Sample records for video capture system

  1. Student-Built Underwater Video and Data Capturing Device

    NASA Astrophysics Data System (ADS)

    Whitt, F.

    2016-12-01

    Students from Stockbridge High School Robotics Team invention is a low cost underwater video and data capturing device. This system is capable of shooting time-lapse photography and/or video for up to 3 days of video at a time. It can be used in remote locations without having to change batteries or adding additional external hard drives for data storage. The video capturing device has a unique base and mounting system which houses a pi drive and a programmable raspberry pi with a camera module. This system is powered by two 12 volt batteries, which makes it easier for users to recharge after use. Our data capturing device has the same unique base and mounting system as the underwater camera. The data capturing device consists of an Arduino and SD card shield that is capable of collecting continuous temperature and pH readings underwater. This data will then be logged onto the SD card for easy access and recording. The low cost underwater video and data capturing device can reach depths up to 100 meters while recording 36 hours of video on 1 terabyte of storage. It also features night vision infrared light capabilities. The cost to build our invention is $500. The goal of this was to provide a device that can easily be accessed by marine biologists, teachers, researchers and citizen scientists to capture photographic and water quality data in marine environments over extended periods of time.

  2. A new method for digital video documentation in surgical procedures and minimally invasive surgery.

    PubMed

    Wurnig, P N; Hollaus, P H; Wurnig, C H; Wolf, R K; Ohtsuka, T; Pridun, N S

    2003-02-01

    Documentation of surgical procedures is limited to the accuracy of description, which depends on the vocabulary and the descriptive prowess of the surgeon. Even analog video recording could not solve the problem of documentation satisfactorily due to the abundance of recorded material. By capturing the video digitally, most problems are solved in the circumstances described in this article. We developed a cheap and useful digital video capturing system that consists of conventional computer components. Video images and clips can be captured intraoperatively and are immediately available. The system is a commercial personal computer specially configured for digital video capturing and is connected by wire to the video tower. Filming was done with a conventional endoscopic video camera. A total of 65 open and endoscopic procedures were documented in an orthopedic and a thoracic surgery unit. The median number of clips per surgical procedure was 6 (range, 1-17), and the median storage volume was 49 MB (range, 3-360 MB) in compressed form. The median duration of a video clip was 4 min 25 s (range, 45 s to 21 min). Median time for editing a video clip was 12 min for an advanced user (including cutting, title for the movie, and compression). The quality of the clips renders them suitable for presentations. This digital video documentation system allows easy capturing of intraoperative video sequences in high quality. All possibilities of documentation can be performed. With the use of an endoscopic video camera, no compromises with respect to sterility and surgical elbowroom are necessary. The cost is much lower than commercially available systems, and setting changes can be performed easily without trained specialists.

  3. Biomechanical analysis using Kinovea for sports application

    NASA Astrophysics Data System (ADS)

    Muaza Nor Adnan, Nor; Patar, Mohd Nor Azmi Ab; Lee, Hokyoo; Yamamoto, Shin-Ichiroh; Jong-Young, Lee; Mahmud, Jamaluddin

    2018-04-01

    This paper assesses the reliability of HD VideoCam–Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, Japan. A healthy subject without any gait disorder (BMI of 28.60 ± 1.40) was recruited. The volunteered subject was asked to per the drop jump movement on preset platform and the motion was simultaneously recorded using an established infrared motion capture system (Hawk–Cortex) and a HD VideoCam in the sagittal plane only. The capture was repeated for 5 times. The outputs (video recordings) from the HD VideoCam were input into Kinovea (an open-source software) and the drop jump pattern was tracked and analysed. These data are compared with the drop jump pattern tracked and analysed earlier using the Hawk–Cortex system. In general, the results obtained (drop jump pattern) using the HD VideoCam–Kinovea are close to the results obtained using the established motion capture system. Basic statistical analyses show that most average variances are less than 10%, thus proving the repeatability of the protocol and the reliability of the results. It can be concluded that the integration of HD VideoCam–Kinovea has the potential to become a reliable motion capture–analysis system. Moreover, it is low cost, portable and easy to use. As a conclusion, the current study and its findings are found useful and has contributed to enhance significant knowledge pertaining to motion capture-analysis, drop jump movement and HD VideoCam–Kinovea integration.

  4. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  5. Quality and noise measurements in mobile phone video capture

    NASA Astrophysics Data System (ADS)

    Petrescu, Doina; Pincenti, John

    2011-02-01

    The quality of videos captured with mobile phones has become increasingly important particularly since resolutions and formats have reached a level that rivals the capabilities available in the digital camcorder market, and since many mobile phones now allow direct playback on large HDTVs. The video quality is determined by the combined quality of the individual parts of the imaging system including the image sensor, the digital color processing, and the video compression, each of which has been studied independently. In this work, we study the combined effect of these elements on the overall video quality. We do this by evaluating the capture under various lighting, color processing, and video compression conditions. First, we measure full reference quality metrics between encoder input and the reconstructed sequence, where the encoder input changes with light and color processing modifications. Second, we introduce a system model which includes all elements that affect video quality, including a low light additive noise model, ISP color processing, as well as the video encoder. Our experiments show that in low light conditions and for certain choices of color processing the system level visual quality may not improve when the encoder becomes more capable or the compression ratio is reduced.

  6. Objective analysis of image quality of video image capture systems

    NASA Astrophysics Data System (ADS)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give horizontal or vertical streaking. While many of these results are significant from an engineering standpoint alone, there are clinical implications and some anatomy or pathology may not be visualized if an image capture system is used improperly.

  7. Evaluation of smart video for transit event detection : final report.

    DOT National Transportation Integrated Search

    2009-06-01

    Transit agencies are increasingly using video cameras to fight crime and terrorism. As the volume of video data increases, the existing digital video surveillance systems provide the infrastructure only to capture, store and distribute video, while l...

  8. Video repairing under variable illumination using cyclic motions.

    PubMed

    Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung

    2006-05-01

    This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.

  9. The utility of live video capture to enhance debriefing following transcatheter aortic valve replacement.

    PubMed

    Seamans, David P; Louka, Boshra F; Fortuin, F David; Patel, Bhavesh M; Sweeney, John P; Lanza, Louis A; DeValeria, Patrick A; Ezrre, Kim M; Ramakrishna, Harish

    2016-10-01

    The surgical and procedural specialties are continually evolving their methods to include more complex and technically difficult cases. These cases can be longer and incorporate multiple teams in a different model of operating room synergy. Patients are frequently older, with comorbidities adding to the complexity of these cases. Recording of this environment has become more feasible recently with advancement in video and audio capture systems often used in the simulation realm. We began using live capture to record a new procedure shortly after starting these cases in our institution. This has provided continued assessment and evaluation of live procedures. The goal of this was to improve human factors and situational challenges by review and debriefing. B-Line Medical's LiveCapture video system was used to record successive transcatheter aortic valve replacement (TAVR) procedures in our cardiac catheterization/laboratory. An illustrative case is used to discuss analysis and debriefing of the case using this system. An illustrative case is presented that resulted in long-term changes to our approach of these cases. The video capture documented rare events during one of our TAVR procedures. Analysis and debriefing led to definitive changes in our practice. While there are hurdles to the use of this technology in every institution, the role for the ongoing use of video capture, analysis, and debriefing may play an important role in the future of patient safety and human factors analysis in the operating environment.

  10. The utility of live video capture to enhance debriefing following transcatheter aortic valve replacement

    PubMed Central

    Seamans, David P.; Louka, Boshra F.; Fortuin, F. David; Patel, Bhavesh M.; Sweeney, John P.; Lanza, Louis A.; DeValeria, Patrick A.; Ezrre, Kim M.; Ramakrishna, Harish

    2016-01-01

    Background: The surgical and procedural specialties are continually evolving their methods to include more complex and technically difficult cases. These cases can be longer and incorporate multiple teams in a different model of operating room synergy. Patients are frequently older, with comorbidities adding to the complexity of these cases. Recording of this environment has become more feasible recently with advancement in video and audio capture systems often used in the simulation realm. Aims: We began using live capture to record a new procedure shortly after starting these cases in our institution. This has provided continued assessment and evaluation of live procedures. The goal of this was to improve human factors and situational challenges by review and debriefing. Setting and Design: B-Line Medical's LiveCapture video system was used to record successive transcatheter aortic valve replacement (TAVR) procedures in our cardiac catheterization/laboratory. An illustrative case is used to discuss analysis and debriefing of the case using this system. Results and Conclusions: An illustrative case is presented that resulted in long-term changes to our approach of these cases. The video capture documented rare events during one of our TAVR procedures. Analysis and debriefing led to definitive changes in our practice. While there are hurdles to the use of this technology in every institution, the role for the ongoing use of video capture, analysis, and debriefing may play an important role in the future of patient safety and human factors analysis in the operating environment. PMID:27762242

  11. The Effectiveness of Classroom Capture Technology

    ERIC Educational Resources Information Center

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  12. Video-based Mobile Mapping System Using Smartphones

    NASA Astrophysics Data System (ADS)

    Al-Hamad, A.; Moussa, A.; El-Sheimy, N.

    2014-11-01

    The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.

  13. A design of real time image capturing and processing system using Texas Instrument's processor

    NASA Astrophysics Data System (ADS)

    Wee, Toon-Joo; Chaisorn, Lekha; Rahardja, Susanto; Gan, Woon-Seng

    2007-09-01

    In this work, we developed and implemented an image capturing and processing system that equipped with capability of capturing images from an input video in real time. The input video can be a video from a PC, video camcorder or DVD player. We developed two modes of operation in the system. In the first mode, an input image from the PC is processed on the processing board (development platform with a digital signal processor) and is displayed on the PC. In the second mode, current captured image from the video camcorder (or from DVD player) is processed on the board but is displayed on the LCD monitor. The major difference between our system and other existing conventional systems is that image-processing functions are performed on the board instead of the PC (so that the functions can be used for further developments on the board). The user can control the operations of the board through the Graphic User Interface (GUI) provided on the PC. In order to have a smooth image data transfer between the PC and the board, we employed Real Time Data Transfer (RTDX TM) technology to create a link between them. For image processing functions, we developed three main groups of function: (1) Point Processing; (2) Filtering and; (3) 'Others'. Point Processing includes rotation, negation and mirroring. Filter category provides median, adaptive, smooth and sharpen filtering in the time domain. In 'Others' category, auto-contrast adjustment, edge detection, segmentation and sepia color are provided, these functions either add effect on the image or enhance the image. We have developed and implemented our system using C/C# programming language on TMS320DM642 (or DM642) board from Texas Instruments (TI). The system was showcased in College of Engineering (CoE) exhibition 2006 at Nanyang Technological University (NTU) and have more than 40 users tried our system. It is demonstrated that our system is adequate for real time image capturing. Our system can be used or applied for applications such as medical imaging, video surveillance, etc.

  14. Live HDR video streaming on commodity hardware

    NASA Astrophysics Data System (ADS)

    McNamee, Joshua; Hatchett, Jonathan; Debattista, Kurt; Chalmers, Alan

    2015-09-01

    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display.

  15. Can You See Me Now Visualizing Battlefield Facial Recognition Technology in 2035

    DTIC Science & Technology

    2010-04-01

    County Sheriff’s Department, use certain measurements such as the distance between eyes, the length of the nose, or the shape of the ears. 8 However...captures multiple frames of video and composites them into an appropriately high-resolution image that can be processed by the facial recognition software...stream of data. High resolution video systems, such as those described below will be able to capture orders of magnitude more data in one video frame

  16. Using underwater video imaging as an assessment tool for coastal condition

    EPA Science Inventory

    As part of an effort to monitor ecological conditions in nearshore habitats, from 2009-2012 underwater videos were captured at over 400 locations throughout the Laurentian Great Lakes. This study focuses on developing a video rating system and assessing video images. This ratin...

  17. System for clinical photometric stereo endoscopy

    NASA Astrophysics Data System (ADS)

    Durr, Nicholas J.; González, Germán.; Lim, Daryl; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.; Parot, Vicente

    2014-02-01

    Photometric stereo endoscopy is a technique that captures information about the high-spatial-frequency topography of the field of view simultaneously with a conventional color image. Here we describe a system that will enable photometric stereo endoscopy to be clinically evaluated in the large intestine of human patients. The clinical photometric stereo endoscopy system consists of a commercial gastroscope, a commercial video processor, an image capturing and processing unit, custom synchronization electronics, white light LEDs, a set of four fibers with diffusing tips, and an alignment cap. The custom pieces that come into contact with the patient are composed of biocompatible materials that can be sterilized before use. The components can then be assembled in the endoscopy suite before use. The resulting endoscope has the same outer diameter as a conventional colonoscope (14 mm), plugs into a commercial video processor, captures topography and color images at 15 Hz, and displays the conventional color image to the gastroenterologist in real-time. We show that this system can capture a color and topographical video in a tubular colon phantom, demonstrating robustness to complex geometries and motion. The reported system is suitable for in vivo evaluation of photometric stereo endoscopy in the human large intestine.

  18. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  19. Natural 3D content on glasses-free light-field 3D cinema

    NASA Astrophysics Data System (ADS)

    Balogh, Tibor; Nagy, Zsolt; Kovács, Péter Tamás.; Adhikarla, Vamsi K.

    2013-03-01

    This paper presents a complete framework for capturing, processing and displaying the free viewpoint video on a large scale immersive light-field display. We present a combined hardware-software solution to visualize free viewpoint 3D video on a cinema-sized screen. The new glasses-free 3D projection technology can support larger audience than the existing autostereoscopic displays. We introduce and describe our new display system including optical and mechanical design considerations, the capturing system and render cluster for producing the 3D content, and the various software modules driving the system. The indigenous display is first of its kind, equipped with front-projection light-field HoloVizio technology, controlling up to 63 MP. It has all the advantages of previous light-field displays and in addition, allows a more flexible arrangement with a larger screen size, matching cinema or meeting room geometries, yet simpler to set-up. The software system makes it possible to show 3D applications in real-time, besides the natural content captured from dense camera arrangements as well as from sparse cameras covering a wider baseline. Our software system on the GPU accelerated render cluster, can also visualize pre-recorded Multi-view Video plus Depth (MVD4) videos on this light-field glasses-free cinema system, interpolating and extrapolating missing views.

  20. Development of a microportable imaging system for otoscopy and nasoendoscopy evaluations.

    PubMed

    VanLue, Michael; Cox, Kenneth M; Wade, James M; Tapp, Kevin; Linville, Raymond; Cosmato, Charlie; Smith, Tom

    2007-03-01

    Imaging systems for patients with cleft palate typically are not portable, but are essential to obtain an audiovisual record of nasoendoscopy and otoscopy procedures. Practitioners who evaluate patients in rural, remote, or otherwise medically underserved areas are expected to obtain audiovisual recordings of these procedures as part of standard clinical practice. Therefore, patients must travel substantial distances to medical facilities that have standard recording equipment. This project describes the specific components, strengths and weaknesses of an MPEG-4 digital recording system for otoscopy/nasoendoscopy evaluation of patients with cleft palate that is both portable and compatible with store-and-forward telemedicine applications. Three digital recording configurations (TabletPC, handheld digital video recorder, and an 8-mm digital camcorder) were used to record the audio/ video signal from an analog video scope system. The handheld digital video recorder was most effective at capturing audio/video and displaying procedures in real time. The system described was particularly easy to use, because it required no postrecording file capture or compression for later review, transfer, and/or archiving. The handheld digital recording system was assembled from commercially available components. The portability and the telemedicine compatibility of the handheld digital video recorder offers a viable solution for the documentation of nasoendosocopy and otoscopy procedures in remote, rural, or other locations where reduced medical access precludes the use of larger component audio/video systems.

  1. Analyzing crime scene videos

    NASA Astrophysics Data System (ADS)

    Cunningham, Cindy C.; Peloquin, Tracy D.

    1999-02-01

    Since late 1996 the Forensic Identification Services Section of the Ontario Provincial Police has been actively involved in state-of-the-art image capture and the processing of video images extracted from crime scene videos. The benefits and problems of this technology for video analysis are discussed. All analysis is being conducted on SUN Microsystems UNIX computers, networked to a digital disk recorder that is used for video capture. The primary advantage of this system over traditional frame grabber technology is reviewed. Examples from actual cases are presented and the successes and limitations of this approach are explored. Suggestions to companies implementing security technology plans for various organizations (banks, stores, restaurants, etc.) will be made. Future directions for this work and new technologies are also discussed.

  2. Real-time image sequence segmentation using curve evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Weisong

    2001-04-01

    In this paper, we describe a novel approach to image sequence segmentation and its real-time implementation. This approach uses the 3D structure tensor to produce a more robust frame difference signal and uses curve evolution to extract whole objects. Our algorithm is implemented on a standard PC running the Windows operating system with video capture from a USB camera that is a standard Windows video capture device. Using the Windows standard video I/O functionalities, our segmentation software is highly portable and easy to maintain and upgrade. In its current implementation on a Pentium 400, the system can perform segmentation at 5 frames/sec with a frame resolution of 160 by 120.

  3. Converting laserdisc video to digital video: a demonstration project using brain animations.

    PubMed

    Jao, C S; Hier, D B; Brint, S U

    1995-01-01

    Interactive laserdiscs are of limited value in large group learning situations due to the expense of establishing multiple workstations. The authors implemented an alternative to laserdisc video by using indexed digital video combined with an expert system. High-quality video was captured from a laserdisc player and combined with waveform audio into an audio-video-interleave (AVI) file format in the Microsoft Video-for-Windows environment (Microsoft Corp., Seattle, WA). With the use of an expert system, a knowledge-based computer program provided random access to these indexed AVI files. The program can be played on any multimedia computer without the need for laserdiscs. This system offers a high level of interactive video without the overhead and cost of a laserdisc player.

  4. A video-based system for hand-driven stop-motion animation.

    PubMed

    Han, Xiaoguang; Fu, Hongbo; Zheng, Hanlin; Liu, Ligang; Wang, Jue

    2013-01-01

    Stop-motion is a well-established animation technique but is often laborious and requires craft skills. A new video-based system can animate the vast majority of everyday objects in stop-motion style, more flexibly and intuitively. Animators can perform and capture motions continuously instead of breaking them into increments and shooting one still picture per increment. More important, the system permits direct hand manipulation without resorting to rigs, achieving more natural object control for beginners. The system's key component is two-phase keyframe-based capturing and processing, assisted by computer vision techniques. With this system, even amateurs can generate high-quality stop-motion animations.

  5. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  6. The design of red-blue 3D video fusion system based on DM642

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  7. The Successful Development of an Automated Rendezvous and Capture (AR&C) System for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.

    2003-01-01

    During the 1990's, the Marshall Space Flight Center (MSFC) conducted pioneering research in the development of an automated rendezvous and capture/docking (AR&C) system for U.S. space vehicles. Development and demonstration of a rendezvous sensor was identified early in the AR&C Program as the critical enabling technology that allows automated proximity operations and docking. A first generation rendezvous sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on STS-87 and STS-95, proving the concept of a video- based sensor. A ground demonstration of the entire system and software was successfully tested. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development, by the MSFC, of a new generation of video based rendezvous sensor. The Advanced Video Guidance Sensor (AGS) has greatly increased performance and additional capability for longer-range operation with a new target designed as a direct replacement for existing ISS hemispherical reflectors.

  8. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  9. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  10. Storage, retrieval, and edit of digital video using Motion JPEG

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Lee, D. H.

    1994-04-01

    In a companion paper we describe a Micro Channel adapter card that can perform real-time JPEG (Joint Photographic Experts Group) compression of a 640 by 480 24-bit image within 1/30th of a second. Since this corresponds to NTSC video rates at considerably good perceptual quality, this system can be used for real-time capture and manipulation of continuously fed video. To facilitate capturing the compressed video in a storage medium, an IBM Bus master SCSI adapter with cache is utilized. Efficacy of the data transfer mechanism is considerably improved using the System Control Block architecture, an extension to Micro Channel bus masters. We show experimental results that the overall system can perform at compressed data rates of about 1.5 MBytes/second sustained and with sporadic peaks to about 1.8 MBytes/second depending on the image sequence content. We also describe mechanisms to access the compressed data very efficiently through special file formats. This in turn permits creation of simpler sequence editors. Another advantage of the special file format is easy control of forward, backward and slow motion playback. The proposed method can be extended for design of a video compression subsystem for a variety of personal computing systems.

  11. Video Screen Capture Basics

    ERIC Educational Resources Information Center

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  12. The California All-sky Meteor Surveillance (CAMS) System

    NASA Astrophysics Data System (ADS)

    Gural, P. S.

    2011-01-01

    A unique next generation multi-camera, multi-site video meteor system is being developed and deployed in California to provide high accuracy orbits of simultaneously captured meteors. Included herein is a description of the goals, concept of operations, hardware, and software development progress. An appendix contains a meteor camera performance trade study made for video systems circa 2010.

  13. Instructive Video Retrieval for Surgical Skill Coaching Using Attribute Learning

    DTIC Science & Technology

    2015-06-28

    dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated...including dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited...sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated feed- back to a

  14. High-emulation mask recognition with high-resolution hyperspectral video capture system

    NASA Astrophysics Data System (ADS)

    Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin

    2014-11-01

    We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.

  15. Evaluation of the use of live aerial video for traffic management.

    DOT National Transportation Integrated Search

    1995-01-01

    This report describes the evaluation of an intelligent transportation system (ITS) demonstration project in which live aerial video of traffic conditions was captured by a rotary wing aircraft operated by the Fairfax County (Virginia) Police Departme...

  16. Design and implementation of H.264 based embedded video coding technology

    NASA Astrophysics Data System (ADS)

    Mao, Jian; Liu, Jinming; Zhang, Jiemin

    2016-03-01

    In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].

  17. Video capture on student-owned mobile devices to facilitate psychomotor skills acquisition: A feasibility study.

    PubMed

    Hinck, Glori; Bergmann, Thomas F

    2013-01-01

    Objective : We evaluated the feasibility of using mobile device technology to allow students to record their own psychomotor skills so that these recordings can be used for self-reflection and formative evaluation. Methods : Students were given the choice of using DVD recorders, zip drive video capture equipment, or their personal mobile phone, device, or digital camera to record specific psychomotor skills. During the last week of the term, they were asked to complete a 9-question survey regarding their recording experience, including details of mobile phone ownership, technology preferences, technical difficulties, and satisfaction with the recording experience and video critique process. Results : Of those completing the survey, 83% currently owned a mobile phone with video capability. Of the mobile phone owners 62% reported having email capability on their phone and that they could transfer their video recording successfully to their computer, making it available for upload to the learning management system. Viewing the video recording of the psychomotor skill was valuable to 88% of respondents. Conclusions : Our results suggest that mobile phones are a viable technology to use for the video capture and critique of psychomotor skills, as most students own this technology and their satisfaction with this method is high.

  18. Video capture on student-owned mobile devices to facilitate psychomotor skills acquisition: A feasibility study

    PubMed Central

    Hinck, Glori; Bergmann, Thomas F.

