number of Vibrio in the L. vannamei group infected with V. parahaemolyticus alone declined gradually, whereas the other groups showed significant increases in the numbers of Vibrio ( P<0.05); (3) the WSSV copy numbers in the gills of the WSSV+Vp, Vp+WSSV, and the WSSV-alone groups increased from 105 to 107 /mg tissue 72, 96, and 144 h after infection, respectively. These results suggest that V. parahaemolyticus infection accelerated proliferation of WSSV in L. vannamei and vice versa. The combined accelerated proliferation of both V. parahaemolyticus and WSSV led to massive death of L. vannamei.
Ye, Mu; Huang, Yaoxin; Chen, Haiqiang
2012-10-01
Several recent outbreaks associated with oysters have heightened safety concerns of raw shellfish consumptions, with the majority being attributed to Vibrio spp. The objective of this study was to determine the effect of high-hydrostatic pressure (HHP) followed by mild heating on the inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in live oysters. Inoculated oysters were randomly subjected to: a) pressurization at 200-300 MPa for 2 min at 21 °C, b) mild heat treatment at 40, 45 or 50 °C for up to 20 min and c) pressure treatment of 200-300 MPa for 2 min at 21 °C followed by heat treatment at 40-50 °C. Counts of V. parahaemolyticus and V. vulnificus were then determined using the most probable number (MPN) method. Pressurization at 200-300 MPa for 2 min resulted in various degrees of inactivation, from 1.2 to >7 log MPN/g reductions. Heat treatment at 40 and 45 °C for 20 min only reduced V. parahaemolyticus and V. vulnificus by 0.7-2.5 log MPN/g while at 50 °C for 15 min achieved >7 log MPN/g reduction. HHP and mild heat had synergistic effects. Combinations such as HHP at 250 MPa for 2 min followed by heat treatment at 45 °C for 15 min and HHP at 200 MPa for 2 min followed by heat treatment at 50 °C for 5 min reduced both V. parahaemolyticus and V. vulnificus to non-detectable levels by the MPN method (<3 MPN/g). HHP at ≥275 MPa for 2 min followed by heat treatment at 45 °C for 20 min and HHP at ≥200 MPa for 2 min followed by heat treatment at 50 °C for 15 min completely eliminated both pathogens in oysters (negative enrichment results). This study demonstrated the efficiency of HHP followed by mild heat treatments on inactivation of V. parahaemolyticus and V. vulnificus and could help the industry to establish parameters for processing oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Etiological surveillance and analysis of infectious diarrhea in Beijing in year 2010].
Huang, Fang; Deng, Ying; Qu, Mei; Liu, Gui-Rong; Liu, Yuan; Zhang, Xin; Li, Jie; Yan, Han-Qiu; Gao, Zhi-Yong; Liu, Bai-Wei; Li, Xi-Tai; Li, Xin-Yu
2011-09-01
To explore the pathogenic form, epidemic features and serotype distribution of the pathogenic bacteria causing infectious diarrhea in Beijing. A total of 2118 samples of rectal swabs and stool specimens of diarrheal patients were collected from 6 surveillant intestinal tract clinics during the period between April and October, 2010. Enteric multiple pathogens including Vibrio cholerae, Vibrio parahaemolyticus, Salmonella, Shigella and diarrheagenic Escherichia coli were detected by the isolation culture, biochemical identification and serotyping methods. The population distribution, temporal distribution and serotype distribution of the above pathogenic bacteria were analyzed by descriptive statistical methods. 478 strains isolated from the total 2118 specimens were positive for pathogen detection, accounting to 22.6%. Among the 478 strains of pathogenic bacteria, Shigella accounting for 40.8% (195/478) was the most frequent pathogen, followed by Vibrio parahaemolyticus accouting for 23.8% (114/478), Salmonella accounting for 19.0% (91/478) and diarrheagenic Escherichia coli accounting for 4.8% (23/478). Enteric pathogenic bacteria spread mainly among adults aging between 20 and 39; and the distribution was different among different age groups, while the highest detected rate was in 30 - 39 age group, accounting for 27.2% (92/338). The detected rate of pathogenic bacteria showed evident seasonal variations, with a peak from July to October, whose detected rates were 23.5% (114/486), 32.8% (176/536), 36.1% (90/249) and 25.9% (29/112) respectively. The detected rates in other months were all under 16.0%. Shigella Sonnei was the dominant serotype, accounting for 83.1% (162/195). O3:K6 was the dominant serotype among Vibrio parahaemolyticus, accounting for 63.2% (72/114). Salmonella Enteritidis and Salmonella Typhimurium were dominant serotypes among Salmonella, accounting for 13.2% (12/91) and 12.1% (11/91) separately. Enterpathogenic Escherichia coli and enterotoxigenic Escherichia coli were the dominant serotypes among Diarrheagenic Escherichia coli, accounting for 69.6% (16/23) and 30.4% (7/23) respectively. The three main pathogenic bacteria causing infectious diarrhea in Beijing are Shigella, Vibrio parahaemolyticus, Salmonella; and there are obvious changes in the serotype distribution of Shigella and Samonella compared to previous years.