    2013-01-01

    Objective We evaluated the feasibility of using mobile device technology to allow students to record their own psychomotor skills so that these recordings can be used for self-reflection and formative evaluation. Methods Students were given the choice of using DVD recorders, zip drive video capture equipment, or their personal mobile phone, device, or digital camera to record specific psychomotor skills. During the last week of the term, they were asked to complete a 9-question survey regarding their recording experience, including details of mobile phone ownership, technology preferences, technical difficulties, and satisfaction with the recording experience and video critique process. Results Of those completing the survey, 83% currently owned a mobile phone with video capability. Of the mobile phone owners 62% reported having email capability on their phone and that they could transfer their video recording successfully to their computer, making it available for upload to the learning management system. Viewing the video recording of the psychomotor skill was valuable to 88% of respondents. Conclusions Our results suggest that mobile phones are a viable technology to use for the video capture and critique of psychomotor skills, as most students own this technology and their satisfaction with this method is high. PMID:23957324

  19. Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by MWIR Sensors

    PubMed Central

    Yao, Guangle; Lei, Tao; Zhong, Jiandan; Jiang, Ping; Jia, Wenwu

    2017-01-01

    Background subtraction (BS) is one of the most commonly encountered tasks in video analysis and tracking systems. It distinguishes the foreground (moving objects) from the video sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR) video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for each frame is also provided. A series of experiments were conducted to evaluate BS algorithms on this proposed dataset. The overall performance of BS algorithms and the processor/memory requirements were compared. Proper evaluation metrics or criteria were employed to evaluate the capability of each BS algorithm to handle different kinds of BS challenges represented in this dataset. The results and conclusions in this paper provide valid references to develop new BS algorithm for remote scene IR video sequence, and some of them are not only limited to remote scene or IR video sequence but also generic for background subtraction. The Remote Scene IR dataset and the foreground masks detected by each evaluated BS algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR. PMID:28837112

  20. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  1. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  2. A Novel Approach to High Definition, High-Contrast Video Capture in Abdominal Surgery

    PubMed Central

    Cosman, Peter H.; Shearer, Christopher J.; Hugh, Thomas J.; Biankin, Andrew V.; Merrett, Neil D.

    2007-01-01

    Objective: The aim of this study was to define the best available option for video capture of surgical procedures for educational and archival purposes, with a view to identifying methods of capturing high-quality footage and identifying common pitfalls. Summary Background Data: Several options exist for those who wish to record operative surgical techniques on video. While high-end equipment is an unnecessary expense for most surgical units, several techniques are readily available that do not require industrial-grade audiovisual recording facilities, but not all are suited to every surgical application. Methods: We surveyed and evaluated the available technology for video capture in surgery. Our evaluation included analyses of video resolution, depth of field, contrast, exposure, image stability, and frame composition, as well as considerations of cost, accessibility, utility, feasibility, and economies of scale. Results: Several video capture options were identified, and the strengths and shortcomings of each were catalogued. None of the commercially available options was deemed suitable for high-quality video capture of abdominal surgical procedures. A novel application of off-the-shelf technology was devised to address these issues. Conclusions: Excellent quality video capture of surgical procedures within deep body cavities is feasible using commonly available equipment and technology, with minimal technical difficulty. PMID:17414600

  3. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  4. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System.

    PubMed

    Mauntel, Timothy C; Padua, Darin A; Stanley, Laura E; Frank, Barnett S; DiStefano, Lindsay J; Peck, Karen Y; Cameron, Kenneth L; Marshall, Stephen W

    2017-11-01

      The Landing Error Scoring System (LESS) can be used to identify individuals with an elevated risk of lower extremity injury. The limitation of the LESS is that raters identify movement errors from video replay, which is time-consuming and, therefore, may limit its use by clinicians. A markerless motion-capture system may be capable of automating LESS scoring, thereby removing this obstacle.   To determine the reliability of an automated markerless motion-capture system for scoring the LESS.   Cross-sectional study.   United States Military Academy.   A total of 57 healthy, physically active individuals (47 men, 10 women; age = 18.6 ± 0.6 years, height = 174.5 ± 6.7 cm, mass = 75.9 ± 9.2 kg).   Participants completed 3 jump-landing trials that were recorded by standard video cameras and a depth camera. Their movement quality was evaluated by expert LESS raters (standard video recording) using the LESS rubric and by software that automates LESS scoring (depth-camera data). We recorded an error for a LESS item if it was present on at least 2 of 3 jump-landing trials. We calculated κ statistics, prevalence- and bias-adjusted κ (PABAK) statistics, and percentage agreement for each LESS item. Interrater reliability was evaluated between the 2 expert rater scores and between a consensus expert score and the markerless motion-capture system score.   We observed reliability between the 2 expert LESS raters (average κ = 0.45 ± 0.35, average PABAK = 0.67 ± 0.34; percentage agreement = 0.83 ± 0.17). The markerless motion-capture system had similar reliability with consensus expert scores (average κ = 0.48 ± 0.40, average PABAK = 0.71 ± 0.27; percentage agreement = 0.85 ± 0.14). However, reliability was poor for 5 LESS items in both LESS score comparisons.   A markerless motion-capture system had the same level of reliability as expert LESS raters, suggesting that an automated system can accurately assess movement. Therefore, clinicians can use the markerless motion-capture system to reliably score the LESS without being limited by the time requirements of manual LESS scoring.

  5. The Systems Engineering Design of a Smart Forward Operating Base Surveillance System for Forward Operating Base Protection

    DTIC Science & Technology

    2013-06-01

    fixed sensors located along the perimeter of the FOB. The video is analyzed for facial recognition to alert the Network Operations Center (NOC...the UAV is processed on board for facial recognition and video for behavior analysis is sent directly to the Network Operations Center (NOC). Video...captured by the fixed sensors are sent directly to the NOC for facial recognition and behavior analysis processing. The multi- directional signal

  6. Automated videography for residential communications

    NASA Astrophysics Data System (ADS)

    Kurtz, Andrew F.; Neustaedter, Carman; Blose, Andrew C.

    2010-02-01

    The current widespread use of webcams for personal video communication over the Internet suggests that opportunities exist to develop video communications systems optimized for domestic use. We discuss both prior and existing technologies, and the results of user studies that indicate potential needs and expectations for people relative to personal video communications. In particular, users anticipate an easily used, high image quality video system, which enables multitasking communications during the course of real-world activities and provides appropriate privacy controls. To address these needs, we propose a potential approach premised on automated capture of user activity. We then describe a method that adapts cinematography principles, with a dual-camera videography system, to automatically control image capture relative to user activity, using semantic or activity-based cues to determine user position and motion. In particular, we discuss an approach to automatically manage shot framing, shot selection, and shot transitions, with respect to one or more local users engaged in real-time, unscripted events, while transmitting the resulting video to a remote viewer. The goal is to tightly frame subjects (to provide more detail), while minimizing subject loss and repeated abrupt shot framing changes in the images as perceived by a remote viewer. We also discuss some aspects of the system and related technologies that we have experimented with thus far. In summary, the method enables users to participate in interactive video-mediated communications while engaged in other activities.

  7. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  8. VAP/VAT: video analytics platform and test bed for testing and deploying video analytics

    NASA Astrophysics Data System (ADS)

    Gorodnichy, Dmitry O.; Dubrofsky, Elan

    2010-04-01

    Deploying Video Analytics in operational environments is extremely challenging. This paper presents a methodological approach developed by the Video Surveillance and Biometrics Section (VSB) of the Science and Engineering Directorate (S&E) of the Canada Border Services Agency (CBSA) to resolve these problems. A three-phase approach to enable VA deployment within an operational agency is presented and the Video Analytics Platform and Testbed (VAP/VAT) developed by the VSB section is introduced. In addition to allowing the integration of third party and in-house built VA codes into an existing video surveillance infrastructure, VAP/VAT also allows the agency to conduct an unbiased performance evaluation of the cameras and VA software available on the market. VAP/VAT consists of two components: EventCapture, which serves to Automatically detect a "Visual Event", and EventBrowser, which serves to Display & Peruse of "Visual Details" captured at the "Visual Event". To deal with Open architecture as well as with Closed architecture cameras, two video-feed capture mechanisms have been developed within the EventCapture component: IPCamCapture and ScreenCapture.

  9. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  10. Facial expression system on video using widrow hoff

    NASA Astrophysics Data System (ADS)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  11. A practical implementation of free viewpoint video system for soccer games

    NASA Astrophysics Data System (ADS)

    Suenaga, Ryo; Suzuki, Kazuyoshi; Tezuka, Tomoyuki; Panahpour Tehrani, Mehrdad; Takahashi, Keita; Fujii, Toshiaki

    2015-03-01

    In this paper, we present a free viewpoint video generation system with billboard representation for soccer games. Free viewpoint video generation is a technology that enables users to watch 3-D objects from their desired viewpoints. Practical implementation of free viewpoint video for sports events is highly demanded. However, a commercially acceptable system has not yet been developed. The main obstacles are insufficient user-end quality of the synthesized images and highly complex procedures that sometimes require manual operations. In this work, we aim to develop a commercially acceptable free viewpoint video system with a billboard representation. A supposed scenario is that soccer games during the day can be broadcasted in 3-D, even in the evening of the same day. Our work is still ongoing. However, we have already developed several techniques to support our goal. First, we captured an actual soccer game at an official stadium where we used 20 full-HD professional cameras. Second, we have implemented several tools for free viewpoint video generation as follow. In order to facilitate free viewpoint video generation, all cameras should be calibrated. We calibrated all cameras using checker board images and feature points on the field (cross points of the soccer field lines). We extract each player region from captured images manually. The background region is estimated by observing chrominance changes of each pixel in temporal domain (automatically). Additionally, we have developed a user interface for visualizing free viewpoint video generation using a graphic library (OpenGL), which is suitable for not only commercialized TV sets but also devices such as smartphones. However, practical system has not yet been completed and our study is still ongoing.

  12. Joint Video Stitching and Stabilization from Moving Cameras.

    PubMed

    Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef

    2016-09-08

    In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.

  13. Video capture of clinical care to enhance patient safety

    PubMed Central

    Weinger, M; Gonzales, D; Slagle, J; Syeed, M

    2004-01-01

    

 Experience from other domains suggests that videotaping and analyzing actual clinical care can provide valuable insights for enhancing patient safety through improvements in the process of care. Methods are described for the videotaping and analysis of clinical care using a high quality portable multi-angle digital video system that enables simultaneous capture of vital signs and time code synchronization of all data streams. An observer can conduct clinician performance assessment (such as workload measurements or behavioral task analysis) either in real time (during videotaping) or while viewing previously recorded videotapes. Supplemental data are synchronized with the video record and stored electronically in a hierarchical database. The video records are transferred to DVD, resulting in a small, cheap, and accessible archive. A number of technical and logistical issues are discussed, including consent of patients and clinicians, maintaining subject privacy and confidentiality, and data security. Using anesthesiology as a test environment, over 270 clinical cases (872 hours) have been successfully videotaped and processed using the system. PMID:15069222

  14. Study on a High Compression Processing for Video-on-Demand e-learning System

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Matsuda, Ryutaro; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    The authors proposed a high-quality and small-capacity lecture-video-file creating system for distance e-learning system. Examining the feature of the lecturing scene, the authors ingeniously employ two kinds of image-capturing equipment having complementary characteristics : one is a digital video camera with a low resolution and a high frame rate, and the other is a digital still camera with a high resolution and a very low frame rate. By managing the two kinds of image-capturing equipment, and by integrating them with image processing, we can produce course materials with the greatly reduced file capacity : the course materials satisfy the requirements both for the temporal resolution to see the lecturer's point-indicating actions and for the high spatial resolution to read the small written letters. As a result of a comparative experiment, the e-lecture using the proposed system was confirmed to be more effective than an ordinary lecture from the viewpoint of educational effect.

  15. Video image position determination

    DOEpatents

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  16. Temporally rendered automatic cloud extraction (TRACE) system

    NASA Astrophysics Data System (ADS)

    Bodrero, Dennis M.; Yale, James G.; Davis, Roger E.; Rollins, John M.

    1999-10-01

    Smoke/obscurant testing requires that 2D cloud extent be extracted from visible and thermal imagery. These data are used alone or in combination with 2D data from other aspects to make 3D calculations of cloud properties, including dimensions, volume, centroid, travel, and uniformity. Determining cloud extent from imagery has historically been a time-consuming manual process. To reduce time and cost associated with smoke/obscurant data processing, automated methods to extract cloud extent from imagery were investigated. The TRACE system described in this paper was developed and implemented at U.S. Army Dugway Proving Ground, UT by the Science and Technology Corporation--Acuity Imaging Incorporated team with Small Business Innovation Research funding. TRACE uses dynamic background subtraction and 3D fast Fourier transform as primary methods to discriminate the smoke/obscurant cloud from the background. TRACE has been designed to run on a PC-based platform using Windows. The PC-Windows environment was chosen for portability, to give TRACE the maximum flexibility in terms of its interaction with peripheral hardware devices such as video capture boards, removable media drives, network cards, and digital video interfaces. Video for Windows provides all of the necessary tools for the development of the video capture utility in TRACE and allows for interchangeability of video capture boards without any software changes. TRACE is designed to take advantage of future upgrades in all aspects of its component hardware. A comparison of cloud extent determined by TRACE with manual method is included in this paper.

  17. Linear array of photodiodes to track a human speaker for video recording

    NASA Astrophysics Data System (ADS)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  18. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  19. Automated Rendezvous and Capture System Development and Simulation for NASA

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-01-01

    The United States does not have an Automated Rendezvous and Capture Docking (AR&C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. T h i s reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR&C) system for U.S. space vehicles. This A M C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized as the primary navigation sensor on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004. Realtime closed-loop simulations will be performed to validate the improved AR&C systems prior to flight.

  20. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  1. Automated Rendezvous and Capture System Development and Simulation for NASA

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-01-01

    The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.

  2. Using Video Conferencing in Lecture Classes

    ERIC Educational Resources Information Center

    Gibbs, Bill; Larson, Erik

    2007-01-01

    Duquesne University's department of journalism and multimedia arts supports many of its classes with Mediasite Live, a video conferencing system that captures the output of presentation devices and streams it live to the Web, as well as recording presentations for Web streaming or recording to CD or DVD. Bill Gibbs and Erik Larson examine the…

  3. A Stream Runs through IT: Using Streaming Video to Teach Information Technology

    ERIC Educational Resources Information Center

    Nicholson, Jennifer; Nicholson, Darren B.

    2010-01-01

    Purpose: The purpose of this paper is to report student and faculty perceptions from an introductory management information systems course that uses multimedia, specifically streaming video, as a vehicle for teaching students skills in Microsoft Excel and Access. Design/methodology/approach: Student perceptions are captured via a qualitative…

  4. Automated mosaicking of sub-canopy video incorporating ancillary data

    Treesearch

    E. Kee; N.E. Clark; A.L. Abbott

    2002-01-01

    This work investigates the process of mosaicking overlapping video frames of individual tree stems in sub-canopy scenes captured with a portable multisensor instrument. The robust commercial computer vision systems that are in use today typically rely on precisely controlled conditions. Inconsistent lighting as well as image distortion caused by varying interior and...

  5. OPSO - The OpenGL based Field Acquisition and Telescope Guiding System

    NASA Astrophysics Data System (ADS)

    Škoda, P.; Fuchs, J.; Honsa, J.

    2006-07-01

    We present OPSO, a modular pointing and auto-guiding system for the coudé spectrograph of the Ondřejov observatory 2m telescope. The current field and slit viewing CCD cameras with image intensifiers are giving only standard TV video output. To allow the acquisition and guiding of very faint targets, we have designed an image enhancing system working in real time on TV frames grabbed by BT878-based video capture card. Its basic capabilities include the sliding averaging of hundreds of frames with bad pixel masking and removal of outliers, display of median of set of frames, quick zooming, contrast and brightness adjustment, plotting of horizontal and vertical cross cuts of seeing disk within given intensity range and many more. From the programmer's point of view, the system consists of three tasks running in parallel on a Linux PC. One C task controls the video capturing over Video for Linux (v4l2) interface and feeds the frames into the large block of shared memory, where the core image processing is done by another C program calling the OpenGL library. The GUI is, however, dynamically built in Python from XML description of widgets prepared in Glade. All tasks are exchanging information by IPC calls using the shared memory segments.

  6. Quick and Easy: Use Screen Capture Software to Train and Communicate

    ERIC Educational Resources Information Center

    Schuster, Ellen

    2011-01-01

    Screen capture (screen cast) software can be used to develop short videos for training purposes. Developing videos is quick and easy. This article describes how these videos are used as tools to reinforce face-to-face and interactive TV curriculum training in a nutrition education program. Advantages of developing these videos are shared.…

  7. Initial results from a video-laser rangefinder device

    Treesearch

    Neil A. Clark

    2000-01-01

    Three hundred and nine width measurements at various heights to 10 m on a metal light pole were calculated from video images captured with a prototype video-laser rangefinder instrument. Data were captured at distances from 6 to 15 m. The endpoints for the width measurements were manually selected to the nearest pixel from individual video frames.Chi-square...

  8. Evaluating Intelligent Interfaces for Post-Editing Automatic Transcriptions of Online Video Lectures

    ERIC Educational Resources Information Center

    Valor Miró, J. D.; Spencer, R. N.; Pérez González de Martos, A.; Garcés Díaz-Munío, G.; Turró, C.; Civera, J.; Juan, A.

    2014-01-01

    Video lectures are fast becoming an everyday educational resource in higher education. They are being incorporated into existing university curricula around the world, while also emerging as a key component of the open education movement. In 2007, the Universitat Politècnica de València (UPV) implemented its poliMedia lecture capture system for…

  9. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    PubMed Central

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753

  10. Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices.

    PubMed

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  11. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  12. Linking animal-borne video to accelerometers reveals prey capture variability.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori

    2013-02-05

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78-89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83-0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging.

  13. Simulation and Real-Time Verification of Video Algorithms on the TI C6400 Using Simulink

    DTIC Science & Technology

    2004-08-20

    SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release...plot estimates over time (scrolling data) Adjust detection threshold (click mouse on graph) Monitor video capture Input video frames Captured frames 12 ...Video App: Surveillance Recording 1 2 7 3 4 9 5 6 11 SL for video Explanation of GUI 12 Target Options8 Build Process 10 13 14 15 16 M-code snippet

  14. Development and application of remote video monitoring system for combine harvester based on embedded Linux

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui

    2017-01-01

    Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.

  15. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  16. Video Imaging System Particularly Suited for Dynamic Gear Inspection

    NASA Technical Reports Server (NTRS)

    Broughton, Howard (Inventor)

    1999-01-01

    A digital video imaging system that captures the image of a single tooth of interest of a rotating gear is disclosed. The video imaging system detects the complete rotation of the gear and divide that rotation into discrete time intervals so that each tooth of interest of the gear is precisely determined when it is at a desired location that is illuminated in unison with a digital video camera so as to record a single digital image for each tooth. The digital images are available to provide instantaneous analysis of the tooth of interest, or to be stored and later provide images that yield a history that may be used to predict gear failure, such as gear fatigue. The imaging system is completely automated by a controlling program so that it may run for several days acquiring images without supervision from the user.

  17. GoPro Hero Cameras for Creation of a Three-Dimensional, Educational, Neurointerventional Video.

    PubMed

    Park, Min S; Brock, Andrea; Mortimer, Vance; Taussky, Philipp; Couldwell, William T; Quigley, Edward

    2017-10-01

    Neurointerventional education relies on an apprenticeship model, with the trainee observing and participating in procedures with the guidance of a mentor. While educational videos are becoming prevalent in surgical cases, there is a dearth of comparable educational material for trainees in neurointerventional programs. We sought to create a high-quality, three-dimensional video of a routine diagnostic cerebral angiogram for use as an educational tool. A diagnostic cerebral angiogram was recorded using two GoPro HERO 3+ cameras with the Dual HERO System to capture the proceduralist's hands during the case. This video was edited with recordings from the video monitors to create a real-time three-dimensional video of both the actions of the neurointerventionalist and the resulting wire/catheter movements. The final edited video, in either two or three dimensions, can serve as another instructional tool for the training of residents and/or fellows. Additional videos can be created in a similar fashion of more complicated neurointerventional cases. The GoPro HERO 3+ camera and Dual HERO System can be used to create educational videos of neurointerventional procedures.

  18. Linking animal-borne video to accelerometers reveals prey capture variability

    PubMed Central

    Watanabe, Yuuki Y.; Takahashi, Akinori

    2013-01-01

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78–89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83–0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging. PMID:23341596

  19. Design of multi-mode compatible image acquisition system for HD area array CCD

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sui, Xiubao

    2014-11-01

    Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.

  20. Markerless identification of key events in gait cycle using image flow.

    PubMed

    Vishnoi, Nalini; Duric, Zoran; Gerber, Naomi Lynn

    2012-01-01

    Gait analysis has been an interesting area of research for several decades. In this paper, we propose image-flow-based methods to compute the motion and velocities of different body segments automatically, using a single inexpensive video camera. We then identify and extract different events of the gait cycle (double-support, mid-swing, toe-off and heel-strike) from video images. Experiments were conducted in which four walking subjects were captured from the sagittal plane. Automatic segmentation was performed to isolate the moving body from the background. The head excursion and the shank motion were then computed to identify the key frames corresponding to different events in the gait cycle. Our approach does not require calibrated cameras or special markers to capture movement. We have also compared our method with the Optotrak 3D motion capture system and found our results in good agreement with the Optotrak results. The development of our method has potential use in the markerless and unencumbered video capture of human locomotion. Monitoring gait in homes and communities provides a useful application for the aged and the disabled. Our method could potentially be used as an assessment tool to determine gait symmetry or to establish the normal gait pattern of an individual.

  1. Control Method for Video Guidance Sensor System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are commands is permitted only when the system is in the carried out. Further, acceptance of reset and diagnostic standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  2. Control method for video guidance sensor system

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  3. Portable low-cost devices for videotaping, editing, and displaying field-sequential stereoscopic motion pictures and video

    NASA Astrophysics Data System (ADS)

    Starks, Michael R.

    1990-09-01

    A variety of low cost devices for capturing, editing and displaying field sequential 60 cycle stereoscopic video have recently been marketed by 3D TV Corp. and others. When properly used, they give very high quality images with most consumer and professional equipment. Our stereoscopic multiplexers for creating and editing field sequential video in NTSC or component(SVHS, Betacain, RGB) and Home 3D Theater system employing LCD eyeglasses have made 3D movies and television available to a large audience.

  4. Automated video-based assessment of surgical skills for training and evaluation in medical schools.

    PubMed

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Ploetz, Thomas; Clements, Mark A; Essa, Irfan

    2016-09-01

    Routine evaluation of basic surgical skills in medical schools requires considerable time and effort from supervising faculty. For each surgical trainee, a supervisor has to observe the trainees in person. Alternatively, supervisors may use training videos, which reduces some of the logistical overhead. All these approaches however are still incredibly time consuming and involve human bias. In this paper, we present an automated system for surgical skills assessment by analyzing video data of surgical activities. We compare different techniques for video-based surgical skill evaluation. We use techniques that capture the motion information at a coarser granularity using symbols or words, extract motion dynamics using textural patterns in a frame kernel matrix, and analyze fine-grained motion information using frequency analysis. We were successfully able to classify surgeons into different skill levels with high accuracy. Our results indicate that fine-grained analysis of motion dynamics via frequency analysis is most effective in capturing the skill relevant information in surgical videos. Our evaluations show that frequency features perform better than motion texture features, which in-turn perform better than symbol-/word-based features. Put succinctly, skill classification accuracy is positively correlated with motion granularity as demonstrated by our results on two challenging video datasets.