Walton, William C; Nelson, Chris; Hochman, Mona; Schwarz, John
2013-01-01
Increasingly strict standards for harvest of oysters for the raw, half-shell market (designated as "white tag") should increase the proportion of oysters not meeting these standards (designated as "green tag"). Transplanting of green tag oysters into highsalinity waters (>20 practical salinity units) was explored as a means of returning Vibrio vulnificus and Vibrio parahaemolyticus levels to levels present on initial harvest. In summer 2011, oysters originally harvested in Louisiana were transplanted on two separate occasions (n = 2) to two sites in Mississippi Sound, AL: Sandy Bay and Dauphin Island. Oysters were tested for V. vulnificus and V. parahaemolyticus densities (by using the U.S. Food and Drug Administration enrichment method) after 2, 7, and 14 days deployed, with baseline samples taken (i) at the time of original harvest and iced, (ii) from oysters refrigerated within 1 h of harvest at <45°F ([7.2°C] white tag) and, (iii) from oysters not refrigerated during the harvest trip (green tag) but refrigerated after an 8-h trip. White and green tag oysters were sampled ∼24 h on arrival in Bon Secour, AL, put on ice, and shipped for analysis. Among baseline samples, there were no significant differences in V. vulnificus and V. parahaemolyticus densities, although the densities in the green tag oysters tended to be highest. After transplanting, V. vulnificus densities were significantly highest on day 2, with no significant differences among any of the other days within a site. On day 2, Sandy Bay had significantly greater densities of V. vulnificus than the Dauphin Island site, but no other days differed from time zero. For Vibrio parahaemolyticus, densities were greatest on day 2 and lowest at time zero, but this did not differ significantly from abundance on day 14. Average survival was 83.4% (± 3.13 SD), with no differences between sites. These preliminary results indicate that high-salinity transplanting could be an effective method of converting green tag oysters to oysters suitable for "reharvest" as white tag oysters.
Zou, Linhu; Liu, Baozhong
2015-04-01
Serum amyloid A (SAA), an acute response protein as well as an apolipoprotein, is considered to play crucial roles in both innate immunity and lipid metabolism. In this study, a SAA gene (MmSAA) was identified in the clam Meretrix meretrix. The full length DNA of MmSAA was 1407bp, consisting of three exons and two introns. The distribution of MmSAA in clam tissues was examined with the highest expression in hepatopancreas. In response to the Vibrio parahaemolyticus challenge, MmSAA mRNA showed significantly higher expression at 24 h post-challenge in experimental clams (P < 0.05). Forty-eight single nucleotide polymorphisms (SNPs) in the DNA partial sequence of MmSAA were discovered and examined for their association with Vibrio-resistance and growth traits, respectively. The single SNP association analysis indicated that five single SNPs (g.42, g.72, g.82, g.147 and g.165) were significantly associated with Vibrio-resistance (P < 0.05). Haplotype analysis produced additional support for association with the Chi-square values 6.393 (P = 0.012). Among the five selected SNPs, the effect of a missense mutation (g.82, A → G) was detected by site-directed mutagenesis with fusion expression of protein assay, and the result showed that the recombinant plasmids containing wild-type pET30a-MmSAA had more inhibition effect than the mutant ones on the growth rate of the host bacteria. In addition, four growth traits of the clams in 09G3SPSB population were recorded and the SNP g.176 was found to be significantly associated with the growth traits with the Global score value 0.790 (P = 0.015). Our findings suggested that common genetic variation in MmSAA might contribute to the risk of susceptibility to Vibrio infection and might be associated with the growth traits in the clams M. meretrix, and more works are still needed to validate these SNPs as potential markers for actual selective breeding. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Zhou, Meng; Liang, Risheng; Muhammad, Asim; Zhao, Lijuan; Li, Jun; Lan, Jiangfeng; Lin, Li
2018-06-01
Pacific white shrimp (Litopenaeus vannamei) is an important cultural species worldwide. However, Vibrio spp. infections have caused a great economic loss in Pacific white shrimp culture industry. The immune responses of Pacific white shrimp to the Vibrio spp. is not fully characterized. In this study, the transcriptomic profiles of L. vannamei hemocytes were explored by injecting with or without Vibrio parahaemolyticus. Totally, 42,632 high-quality unigenes were obtained from RNAseq data. Comparative genome analysis showed 2258 differentially expressed genes (DEGs) following the Vibrio challenge, including 1017 up-regulated and 1241 down-regulated genes. Eight DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results showed that are consistent with the RNA-seq data. Due to the lack of predictable adaptive immunity, shrimps rely on an innate immune system to defend themselves against invading microbes by recognizing and clearing them through humoral and cellular immune responses. Here we