  5. Automated Video Based Facial Expression Analysis of Neuropsychiatric Disorders

    PubMed Central

    Wang, Peng; Barrett, Frederick; Martin, Elizabeth; Milanova, Marina; Gur, Raquel E.; Gur, Ruben C.; Kohler, Christian; Verma, Ragini

    2008-01-01

    Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits. PMID:18045693

  6. Recent advances in multiview distributed video coding

    NASA Astrophysics Data System (ADS)

    Dufaux, Frederic; Ouaret, Mourad; Ebrahimi, Touradj

    2007-04-01

    We consider dense networks of surveillance cameras capturing overlapped images of the same scene from different viewing directions, such a scenario being referred to as multi-view. Data compression is paramount in such a system due to the large amount of captured data. In this paper, we propose a Multi-view Distributed Video Coding approach. It allows for low complexity / low power consumption at the encoder side, and the exploitation of inter-view correlation without communications among the cameras. We introduce a combination of temporal intra-view side information and homography inter-view side information. Simulation results show both the improvement of the side information, as well as a significant gain in terms of coding efficiency.

  7. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  8. A Quasi-Static Method for Determining the Characteristics of a Motion Capture Camera System in a "Split-Volume" Configuration

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Mulavara, Ajitkumar; Bloomberg, Jacob

    2001-01-01

    To confidently report any data collected from a video-based motion capture system, its functional characteristics must be determined, namely accuracy, repeatability and resolution. Many researchers have examined these characteristics with motion capture systems, but they used only two cameras, positioned 90 degrees to each other. Everaert used 4 cameras, but all were aligned along major axes (two in x, one in y and z). Richards compared the characteristics of different commercially available systems set-up in practical configurations, but all cameras viewed a single calibration volume. The purpose of this study was to determine the accuracy, repeatability and resolution of a 6-camera Motion Analysis system in a split-volume configuration using a quasistatic methodology.

  9. Virtual Environments Using Video Capture for Social Phobia with Psychosis

    PubMed Central

    White, Richard; Clarke, Timothy; Turner, Ruth; Fowler, David

    2013-01-01

    Abstract A novel virtual environment (VE) system was developed and used as an adjunct to cognitive behavior therapy (CBT) with six socially anxious patients recovering from psychosis. The novel aspect of the VE system is that it uses video capture so the patients can see a life-size projection of themselves interacting with a specially scripted and digitally edited filmed environment played in real time on a screen in front of them. Within-session process outcomes (subjective units of distress and belief ratings on individual behavioral experiments), as well as patient feedback, generated the hypothesis that this type of virtual environment can potentially add value to CBT by helping patients understand the role of avoidance and safety behaviors in the maintenance of social anxiety and paranoia and by boosting their confidence to carry out “real-life” behavioral experiments. PMID:23659722

  10. Ubiquitous UAVs: a cloud based framework for storing, accessing and processing huge amount of video footage in an efficient way

    NASA Astrophysics Data System (ADS)

    Efstathiou, Nectarios; Skitsas, Michael; Psaroudakis, Chrysostomos; Koutras, Nikolaos

    2017-09-01

    Nowadays, video surveillance cameras are used for the protection and monitoring of a huge number of facilities worldwide. An important element in such surveillance systems is the use of aerial video streams originating from onboard sensors located on Unmanned Aerial Vehicles (UAVs). Video surveillance using UAVs represent a vast amount of video to be transmitted, stored, analyzed and visualized in a real-time way. As a result, the introduction and development of systems able to handle huge amount of data become a necessity. In this paper, a new approach for the collection, transmission and storage of aerial videos and metadata is introduced. The objective of this work is twofold. First, the integration of the appropriate equipment in order to capture and transmit real-time video including metadata (i.e. position coordinates, target) from the UAV to the ground and, second, the utilization of the ADITESS Versatile Media Content Management System (VMCMS-GE) for storing of the video stream and the appropriate metadata. Beyond the storage, VMCMS-GE provides other efficient management capabilities such as searching and processing of videos, along with video transcoding. For the evaluation and demonstration of the proposed framework we execute a use case where the surveillance of critical infrastructure and the detection of suspicious activities is performed. Collected video Transcodingis subject of this evaluation as well.

  11. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections

    PubMed Central

    Vicente, Miguel A.; Gonzalez, Dorys C.; Minguez, Jesus; Schumacher, Thomas

    2018-01-01

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation. PMID:29587380

  12. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.

    PubMed

    Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas

    2018-03-25

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

  13. Semi-automatic 2D-to-3D conversion of human-centered videos enhanced by age and gender estimation

    NASA Astrophysics Data System (ADS)

    Fard, Mani B.; Bayazit, Ulug

    2014-01-01

    In this work, we propose a feasible 3D video generation method to enable high quality visual perception using a monocular uncalibrated camera. Anthropometric distances between face standard landmarks are approximated based on the person's age and gender. These measurements are used in a 2-stage approach to facilitate the construction of binocular stereo images. Specifically, one view of the background is registered in initial stage of video shooting. It is followed by an automatically guided displacement of the camera toward its secondary position. At the secondary position the real-time capturing is started and the foreground (viewed person) region is extracted for each frame. After an accurate parallax estimation the extracted foreground is placed in front of the background image that was captured at the initial position. So the constructed full view of the initial position combined with the view of the secondary (current) position, form the complete binocular pairs during real-time video shooting. The subjective evaluation results present a competent depth perception quality through the proposed system.

  14. Free viewpoint TV and its international standardization

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masayuki

    2009-05-01

    We have developed a new type of television named FTV (Free-viewpoint TV). FTV is an innovative visual media that enables us to view a 3D scene by freely changing our viewpoints. We proposed the concept of FTV and constructed the world's first real-time system including the complete chain of operation from image capture to display. We also realized FTV on a single PC and FTV with free listening-point audio. FTV is based on the ray-space method that represents one ray in real space with one point in the ray-space. We have also developed new type of ray capture and display technologies such as a 360-degree mirror-scan ray capturing system and a 360 degree ray-reproducing display. MPEG regarded FTV as the most challenging 3D media and started the international standardization activities of FTV. The first phase of FTV is MVC (Multi-view Video Coding) and the second phase is 3DV (3D Video). MVC was completed in March 2009. 3DV is a standard that targets serving a variety of 3D displays. It will be completed within the next two years.

  15. Virtual viewpoint synthesis in multi-view video system

    NASA Astrophysics Data System (ADS)

    Li, Fang; Yang, Shiqiang

    2005-07-01

    In this paper, we present a virtual viewpoint video synthesis algorithm to satisfy the following three aims: low computing consuming; real time interpolation and acceptable video quality. In contrast with previous technologies, this method obtain incompletely 3D structure using neighbor video sources instead of getting total 3D information with all video sources, so that the computation is reduced greatly. So we demonstrate our interactive multi-view video synthesis algorithm in a personal computer. Furthermore, adopting the method of choosing feature points to build the correspondence between the frames captured by neighbor cameras, we need not require camera calibration. Finally, our method can be used when the angle between neighbor cameras is 25-30 degrees that it is much larger than common computer vision experiments. In this way, our method can be applied into many applications such as sports live, video conference, etc.

  16. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, R.M.; Zander, M.E.; Brown, S.K.

    1992-09-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development ofmore » both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.« less

  17. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, R.M.; Zander, M.E.; Brown, S.K.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development ofmore » both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.« less

  18. A perioperative echocardiographic reporting and recording system.

    PubMed

    Pybus, David A

    2004-11-01

    Advances in video capture, compression, and streaming technology, coupled with improvements in central processing unit design and the inclusion of a database engine in the Windows operating system, have simplified the task of implementing a digital echocardiographic recording system. I describe an application that uses these technologies and runs on a notebook computer.

  19. Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views

    DTIC Science & Technology

    2014-11-10

    collected these datasets using different aircrafts. Erista 8 HL OctaCopter is a heavy-lift aerial platform capable of using high-resolution cinema ...is another high-resolution camera that is cinema grade and high quality, with the capability of capturing videos with 4K resolution at 30 frames per...292.58 Imaging Systems and Accessories Blackmagic Production Camera 4 Crowd Counting using 4K Cameras High resolution cinema grade digital video

  20. Privacy-preserving screen capture: towards closing the loop for health IT usability.

    PubMed

    Cooley, Joseph; Smith, Sean

    2013-08-01

    As information technology permeates healthcare (particularly provider-facing systems), maximizing system effectiveness requires the ability to document and analyze tricky or troublesome usage scenarios. However, real-world health IT systems are typically replete with privacy-sensitive data regarding patients, diagnoses, clinicians, and EMR user interface details; instrumentation for screen capture (capturing and recording the scenario depicted on the screen) needs to respect these privacy constraints. Furthermore, real-world health IT systems are typically composed of modules from many sources, mission-critical and often closed-source; any instrumentation for screen capture can rely neither on access to structured output nor access to software internals. In this paper, we present a tool to help solve this problem: a system that combines keyboard video mouse (KVM) capture with automatic text redaction (and interactively selectable unredaction) to produce precise technical content that can enrich stakeholder communications and improve end-user influence on system evolution. KVM-based capture makes our system both application-independent and OS-independent because it eliminates software-interface dependencies on capture targets. Using a corpus of EMR screenshots, we present empirical measurements of redaction effectiveness and processing latency to demonstrate system performances. We discuss how these techniques can translate into instrumentation systems that improve real-world health IT deployments. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Annotation of UAV surveillance video

    NASA Astrophysics Data System (ADS)

    Howlett, Todd; Robertson, Mark A.; Manthey, Dan; Krol, John

    2004-08-01

    Significant progress toward the development of a video annotation capability is presented in this paper. Research and development of an object tracking algorithm applicable for UAV video is described. Object tracking is necessary for attaching the annotations to the objects of interest. A methodology and format is defined for encoding video annotations using the SMPTE Key-Length-Value encoding standard. This provides the following benefits: a non-destructive annotation, compliance with existing standards, video playback in systems that are not annotation enabled and support for a real-time implementation. A model real-time video annotation system is also presented, at a high level, using the MPEG-2 Transport Stream as the transmission medium. This work was accomplished to meet the Department of Defense"s (DoD"s) need for a video annotation capability. Current practices for creating annotated products are to capture a still image frame, annotate it using an Electric Light Table application, and then pass the annotated image on as a product. That is not adequate for reporting or downstream cueing. It is too slow and there is a severe loss of information. This paper describes a capability for annotating directly on the video.

  2. Video capture virtual reality as a flexible and effective rehabilitation tool

    PubMed Central

    Weiss, Patrice L; Rand, Debbie; Katz, Noomi; Kizony, Rachel

    2004-01-01

    Video capture virtual reality (VR) uses a video camera and software to track movement in a single plane without the need to place markers on specific bodily locations. The user's image is thereby embedded within a simulated environment such that it is possible to interact with animated graphics in a completely natural manner. Although this technology first became available more than 25 years ago, it is only within the past five years that it has been applied in rehabilitation. The objective of this article is to describe the way this technology works, to review its assets relative to other VR platforms, and to provide an overview of some of the major studies that have evaluated the use of video capture technologies for rehabilitation. PMID:15679949

  3. Relationships of a Circular Singer Arm Gesture to Acoustical and Perceptual Measures of Singing: A Motion Capture Study

    ERIC Educational Resources Information Center

    Brunkan, Melissa C.

    2016-01-01

    The purpose of this study was to validate previous research that suggests using movement in conjunction with singing tasks can affect intonation and perception of the task. Singers (N = 49) were video and audio recorded, using a motion capture system, while singing a phrase from a familiar song, first with no motion, and then while doing a low,…

  4. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  5. 4K x 2K pixel color video pickup system

    NASA Astrophysics Data System (ADS)

    Sugawara, Masayuki; Mitani, Kohji; Shimamoto, Hiroshi; Fujita, Yoshihiro; Yuyama, Ichiro; Itakura, Keijirou

    1998-12-01

    This paper describes the development of an experimental super- high-definition color video camera system. During the past several years there has been much interest in super-high- definition images as the next generation image media. One of the difficulties in implementing a super-high-definition motion imaging system is constructing the image-capturing section (camera). Even the state-of-the-art semiconductor technology can not realize the image sensor which has enough pixels and output data rate for super-high-definition images. The present study is an attempt to fill the gap in this respect. The authors intend to solve the problem by using new imaging method in which four HDTV sensors are attached on a new color separation optics so that their pixel sample pattern forms checkerboard pattern. A series of imaging experiments demonstrate that this technique is an effective approach to capturing super-high-definition moving images in the present situation where no image sensors exist for such images.

  6. Video-based convolutional neural networks for activity recognition from robot-centric videos

    NASA Astrophysics Data System (ADS)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  7. Smartphone-coupled rhinolaryngoscopy at the point of care

    NASA Astrophysics Data System (ADS)

    Mink, Jonah; Bolton, Frank J.; Sebag, Cathy M.; Peterson, Curtis W.; Assia, Shai; Levitz, David

    2018-02-01

    Rhinolaryngoscopy remains difficult to perform in resource-limited settings due to the high cost of purchasing and maintaining equipment as well as the need for specialists to interpret exam findings. While the lack of expertise can be obviated by adopting telemedicine-based approaches, the capture, storage, and sharing of images/video is not a common native functionality of medical devices. Most rhinolaryngoscopy systems consist of an endoscope that interfaces with the patient's naso/oropharynx, and a tower of modules that record video/images. However, these expensive and bulky modules can be replaced by a smartphone that can fulfill the same functions but at a lower cost. To demonstrate this, a commercially available rhinolaryngoscope was coupled to a smartphone using a 3D-printed adapter. Software developed for other clinical applications was repurposed for ENT use, including an application that controls image and video capture, a HIPAA-compliant image/video storage and transfer cloud database, and customized software features developed to improve practitioner competency. Audio recording capabilities to assess speech pathology were also integrated into the smartphone rhinolaryngoscope system. The illumination module coupled onto the endoscope remained unchanged. The spatial resolution of the rhinolaryngoscope system was defined by the fiber diameter of endoscope fiber bundle, rather than the smartphone camera. The mobile rhinolaryngoscope system was used with appropriate patients by a general practitioner in an office setting. The general practitioner then consulted with an ENT specialist via the HIPAA compliant cloud database and workflow modules on difficult cases. These results suggest the smartphone-based rhinolaryngoscope holds promise for use in low-resource settings.

  8. U.S. Spacesuit Knowledge Capture Series Catalog

    NASA Technical Reports Server (NTRS)

    Bitterly, Rose; Oliva, Vladenka

    2012-01-01

    The National Aeronautics and Space Administration (NASA) and other organizations have been performing U.S. Spacesuit Knowledge Capture (USSKC) since the beginning of space exploration through published reports, conference presentations, specialized seminars, and classes instructed by veterans in the field. The close physical interaction between spacesuit systems and human beings makes them among the most personally evocative pieces of space hardware. Consequently, spacesuit systems have required nearly constant engineering refinements to do their jobs without impinging on human activity. Since 2008, spacesuit knowledge capture has occurred through video recording, engaging both current and former specialists presenting technical scope specifically to educate individuals and preserve knowledge. These archives of spacesuit legacy reflect its rich history and will provide knowledge that will enhance the chances for the success of future and more ambitious spacesuit system programs. The scope and topics of USSKC have included lessons learned in spacesuit technology; experience from the Gemini, Apollo, Skylab, and Shuttle Programs; the process of hardware certification, design, development, and other program components; spacesuit evolution and experience; failure analysis and resolution; and aspects of program management. USSKC activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive way to organize and archive intra-agency information related to the development of spacesuit systems. These video recordings are currently being reviewed for public release using NASA export control processes. After a decision is made for either public or non-public release (internal NASA only), the videos and presentations will be available through the NASA Johnson Space Center Engineering Directorate (EA) Engineering Academy, the NASA Technical Reports Server (NTRS), the NASA Aeronautics & Space Database (NA&SD), or NASA YouTube. Event availability is duly noted in this catalog.

  9. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  10. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  11. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis.

    PubMed

    Myburgh, Hermanus C; van Zijl, Willemien H; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-03-01

    Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations.

  12. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis

    PubMed Central

    Myburgh, Hermanus C.; van Zijl, Willemien H.; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-01-01

    Background Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. Methods A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. Findings An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. Interpretation The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~ 64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations. PMID:27077122

  13. Nonchronological video synopsis and indexing.

    PubMed

    Pritch, Yael; Rav-Acha, Alex; Peleg, Shmuel

    2008-11-01

    The amount of captured video is growing with the increased numbers of video cameras, especially the increase of millions of surveillance cameras that operate 24 hours a day. Since video browsing and retrieval is time consuming, most captured video is never watched or examined. Video synopsis is an effective tool for browsing and indexing of such a video. It provides a short video representation, while preserving the essential activities of the original video. The activity in the video is condensed into a shorter period by simultaneously showing multiple activities, even when they originally occurred at different times. The synopsis video is also an index into the original video by pointing to the original time of each activity. Video Synopsis can be applied to create a synopsis of an endless video streams, as generated by webcams and by surveillance cameras. It can address queries like "Show in one minute the synopsis of this camera broadcast during the past day''. This process includes two major phases: (i) An online conversion of the endless video stream into a database of objects and activities (rather than frames). (ii) A response phase, generating the video synopsis as a response to the user's query.

  14. Practical life log video indexing based on content and context

    NASA Astrophysics Data System (ADS)

    Tancharoen, Datchakorn; Yamasaki, Toshihiko; Aizawa, Kiyoharu

    2006-01-01

    Today, multimedia information has gained an important role in daily life and people can use imaging devices to capture their visual experiences. In this paper, we present our personal Life Log system to record personal experiences in form of wearable video and environmental data; in addition, an efficient retrieval system is demonstrated to recall the desirable media. We summarize the practical video indexing techniques based on Life Log content and context to detect talking scenes by using audio/visual cues and semantic key frames from GPS data. Voice annotation is also demonstrated as a practical indexing method. Moreover, we apply body media sensors to record continuous life style and use body media data to index the semantic key frames. In the experiments, we demonstrated various video indexing results which provided their semantic contents and showed Life Log visualizations to examine personal life effectively.

  15. Non-Cooperative Facial Recognition Video Dataset Collection Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Marcia L.; Erikson, Rebecca L.; Lombardo, Nicholas J.

    The Pacific Northwest National Laboratory (PNNL) will produce a non-cooperative (i.e. not posing for the camera) facial recognition video data set for research purposes to evaluate and enhance facial recognition systems technology. The aggregate data set consists of 1) videos capturing PNNL role players and public volunteers in three key operational settings, 2) photographs of the role players for enrolling in an evaluation database, and 3) ground truth data that documents when the role player is within various camera fields of view. PNNL will deliver the aggregate data set to DHS who may then choose to make it available tomore » other government agencies interested in evaluating and enhancing facial recognition systems. The three operational settings that will be the focus of the video collection effort include: 1) unidirectional crowd flow 2) bi-directional crowd flow, and 3) linear and/or serpentine queues.« less

  16. Intergraph video and images exploitation capabilities

    NASA Astrophysics Data System (ADS)

    Colla, Simone; Manesis, Charalampos

    2013-08-01

    The current paper focuses on the capture, fusion and process of aerial imagery in order to leverage full motion video, giving analysts the ability to collect, analyze, and maximize the value of video assets. Unmanned aerial vehicles (UAV) have provided critical real-time surveillance and operational support to military organizations, and are a key source of intelligence, particularly when integrated with other geospatial data. In the current workflow, at first, the UAV operators plan the flight by using a flight planning software. During the flight the UAV send a live video stream directly on the field to be processed by Intergraph software, to generate and disseminate georeferenced images trough a service oriented architecture based on ERDAS Apollo suite. The raw video-based data sources provide the most recent view of a situation and can augment other forms of geospatial intelligence - such as satellite imagery and aerial photos - to provide a richer, more detailed view of the area of interest. To effectively use video as a source of intelligence, however, the analyst needs to seamlessly fuse the video with these other types of intelligence, such as map features and annotations. Intergraph has developed an application that automatically generates mosaicked georeferenced image, tags along the video route which can then be seamlessly integrated with other forms of static data, such as aerial photos, satellite imagery, or geospatial layers and features. Consumers will finally have the ability to use a single, streamlined system to complete the entire geospatial information lifecycle: capturing geospatial data using sensor technology; processing vector, raster, terrain data into actionable information; managing, fusing, and sharing geospatial data and video toghether; and finally, rapidly and securely delivering integrated information products, ensuring individuals can make timely decisions.

  17. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.

    PubMed

    Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2004-01-01

    This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.

  18. Video Observations Encompassing the 2002 Leonid Storm: First Results and a Revised Photometric Procedure for Video Meteor Analysis

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert; Swift, Wesley; Gural, Peter S.; Brown, Peter; Ellis, Jim (Technical Monitor)

    2002-01-01

    During the 2001 Leonid storm, Marshall Space Flight Center, with the cooperation of the University of Western Ontario and the United States Air Force, deployed 6 teams of observers equipped with intensified video systems to sites located in North America, the Pacific, and Mongolia. The campaign was extremely successful, with the entire period of enhanced Leonid activity (over 16 hours) captured on video tape in a consistent manner. We present the first results from the analysis of this unique, 2 terabyte data set and discuss the problems involved in reducing large amounts of video meteor data. In particular, the question of how to determine meteor masses though photometric analysis will be re-examined, and new techniques will be proposed that eliminate some of the deficiencies suffered by the techniques currently employed in video meteor analysis.

  19. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  20. 4DCAPTURE: a general purpose software package for capturing and analyzing two- and three-dimensional motion data acquired from video sequences

    NASA Astrophysics Data System (ADS)

    Walton, James S.; Hodgson, Peter; Hallamasek, Karen; Palmer, Jake

    2003-07-01

    4DVideo is creating a general purpose capability for capturing and analyzing kinematic data from video sequences in near real-time. The core element of this capability is a software package designed for the PC platform. The software ("4DCapture") is designed to capture and manipulate customized AVI files that can contain a variety of synchronized data streams -- including audio, video, centroid locations -- and signals acquired from more traditional sources (such as accelerometers and strain gauges.) The code includes simultaneous capture or playback of multiple video streams, and linear editing of the images (together with the ancilliary data embedded in the files). Corresponding landmarks seen from two or more views are matched automatically, and photogrammetric algorithms permit multiple landmarks to be tracked in two- and three-dimensions -- with or without lens calibrations. Trajectory data can be processed within the main application or they can be exported to a spreadsheet where they can be processed or passed along to a more sophisticated, stand-alone, data analysis application. Previous attempts to develop such applications for high-speed imaging have been limited in their scope, or by the complexity of the application itself. 4DVideo has devised a friendly ("FlowStack") user interface that assists the end-user to capture and treat image sequences in a natural progression. 4DCapture employs the AVI 2.0 standard and DirectX technology which effectively eliminates the file size limitations found in older applications. In early tests, 4DVideo has streamed three RS-170 video sources to disk for more than an hour without loss of data. At this time, the software can acquire video sequences in three ways: (1) directly, from up to three hard-wired cameras supplying RS-170 (monochrome) signals; (2) directly, from a single camera or video recorder supplying an NTSC (color) signal; and (3) by importing existing video streams in the AVI 1.0 or AVI 2.0 formats. The latter is particularly useful for high-speed applications where the raw images are often captured and stored by the camera before being downloaded. Provision has been made to synchronize data acquired from any combination of these video sources using audio and visual "tags." Additional "front-ends," designed for digital cameras, are anticipated.

  1. Joint denoising, demosaicing, and chromatic aberration correction for UHD video

    NASA Astrophysics Data System (ADS)

    Jovanov, Ljubomir; Philips, Wilfried; Damstra, Klaas Jan; Ellenbroek, Frank

    2017-09-01

    High-resolution video capture is crucial for numerous applications such as surveillance, security, industrial inspection, medical imaging and digital entertainment. In the last two decades, we are witnessing a dramatic increase of the spatial resolution and the maximal frame rate of video capturing devices. In order to achieve further resolution increase, numerous challenges will be facing us. Due to the reduced size of the pixel, the amount of light also reduces, leading to the increased noise level. Moreover, the reduced pixel size makes the lens imprecisions more pronounced, which especially applies to chromatic aberrations. Even in the case when high quality lenses are used some chromatic aberration artefacts will remain. Next, noise level additionally increases due to the higher frame rates. To reduce the complexity and the price of the camera, one sensor captures all three colors, by relying on Color Filter Arrays. In order to obtain full resolution color image, missing color components have to be interpolated, i.e. demosaicked, which is more challenging than in the case of lower resolution, due to the increased noise and aberrations. In this paper, we propose a new method, which jointly performs chromatic aberration correction, denoising and demosaicking. By jointly performing the reduction of all artefacts, we are reducing the overall complexity of the system and the introduction of new artefacts. In order to reduce possible flicker we also perform temporal video enhancement. We evaluate the proposed method on a number of publicly available UHD sequences and on sequences recorded in our studio.

  2. Reduction in Fall Rate in Dementia Managed Care Through Video Incident Review: Pilot Study

    PubMed Central

    Netscher, George; Agrawal, Pulkit; Tabb Noyce, Lynn; Bayen, Alexandre

    2017-01-01

    Background Falls of individuals with dementia are frequent, dangerous, and costly. Early detection and access to the history of a fall is crucial for efficient care and secondary prevention in cognitively impaired individuals. However, most falls remain unwitnessed events. Furthermore, understanding why and how a fall occurred is a challenge. Video capture and secure transmission of real-world falls thus stands as a promising assistive tool. Objective The objective of this study was to analyze how continuous video monitoring and review of falls of individuals with dementia can support better quality of care. Methods A pilot observational study (July-September 2016) was carried out in a Californian memory care facility. Falls were video-captured (24×7), thanks to 43 wall-mounted cameras (deployed in all common areas and in 10 out of 40 private bedrooms of consenting residents and families). Video review was provided to facility staff, thanks to a customized mobile device app. The outcome measures were the count of residents’ falls happening in the video-covered areas, the acceptability of video recording, the analysis of video review, and video replay possibilities for care practice. Results Over 3 months, 16 falls were video-captured. A drop in fall rate was observed in the last month of the study. Acceptability was good. Video review enabled screening for the severity of falls and fall-related injuries. Video replay enabled identifying cognitive-behavioral deficiencies and environmental circumstances contributing to the fall. This allowed for secondary prevention in high-risk multi-faller individuals and for updated facility care policies regarding a safer living environment for all residents. Conclusions Video monitoring offers high potential to support conventional care in memory care facilities. PMID:29042342

  3. Track and track-side video survey technology development.

    DOT National Transportation Integrated Search

    2015-05-01

    Researchers at HiDef/Createc have completed prototype development and testing of a novel track video surveying technology : called Track and Track-Side Video Survey (TTVS). TTVS is designed to capture clear video images of the track and track side : ...

  4. Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills.

    PubMed

    Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara

    2004-01-01

    Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.

  5. A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian J.; Allinson, Nigel M.

    1989-03-01

    A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.

  6. Design of a MATLAB(registered trademark) Image Comparison and Analysis Tool for Augmentation of the Results of the Ann Arbor Distortion Test

    DTIC Science & Technology

    2016-06-25

    The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was

  7. Student Perceptions of Online Tutoring Videos

    ERIC Educational Resources Information Center

    Sligar, Steven R.; Pelletier, Christopher D.; Bonner, Heidi Stone; Coghill, Elizabeth; Guberman, Daniel; Zeng, Xiaoming; Newman, Joyce J.; Muller, Dorothy; Dennis, Allen

    2017-01-01

    Online tutoring is made possible by using videos to replace or supplement face to face services. The purpose of this research was to examine student reactions to the use of lecture capture technology in a university tutoring setting and to assess student knowledge of some features of Tegrity lecture capture software. A survey was administered to…

  8. A high sensitivity 20Mfps CMOS image sensor with readout speed of 1Tpixel/sec for visualization of ultra-high speed phenomena

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Sugawa, S.

    2017-02-01

    Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.

  9. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.

    PubMed

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H

    2015-02-01

    Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.

  10. Web-based home telemedicine system for orthopedics

    NASA Astrophysics Data System (ADS)

    Lau, Christopher; Churchill, Sean; Kim, Janice; Matsen, Frederick A., III; Kim, Yongmin

    2001-05-01

    Traditionally, telemedicine systems have been designed to improve access to care by allowing physicians to consult a specialist about a case without sending the patient to another location, which may be difficult or time-consuming to reach. The cost of the equipment and network bandwidth needed for this consultation has restricted telemedicine use to contact between physicians instead of between patients and physicians. Recently, however, the wide availability of Internet connectivity and client and server software for e- mail, world wide web, and conferencing has made low-cost telemedicine applications feasible. In this work, we present a web-based system for asynchronous multimedia messaging between shoulder replacement surgery patients at home and their surgeons. A web browser plug-in was developed to simplify the process of capturing video and transferring it to a web site. The video capture plug-in can be used as a template to construct a plug-in that captures and transfers any type of data to a web server. For example, readings from home biosensor instruments (e.g., blood glucose meters and spirometers) that can be connected to a computing platform can be transferred to a home telemedicine web site. Both patients and doctors can access this web site to monitor progress longitudinally. The system has been tested with 3 subjects for the past 7 weeks, and we plan to continue testing in the foreseeable future.

  11. Use of Internet Resources in the Biology Lecture Classroom.

    ERIC Educational Resources Information Center

    Francis, Joseph W.

    2000-01-01

    Introduces internet resources that are available for instructional use in biology classrooms. Provides information on video-based technologies to create and capture video sequences, interactive web sites that allow interaction with biology simulations, online texts, and interactive videos that display animated video sequences. (YDS)

  12. Markerless video analysis for movement quantification in pediatric epilepsy monitoring.

    PubMed

    Lu, Haiping; Eng, How-Lung; Mandal, Bappaditya; Chan, Derrick W S; Ng, Yen-Ling

    2011-01-01

    This paper proposes a markerless video analytic system for quantifying body part movements in pediatric epilepsy monitoring. The system utilizes colored pajamas worn by a patient in bed to extract body part movement trajectories, from which various features can be obtained for seizure detection and analysis. Hence, it is non-intrusive and it requires no sensor/marker to be attached to the patient's body. It takes raw video sequences as input and a simple user-initialization indicates the body parts to be examined. In background/foreground modeling, Gaussian mixture models are employed in conjunction with HSV-based modeling. Body part detection follows a coarse-to-fine paradigm with graph-cut-based segmentation. Finally, body part parameters are estimated with domain knowledge guidance. Experimental studies are reported on sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  13. Evaluation of lens distortion errors using an underwater camera system for video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Fletcher, Lauren; Klute, Glenn K.

    1994-01-01

    Video-based motion analysis systems are widely employed to study human movement, using computers to capture, store, process, and analyze video data. This data can be collected in any environment where cameras can be located. One of the NASA facilities where human performance research is conducted is the Weightless Environment Training Facility (WETF), a pool of water which simulates zero-gravity with neutral buoyance. Underwater video collection in the WETF poses some unique problems. This project evaluates the error caused by the lens distortion of the WETF cameras. A grid of points of known dimensions was constructed and videotaped using a video vault underwater system. Recorded images were played back on a VCR and a personal computer grabbed and stored the images on disk. These images were then digitized to give calculated coordinates for the grid points. Errors were calculated as the distance from the known coordinates of the points to the calculated coordinates. It was demonstrated that errors from lens distortion could be as high as 8 percent. By avoiding the outermost regions of a wide-angle lens, the error can be kept smaller.

  14. [Development of an original computer program FISHMet: use for molecular cytogenetic diagnosis and genome mapping by fluorescent in situ hybridization (FISH)].

    PubMed

    Iurov, Iu B; Khazatskiĭ, I A; Akindinov, V A; Dovgilov, L V; Kobrinskiĭ, B A; Vorsanova, S G

    2000-08-01

    Original software FISHMet has been developed and tried for improving the efficiency of diagnosis of hereditary diseases caused by chromosome aberrations and for chromosome mapping by fluorescent in situ hybridization (FISH) method. The program allows creation and analysis of pseudocolor chromosome images and hybridization signals in the Windows 95 system, allows computer analysis and editing of the results of pseudocolor hybridization in situ, including successive imposition of initial black-and-white images created using fluorescent filters (blue, green, and red), and editing of each image individually or of a summary pseudocolor image in BMP, TIFF, and JPEG formats. Components of image computer analysis system (LOMO, Leitz Ortoplan, and Axioplan fluorescent microscopes, COHU 4910 and Sanyo VCB-3512P CCD cameras, Miro-Video, Scion LG-3 and VG-5 image capture maps, and Pentium 100 and Pentium 200 computers) and specialized software for image capture and visualization (Scion Image PC and Video-Cup) have been used with good results in the study.

  15. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  16. Characterization of Catch-Up Behavior: Accession of Lecture Capture Videos Following Student Absenteeism

    ERIC Educational Resources Information Center

    Brady, Magen; Wong, Rachel; Newton, Genevieve

    2013-01-01

    The use of lecture capture in higher education is becoming increasingly widespread, with many instructors now providing digital videos of lecture content that can be used by students as learning resources in a variety of ways, including to catch up on material after a class absence. Despite accumulating research regarding the relationship between…

  17. Promoting Collaborative Practice and Reciprocity in Initial Teacher Education: Realising a "Dialogic Space" through Video Capture Analysis

    ERIC Educational Resources Information Center

    Youens, Bernadette; Smethem, Lindsey; Sullivan, Stefanie

    2014-01-01

    This paper explores the potential of video capture to generate a collaborative space for teacher preparation; a space in which traditional hierarchies and boundaries between actors (student teacher, school mentor and university tutor) and knowledge (academic, professional and practical) are disrupted. The study, based in a teacher education…

  18. MPCM: a hardware coder for super slow motion video sequences

    NASA Astrophysics Data System (ADS)

    Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.

    2013-12-01

    In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.

  19. A real-time remote video streaming platform for ultrasound imaging.

    PubMed

    Ahmadi, Mehdi; Gross, Warren J; Kadoury, Samuel

    2016-08-01

    Ultrasound is a viable imaging technology in remote and resources-limited areas. Ultrasonography is a user-dependent skill which depends on a high degree of training and hands-on experience. However, there is a limited number of skillful sonographers located in remote areas. In this work, we aim to develop a real-time video streaming platform which allows specialist physicians to remotely monitor ultrasound exams. To this end, an ultrasound stream is captured and transmitted through a wireless network into remote computers, smart-phones and tablets. In addition, the system is equipped with a camera to track the position of the ultrasound probe. The main advantage of our work is using an open source platform for video streaming which gives us more control over streaming parameters than the available commercial products. The transmission delays of the system are evaluated for several ultrasound video resolutions and the results show that ultrasound videos close to the high-definition (HD) resolution can be received and displayed on an Android tablet with the delay of 0.5 seconds which is acceptable for accurate real-time diagnosis.

  20. Guerrilla Video: A New Protocol for Producing Classroom Video

    ERIC Educational Resources Information Center

    Fadde, Peter; Rich, Peter

    2010-01-01

    Contemporary changes in pedagogy point to the need for a higher level of video production value in most classroom video, replacing the default video protocol of an unattended camera in the back of the classroom. The rich and complex environment of today's classroom can be captured more fully using the higher level, but still easily manageable,…

  1. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    NASA Astrophysics Data System (ADS)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  2. Video-based real-time on-street parking occupancy detection system

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  3. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    PubMed

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.

  4. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  5. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+

    PubMed Central

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.

    2015-01-01

    Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851

  6. Spherical visual system for real-time virtual reality and surveillance

    NASA Astrophysics Data System (ADS)

    Chen, Su-Shing

    1998-12-01

    A spherical visual system has been developed for full field, web-based surveillance, virtual reality, and roundtable video conference. The hardware is a CycloVision parabolic lens mounted on a video camera. The software was developed at the University of Missouri-Columbia. The mathematical model is developed by Su-Shing Chen and Michael Penna in the 1980s. The parabolic image, capturing the full (360 degrees) hemispherical field (except the north pole) of view is transformed into the spherical model of Chen and Penna. In the spherical model, images are invariant under the rotation group and are easily mapped to the image plane tangent to any point on the sphere. The projected image is exactly what the usual camera produces at that angle. Thus a real-time full spherical field video camera is developed by using two pieces of parabolic lenses.

  7. Video surveillance captures student hand hygiene behavior, reactivity to observation, and peer influence in Kenyan primary schools.

    PubMed

    Pickering, Amy J; Blum, Annalise G; Breiman, Robert F; Ram, Pavani K; Davis, Jennifer

    2014-01-01

    In-person structured observation is considered the best approach for measuring hand hygiene behavior, yet is expensive, time consuming, and may alter behavior. Video surveillance could be a useful tool for objectively monitoring hand hygiene behavior if validated against current methods. Student hand cleaning behavior was monitored with video surveillance and in-person structured observation, both simultaneously and separately, at four primary schools in urban Kenya over a study period of 8 weeks. Video surveillance and in-person observation captured similar rates of hand cleaning (absolute difference <5%, p = 0.74). Video surveillance documented higher hand cleaning rates (71%) when at least one other person was present at the hand cleaning station, compared to when a student was alone (48%; rate ratio  = 1.14 [95% CI 1.01-1.28]). Students increased hand cleaning rates during simultaneous video and in-person monitoring as compared to single-method monitoring, suggesting reactivity to each method of monitoring. This trend was documented at schools receiving a handwashing with soap intervention, but not at schools receiving a sanitizer intervention. Video surveillance of hand hygiene behavior yields results comparable to in-person observation among schools in a resource-constrained setting. Video surveillance also has certain advantages over in-person observation, including rapid data processing and the capability to capture new behavioral insights. Peer influence can significantly improve student hand cleaning behavior and, when possible, should be exploited in the design and implementation of school hand hygiene programs.

  8. Real-time 3D video compression for tele-immersive environments

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William

    2006-01-01

    Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).

  9. A Novel System for Supporting Autism Diagnosis Using Home Videos: Iterative Development and Evaluation of System Design.

    PubMed

    Nazneen, Nazneen; Rozga, Agata; Smith, Christopher J; Oberleitner, Ron; Abowd, Gregory D; Arriaga, Rosa I

    2015-06-17

    Observing behavior in the natural environment is valuable to obtain an accurate and comprehensive assessment of a child's behavior, but in practice it is limited to in-clinic observation. Research shows significant time lag between when parents first become concerned and when the child is finally diagnosed with autism. This lag can delay early interventions that have been shown to improve developmental outcomes. To develop and evaluate the design of an asynchronous system that allows parents to easily collect clinically valid in-home videos of their child's behavior and supports diagnosticians in completing diagnostic assessment of autism. First, interviews were conducted with 11 clinicians and 6 families to solicit feedback from stakeholders about the system concept. Next, the system was iteratively designed, informed by experiences of families using it in a controlled home-like experimental setting and a participatory design process involving domain experts. Finally, in-field evaluation of the system design was conducted with 5 families of children (4 with previous autism diagnosis and 1 child typically developing) and 3 diagnosticians. For each family, 2 diagnosticians, blind to the child's previous diagnostic status, independently completed an autism diagnosis via our system. We compared the outcome of the assessment between the 2 diagnosticians, and between each diagnostician and the child's previous diagnostic status. The system that resulted through the iterative design process includes (1) NODA smartCapture, a mobile phone-based application for parents to record prescribed video evidence at home; and (2) NODA Connect, a Web portal for diagnosticians to direct in-home video collection, access developmental history, and conduct an assessment by linking evidence of behaviors tagged in the videos to the Diagnostic and Statistical Manual of Mental Disorders criteria. Applying clinical judgment, the diagnostician concludes a diagnostic outcome. During field evaluation, without prior training, parents easily (average rating of 4 on a 5-point scale) used the system to record video evidence. Across all in-home video evidence recorded during field evaluation, 96% (26/27) were judged as clinically useful, for performing an autism diagnosis. For 4 children (3 with autism and 1 typically developing), both diagnosticians independently arrived at the correct diagnostic status (autism versus typical). Overall, in 91% of assessments (10/11) via NODA Connect, diagnosticians confidently (average rating 4.5 on a 5-point scale) concluded a diagnostic outcome that matched with the child's previous diagnostic status. The in-field evaluation demonstrated that the system's design enabled parents to easily record clinically valid evidence of their child's behavior, and diagnosticians to complete a diagnostic assessment. These results shed light on the potential for appropriately designed telehealth technology to support clinical assessments using in-home video captured by families. This assessment model can be readily generalized to other conditions where direct observation of behavior plays a central role in the assessment process.

  10. Reduction in Fall Rate in Dementia Managed Care Through Video Incident Review: Pilot Study.

    PubMed

    Bayen, Eleonore; Jacquemot, Julien; Netscher, George; Agrawal, Pulkit; Tabb Noyce, Lynn; Bayen, Alexandre

    2017-10-17

    Falls of individuals with dementia are frequent, dangerous, and costly. Early detection and access to the history of a fall is crucial for efficient care and secondary prevention in cognitively impaired individuals. However, most falls remain unwitnessed events. Furthermore, understanding why and how a fall occurred is a challenge. Video capture and secure transmission of real-world falls thus stands as a promising assistive tool. The objective of this study was to analyze how continuous video monitoring and review of falls of individuals with dementia can support better quality of care. A pilot observational study (July-September 2016) was carried out in a Californian memory care facility. Falls were video-captured (24×7), thanks to 43 wall-mounted cameras (deployed in all common areas and in 10 out of 40 private bedrooms of consenting residents and families). Video review was provided to facility staff, thanks to a customized mobile device app. The outcome measures were the count of residents' falls happening in the video-covered areas, the acceptability of video recording, the analysis of video review, and video replay possibilities for care practice. Over 3 months, 16 falls were video-captured. A drop in fall rate was observed in the last month of the study. Acceptability was good. Video review enabled screening for the severity of falls and fall-related injuries. Video replay enabled identifying cognitive-behavioral deficiencies and environmental circumstances contributing to the fall. This allowed for secondary prevention in high-risk multi-faller individuals and for updated facility care policies regarding a safer living environment for all residents. Video monitoring offers high potential to support conventional care in memory care facilities. ©Eleonore Bayen, Julien Jacquemot, George Netscher, Pulkit Agrawal, Lynn Tabb Noyce, Alexandre Bayen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 17.10.2017.

  11. Markerless client-server augmented reality system with natural features

    NASA Astrophysics Data System (ADS)

    Ning, Shuangning; Sang, Xinzhu; Chen, Duo

    2017-10-01

    A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.

  12. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    PubMed

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  13. Video-Based Eye Tracking to Detect the Attention Shift: A Computer Classroom Context-Aware System

    ERIC Educational Resources Information Center

    Kuo, Yung-Lung; Lee, Jiann-Shu; Hsieh, Min-Chai

    2014-01-01

    Eye and head movements evoked in response to obvious visual attention shifts. However, there has been little progress on the causes of absent-mindedness so far. The paper proposes an attention awareness system that captures the conditions regarding the interaction of eye gaze and head pose under various attentional switching in computer classroom.…

  14. Exploring the Downside of Open Knowledge Resources: The Case of Indigenous Knowledge Systems and Practices in the Philippines

    ERIC Educational Resources Information Center

    Flor, Alexander Gonzalez

    2013-01-01

    The paper is based on the challenges encountered by the researcher while conducting a study titled "Design, Development and Testing of an Indigenous Knowledge Management System Using Mobile Device Video Capture and Web 2.0 Protocols." During the conduct of the study the researcher observed a marked reluctance from organized indigenous…

  15. Digital Video Revisited: Storytelling, Conferencing, Remixing

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2012-01-01

    Five years ago in the February, 2007, issue of LLT, I wrote about developments in digital video of potential interest to language teachers. Since then, there have been major changes in options for video capture, editing, and delivery. One of the most significant has been the rise in popularity of video-based storytelling, enabled largely by…

  16. Teacher Self-Captured Video: Learning to See

    ERIC Educational Resources Information Center

    Sherin, Miriam Gamoran; Dyer, Elizabeth B.

    2017-01-01

    Videos are often used for demonstration and evaluation, but a more productive approach would be using video to support teachers' ability to notice and interpret classroom interactions. That requires thinking carefully about the physical aspects of shooting video--where the camera is placed and how easily student interactions can be heard--as well…

  17. Correction of Line Interleaving Displacement in Frame Captured Aerial Video Imagery

    Treesearch

    B. Cooke; A. Saucier

    1995-01-01

    Scientists with the USDA Forest Service are currently assessing the usefulness of aerial video imagery for various purposes including midcycle inventory updates. The potential of video image data for these purposes may be compromised by scan line interleaving displacement problems. Interleaving displacement problems cause features in video raster datasets to have...

  18. Value Added: the Case for Point-of-View Camera use in Orthopedic Surgical Education.

    PubMed

    Karam, Matthew D; Thomas, Geb W; Taylor, Leah; Liu, Xiaoxing; Anthony, Chris A; Anderson, Donald D

    2016-01-01

    Orthopedic surgical education is evolving as educators search for new ways to enhance surgical skills training. Orthopedic educators should seek new methods and technologies to augment and add value to real-time orthopedic surgical experience. This paper describes a protocol whereby we have started to capture and evaluate specific orthopedic milestone procedures with a GoPro® point-of-view video camera and a dedicated video reviewing website as a way of supplementing the current paradigm in surgical skills training. We report our experience regarding the details and feasibility of this protocol. Upon identification of a patient undergoing surgical fixation of a hip or ankle fracture, an orthopedic resident places a GoPro® point-of-view camera on his or her forehead. All fluoroscopic images acquired during the case are saved and later incorporated into a video on the reviewing website. Surgical videos are uploaded to a secure server and are accessible for later review and assessment via a custom-built website. An electronic survey of resident participants was performed utilizing Qualtrics software. Results are reported using descriptive statistics. A total of 51 surgical videos involving 23 different residents have been captured to date. This includes 20 intertrochanteric hip fracture cases and 31 ankle fracture cases. The average duration of each surgical video was 1 hour and 16 minutes (range 40 minutes to 2 hours and 19 minutes). Of 24 orthopedic resident surgeons surveyed, 88% thought capturing a video portfolio of orthopedic milestones would benefit their education. There is a growing demand in orthopedic surgical education to extract more value from each surgical experience. While further work in development and refinement of such assessments is necessary, we feel that intraoperative video, particularly when captured and presented in a non-threatening, user friendly manner, can add significant value to the present and future paradigm of orthopedic surgical skill training.

  19. Value Added: the Case for Point-of-View Camera use in Orthopedic Surgical Education

    PubMed Central

    Thomas, Geb W.; Taylor, Leah; Liu, Xiaoxing; Anthony, Chris A.; Anderson, Donald D.