focused our studies on the humoral immunity, five genes (SR, MNK, CTL3, GILT, and ALFP) were selected from the transcriptomic data, which were significantly up-regulated by V. parahaemolyticus infection. These genes were widely expressed in six different tissues and were up-regulated by both Gram negative bacteria (V. parahaemolyticus) and Gram positive bacteria (Staphylococcus aureus). To further extend our studies, we knock-down those five genes by dsRNA in L. vannamei and analyzed the functions of specific genes against V. parahaemolyticus and S. aureus by bacterial clearance analysis. We found that the ability of L. vannamei was significantly reduced in bacterial clearance when treated with those specific dsRNA. These results indicate that those five genes play essential roles in antibacterial immunity and have its specific functions against different types of pathogens. The obtained data will shed a new light on the immunity of L. vannamei and pave a new way for fighting against the bacterial infection in Pacific white shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian
2013-01-01
Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001
Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian
2013-01-01
Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.
Gromek, Samantha M.; Suria, Andrea M.; Fullmer, Matthew S.; Garcia, Jillian L.; Gogarten, Johann Peter; Nyholm, Spencer V.; Balunas, Marcy J.
2016-01-01
Female members of many cephalopod species house a bacterial consortium in the accessory nidamental gland (ANG), part of the reproductive system. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens, and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium. PMID:27660622
2011-01-01
Introduction Necrotizing fasciitis (NF) is a life threatening infectious disease with a high mortality rate. We carried out a microbiological characterization of the causative pathogens. We investigated the correlation of mortality in NF with bloodstream infection and with the presence of co-morbidities. Methods In this retrospective study, we analyzed 323 patients who presented with necrotizing fasciitis at two different institutions. Bloodstream infection (BSI) was defined as a positive blood culture result. The patients were categorized as survivors and non-survivors. Eleven clinically important variables which were statistically significant by univariate analysis were selected for multivariate regression analysis and a stepwise logistic regression model was developed to determine the association between BSI and mortality. Results Univariate logistic regression analysis showed that patients with hypotension, heart disease, liver disease, presence of Vibrio spp. in wound cultures, presence of fungus in wound cultures, and presence of Streptococcus group A, Aeromonas spp. or Vibrio spp. in blood cultures, had a significantly higher risk of in-hospital mortality. Our multivariate logistic regression analysis showed a higher risk of mortality in patients with pre-existing conditions like hypotension, heart disease, and liver disease. Multivariate logistic regression analysis also showed that presence of Vibrio spp in wound cultures, and presence of Streptococcus Group A in blood cultures were associated with a high risk of mortality while debridement > = 3 was associated with improved survival. Conclusions Mortality in patients with necrotizing fasciitis was significantly associated with the presence of Vibrio in wound cultures and Streptococcus group A in blood cultures. PMID:21693053
Mohseni, Mojtaba; Abbaszadeh, Jaber; Maghool, Shima-Sadat; Chaichi, Mohammad-Javad
2018-02-01
Monitoring and assessing toxic materials which are being released into the environment along with wastewater is a growing concern in many industries. The current research describes a highly sensitive and rapid method for the detection of toxic concentrations of heavy metals in aquatic environments. Water samples were collected from southern coasts of the Caspian Sea followed by screening of luminescent bacteria. Phylogenetic analysis, including gene sequence of 16S rRNA, and biochemical tests were performed for identification of the isolate. Luminescence activity was tested and measured after treatment of the isolate with different concentrations of heavy metals and reported as EC 50 value for each metal. A luminous, gram negative bacterium with the shape of a curved rod was isolated from the Caspian Sea. Biochemical tests and 16S rRNA gene sequence analysis indicated that the isolate MM1 had more than 99% similarity to Vibrio campbellii. The novel isolate is able to emit high levels of light. Bioluminescence inhibitory assay showed that the Vibrio sp. MM1 had the highest sensitivity to zinc and the lowest sensitivity to cadmium; EC 50 values were 0.97mgl -1 and 14.54mgl -1 , respectively. The current research shows that even low concentrations of heavy metals can cause a detectable decline in luminescence activity of the novel bacterium Vibrio sp. MM1; hence, it makes a good choice for commercial kits for the purpose of monitoring toxic materials. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular characterizations of Vibrio parahaemolyticus in seafood from the Black Sea, Turkey.