    2016-01-01

    Abstract Background Orthopedic surgical education is evolving as educators search for new ways to enhance surgical skills training. Orthopedic educators should seek new methods and technologies to augment and add value to real-time orthopedic surgical experience. This paper describes a protocol whereby we have started to capture and evaluate specific orthopedic milestone procedures with a GoPro® point-of-view video camera and a dedicated video reviewing website as a way of supplementing the current paradigm in surgical skills training. We report our experience regarding the details and feasibility of this protocol. Methods Upon identification of a patient undergoing surgical fixation of a hip or ankle fracture, an orthopedic resident places a GoPro® point-of-view camera on his or her forehead. All fluoroscopic images acquired during the case are saved and later incorporated into a video on the reviewing website. Surgical videos are uploaded to a secure server and are accessible for later review and assessment via a custom-built website. An electronic survey of resident participants was performed utilizing Qualtrics software. Results are reported using descriptive statistics. Results A total of 51 surgical videos involving 23 different residents have been captured to date. This includes 20 intertrochanteric hip fracture cases and 31 ankle fracture cases. The average duration of each surgical video was 1 hour and 16 minutes (range 40 minutes to 2 hours and 19 minutes). Of 24 orthopedic resident surgeons surveyed, 88% thought capturing a video portfolio of orthopedic milestones would benefit their education Conclusions There is a growing demand in orthopedic surgical education to extract more value from each surgical experience. While further work in development and refinement of such assessments is necessary, we feel that intraoperative video, particularly when captured and presented in a non-threatening, user friendly manner, can add significant value to the present and future paradigm of orthopedic surgical skill training. PMID:27528828

  20. Enhanced Video-Oculography System

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; MacDougall, Hamish G.

    2009-01-01

    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.

  1. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

  2. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    PubMed

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  3. Holostrain system: a powerful tool for experimental mechanics

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1992-09-01

    A portable holographic interferometer that can be used to measure displacements and strains in all kinds of mechanical components and structures is described. The holostrain system captures images on a TV camera that detects interference patterns produced by laser illumination. The video signals are digitized. The digitized interferograms are processed by a fast processing system. The output of the system are the strains or the stresses of the observed mechanical component or structure.

  4. Performance Evaluation of the NASA/KSC Transmission System

    NASA Technical Reports Server (NTRS)

    Christensen, Kenneth J.

    2000-01-01

    NASA-KSC currently uses three bridged 100-Mbps FDDI segments as its backbone for data traffic. The FDDI Transmission System (FTXS) connects the KSC industrial area, KSC launch complex 39 area, and the Cape Canaveral Air Force Station. The report presents a performance modeling study of the FTXS and the proposed ATM Transmission System (ATXS). The focus of the study is on performance of MPEG video transmission on these networks. Commercial modeling tools - the CACI Predictor and Comnet tools - were used. In addition, custom software tools were developed to characterize conversation pairs in Sniffer trace (capture) files to use as input to these tools. A baseline study of both non-launch and launch day data traffic on the FTXS is presented. MPEG-1 and MPEG-2 video traffic was characterized and the shaping of it evaluated. It is shown that the characteristics of a video stream has a direct effect on its performance in a network. It is also shown that shaping of video streams is necessary to prevent overflow losses and resulting poor video quality. The developed models can be used to predict when the existing FTXS will 'run out of room' and for optimizing the parameters of ATM links used for transmission of MPEG video. Future work with these models can provide useful input and validation to set-top box projects within the Advanced Networks Development group in NASA-KSC Development Engineering.

  5. Optical Head-Mounted Computer Display for Education, Research, and Documentation in Hand Surgery.

    PubMed

    Funk, Shawn; Lee, Donald H

    2016-01-01

    Intraoperative photography and capturing videos is important for the hand surgeon. Recently, optical head-mounted computer display has been introduced as a means of capturing photographs and videos. In this article, we discuss this new technology and review its potential use in hand surgery. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. NASA's SDO Captures Mercury Transit Time-lapses SDO Captures Mercury Transit Time-lapse

    NASA Image and Video Library

    2017-12-08

    Less than once per decade, Mercury passes between the Earth and the sun in a rare astronomical event known as a planetary transit. The 2016 Mercury transit occurred on May 9th, between roughly 7:12 a.m. and 2:42 p.m. EDT. The images in this video are from NASA’s Solar Dynamics Observatory Music: Encompass by Mark Petrie For more info on the Mercury transit go to: www.nasa.gov/transit This video is public domain and may be downloaded at: svs.gsfc.nasa.gov/12235 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Programmable Spectral Source and Design Tool for 3D Imaging Using Complementary Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam (Inventor); Korniski, Ronald J. (Inventor); Ream, Allen (Inventor); Shearn, Michael J. (Inventor); Shahinian, Hrayr Karnig (Inventor); Fritz, Eric W. (Inventor)

    2017-01-01

    An endoscopic illumination system for illuminating a subject for stereoscopic image capture, includes a light source which outputs light; a first complementary multiband bandpass filter (CMBF) and a second CMBF, the first and second CMBFs being situated in first and second light paths, respectively, where the first CMBF and the second CMBF filter the light incident thereupon to output filtered light; and a camera which captures video images of the subject and generates corresponding video information, the camera receiving light reflected from the subject and passing through a pupil CMBF pair and a detection lens. The pupil CMBF includes a first pupil CMBF and a second pupil CMBF, the first pupil CMBF being identical to the first CMBF and the second pupil CMBF being identical to the second CMBF, and the detection lens includes one unpartitioned section that covers both the first pupil CMBF and the second pupil CMBF.

  8. Deep visual-semantic for crowded video understanding

    NASA Astrophysics Data System (ADS)

    Deng, Chunhua; Zhang, Junwen

    2018-03-01

    Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.

  9. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment.

    PubMed

    Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs.

  10. Optical tracking of embryonic vertebrates behavioural responses using automated time-resolved video-microscopy system

    NASA Astrophysics Data System (ADS)

    Walpitagama, Milanga; Kaslin, Jan; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    The fish embryo toxicity (FET) biotest performed on embryos of zebrafish (Danio rerio) has gained significant popularity as a rapid and inexpensive alternative approach in chemical hazard and risk assessment. The FET was designed to evaluate acute toxicity on embryonic stages of fish exposed to the test chemical. The current standard, similar to most traditional methods for evaluating aquatic toxicity provides, however, little understanding of effects of environmentally relevant concentrations of chemical stressors. We postulate that significant environmental effects such as altered motor functions, physiological alterations reflected in heart rate, effects on development and reproduction can occur at sub-lethal concentrations well below than LC10. Behavioral studies can, therefore, provide a valuable integrative link between physiological and ecological effects. Despite the advantages of behavioral analysis development of behavioral toxicity, biotests is greatly hampered by the lack of dedicated laboratory automation, in particular, user-friendly and automated video microscopy systems. In this work we present a proof-of-concept development of an optical system capable of tracking embryonic vertebrates behavioral responses using automated and vastly miniaturized time-resolved video-microscopy. We have employed miniaturized CMOS cameras to perform high definition video recording and analysis of earliest vertebrate behavioral responses. The main objective was to develop a biocompatible embryo positioning structures that were suitable for high-throughput imaging as well as video capture and video analysis algorithms. This system should support the development of sub-lethal and behavioral markers for accelerated environmental monitoring.

  11. Video Surveillance Captures Student Hand Hygiene Behavior, Reactivity to Observation, and Peer Influence in Kenyan Primary Schools

    PubMed Central

    Pickering, Amy J.; Blum, Annalise G.; Breiman, Robert F.; Ram, Pavani K.; Davis, Jennifer

    2014-01-01

    Background In-person structured observation is considered the best approach for measuring hand hygiene behavior, yet is expensive, time consuming, and may alter behavior. Video surveillance could be a useful tool for objectively monitoring hand hygiene behavior if validated against current methods. Methods Student hand cleaning behavior was monitored with video surveillance and in-person structured observation, both simultaneously and separately, at four primary schools in urban Kenya over a study period of 8 weeks. Findings Video surveillance and in-person observation captured similar rates of hand cleaning (absolute difference <5%, p = 0.74). Video surveillance documented higher hand cleaning rates (71%) when at least one other person was present at the hand cleaning station, compared to when a student was alone (48%; rate ratio  = 1.14 [95% CI 1.01–1.28]). Students increased hand cleaning rates during simultaneous video and in-person monitoring as compared to single-method monitoring, suggesting reactivity to each method of monitoring. This trend was documented at schools receiving a handwashing with soap intervention, but not at schools receiving a sanitizer intervention. Conclusion Video surveillance of hand hygiene behavior yields results comparable to in-person observation among schools in a resource-constrained setting. Video surveillance also has certain advantages over in-person observation, including rapid data processing and the capability to capture new behavioral insights. Peer influence can significantly improve student hand cleaning behavior and, when possible, should be exploited in the design and implementation of school hand hygiene programs. PMID:24676389

  12. Capture and playback synchronization in video conferencing

    NASA Astrophysics Data System (ADS)

    Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song

    1995-03-01

    Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.

  13. Making Sure What You See Is What You Get: Digital Video Technology and the Preparation of Teachers of Elementary Science

    ERIC Educational Resources Information Center

    Bueno de Mesquita, Paul; Dean, Ross F.; Young, Betty J.

    2010-01-01

    Advances in digital video technology create opportunities for more detailed qualitative analyses of actual teaching practice in science and other subject areas. User-friendly digital cameras and highly developed, flexible video-analysis software programs have made the tasks of video capture, editing, transcription, and subsequent data analysis…

  14. Video Analysis of Rolling Cylinders

    ERIC Educational Resources Information Center

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-01-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s[superscript -1], and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined…

  15. Getting the Bigger Picture With Digital Surveillance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a Space Act Agreement, Diebold, Inc., acquired the exclusive rights to Glenn Research Center's patented video observation technology, originally designed to accelerate video image analysis for various ongoing and future space applications. Diebold implemented the technology into its AccuTrack digital, color video recorder, a state-of- the-art surveillance product that uses motion detection for around-the- clock monitoring. AccuTrack captures digitally signed images and transaction data in real-time. This process replaces the onerous tasks involved in operating a VCR-based surveillance system, and subsequently eliminates the need for central viewing and tape archiving locations altogether. AccuTrack can monitor an entire bank facility, including four automated teller machines, multiple teller lines, and new account areas, all from one central location.

  16. Video-Based Fingerprint Verification

    PubMed Central

    Qin, Wei; Yin, Yilong; Liu, Lili

    2013-01-01

    Conventional fingerprint verification systems use only static information. In this paper, fingerprint videos, which contain dynamic information, are utilized for verification. Fingerprint videos are acquired by the same capture device that acquires conventional fingerprint images, and the user experience of providing a fingerprint video is the same as that of providing a single impression. After preprocessing and aligning processes, “inside similarity” and “outside similarity” are defined and calculated to take advantage of both dynamic and static information contained in fingerprint videos. Match scores between two matching fingerprint videos are then calculated by combining the two kinds of similarity. Experimental results show that the proposed video-based method leads to a relative reduction of 60 percent in the equal error rate (EER) in comparison to the conventional single impression-based method. We also analyze the time complexity of our method when different combinations of strategies are used. Our method still outperforms the conventional method, even if both methods have the same time complexity. Finally, experimental results demonstrate that the proposed video-based method can lead to better accuracy than the multiple impressions fusion method, and the proposed method has a much lower false acceptance rate (FAR) when the false rejection rate (FRR) is quite low. PMID:24008283

  17. Image processing system design for microcantilever-based optical readout infrared arrays

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  18. Two-Stream Transformer Networks for Video-based Face Alignment.

    PubMed

    Liu, Hao; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie

    2017-08-01

    In this paper, we propose a two-stream transformer networks (TSTN) approach for video-based face alignment. Unlike conventional image-based face alignment approaches which cannot explicitly model the temporal dependency in videos and motivated by the fact that consistent movements of facial landmarks usually occur across consecutive frames, our TSTN aims to capture the complementary information of both the spatial appearance on still frames and the temporal consistency information across frames. To achieve this, we develop a two-stream architecture, which decomposes the video-based face alignment into spatial and temporal streams accordingly. Specifically, the spatial stream aims to transform the facial image to the landmark positions by preserving the holistic facial shape structure. Accordingly, the temporal stream encodes the video input as active appearance codes, where the temporal consistency information across frames is captured to help shape refinements. Experimental results on the benchmarking video-based face alignment datasets show very competitive performance of our method in comparisons to the state-of-the-arts.

  19. Android platform based smartphones for a logistical remote association repair framework.

    PubMed

    Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing

    2014-06-25

    The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use.

  20. Tools for Protecting the Privacy of Specific Individuals in Video

    NASA Astrophysics Data System (ADS)

    Chen, Datong; Chang, Yi; Yan, Rong; Yang, Jie

    2007-12-01

    This paper presents a system for protecting the privacy of specific individuals in video recordings. We address the following two problems: automatic people identification with limited labeled data, and human body obscuring with preserved structure and motion information. In order to address the first problem, we propose a new discriminative learning algorithm to improve people identification accuracy using limited training data labeled from the original video and imperfect pairwise constraints labeled from face obscured video data. We employ a robust face detection and tracking algorithm to obscure human faces in the video. Our experiments in a nursing home environment show that the system can obtain a high accuracy of people identification using limited labeled data and noisy pairwise constraints. The study result indicates that human subjects can perform reasonably well in labeling pairwise constraints with the face masked data. For the second problem, we propose a novel method of body obscuring, which removes the appearance information of the people while preserving rich structure and motion information. The proposed approach provides a way to minimize the risk of exposing the identities of the protected people while maximizing the use of the captured data for activity/behavior analysis.

  1. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    PubMed Central

    2011-01-01

    Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material characteristics of the underlying structures. This is an important factor in a reliable biomechanical modelling and simulation as well as in a successful design of complex implants. PMID:21762533

  2. Promoting Reflexive Thinking and Adaptive Expertise through Video Capturing to Challenge Postgraduate Primary Student Teachers to Think, Know, Feel, and Act Like a Teacher

    ERIC Educational Resources Information Center

    Sexton, Steven S.; Williamson-Leadley, Sandra

    2017-01-01

    This article reports on a study of how a 1-year, course-taught, master's level initial teacher education (ITE) program challenged primary student teachers (n = 4) in developing their sense of self-as-teacher. This study examined how the program's incorporation of video capturing technology impacted on these student teachers' development of…

  3. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  4. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  5. Online coupled camera pose estimation and dense reconstruction from video

    DOEpatents

    Medioni, Gerard; Kang, Zhuoliang

    2016-11-01

    A product may receive each image in a stream of video image of a scene, and before processing the next image, generate information indicative of the position and orientation of an image capture device that captured the image at the time of capturing the image. The product may do so by identifying distinguishable image feature points in the image; determining a coordinate for each identified image feature point; and for each identified image feature point, attempting to identify one or more distinguishable model feature points in a three dimensional (3D) model of at least a portion of the scene that appears likely to correspond to the identified image feature point. Thereafter, the product may find each of the following that, in combination, produce a consistent projection transformation of the 3D model onto the image: a subset of the identified image feature points for which one or more corresponding model feature points were identified; and, for each image feature point that has multiple likely corresponding model feature points, one of the corresponding model feature points. The product may update a 3D model of at least a portion of the scene following the receipt of each video image and before processing the next video image base on the generated information indicative of the position and orientation of the image capture device at the time of capturing the received image. The product may display the updated 3D model after each update to the model.

  6. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments.

    PubMed

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-07-02

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  7. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

    PubMed Central

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-01-01

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital. PMID:24991942

  8. Age vs. experience : evaluation of a video feedback intervention for newly licensed teen drivers.

    DOT National Transportation Integrated Search

    2013-02-06

    This project examines the effects of age, experience, and video-based feedback on the rate and type of safety-relevant events captured on video event : recorders in the vehicles of three groups of newly licensed young drivers: : 1. 14.5- to 15.5-year...

  9. Tools to Support Expository Video Capture and Access

    ERIC Educational Resources Information Center

    Carter, Scott; Cooper, Matthew; Adcock, John; Branham, Stacy

    2014-01-01

    Video tends to be imbalanced as a medium. Typically, content creators invest enormous effort creating work that is then watched passively. However, learning tasks require that users not only consume video but also engage, interact with, and repurpose content. Furthermore, to promote learning across domains where content creators are not…

  10. Very High-Speed Digital Video Capability for In-Flight Use

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Tseng, Ting; Reaves, Matthew; Mauldin, Kendall; Whiteman, Donald

    2006-01-01

    digital video camera system has been qualified for use in flight on the NASA supersonic F-15B Research Testbed aircraft. This system is capable of very-high-speed color digital imaging at flight speeds up to Mach 2. The components of this system have been ruggedized and shock-mounted in the aircraft to survive the severe pressure, temperature, and vibration of the flight environment. The system includes two synchronized camera subsystems installed in fuselage-mounted camera pods (see Figure 1). Each camera subsystem comprises a camera controller/recorder unit and a camera head. The two camera subsystems are synchronized by use of an MHub(TradeMark) synchronization unit. Each camera subsystem is capable of recording at a rate up to 10,000 pictures per second (pps). A state-of-the-art complementary metal oxide/semiconductor (CMOS) sensor in the camera head has a maximum resolution of 1,280 1,024 pixels at 1,000 pps. Exposure times of the electronic shutter of the camera range from 1/200,000 of a second to full open. The recorded images are captured in a dynamic random-access memory (DRAM) and can be downloaded directly to a personal computer or saved on a compact flash memory card. In addition to the high-rate recording of images, the system can display images in real time at 30 pps. Inter Range Instrumentation Group (IRIG) time code can be inserted into the individual camera controllers or into the M-Hub unit. The video data could also be used to obtain quantitative, three-dimensional trajectory information. The first use of this system was in support of the Space Shuttle Return to Flight effort. Data were needed to help in understanding how thermally insulating foam is shed from a space shuttle external fuel tank during launch. The cameras captured images of simulated external tank debris ejected from a fixture mounted under the centerline of the F-15B aircraft. Digital video was obtained at subsonic and supersonic flight conditions, including speeds up to Mach 2 and altitudes up to 50,000 ft (15.24 km). The digital video was used to determine the structural survivability of the debris in a real flight environment and quantify the aerodynamic trajectories of the debris.

  11. Height Measuring System On Video Using Otsu Method

    NASA Astrophysics Data System (ADS)

    Sandy, C. L. M.; Meiyanti, R.

    2017-01-01

    A measurement of height is comparing the value of the magnitude of an object with a standard measuring tool. The problems that exist in the measurement are still the use of a simple apparatus in which one of them is by using a meter. This method requires a relatively long time. To overcome these problems, this research aims to create software with image processing that is used for the measurement of height. And subsequent that image is tested, where the object captured by the video camera can be known so that the height of the object can be measured using the learning method of Otsu. The system was built using Delphi 7 of Vision Lab VCL 4.5 component. To increase the quality of work of the system in future research, the developed system can be combined with other methods.

  12. Human visual system-based smoking event detection

    NASA Astrophysics Data System (ADS)

    Odetallah, Amjad D.; Agaian, Sos S.

    2012-06-01

    Human action (e.g. smoking, eating, and phoning) analysis is an important task in various application domains like video surveillance, video retrieval, human-computer interaction systems, and so on. Smoke detection is a crucial task in many video surveillance applications and could have a great impact to raise the level of safety of urban areas, public parks, airplanes, hospitals, schools and others. The detection task is challenging since there is no prior knowledge about the object's shape, texture and color. In addition, its visual features will change under different lighting and weather conditions. This paper presents a new scheme of a system for detecting human smoking events, or small smoke, in a sequence of images. In developed system, motion detection and background subtraction are combined with motion-region-saving, skin-based image segmentation, and smoke-based image segmentation to capture potential smoke regions which are further analyzed to decide on the occurrence of smoking events. Experimental results show the effectiveness of the proposed approach. As well, the developed method is capable of detecting the small smoking events of uncertain actions with various cigarette sizes, colors, and shapes.

  13. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barstow, Del R; Patlolla, Dilip Reddy; Mann, Christopher J

    Abstract The data captured by existing standoff biometric systems typically has lower biometric recognition performance than their close range counterparts due to imaging challenges, pose challenges, and other factors. To assist in overcoming these limitations systems typically perform in a multi-modal capacity such as Honeywell s Combined Face and Iris (CFAIRS) [21] system. While this improves the systems performance, standoff systems have yet to be proven as accurate as their close range equivalents. We will present a standoff system capable of operating up to 7 meters in range. Unlike many systems such as the CFAIRS our system captures high qualitymore » 12 MP video allowing for a multi-sample as well as multi-modal comparison. We found that for standoff systems multi-sample improved performance more than multi-modal. For a small test group of 50 subjects we were able to achieve 100% rank one recognition performance with our system.« less

  15. Temporal Coding of Volumetric Imagery

    NASA Astrophysics Data System (ADS)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions. Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z ) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke. Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.

  16. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  17. Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1995-01-01

    The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end-effector in response to commands generated by an operator. In one embodiment, the system provides a real-time image of the target for the operator as the robot approaches the object. The system is also adapted for use in virtual reality systems in which a remote object or workpiece is to be acted upon by a remote robot arm or other mechanism controlled by an operator.

  18. A Web-based, secure, light weight clinical multimedia data capture and display system.

    PubMed

    Wang, S S; Starren, J

    2000-01-01

    Computer-based patient records are traditionally composed of textual data. Integration of multimedia data has been historically slow. Multimedia data such as image, audio, and video have been traditionally more difficult to handle. An implementation of a clinical system for multimedia data is discussed. The system implementation uses Java, Secure Socket Layer (SSL), and Oracle 8i. The system is on top of the Internet so it is architectural independent, cross-platform, cross-vendor, and secure. Design and implementations issues are discussed.

  19. Development and preliminary validation of an interactive remote physical therapy system.

    PubMed

    Mishra, Anup K; Skubic, Marjorie; Abbott, Carmen

    2015-01-01

    In this paper, we present an interactive physical therapy system (IPTS) for remote quantitative assessment of clients in the home. The system consists of two different interactive interfaces connected through a network, for a real-time low latency video conference using audio, video, skeletal, and depth data streams from a Microsoft Kinect. To test the potential of IPTS, experiments were conducted with 5 independent living senior subjects in Kansas City, MO. Also, experiments were conducted in the lab to validate the real-time biomechanical measures calculated using the skeletal data from the Microsoft Xbox 360 Kinect and Microsoft Xbox One Kinect, with ground truth data from a Vicon motion capture system. Good agreements were found in the validation tests. The results show potential capabilities of the IPTS system to provide remote physical therapy to clients, especially older adults, who may find it difficult to visit the clinic.

  20. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  1. A review of vision-based motion analysis in sport.

    PubMed

    Barris, Sian; Button, Chris

    2008-01-01

    Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside of elite sport performance, notably for surveillance in the military and security industry where automatic recognition of moving objects is achievable because identification of the objects is not necessary. The current challenge is to obtain appropriate video sequences that can robustly identify and label people over time, in a cluttered environment containing multiple interacting people. This problem is often compounded by the quality of video capture, the relative size and occlusion frequency of people, and also changes in illumination. Potential applications of an automated motion detection system are offered, such as: planning tactics and strategies; measuring team organisation; providing meaningful kinematic feedback; and objective measures of intervention effectiveness in team sports, which could benefit coaches, players, and sports scientists.

  2. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  3. Video as a Metaphorical Eye: Images of Positionality, Pedagogy, and Practice

    ERIC Educational Resources Information Center

    Hamilton, Erica R.

    2012-01-01

    Considered by many to be cost-effective and user-friendly, video technology is utilized in a multitude of contexts, including the university classroom. One purpose, although not often used, involves recording oneself teaching. This autoethnographic study focuses on the author's use of video and reflective practice in order to capture and examine…

  4. Mathematics Teachers' Self-Captured Video and Opportunities for Learning

    ERIC Educational Resources Information Center

    Sherin, Miriam Gamoran; Dyer, Elizabeth B.

    2017-01-01

    Numerous video-based programs have been developed to support mathematics teachers in reflecting on and examining classrooms interactions without the immediate demands of instruction. An important premise of such work is that teacher learning occurs at the time that the video is viewed and discussed with teachers. Recent advances in technology,…

  5. Artificial Intelligence Techniques for Automatic Screening of Amblyogenic Factors

    PubMed Central

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    Purpose To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. Methods In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. Results The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the “gold standard” specialist examination with a “refer/do not refer” decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than −7. Conclusions Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years. PMID:19277222

  6. Artificial intelligence techniques for automatic screening of amblyogenic factors.

    PubMed

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the "gold standard" specialist examination with a "refer/do not refer" decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than -7. Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years.

  7. Dynamic Geometry Capture with a Multi-View Structured-Light System

    DTIC Science & Technology

    2014-12-19

    funding was never a problem during my studies . One of the best parts of my time at UC Berkeley has been working with colleagues within the Video and...scientific and medical applications such as quantifying improvement in physical therapy and measuring unnatural poses in ergonomic studies . Specifically... cases with limited scene texture. This direct generation of surface geometry provides us with a distinct advantage over multi-camera based systems. For

  8. Android Platform Based Smartphones for a Logistical Remote Association Repair Framework

    PubMed Central

    Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing

    2014-01-01

    The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use. PMID:24967603

  9. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier of video delivery transmits a high-quality video stream including all available scalable layers using the most reliable routes through the mesh network ensuring the highest possible video quality. The proposed scheme is implemented in a proven simulator, and the performance of the proposed system is numerically evaluated through extensive simulations. We further present an in-depth analysis of the proposed solutions and potential approaches towards supporting high-quality visual communications in such a demanding context.

  10. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    PubMed

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  11. Wrap-Around Out-the-Window Sensor Fusion System

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Boe, Eric A.; Delgado, Francisco; Secor, James B.; Clark, Michael R.; Ehlinger, Kevin D.; Abernathy, Michael F.

    2009-01-01

    The Advanced Cockpit Evaluation System (ACES) includes communication, computing, and display subsystems, mounted in a van, that synthesize out-the-window views to approximate the views of the outside world as it would be seen from the cockpit of a crewed spacecraft, aircraft, or remote control of a ground vehicle or UAV (unmanned aerial vehicle). The system includes five flat-panel display units arranged approximately in a semicircle around an operator, like cockpit windows. The scene displayed on each panel represents the view through the corresponding cockpit window. Each display unit is driven by a personal computer equipped with a video-capture card that accepts live input from any of a variety of sensors (typically, visible and/or infrared video cameras). Software running in the computers blends the live video images with synthetic images that could be generated, for example, from heads-up-display outputs, waypoints, corridors, or from satellite photographs of the same geographic region. Data from a Global Positioning System receiver and an inertial navigation system aboard the remote vehicle are used by the ACES software to keep the synthetic and live views in registration. If the live image were to fail, the synthetic scenes could still be displayed to maintain situational awareness.

  12. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  13. Smartphone-based photoplethysmographic imaging for heart rate monitoring.

    PubMed

    Alafeef, Maha

    2017-07-01

    The purpose of this study is to make use of visible light reflected mode photoplethysmographic (PPG) imaging for heart rate (HR) monitoring via smartphones. The system uses the built-in camera feature in mobile phones to capture video from the subject's index fingertip. The video is processed, and then the PPG signal resulting from the video stream processing is used to calculate the subject's heart rate. Records from 19 subjects were used to evaluate the system's performance. The HR values obtained by the proposed method were compared with the actual HR. The obtained results show an accuracy of 99.7% and a maximum absolute error of 0.4 beats/min where most of the absolute errors lay in the range of 0.04-0.3 beats/min. Given the encouraging results, this type of HR measurement can be adopted with great benefit, especially in the conditions of personal use or home-based care. The proposed method represents an efficient portable solution for HR accurate detection and recording.

  14. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes.

    PubMed

    Haddock, Luis J; Kim, David Y; Mukai, Shizuo

    2013-01-01

    Purpose. We describe in detail a relatively simple technique of fundus photography in human and rabbit eyes using a smartphone, an inexpensive app for the smartphone, and instruments that are readily available in an ophthalmic practice. Methods. Fundus images were captured with a smartphone and a 20D lens with or without a Koeppe lens. By using the coaxial light source of the phone, this system works as an indirect ophthalmoscope that creates a digital image of the fundus. The application whose software allows for independent control of focus, exposure, and light intensity during video filming was used. With this app, we recorded high-definition videos of the fundus and subsequently extracted high-quality, still images from the video clip. Results. The described technique of smartphone fundus photography was able to capture excellent high-quality fundus images in both children under anesthesia and in awake adults. Excellent images were acquired with the 20D lens alone in the clinic, and the addition of the Koeppe lens in the operating room resulted in the best quality images. Successful photodocumentation of rabbit fundus was achieved in control and experimental eyes. Conclusion. The currently described system was able to take consistently high-quality fundus photographs in patients and in animals using readily available instruments that are portable with simple power sources. It is relatively simple to master, is relatively inexpensive, and can take advantage of the expanding mobile-telephone networks for telemedicine.

  15. Jedi training: playful evaluation of head-mounted augmented reality display systems

    NASA Astrophysics Data System (ADS)

    Ozbek, Christopher S.; Giesler, Bjorn; Dillmann, Ruediger

    2004-05-01

    A fundamental decision in building augmented reality (AR) systems is how to accomplish the combining of the real and virtual worlds. Nowadays this key-question boils down to the two alternatives video-see-through (VST) vs. optical-see-through (OST). Both systems have advantages and disadvantages in areas like production-simplicity, resolution, flexibility in composition strategies, field of view etc. To provide additional decision criteria for high dexterity, accuracy tasks and subjective user-acceptance a gaming environment was programmed that allowed good evaluation of hand-eye coordination, and that was inspired by the Star Wars movies. During an experimentation session with more than thirty participants a preference for optical-see-through glasses in conjunction with infra-red-tracking was found. Especially the high-computational demand for video-capture, processing and the resulting drop in frame rate emerged as a key-weakness of the VST-system.

  16. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  17. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  18. Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects

    DOEpatents

    Lu, Shin-Yee

    1998-01-01

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.

  19. Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects

    DOEpatents

    Lu, S.Y.

    1998-12-22

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.

  20. Design and Implementation of Telemedicine based on Java Media Framework

    NASA Astrophysics Data System (ADS)

    Xiong, Fengguang; Jia, Zhiyan

    According to analyze the importance and problem of telemedicine in this paper, a telemedicine system based on JMF is proposed to design and implement capturing, compression, storage, transmission, reception and play of a medical audio and video. The telemedicine system can solve existing problems that medical information is not shared, platform-dependent is high, software is incompatibilities and so on. Experimental data prove that the system has low hardware cost, and is easy to transmission and storage, and is portable and powerful.

  1. Cellphones in Classrooms Land Teachers on Online Video Sites

    ERIC Educational Resources Information Center

    Honawar, Vaishali

    2007-01-01

    Videos of teachers that students taped in secrecy are all over online sites like YouTube and MySpace. Angry teachers, enthusiastic teachers, teachers clowning around, singing, and even dancing are captured, usually with camera phones, for the whole world to see. Some students go so far as to create elaborately edited videos, shot over several…

  2. Measuring Classroom Management Expertise (CME) of Teachers: A Video-Based Assessment Approach and Statistical Results

    ERIC Educational Resources Information Center

    König, Johannes

    2015-01-01

    The study aims at developing and exploring a novel video-based assessment that captures classroom management expertise (CME) of teachers and for which statistical results are provided. CME measurement is conceptualized by using four video clips that refer to typical classroom management situations in which teachers are heavily challenged…

  3. Students' Acceptance of an Educational Videos Platform: A Study in A Portuguese University

    ERIC Educational Resources Information Center

    Costa, Carolina; Alvelos, Helena; Teixeira, Leonor

    2018-01-01

    The Educast is an educational videos' platform that captures simultaneously video and digital support materials. This paper presents a study on the acceptance of Educast, by students, using the Technology Acceptance Model--TAM. The data was collected through a questionnaire applied to 54 students which results were analyzed using descriptive…

  4. Researching Literacy in Context: Using Video Analysis to Explore School Literacies

    ERIC Educational Resources Information Center

    Blikstad-Balas, Marte; Sørvik, Gard Ove

    2015-01-01

    This article addresses how methodological approaches relying on video can be included in literacy research to capture changing literacies. In addition to arguing why literacy is best studied in context, we provide empirical examples of how small, head-mounted video cameras have been used in two different research projects that share a common aim:…

  5. A Near-Reality Approach to Improve the e-Learning Open Courseware

    ERIC Educational Resources Information Center

    Yu, Pao-Ta; Liao, Yuan-Hsun; Su, Ming-Hsiang

    2013-01-01

    The open courseware proposed by MIT with single streaming video has been widely accepted by most of the universities as their supplementary learning contents. In this streaming video, a digital video camera is used to capture the speaker's gesture and his/her PowerPoint presentation at the same time. However, the blurry content of PowerPoint…

  6. Target tracking and 3D trajectory acquisition of cabbage butterfly (P. rapae) based on the KCF-BS algorithm.

    PubMed

    Guo, Yang-Yang; He, Dong-Jian; Liu, Cong

    2018-06-25

    Insect behaviour is an important research topic in plant protection. To study insect behaviour accurately, it is necessary to observe and record their flight trajectory quantitatively and precisely in three dimensions (3D). The goal of this research was to analyse frames extracted from videos using Kernelized Correlation Filters (KCF) and Background Subtraction (BS) (KCF-BS) to plot the 3D trajectory of cabbage butterfly (P. rapae). Considering the experimental environment with a wind tunnel, a quadrature binocular vision insect video capture system was designed and applied in this study. The KCF-BS algorithm was used to track the butterfly in video frames and obtain coordinates of the target centroid in two videos. Finally the 3D trajectory was calculated according to the matching relationship in the corresponding frames of two angles in the video. To verify the validity of the KCF-BS algorithm, Compressive Tracking (CT) and Spatio-Temporal Context Learning (STC) algorithms were performed. The results revealed that the KCF-BS tracking algorithm performed more favourably than CT and STC in terms of accuracy and robustness.

  7. A low cost PSD-based monocular motion capture system

    NASA Astrophysics Data System (ADS)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  8. An Automatic Video Meteor Observation Using UFO Capture at the Showa Station

    NASA Astrophysics Data System (ADS)

    Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.

    2012-05-01

    The goal of our study is to clarify meteor activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic meteor detection and recording at Syowa station, Antarctica.

  9. Still-to-video face recognition in unconstrained environments

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Liu, Changsong; Ding, Xiaoqing

    2015-02-01

    Face images from video sequences captured in unconstrained environments usually contain several kinds of variations, e.g. pose, facial expression, illumination, image resolution and occlusion. Motion blur and compression artifacts also deteriorate recognition performance. Besides, in various practical systems such as law enforcement, video surveillance and e-passport identification, only a single still image per person is enrolled as the gallery set. Many existing methods may fail to work due to variations in face appearances and the limit of available gallery samples. In this paper, we propose a novel approach for still-to-video face recognition in unconstrained environments. By assuming that faces from still images and video frames share the same identity space, a regularized least squares regression method is utilized to tackle the multi-modality problem. Regularization terms based on heuristic assumptions are enrolled to avoid overfitting. In order to deal with the single image per person problem, we exploit face variations learned from training sets to synthesize virtual samples for gallery samples. We adopt a learning algorithm combining both affine/convex hull-based approach and regularizations to match image sets. Experimental results on a real-world dataset consisting of unconstrained video sequences demonstrate that our method outperforms the state-of-the-art methods impressively.

  10. Modification of the Miyake-Apple technique for simultaneous anterior and posterior video imaging of wet laboratory-based corneal surgery.

    PubMed

    Tan, Johnson C H; Meadows, Howard; Gupta, Aanchal; Yeung, Sonia N; Moloney, Gregory

    2014-03-01

    The aim of this study was to describe a modification of the Miyake-Apple posterior video analysis for the simultaneous visualization of the anterior and posterior corneal surfaces during wet laboratory-based deep anterior lamellar keratoplasty (DALK). A human donor corneoscleral button was affixed to a microscope slide and placed onto a custom-made mounting box. A big bubble DALK was performed on the cornea in the wet laboratory. An 11-diopter intraocular lens was positioned over the aperture of the back camera of an iPhone. This served to video record the posterior view of the corneoscleral button during the big bubble formation. An overhead operating microscope with an attached video camcorder recorded the anterior view during the surgery. The anterior and posterior views of the wet laboratory-based DALK surgery were simultaneously captured and edited using video editing software. The formation of the big bubble can be studied. This video recording camera system has the potential to act as a valuable research and teaching tool in corneal lamellar surgery, especially in the behavior of the big bubble formation in DALK.

  11. Multi-frame knowledge based text enhancement for mobile phone captured videos

    NASA Astrophysics Data System (ADS)

    Ozarslan, Suleyman; Eren, P. Erhan

    2014-02-01

    In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.

  12. Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging.

    PubMed

    Liu, Dengyu; Gu, Jinwei; Hitomi, Yasunobu; Gupta, Mohit; Mitsunaga, Tomoo; Nayar, Shree K

    2014-02-01

    Cameras face a fundamental trade-off between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this trade-off without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing, and reconstructing the space-time volume to overcome this trade-off. Our approach has two important distinctions compared to previous works: 1) We achieve sparse representation of videos by learning an overcomplete dictionary on video patches, and 2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach, sampling function and sparse representation, by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a liquid crystal on silicon device. System characteristics such as field of view and modulation transfer function are evaluated for our imaging system. Both simulations and experiments on a wide range of scenes show that our method can effectively reconstruct a video from a single coded image while maintaining high spatial resolution.

  13. On doing two things at once: dolphin brain and nose coordinate sonar clicks, buzzes and emotional squeals with social sounds during fish capture.

    PubMed

    Ridgway, Sam; Samuelson Dibble, Dianna; Van Alstyne, Kaitlin; Price, DruAnn

    2015-12-01

    Dolphins fishing alone in open waters may whistle without interrupting their sonar clicks as they find and eat or reject fish. Our study is the first to match sound and video from the dolphin with sound and video from near the fish. During search and capture of fish, free-swimming dolphins carried cameras to record video and sound. A hydrophone in the far field near the fish also recorded sound. From these two perspectives, we studied the time course of dolphin sound production during fish capture. Our observations identify the instant of fish capture. There are three consistent acoustic phases: sonar clicks locate the fish; about 0.4 s before capture, the dolphin clicks become more rapid to form a second phase, the terminal buzz; at or just before capture, the buzz turns to an emotional squeal (the victory squeal), which may last 0.2 to 20 s after capture. The squeals are pulse bursts that vary in duration, peak frequency and amplitude. The victory squeal may be a reflection of emotion triggered by brain dopamine release. It may also affect prey to ease capture and/or it may be a way to communicate the presence of food to other dolphins. Dolphins also use whistles as communication or social sounds. Whistling during sonar clicking suggests that dolphins may be adept at doing two things at once. We know that dolphin brain hemispheres may sleep independently. Our results suggest that the two dolphin brain hemispheres may also act independently in communication. © 2015. Published by The Company of Biologists Ltd.

  14. Staying connected: online education engagement and retention using educational technology tools.

    PubMed

    Salazar, Jose

    2010-01-01

    The objective of this article is to inform educators about the use of currently available educational technology tools to promote student retention, engagement and interaction in online courses. Educational technology tools include content management systems, podcasts, video lecture capture technology and electronic discussion boards. Successful use of educational technology tools requires planning, organization and use of effective learning strategies.

  15. High-fidelity, low-cost, automated method to assess laparoscopic skills objectively.

    PubMed

    Gray, Richard J; Kahol, Kanav; Islam, Gazi; Smith, Marshall; Chapital, Alyssa; Ferrara, John

    2012-01-01

    We sought to define the extent to which a motion analysis-based assessment system constructed with simple equipment could measure technical skill objectively and quantitatively. An "off-the-shelf" digital video system was used to capture the hand and instrument movement of surgical trainees (beginner level = PGY-1, intermediate level = PGY-3, and advanced level = PGY-5/fellows) while they performed a peg transfer exercise. The video data were passed through a custom computer vision algorithm that analyzed incoming pixels to measure movement smoothness objectively. The beginner-level group had the poorest performance, whereas those in the advanced group generated the highest scores. Intermediate-level trainees scored significantly (p < 0.04) better than beginner trainees. Advanced-level trainees scored significantly better than intermediate-level trainees and beginner-level trainees (p < 0.04 and p < 0.03, respectively). A computer vision-based analysis of surgical movements provides an objective basis for technical expertise-level analysis with construct validity. The technology to capture the data is simple, low cost, and readily available, and it obviates the need for expert human assessment in this setting. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  16. Mobile-Cloud Assisted Video Summarization Framework for Efficient Management of Remote Sensing Data Generated by Wireless Capsule Sensors

    PubMed Central

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-01-01

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data. PMID:25225874

  17. Mobile-cloud assisted video summarization framework for efficient management of remote sensing data generated by wireless capsule sensors.

    PubMed

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-09-15

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.

  18. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    DOEpatents

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  19. Water surface modeling from a single viewpoint video.

    PubMed

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  20. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  1. Video Tutorial of Continental Food

    NASA Astrophysics Data System (ADS)

    Nurani, A. S.; Juwaedah, A.; Mahmudatussa'adah, A.

    2018-02-01

    This research is motivated by the belief in the importance of media in a learning process. Media as an intermediary serves to focus on the attention of learners. Selection of appropriate learning media is very influential on the success of the delivery of information itself both in terms of cognitive, affective and skills. Continental food is a course that studies food that comes from Europe and is very complex. To reduce verbalism and provide more real learning, then the tutorial media is needed. Media tutorials that are audio visual can provide a more concrete learning experience. The purpose of this research is to develop tutorial media in the form of video. The method used is the development method with the stages of analyzing the learning objectives, creating a story board, validating the story board, revising the story board and making video tutorial media. The results show that the making of storyboards should be very thorough, and detailed in accordance with the learning objectives to reduce errors in video capture so as to save time, cost and effort. In video capturing, lighting, shooting angles, and soundproofing make an excellent contribution to the quality of tutorial video produced. In shooting should focus more on tools, materials, and processing. Video tutorials should be interactive and two-way.

  2. Synchronization of video recording and laser pulses including background light suppression

    NASA Technical Reports Server (NTRS)

    Kalshoven, Jr., James E. (Inventor); Tierney, Jr., Michael (Inventor); Dabney, Philip W. (Inventor)

    2004-01-01

    An apparatus for and a method of triggering a pulsed light source, in particular a laser light source, for predictable capture of the source by video equipment. A frame synchronization signal is derived from the video signal of a camera to trigger the laser and position the resulting laser light pulse in the appropriate field of the video frame and during the opening of the electronic shutter, if such shutter is included in the camera. Positioning of the laser pulse in the proper video field allows, after recording, for the viewing of the laser light image with a video monitor using the pause mode on a standard cassette-type VCR. This invention also allows for fine positioning of the laser pulse to fall within the electronic shutter opening. For cameras with externally controllable electronic shutters, the invention provides for background light suppression by increasing shutter speed during the frame in which the laser light image is captured. This results in the laser light appearing in one frame in which the background scene is suppressed with the laser light being uneffected, while in all other frames, the shutter speed is slower, allowing for the normal recording of the background scene. This invention also allows for arbitrary (manual or external) triggering of the laser with full video synchronization and background light suppression.

  3. Uses of Video in Understanding and Improving Mathematical Thinking and Teaching

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    2017-01-01

    This article characterizes my use of video as a tool for research, design and development. I argue that videos, while a potentially overwhelming source of data, provide the kind of large bandwidth that enables one to capture phenomena that one might otherwise miss; and that although the act of taping is in itself an act of selection, there is…

  4. Efficient subtle motion detection from high-speed video for sound recovery and vibration analysis using singular value decomposition-based approach

    NASA Astrophysics Data System (ADS)

    Zhang, Dashan; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2017-09-01

    High-speed cameras provide full field measurement of structure motions and have been applied in nondestructive testing and noncontact structure monitoring. Recently, a phase-based method has been proposed to extract sound-induced vibrations from phase variations in videos, and this method provides insights into the study of remote sound surveillance and material analysis. An efficient singular value decomposition (SVD)-based approach is introduced to detect sound-induced subtle motions from pixel intensities in silent high-speed videos. A high-speed camera is initially applied to capture a video of the vibrating objects stimulated by sound fluctuations. Then, subimages collected from a small region on the captured video are reshaped into vectors and reconstructed to form a matrix. Orthonormal image bases (OIBs) are obtained from the SVD of the matrix; available vibration signal can then be obtained by projecting subsequent subimages onto specific OIBs. A simulation test is initiated to validate the effectiveness and efficiency of the proposed method. Two experiments are conducted to demonstrate the potential applications in sound recovery and material analysis. Results show that the proposed method efficiently detects subtle motions from the video.

  5. Graded zooming

    DOEpatents

    Coffland, Douglas R.

    2006-04-25

    A system for increasing the resolution in the far field resolution of video or still frame images, while maintaining full coverage in the near field. The system includes a camera connected to a computer. The computer applies a specific zooming scale factor to each of line of pixels and continuously increases the scale factor of the line of pixels from the bottom to the top to capture the scene in the near field, yet maintain resolution in the scene in the far field.

  6. A Web-based, secure, light weight clinical multimedia data capture and display system.

    PubMed Central

    Wang, S. S.; Starren, J.

    2000-01-01

    Computer-based patient records are traditionally composed of textual data. Integration of multimedia data has been historically slow. Multimedia data such as image, audio, and video have been traditionally more difficult to handle. An implementation of a clinical system for multimedia data is discussed. The system implementation uses Java, Secure Socket Layer (SSL), and Oracle 8i. The system is on top of the Internet so it is architectural independent, cross-platform, cross-vendor, and secure. Design and implementations issues are discussed. Images Figure 2 Figure 3 PMID:11080014

  7. Action video game players' visual search advantage extends to biologically relevant stimuli.

    PubMed

    Chisholm, Joseph D; Kingstone, Alan

    2015-07-01

    Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. High Speed Intensified Video Observations of TLEs in Support of PhOCAL

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.; Nelson, Thomas E.; Cummer, Steven A.; Lang, Timothy; Miller, Steven; Beavis, Nick; Yue, Jia; Samaras, Tim; Warner, Tom A.

    2013-01-01

    The third observing season of PhOCAL (Physical Origins of Coupling to the upper Atmosphere by Lightning) was conducted over the U.S. High Plains during the late spring and summer of 2013. The goal was to capture using an intensified high-speed camera, a transient luminous event (TLE), especially a sprite, as well as its parent cloud-to-ground (SP+CG) lightning discharge, preferably within the domain of a 3-D lightning mapping array (LMA). The co-capture of sprite and its SP+CG was achieved within useful range of an interferometer operating near Rapid City. Other high-speed sprite video sequences were captured above the West Texas LMA. On several occasions the large mesoscale convective complexes (MCSs) producing the TLE-class lightning were also generating vertically propagating convectively generated gravity waves (CGGWs) at the mesopause which were easily visible using NIR-sensitive color cameras. These were captured concurrent with sprites. These observations were follow-ons to a case on 15 April 2012 in which CGGWs were also imaged by the new Day/Night Band on the Suomi NPP satellite system. The relationship between the CGGW and sprite initiation are being investigated. The past year was notable for a large number of elve+halo+sprite sequences sequences generated by the same parent CG. And on several occasions there appear to be prominent banded modulations of the elves' luminosity imaged at >3000 ips. These stripes appear coincident with the banded CGGW structure, and presumably its density variations. Several elves and a sprite from negative CGs were also noted. New color imaging systems have been tested and found capable of capturing sprites. Two cases of sprites with an aurora as a backdrop were also recorded. High speed imaging was also provided in support of the UPLIGHTS program near Rapid City, SD and the USAFA SPRITES II airborne campaign over the Great Plains.