Terzi Gulel, G; Martinez-Urtaza, J
2016-06-01
Vibrio parahaemolyticus is a marine bacterium that is considered as one of the major causes of bacterial food-borne outbreaks at a global scale. A total of 114 samples including mussel (n = 42), seawater (n = 22) and fish (n = 50) samples were collected and subjected to investigation. Vibrio parahaemolyticus was detected in 45 (39%) of 114 samples with an occurrence in mussel, seawater and fish samples of 76, 40·9 and 8% respectively. A total of 96 isolates were positive for the species-specific genes toxR and tlh and confirmed as V. parahaemolyticus. Presence of the virulence marker gene tdh was not identified in any of the strains investigated; however, four of strains were positive for the trh gene. Serological analysis of eight randomly selected trh-negative isolates identified three different serotypes: O4:K untypeable (KUT), O2:KUT, O3:KUT. Conversely, all four trh-positive strains belonged to a single serotype (O1:K1) and share an undistinguishable genetic profile by PFGE analysis, suggesting the existence of a dominant clone for the trh-positive strains in the region. Vibrio parahaemolyticus is the most prevalent food-poisoning bacterium associated with seafood consumption. The number of infections is increasing worldwide and is being reported in areas with no previous incidence. This study provides the first instance of the occurrence of V. parahaemolyticus strains with virulence traits in the Black Sea, contributing to gain a better understanding about potential risk associated with this pathogen in the region. © 2016 The Society for Applied Microbiology.
Zeng, Jing; Wei, Haiyan; Zhang, Lei; Liu, Xuefeng; Zhang, Haiyu; Cheng, Jinxia; Ma, Dan; Zhang, Ximeng; Fu, Pubo; Liu, Li
2014-03-17
The objective of this study was to develop a method that combined nanoparticle-based immunomagnetic separation (IMS) with real-time loop-mediated isothermal amplification (LAMP) for the rapid detection of Vibrio parahaemolyticus. Magnetic nanoparticles were functionalized with monoclonal antibodies that were produced against flagella from V. parahaemolyticus to capture and separate the target cells from raw oysters. After optimization, the immunomagnetic nanoparticles (IMNPs) presented a capture efficiency of 87.3% for 10(5) colony-forming unit (CFU)/mL of V. parahaemolyticus using 2.5μg of IMNPs within 30min. Although a very low level of non-specific binding was seen among 8 non-V. parahaemolyticus Vibrio spp. and 5 non-Vibrio strains, the IMS-LAMP method identified 133 V. parahaemolyticus strains correctly without the amplification from 54 other strains. The detection limit was about 1.4×10(2)CFU/mL in pure culture and was unaffected by the presence of 10(8)CFU/mL of competing microflora. When applied in spiked oysters, the sensitivity was found to be 1.9×10(3)CFU/g without enrichment. After enrichment for 6-8h, the limit of detectability could be improved to 1.9 to 0.19CFU/g. Hence, the IMS-LAMP assay provided a rapid, simple, and cost-effective method for total V. parahaemolyticus detection. This method will have important implications in the rapid detection of contaminated food in the early stage before distribution. Copyright © 2014 Elsevier B.V. All rights reserved.
FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.
Minamino, Tohru; Kinoshita, Miki; Inoue, Yumi; Morimoto, Yusuke V; Ihara, Kunio; Koya, Satomi; Hara, Noritaka; Nishioka, Noriko; Kojima, Seiji; Homma, Michio; Namba, Keiichi
2016-06-01
For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles in energy coupling of protein translocation. However, the energy coupling mechanism remains unknown. Here, we performed a cross-complementation assay to measure robustness of the energy transduction system of the export apparatus against genetic perturbations. Vibrio FlhA restored motility of a Salmonella ΔflhA mutant but not that of a ΔfliH-fliI flhB(P28T) ΔflhA mutant. The flgM mutations significantly increased flagellar gene expression levels, allowing Vibrio FlhA to exert its export activity in the ΔfliH-fliI flhB(P28T) ΔflhA mutant. Pull-down assays revealed that the binding affinities of Vibrio FlhA for FliJ and the FlgN-FlgK chaperone-substrate complex were much lower than those of Salmonella FlhA. These suggest that Vibrio FlhA requires the support of FliH and FliI to efficiently and properly interact with FliJ and the FlgN-FlgK complex. We propose that FliH and FliI ensure robust and efficient energy coupling of protein export during flagellar assembly. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.