  9. The Webcam system: a simple, automated, computer-based video system for quantitative measurement of movement in nonhuman primates.

    PubMed

    Togasaki, Daniel M; Hsu, Albert; Samant, Meghana; Farzan, Bijan; DeLanney, Louis E; Langston, J William; Di Monte, Donato A; Quik, Maryka

    2005-06-30

    Investigations using models of neurologic disease frequently involve quantifying animal motor activity. We developed a simple method for measuring motor activity using a computer-based video system (the Webcam system) consisting of an inexpensive video camera connected to a personal computer running customized software. Images of the animals are captured at half-second intervals and movement is quantified as the number of pixel changes between consecutive images. The Webcam system allows measurement of motor activity of the animals in their home cages, without devices affixed to their bodies. Webcam quantification of movement was validated by correlation with measures simultaneously obtained by two other methods: measurement of locomotion by interruption of infrared beams; and measurement of general motor activity using portable accelerometers. In untreated squirrel monkeys, correlations of Webcam and locomotor activity exceeded 0.79, and correlations with general activity counts exceeded 0.65. Webcam activity decreased after the monkeys were rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), but the correlations with the other measures of motor activity were maintained. Webcam activity also correlated with clinical ratings of parkinsonism. These results indicate that the Webcam system is reliable under both untreated and experimental conditions and is an excellent method for quantifying motor activity in animals.

  10. Augmented reality system for CT-guided interventions: system description and initial phantom trials

    NASA Astrophysics Data System (ADS)

    Sauer, Frank; Schoepf, Uwe J.; Khamene, Ali; Vogt, Sebastian; Das, Marco; Silverman, Stuart G.

    2003-05-01

    We are developing an augmented reality (AR) image guidance system, in which information derived from medical images is overlaid onto a video view of the patient. The interventionalist wears a head-mounted display (HMD) that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture the stereo view of the scene. A third video camera, operating in the near IR, is also attached to the HMD and is used for head tracking. The system achieves real-time performance of 30 frames per second. The graphics appears firmly anchored in the scne, without any noticeable swimming or jitter or time lag. For the application of CT-guided interventions, we extended our original prototype system to include tracking of a biopsy needle to which we attached a set of optical markers. The AR visualization provides very intuitive guidance for planning and placement of the needle and reduces radiation to patient and radiologist. We used an interventional abdominal phantom with simulated liver lesions to perform an inital set of experiments. The users were consistently able to locate the target lesion with the first needle pass. These results provide encouragement to move the system towards clinical trials.

  11. Overview of FTV (free-viewpoint television)

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masayuki

    2010-07-01

    We have developed a new type of television named FTV (Free-viewpoint TV). FTV is the ultimate 3DTV that enables us to view a 3D scene by freely changing our viewpoints. We proposed the concept of FTV and constructed the world's first real-time system including the complete chain of operation from image capture to display. FTV is based on the rayspace method that represents one ray in real space with one point in the ray-space. We have developed ray capture, processing and display technologies for FTV. FTV can be carried out today in real time on a single PC or on a mobile player. We also realized FTV with free listening-point audio. The international standardization of FTV has been conducted in MPEG. The first phase of FTV was MVC (Multi-view Video Coding) and the second phase is 3DV (3D Video). MVC was completed in May 2009. The Blu-ray 3D specification has adopted MVC for compression. 3DV is a standard that targets serving a variety of 3D displays. The view generation function of FTV is used to decouple capture and display in 3DV. FDU (FTV Data Unit) is proposed as a data format for 3DV. FTU can compensate errors of the synthesized views caused by depth error.

  12. Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements

    PubMed Central

    von Laßberg, Christoph; Beykirch, Karl A.; Mohler, Betty J.; Bülthoff, Heinrich H.

    2014-01-01

    Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model. PMID:24763143

  13. A Simple, Low-Cost Stereographic Video Capture and Viewing Solution for Teaching Psychomotor Skills Using Online Delivery

    ERIC Educational Resources Information Center

    White, Ian

    2010-01-01

    It is recognised that the teaching of complex psychomotor skills using online delivery is difficult without the support of either face-to-face coaching and tuition or a stereoscopic viewing system that provides users with a feel for the spatial nature of the skills being taught. To date, the limitations of bandwidth, and the high cost and…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoaf, S.; APS Engineering Support Division

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  15. Utilizing ego-centric video to conduct naturalistic bicycling studies.

    DOT National Transportation Integrated Search

    2016-10-01

    Existing data collection methods are mostly designed for videos captured by stationary cameras and are not designed to follow cyclists along a : route or to integrate other sensor data. The goals of this research are: a) to develop a platform to coll...

  16. Recording vocalizations with Bluetooth technology.

    PubMed

    Gaona-González, Andrés; Santillán-Doherty, Ana María; Arenas-Rosas, Rita Virginia; Muñoz-Delgado, Jairo; Aguillón-Pantaleón, Miguel Angel; Ordoñez-Gómez, José Domingo; Márquez-Arias, Alejandra

    2011-06-01

    We propose a method for capturing vocalizations that is designed to avoid some of the limiting factors found in traditional bioacoustical methods, such as the impossibility of obtaining continuous long-term registers or analyzing amplitude due to the continuous change of distance between the subject and the position of the recording system. Using Bluetooth technology, vocalizations are captured and transmitted wirelessly into a receiving system without affecting the quality of the signal. The recordings of the proposed system were compared to those obtained as a reference, which were based on the coding of the signal with the so-called pulse-code modulation technique in WAV audio format without any compressing process. The evaluation showed p < .05 for the measured quantitative and qualitative parameters. We also describe how the transmitting system is encapsulated and fixed on the animal and a way to video record a spider monkey's behavior simultaneously with the audio recordings.

  17. Keys to Successful Interactive Storytelling: A Study of the Booming "Choose-Your-Own-Adventure" Video Game Industry

    ERIC Educational Resources Information Center

    Tyndale, Eric; Ramsoomair, Franklin

    2016-01-01

    Video gaming has become a multi-billion dollar industry that continues to capture the hearts, minds and pocketbooks of millions of gamers who span all ages. Narrative and interactive games form part of this market. The popularity of tablet computers and the technological advances of video games have led to a renaissance in the genre for both youth…

  18. Usability testing of an mHealth device for swallowing therapy in head and neck cancer survivors.

    PubMed

    Constantinescu, Gabriela; Kuffel, Kristina; King, Ben; Hodgetts, William; Rieger, Jana

    2018-04-01

    The objective of this study was to conduct the first patient usability testing of a mobile health (mHealth) system for in-home swallowing therapy. Five participants with a history of head and neck cancer evaluated the mHealth system. After completing an in-application (app) tutorial with the clinician, participants were asked to independently complete five tasks: pair the device to the smartphone, place the device correctly, exercise, interpret progress displays, and close the system. Quantitative and qualitative methods were used to evaluate the effectiveness, efficiency, and satisfaction with the system. Critical changes to the app were found in three of the tasks, resulting in recommendations for the next iteration. These issues were related to ease of Bluetooth pairing, placement of device, and interpretation of statistics. Usability testing with patients identified issues that were essential to address prior to implementing the mHealth system in subsequent clinical trials. Of the usability methods used, video observation (synced screen capture with videoed gestures) revealed the most information.

  19. Development and use of an observation tool for active gaming and movement (OTAGM) to measure children's movement skill components during active video game play.

    PubMed

    Rosa, Rita L; Ridgers, Nicola D; Barnett, Lisa M

    2013-12-01

    This article presents a direct observational tool for assessing children's body movements and movement skills during active video games. The Observation Tool of Active Gaming and Movement (OTGAM) was informed by the Test of Gross Motor Development-2. 18 elementary school children (12 boys, 6 girls; M age = 6.1 yr., SD = 0.9) were observed during Nintendo Wii game play. Using the OTAGM, researchers were able to capture and quantify the children's body movements and movement skills during active play of video games. Furthermore, the OTAGM captured specific components of object control skills: strike, throw, and roll. Game designers, health promotion practitioners, and researchers could use this information to enhance children's physical activity and movement skills.

  20. Content-based intermedia synchronization

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  1. Charter for Systems Engineer Working Group

    NASA Technical Reports Server (NTRS)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  2. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    NASA Astrophysics Data System (ADS)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  3. Video Salient Object Detection via Fully Convolutional Networks.

    PubMed

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).

  4. Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing

    NASA Technical Reports Server (NTRS)

    Logan, Thomas L.; Bryant, Nevin A.

    1987-01-01

    The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.

  5. Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging

    PubMed Central

    Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic

    2016-01-01

    Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519

  6. Captured Wisdom[TM]: Integrating Technology into Adult Literacy Instruction. [Booklet and CD-ROM Transcripts].

    ERIC Educational Resources Information Center

    North Central Regional Educational Lab., Oak Brook, IL. North Central Regional Tech. in Education Consortium.

    This document consists of a booklet describing the Captured Wisdom project and transcripts of videos from the two CD-ROM disks. The booklet details how to get the most from the CD-ROMs with suggestions directed toward teachers, professional development providers, and administrators. Six Captured Wisdom learning sites are listed. The Captured…

  7. Commentary: Allocating the Blend in Blended Learning

    ERIC Educational Resources Information Center

    Parslow, Graham R.

    2012-01-01

    The biochemistry course at Stanford Medical School has been redesigned to incorporate online lectures. The Stanford instructors provide short online presentations then use class time for interactive discussions of clinical vignettes to highlight the biochemical basis of various diseases. Contemporary video capture equipment makes video lectures…

  8. Hinode Satellite Captures Total Solar Eclipse Video Aug. 21

    NASA Image and Video Library

    2017-08-21

    The Japan Aerospace Exploration Agency, the National Astronomical Observatory of Japan and NASA released this video of Aug. 21 total solar eclipse taken by the X-ray telescope aboard the Hinode joint solar observation satellite as it orbited high above the Pacific Ocean.

  9. Can we see photosynthesis? Magnifying the tiny color changes of plant green leaves using Eulerian video magnification

    NASA Astrophysics Data System (ADS)

    Taj-Eddin, Islam A. T. F.; Afifi, Mahmoud; Korashy, Mostafa; Ahmed, Ali H.; Cheng, Ng Yoke; Hernandez, Evelyng; Abdel-Latif, Salma M.

    2017-11-01

    Plant aliveness is proven through laboratory experiments and special scientific instruments. We aim to detect the degree of animation of plants based on the magnification of the small color changes in the plant's green leaves using the Eulerian video magnification. Capturing the video under a controlled environment, e.g., using a tripod and direct current light sources, reduces camera movements and minimizes light fluctuations; we aim to reduce the external factors as much as possible. The acquired video is then stabilized and a proposed algorithm is used to reduce the illumination variations. Finally, the Euler magnification is utilized to magnify the color changes on the light invariant video. The proposed system does not require any special purpose instruments as it uses a digital camera with a regular frame rate. The results of magnified color changes on both natural and plastic leaves show that the live green leaves have color changes in contrast to the plastic leaves. Hence, we can argue that the color changes of the leaves are due to biological operations, such as photosynthesis. To date, this is possibly the first work that focuses on interpreting visually, some biological operations of plants without any special purpose instruments.

  10. Development of high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  11. Capturing Change: Integrating Art and Science

    NASA Astrophysics Data System (ADS)

    Gillerman, J.

    2011-12-01

    The evolving capabilities of interactive media have broadened the potential, and the challenges, of sharing scientific knowledge. From video capture to mobile devices, new technologies have enabled artists to tackle previously demanding or out-of-reach topics and new avenues of dissemination of both art and science. These changes and capabilities affect not only the context and possibilities of scientific data collection, but also how information is presented and communicated innovatively to the public. When recording video of science material whether it is of a Ridley Sea Turtle laying eggs on a beach in Costa Rica, an active lava flow from the volcano Kilauea in Hawaii, or solar eclipses in remote locations around the world, one has to be prepared technically and artistically, not to mention patient in specialized and/or challenging conditions to capture video that satisfies the scientific and artistic imagination. This presentation will include material from varied natural phenomena, creative interfacing in a multimedia context integrating art, science, culture and technology to reach a broad and diverse public, and teaching the integration of art and science through varied art media. (http://www.vipervertex.com).

  12. Platform for intraoperative analysis of video streams

    NASA Astrophysics Data System (ADS)

    Clements, Logan; Galloway, Robert L., Jr.

    2004-05-01

    Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.

  13. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles

    PubMed Central

    Yoon, Hyungchul; Hoskere, Vedhus; Park, Jong-Woong; Spencer, Billie F.

    2017-01-01

    Computer vision techniques have been employed to characterize dynamic properties of structures, as well as to capture structural motion for system identification purposes. All of these methods leverage image-processing techniques using a stationary camera. This requirement makes finding an effective location for camera installation difficult, because civil infrastructure (i.e., bridges, buildings, etc.) are often difficult to access, being constructed over rivers, roads, or other obstacles. This paper seeks to use video from Unmanned Aerial Vehicles (UAVs) to address this problem. As opposed to the traditional way of using stationary cameras, the use of UAVs brings the issue of the camera itself moving; thus, the displacements of the structure obtained by processing UAV video are relative to the UAV camera. Some efforts have been reported to compensate for the camera motion, but they require certain assumptions that may be difficult to satisfy. This paper proposes a new method for structural system identification using the UAV video directly. Several challenges are addressed, including: (1) estimation of an appropriate scale factor; and (2) compensation for the rolling shutter effect. Experimental validation is carried out to validate the proposed approach. The experimental results demonstrate the efficacy and significant potential of the proposed approach. PMID:28891985

  14. Group tele-immersion:enabling natural interactions between groups at distant sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Christine L.; Stewart, Corbin; Nashel, Andrew

    2005-08-01

    We present techniques and a system for synthesizing views for video teleconferencing between small groups. In place of replicating one-to-one systems for each pair of users, we create a single unified display of the remote group. Instead of performing dense 3D scene computation, we use more cameras and trade-off storage and hardware for computation. While it is expensive to directly capture a scene from all possible viewpoints, we have observed that the participants viewpoints usually remain at a constant height (eye level) during video teleconferencing. Therefore, we can restrict the possible viewpoint to be within a virtual plane without sacrificingmore » much of the realism, and in cloning so we significantly reduce the number of required cameras. Based on this observation, we have developed a technique that uses light-field style rendering to guarantee the quality of the synthesized views, using a linear array of cameras with a life-sized, projected display. Our full-duplex prototype system between Sandia National Laboratories, California and the University of North Carolina at Chapel Hill has been able to synthesize photo-realistic views at interactive rates, and has been used to video conference during regular meetings between the sites.« less

  15. Time lapse video recordings of highly purified human hematopoietic progenitor cells in culture.

    PubMed

    Denkers, I A; Dragowska, W; Jaggi, B; Palcic, B; Lansdorp, P M

    1993-05-01

    Major hurdles in studies of stem cell biology include the low frequency and heterogeneity of human hematopoietic precursor cells in bone marrow and the difficulty of directly studying the effect of various culture conditions and growth factors on such cells. We have adapted the cell analyzer imaging system for monitoring and recording the morphology of limited numbers of cells under various culture conditions. Hematopoietic progenitor cells with a CD34+ CD45RAlo CD71lo phenotype were purified from previously frozen organ donor bone marrow by fluorescence activated cell sorting. Cultures of such cells were analyzed with the imaging system composed of an inverted microscope contained in an incubator, a video camera, an optical memory disk recorder and a computer-controlled motorized microscope XYZ precision stage. Fully computer-controlled video images at defined XYZ positions were captured at selected time intervals and recorded at a predetermined sequence on an optical memory disk. In this study, the cell analyzer system was used to obtain descriptions and measurements of hematopoietic cell behavior, like cell motility, cell interactions, cell shape, cell division, cell cycle time and cell size changes under different culture conditions.

  16. Web-based video monitoring of CT and MRI procedures

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Dahlbom, Magdalena; Kho, Hwa T.; Valentino, Daniel J.; McCoy, J. Michael

    2000-05-01

    A web-based video transmission of images from CT and MRI consoles was implemented in an Intranet environment for real- time monitoring of ongoing procedures. Images captured from the consoles are compressed to video resolution and broadcasted through a web server. When called upon, the attending radiologists can view these live images on any computer within the secured Intranet network. With adequate compression, these images can be displayed simultaneously in different locations at a rate of 2 to 5 images/sec through standard LAN. The quality of the images being insufficient for diagnostic purposes, our users survey showed that they were suitable for supervising a procedure, positioning the imaging slices and for routine quality checking before completion of a study. The system was implemented at UCLA to monitor 9 CTs and 6 MRIs distributed in 4 buildings. This system significantly improved the radiologists productivity by saving precious time spent in trips between reading rooms and examination rooms. It also improved patient throughput by reducing the waiting time for the radiologists to come to check a study before moving the patient from the scanner.

  17. Studying Upper-Limb Amputee Prosthesis Use to Inform Device Design

    DTIC Science & Technology

    2016-10-01

    study of the resulting videos led to a new prosthetics-use taxonomy that is generalizable to various levels of amputation and terminal devices. The...taxonomy was applied to classification of the recorded videos via custom tagging software with midi controller interface. The software creates...a motion capture studio and video cameras to record accurate and detailed upper body motion during a series of standardized tasks. These tasks are

  18. Using a Video Camera to Measure the Radius of the Earth

    ERIC Educational Resources Information Center

    Carroll, Joshua; Hughes, Stephen

    2013-01-01

    A simple but accurate method for measuring the Earth's radius using a video camera is described. A video camera was used to capture a shadow rising up the wall of a tall building at sunset. A free program called ImageJ was used to measure the time it took the shadow to rise a known distance up the building. The time, distance and length of…

  19. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  20. High Speed Videometric Monitoring of Rock Breakage

    NASA Astrophysics Data System (ADS)

    Allemand, J.; Shortis, M. R.; Elmouttie, M. K.

    2018-05-01

    Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.

  1. Camera network video summarization

    NASA Astrophysics Data System (ADS)

    Panda, Rameswar; Roy-Chowdhury, Amit K.

    2017-05-01

    Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.

  2. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  3. Non-intrusive head movement analysis of videotaped seizures of epileptic origin.

    PubMed

    Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling

    2012-01-01

    In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  4. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  5. The use of video capture virtual reality in burn rehabilitation: the possibilities.

    PubMed

    Haik, Josef; Tessone, Ariel; Nota, Ayala; Mendes, David; Raz, Liat; Goldan, Oren; Regev, Elli; Winkler, Eyal; Mor, Elisheva; Orenstein, Arie; Hollombe, Ilana

    2006-01-01

    We independently explored the use of the Sony PlayStation II EyeToy (Sony Corporation, Foster City, CA) as a tool for use in the rehabilitation of patients with severe burns. Intensive occupational and physical therapy is crucial in minimizing and preventing long-term disability for the burn patient; however, the therapist faces a difficult challenge combating the agonizing pain experienced by the patient during therapy. The Sony PlayStation II EyeToy is a projected, video-capture system that, although initially developed as a gaming environment for children, may be a useful application in a rehabilitative context. As compared with other virtual reality systems the EyeToy is an efficient rehabilitation tool that is sold commercially at a relatively low cost. This report presents the potential advantages for use of the EyeToy as an innovative rehabilitative tool with mitigating effects on pain in burn rehabilitation. This new technology represents a challenging and motivating way for the patient to immerse himself or herself in an alternate reality while undergoing treatment, thereby reducing the pain and discomfort he or she experiences. This simple, affordable technique may prove to heighten the level of patient cooperation and therefore speed the process of rehabilitation and return of functional ability.

  6. 4K Video of Colorful Liquid in Space

    NASA Image and Video Library

    2015-10-09

    Once again, astronauts on the International Space Station dissolved an effervescent tablet in a floating ball of water, and captured images using a camera capable of recording four times the resolution of normal high-definition cameras. The higher resolution images and higher frame rate videos can reveal more information when used on science investigations, giving researchers a valuable new tool aboard the space station. This footage is one of the first of its kind. The cameras are being evaluated for capturing science data and vehicle operations by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama.

  7. Video Image Tracking Engine

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Bryan, ThomasC. (Inventor); Book, Michael L. (Inventor)

    2004-01-01

    A method and system for processing an image including capturing an image and storing the image as image pixel data. Each image pixel datum is stored in a respective memory location having a corresponding address. Threshold pixel data is selected from the image pixel data and linear spot segments are identified from the threshold pixel data selected.. Ihe positions of only a first pixel and a last pixel for each linear segment are saved. Movement of one or more objects are tracked by comparing the positions of fust and last pixels of a linear segment present in the captured image with respective first and last pixel positions in subsequent captured images. Alternatively, additional data for each linear data segment is saved such as sum of pixels and the weighted sum of pixels i.e., each threshold pixel value is multiplied by that pixel's x-location).

  8. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming.

    PubMed

    Rosenberg, Michael; Thornton, Ashleigh L; Lay, Brendan S; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results.

  9. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming

    PubMed Central

    Rosenberg, Michael; Lay, Brendan S.; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results. PMID:27442437

  10. A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors.

    PubMed

    Chen, Bor-Rong; Patel, Shyamal; Buckley, Thomas; Rednic, Ramona; McClure, Douglas J; Shih, Ludy; Tarsy, Daniel; Welsh, Matt; Bonato, Paolo

    2011-03-01

    This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client with video conferencing capability. Besides, the platform has the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when 800 kb/s of bandwidth were available and we used a 40% video compression, and data feature upload requiring 1 min of extra time following a 10 min interactive session. These results indicate that the proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the late stages of the disease.

  11. Low-cost human motion capture system for postural analysis onboard ships

    NASA Astrophysics Data System (ADS)

    Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore

    2011-07-01

    The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.

  12. Reliability of smartphone-based teleradiology for evaluating thoracolumbar spine fractures.

    PubMed

    Stahl, Ido; Dreyfuss, Daniel; Ofir, Dror; Merom, Lior; Raichel, Michael; Hous, Nir; Norman, Doron; Haddad, Elias

    2017-02-01

    Timely interpretation of computed tomography (CT) scans is of paramount importance in diagnosing and managing spinal column fractures, which can be devastating. Out-of-hospital, on-call spine surgeons are often asked to evaluate CT scans of patients who have sustained trauma to the thoracolumbar spine to make diagnosis and to determine the appropriate course of urgent treatment. Capturing radiographic scans and video clips from computer screens and sending them as instant messages have become common means of communication between physicians, aiding in triaging and transfer decision-making in orthopedic and neurosurgical emergencies. The present study aimed to compare the reliability of interpreting CT scans viewed by orthopedic surgeons in two ways for diagnosing, classifying, and treatment planning for thoracolumbar spine fractures: (1) captured as video clips from standard workstation-based picture archiving and communication system (PACS) and sent via a smartphone-based instant messaging application for viewing on a smartphone; and (2) viewed directly on a PACS. Reliability and agreement study. Thirty adults with thoracolumbar spine fractures who had been consecutively admitted to the Division of Orthopedic Surgery of a Level I trauma center during 2014. Intraobserver agreement. CT scans were captured by use of an iPhone 6 smartphone from a computer screen displaying PACS. Then by use of the WhatsApp instant messaging application, video clips of the scans were sent to the personal smartphones of five spine surgeons. These evaluators were asked to diagnose, classify, and determine the course of treatment for each case. Evaluation of the cases was repeated 4 weeks later, this time using the standard method of workstation-based PACS. Intraobserver agreement was interpreted based on the value of Cohen's kappa statistic. The study did not receive any outside funding. Intraobserver agreement for determining fracture level was near perfect (κ=0.94). Intraobserver agreement for AO classification, proposed treatment, neural canal penetration, and Denis classification were substantial (κ values, 0.75, 0.73, 0.71, and 0.69, respectively). Intraobserver agreement for loss of vertebral height and kyphosis were moderate (κ values, 0.55 and 0.45, respectively) CONCLUSIONS: Video clips of CT scans can be readily captured by a smartphone from a workstation-based PACS and then transmitted by use of the WhatsApp instant messaging application. Diagnosing, classifying, and proposing treatment of fractures of the thoracic and lumbar spine can be made with equal reliability by evaluating video clips of CT scans transmitted to a smartphone or by the standard method of viewing the CT scan on a workstation-based PACS. Evaluating video clips of CT scans transmitted to a smartphone is a readily accessible, simple, and inexpensive method. We believe that it can be reliably used for consultations between the emergency physicians or orthopedic or neurosurgical residents with offsite, on-call specialists. It might also enable rural orcommunity emergency department physicians to communicate more efficiently and effectively with surgeons in tertiary referral centers. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    PubMed

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  14. The effects of water depth on prey detection and capture by juvenile coho salmon and steelhead

    Treesearch

    J.J. Piccolo; N.F. Hughes; M.D. Bryant

    2007-01-01

    We used three-dimensional video analysis of feeding experiments to determine the effects of water depth on prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (0. mykiss irideus). Depth treatments were 0.15, 0.30, 0.45 and 0.60 m. Mean prey capture probabilities for both species...

  15. Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.

    PubMed

    Venkataraman, Vinay; Turaga, Pavan

    2016-12-01

    This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.

  16. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  17. Capturing Creativity Using Digital Video

    ERIC Educational Resources Information Center

    Toyn, Mike

    2008-01-01

    This paper evaluates the use of a creative learning activity in which postgraduate student teachers were required to collaboratively make short digital videos. The purpose was for student teachers to experience and evaluate a meaningful learning activity and to consider how they might reconstruct such an activity within their own teaching practice…

  18. Copper clusters capture and convert carbon dioxide to make fuel | Argonne

    Science.gov Websites

    Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Careers Education Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Copper clusters sites, the current method of reduction creates high-pressure conditions to facilitate stronger bonds

  19. Evaluation of Android Smartphones for Telepathology

    PubMed Central

    Ekong, Donald; Liu, Fang; Brown, G. Thomas; Ghosh, Arunima; Fontelo, Paul

    2017-01-01

    Background: In the year 2014, Android smartphones accounted for one-third of mobile connections globally but are predicted to increase to two-thirds by 2020. In developing countries, where teleconsultations can benefit health-care providers most, the ratio is even higher. This study compared the use of two Android phones, an 8 megapixel (MP) and a 16 MP phone, for capturing microscopic images. Method: The Android phones were used to capture images and videos of a gastrointestinal biopsy teaching set of referred cases from the Armed Forces Institute of Pathology (AFIP). The acquired images and videos were reviewed online by two pathologists for image quality, adequacy for diagnosis, usefulness of video overviews, and confidence in diagnosis, on a 5-point Likert scale. Results: The results show higher means in a 5-point Likert scale for the 8 MP versus the 16 MP phone that were statistically significant in adequacy of images (4.0 vs. 3.75) for rendering diagnosis and for agreement with the reference diagnosis (2.33 vs. 2.07). Although the quality of images was found higher in the 16 MP phone (3.8 vs. 3.65), these were not statistically significant. Adding video images of the entire specimen was found to be useful for evaluating the slides (combined mean, 4.0). Conclusion: For telepathology and other image dependent practices in developing countries, Android phones could be a useful tool for capturing images. PMID:28480119

  20. Evaluation of Android Smartphones for Telepathology.

    PubMed

    Ekong, Donald; Liu, Fang; Brown, G Thomas; Ghosh, Arunima; Fontelo, Paul

    2017-01-01

    In the year 2014, Android smartphones accounted for one-third of mobile connections globally but are predicted to increase to two-thirds by 2020. In developing countries, where teleconsultations can benefit health-care providers most, the ratio is even higher. This study compared the use of two Android phones, an 8 megapixel (MP) and a 16 MP phone, for capturing microscopic images. The Android phones were used to capture images and videos of a gastrointestinal biopsy teaching set of referred cases from the Armed Forces Institute of Pathology (AFIP). The acquired images and videos were reviewed online by two pathologists for image quality, adequacy for diagnosis, usefulness of video overviews, and confidence in diagnosis, on a 5-point Likert scale. The results show higher means in a 5-point Likert scale for the 8 MP versus the 16 MP phone that were statistically significant in adequacy of images (4.0 vs. 3.75) for rendering diagnosis and for agreement with the reference diagnosis (2.33 vs. 2.07). Although the quality of images was found higher in the 16 MP phone (3.8 vs. 3.65), these were not statistically significant. Adding video images of the entire specimen was found to be useful for evaluating the slides (combined mean, 4.0). For telepathology and other image dependent practices in developing countries, Android phones could be a useful tool for capturing images.

  1. The reliability and criterion validity of 2D video assessment of single leg squat and hop landing.

    PubMed

    Herrington, Lee; Alenezi, Faisal; Alzhrani, Msaad; Alrayani, Hasan; Jones, Richard

    2017-06-01

    The objective was to assess the intra-tester, within and between day reliability of measurement of hip adduction (HADD) and frontal plane projection angles (FPPA) during single leg squat (SLS) and single leg landing (SLL) using 2D video and the validity of these measurements against those found during 3D motion capture. 15 healthy subjects had their SLS and SLL assessed using 3D motion capture and video analysis. Inter-tester reliability for both SLS and SLL when measuring FPPA and HADD show excellent correlations (ICC 2,1 0.97-0.99). Within and between day assessment of SLS and SLL showed good to excellent correlations for both variables (ICC 3,1 0.72-91). 2D FPPA measures were found to have good correlation with knee abduction angle in 3-D (r=0.79, p=0.008) during SLS, and also to knee abduction moment (r=0.65, p=0.009). 2D HADD showed very good correlation with 3D HADD during SLS (r=0.81, p=0.001), and a good correlation during SLL (r=0.62, p=0.013). All other associations were weak (r<0.4). This study suggests that 2D video kinematics have a reasonable association to what is being measured with 3D motion capture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Effect of Interactive Simulations on Exercise Adherence with Overweight and Obese Adults

    DTIC Science & Technology

    2011-03-01

    bicycle: one while watching television and the other one while playing video games . Related variables tested were exercise motivation and self-efficacy in...overweight and obese adults. Unique software was written to integrate the exercise equipment/ video game components, and to capture and transfer...Start Letter was received on Dec 20, 2010 and recruitment of participants commenced in Feb 2011. Prototype exercise bicycle with video gaming console

  3. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    NASA Astrophysics Data System (ADS)

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  4. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    PubMed

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  5. An educational video to promote multi-factorial approaches for fall and injury prevention in long-term care facilities

    PubMed Central

    2014-01-01

    Background Older adults living in long term care (LTC) settings are vulnerable to fall-related injuries. There is a need to develop and implement evidence-based approaches to address fall injury prevention in LTC. Knowledge translation (KT) interventions to support the uptake of evidence-based approaches to fall injury prevention in LTC need to be responsive to the learning needs of LTC staff and use mediums, such as videos, that are accessible and easy-to-use. This article describes the development of two unique educational videos to promote fall injury prevention in long-term care (LTC) settings. These videos are unique from other fall prevention videos in that they include video footage of real life falls captured in the LTC setting. Methods Two educational videos were developed (2012–2013) to support the uptake of findings from a study exploring the causes of falls based on video footage captured in LTC facilities. The videos were developed by: (1) conducting learning needs assessment in LTC settings via six focus groups (2) liaising with LTC settings to identify learning priorities through unstructured conversations; and (3) aligning the content with principles of adult learning theory. Results The videos included footage of falls, interviews with older adults and fall injury prevention experts. The videos present evidence-based fall injury prevention recommendations aligned to the needs of LTC staff and: (1) highlight recommendations deemed by LTC staff as most urgent (learner-centered learning); (2) highlight negative impacts of falls on older adults (encourage meaning-making); and, (3) prompt LTC staff to reflect on fall injury prevention practices (encourage critical reflection). Conclusions Educational videos are an important tool available to researchers seeking to translate evidence-based recommendations into LTC settings. Additional research is needed to determine their impact on practice. PMID:24884899

  6. Method and apparatus for calibrating a tiled display

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Jen (Inventor); Johnson, Michael J. (Inventor); Chandrasekhar, Rajesh (Inventor)

    2001-01-01

    A display system that can be calibrated and re-calibrated with a minimal amount of manual intervention. To accomplish this, one or more cameras are provided to capture an image of the display screen. The resulting captured image is processed to identify any non-desirable characteristics, including visible artifacts such as seams, bands, rings, etc. Once the non-desirable characteristics are identified, an appropriate transformation function is determined. The transformation function is used to pre-warp the input video signal that is provided to the display such that the non-desirable characteristics are reduced or eliminated from the display. The transformation function preferably compensates for spatial non-uniformity, color non-uniformity, luminance non-uniformity, and other visible artifacts.

  7. Optical Fabrication and Measurement: AR&C and NGST

    NASA Technical Reports Server (NTRS)

    Martin, Greg; Engelhaupt, Darell

    1997-01-01

    The need exists at MSFC for research and development within three major areas: (1) Automated Rendezvous and Capture (AR&C) including Video Guidance System (VGS); (2) Next Generation Space Telescope, (NGST); and (3) replicated optics. AR&C/VGS is a laser retroreflection guidance and tracking device which is used from the shuttle to provide video information regarding deployment and guidance of released satellites. NGST is the next large telescope for space to complement Hubble Space Telescope. This will be larger than HST and may be produced in segments to be assembled and aligned in space utilizing advanced mechanisms and materials. The replicated optics will involve a variety of advanced procedures and materials to produce x-ray collimating as well as imaging telescopes and optical components.

  8. The ALFA (Activity Log Files Aggregation) toolkit: a method for precise observation of the consultation.

    PubMed

    de Lusignan, Simon; Kumarapeli, Pushpa; Chan, Tom; Pflug, Bernhard; van Vlymen, Jeremy; Jones, Beryl; Freeman, George K

    2008-09-08

    There is a lack of tools to evaluate and compare Electronic patient record (EPR) systems to inform a rational choice or development agenda. To develop a tool kit to measure the impact of different EPR system features on the consultation. We first developed a specification to overcome the limitations of existing methods. We divided this into work packages: (1) developing a method to display multichannel video of the consultation; (2) code and measure activities, including computer use and verbal interactions; (3) automate the capture of nonverbal interactions; (4) aggregate multiple observations into a single navigable output; and (5) produce an output interpretable by software developers. We piloted this method by filming live consultations (n = 22) by 4 general practitioners (GPs) using different EPR systems. We compared the time taken and variations during coded data entry, prescribing, and blood pressure (BP) recording. We used nonparametric tests to make statistical comparisons. We contrasted methods of BP recording using Unified Modeling Language (UML) sequence diagrams. We found that 4 channels of video were optimal. We identified an existing application for manual coding of video output. We developed in-house tools for capturing use of keyboard and mouse and to time stamp speech. The transcript is then typed within this time stamp. Although we managed to capture body language using pattern recognition software, we were unable to use this data quantitatively. We loaded these observational outputs into our aggregation tool, which allows simultaneous navigation and viewing of multiple files. This also creates a single exportable file in XML format, which we used to develop UML sequence diagrams. In our pilot, the GP using the EMIS LV (Egton Medical Information Systems Limited, Leeds, UK) system took the longest time to code data (mean 11.5 s, 95% CI 8.7-14.2). Nonparametric comparison of EMIS LV with the other systems showed a significant difference, with EMIS PCS (Egton Medical Information Systems Limited, Leeds, UK) (P = .007), iSoft Synergy (iSOFT, Banbury, UK) (P = .014), and INPS Vision (INPS, London, UK) (P = .006) facilitating faster coding. In contrast, prescribing was fastest with EMIS LV (mean 23.7 s, 95% CI 20.5-26.8), but nonparametric comparison showed no statistically significant difference. UML sequence diagrams showed that the simplest BP recording interface was not the easiest to use, as users spent longer navigating or looking up previous blood pressures separately. Complex interfaces with free-text boxes left clinicians unsure of what to add. The ALFA method allows the precise observation of the clinical consultation. It enables rigorous comparison of core elements of EPR systems. Pilot data suggests its capacity to demonstrate differences between systems. Its outputs could provide the evidence base for making more objective choices between systems.

  9. Blurry-frame detection and shot segmentation in colonoscopy videos

    NASA Astrophysics Data System (ADS)

    Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny

    2003-12-01

    Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.

  10. Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Yeo, Boon-Lock; Liu, Bede

    1996-03-01

    Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.

  11. Optimized Two-Party Video Chat with Restored Eye Contact Using Graphics Hardware

    NASA Astrophysics Data System (ADS)

    Dumont, Maarten; Rogmans, Sammy; Maesen, Steven; Bekaert, Philippe

    We present a practical system prototype to convincingly restore eye contact between two video chat participants, with a minimal amount of constraints. The proposed six-fold camera setup is easily integrated into the monitor frame, and is used to interpolate an image as if its virtual camera captured the image through a transparent screen. The peer user has a large freedom of movement, resulting in system specifications that enable genuine practical usage. Our software framework thereby harnesses the powerful computational resources inside graphics hardware, and maximizes arithmetic intensity to achieve over real-time performance up to 42 frames per second for 800 ×600 resolution images. Furthermore, an optimal set of fine tuned parameters are presented, that optimizes the end-to-end performance of the application to achieve high subjective visual quality, and still allows for further algorithmic advancement without loosing its real-time capabilities.

  12. Intermediate view synthesis for eye-gazing

    NASA Astrophysics Data System (ADS)

    Baek, Eu-Ttuem; Ho, Yo-Sung

    2015-01-01

    Nonverbal communication, also known as body language, is an important form of communication. Nonverbal behaviors such as posture, eye contact, and gestures send strong messages. In regard to nonverbal communication, eye contact is one of the most important forms that an individual can use. However, lack of eye contact occurs when we use video conferencing system. The disparity between locations of the eyes and a camera gets in the way of eye contact. The lock of eye gazing can give unapproachable and unpleasant feeling. In this paper, we proposed an eye gazing correction for video conferencing. We use two cameras installed at the top and the bottom of the television. The captured two images are rendered with 2D warping at virtual position. We implement view morphing to the detected face, and synthesize the face and the warped image. Experimental results verify that the proposed system is effective in generating natural gaze-corrected images.

  13. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet

    PubMed Central

    Machovsky-Capuska, Gabriel E.; Howland, Howard C.; Raubenheimer, David; Vaughn-Hirshorn, Robin; Würsig, Bernd; Hauber, Mark E.; Katzir, Gadi

    2012-01-01

    Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air. PMID:22874749

  14. Instant replay.

    PubMed

    Rosenthal, David I

    2013-06-01

    With widespread adoption of electronic health records (EHRs) and electronic clinical documentation, health care organizations now have greater faculty to review clinical data and evaluate the efficacy of quality improvement efforts. Unfortunately, I believe there is a fundamental gap between actual health care delivery and what we document in the current EHR systems. This process of capturing the patient encounter, which I'll refer to as transcription, is prone to significant data loss due to inadequate methods of data capture, multiple points of view, and bias and subjectivity in the transcriptional process. Our current EHR, text-based clinical documentation systems are lossy abstractions - one sided accounts of what take place between patients and providers. Our clinical notes contain the breadcrumbs of relationships, conversations, physical exams, and procedures but often lack the ability to capture the form, the emotions, the images, the nonverbal communication, and the actual narrative of interactions between human beings. I believe that a video record, in conjunction with objective transcriptional services and other forms of data capture, may provide a closer approximation to the truth of health care delivery and may be a valuable tool for healthcare improvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An Experimental Determination of Subatmospheric Burning Rates and Critical Diameters for AP/HTPB Propellant

    DTIC Science & Technology

    1988-12-01

    round uses an AP/HTPB propellant in the projectile base to reduce base drag during flight . Subatmospheric burning rates, simulating operation at...the partial vacuum created at the projectile base in flight . The combustion gases escape the combustion chamber through an unchoked port in the...determination. Combustion of the sample was video recorded by a system with both synchronized electronic strobe and shutter. The camera captures 60 fields

  16. Identifying Common Mathematical Misconceptions from Actions in Educational Video Games. CRESST Report 838

    ERIC Educational Resources Information Center

    Kerr, Deirdre

    2014-01-01

    Educational video games provide an opportunity for students to interact with and explore complex representations of academic content and allow for the examination of problem-solving strategies and mistakes that can be difficult to capture in more traditional environments. However, data from such games are notoriously difficult to analyze. This…

  17. Wearable Cameras as a Tool to Capture Preservice Teachers' Marked and Recorded Noticing

    ERIC Educational Resources Information Center

    Estapa, Anne; Amador, Julie

    2016-01-01

    Teacher educators use a multitude of technological sources to enhance teachers' learning. More specifically, many teacher educators incorporate video as a tool for supporting preservice teachers to analyze noticing of pivotal classroom interactions; however, this video is often from a perspective distinct from the teachers' view. This study…

  18. Selfies of Imperial Cormorants (Phalacrocorax atriceps): What Is Happening Underwater?

    PubMed Central

    Gómez-Laich, Agustina; Yoda, Ken; Zavalaga, Carlos; Quintana, Flavio

    2015-01-01

    During the last few years, the development of animal-borne still cameras and video recorders has enabled researchers to observe what a wild animal sees in the field. In the present study, we deployed miniaturized video recorders to investigate the underwater foraging behavior of Imperial cormorants (Phalacrocorax atriceps). Video footage was obtained from 12 animals and 49 dives comprising a total of 8.1 h of foraging data. Video information revealed that Imperial cormorants are almost exclusively benthic feeders. While foraging along the seafloor, animals did not necessarily keep their body horizontal but inclined it downwards. The head of the instrumented animal was always visible in the videos and in the majority of the dives it was moved constantly forward and backward by extending and contracting the neck while travelling on the seafloor. Animals detected prey at very short distances, performed quick capture attempts and spent the majority of their time on the seafloor searching for prey. Cormorants foraged at three different sea bottom habitats and the way in which they searched for food differed between habitats. Dives were frequently performed under low luminosity levels suggesting that cormorants would locate prey with other sensory systems in addition to sight. Our video data support the idea that Imperial cormorants’ efficient hunting involves the use of specialized foraging techniques to compensate for their poor underwater vision. PMID:26367384

  19. Selfies of Imperial Cormorants (Phalacrocorax atriceps): What Is Happening Underwater?

    PubMed

    Gómez-Laich, Agustina; Yoda, Ken; Zavalaga, Carlos; Quintana, Flavio

    2015-01-01

    During the last few years, the development of animal-borne still cameras and video recorders has enabled researchers to observe what a wild animal sees in the field. In the present study, we deployed miniaturized video recorders to investigate the underwater foraging behavior of Imperial cormorants (Phalacrocorax atriceps). Video footage was obtained from 12 animals and 49 dives comprising a total of 8.1 h of foraging data. Video information revealed that Imperial cormorants are almost exclusively benthic feeders. While foraging along the seafloor, animals did not necessarily keep their body horizontal but inclined it downwards. The head of the instrumented animal was always visible in the videos and in the majority of the dives it was moved constantly forward and backward by extending and contracting the neck while travelling on the seafloor. Animals detected prey at very short distances, performed quick capture attempts and spent the majority of their time on the seafloor searching for prey. Cormorants foraged at three different sea bottom habitats and the way in which they searched for food differed between habitats. Dives were frequently performed under low luminosity levels suggesting that cormorants would locate prey with other sensory systems in addition to sight. Our video data support the idea that Imperial cormorants' efficient hunting involves the use of specialized foraging techniques to compensate for their poor underwater vision.

  20. Spatial Pyramid Covariance based Compact Video Code for Robust Face Retrieval in TV-series.

    PubMed

    Li, Yan; Wang, Ruiping; Cui, Zhen; Shan, Shiguang; Chen, Xilin

    2016-10-10

    We address the problem of face video retrieval in TV-series which searches video clips based on the presence of specific character, given one face track of his/her. This is tremendously challenging because on one hand, faces in TV-series are captured in largely uncontrolled conditions with complex appearance variations, and on the other hand retrieval task typically needs efficient representation with low time and space complexity. To handle this problem, we propose a compact and discriminative representation for the huge body of video data, named Compact Video Code (CVC). Our method first models the face track by its sample (i.e., frame) covariance matrix to capture the video data variations in a statistical manner. To incorporate discriminative information and obtain more compact video signature suitable for retrieval, the high-dimensional covariance representation is further encoded as a much lower-dimensional binary vector, which finally yields the proposed CVC. Specifically, each bit of the code, i.e., each dimension of the binary vector, is produced via supervised learning in a max margin framework, which aims to make a balance between the discriminability and stability of the code. Besides, we further extend the descriptive granularity of covariance matrix from traditional pixel-level to more general patchlevel, and proceed to propose a novel hierarchical video representation named Spatial Pyramid Covariance (SPC) along with a fast calculation method. Face retrieval experiments on two challenging TV-series video databases, i.e., the Big Bang Theory and Prison Break, demonstrate the competitiveness of the proposed CVC over state-of-the-art retrieval methods. In addition, as a general video matching algorithm, CVC is also evaluated in traditional video face recognition task on a standard Internet database, i.e., YouTube Celebrities, showing its quite promising performance by using an extremely compact code with only 128 bits.

  1. Imaging the developing heart: synchronized time-lapse microscopy during developmental changes

    NASA Astrophysics Data System (ADS)

    Nelson, Carl J.; Buckley, Charlotte; Mullins, John J.; Denvir, Martin A.; Taylor, Jonathan

    2018-02-01

    How do you use imaging to analyse the development of the heart, which not only changes shape but also undergoes constant, high-speed, quasi-periodic changes? We have integrated ideas from prospective and retrospective optical gating to capture long-term, phase-locked developmental time-lapse videos. In this paper we demonstrate the success of this approach over a key developmental time period: heart looping, where large changes in heart shape prevent previous prospective gating approaches from capturing phase- locked videos. We use the comparison with other approaches to in vivo heart imaging to highlight the importance of collecting the most appropriate data for the biological question.

  2. Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task.

    PubMed

    Ochiai, Tetsuji; Mushiake, Hajime; Tanji, Jun

    2005-07-01

    The ventral premotor cortex (PMv) has been implicated in the visual guidance of movement. To examine whether neuronal activity in the PMv is involved in controlling the direction of motion of a visual image of the hand or the actual movement of the hand, we trained a monkey to capture a target that was presented on a video display using the same side of its hand as was displayed on the video display. We found that PMv neurons predominantly exhibited premovement activity that reflected the image motion to be controlled, rather than the physical motion of the hand. We also found that the activity of half of such direction-selective PMv neurons depended on which side (left versus right) of the video image of the hand was used to capture the target. Furthermore, this selectivity for a portion of the hand was not affected by changing the starting position of the hand movement. These findings suggest that PMv neurons play a crucial role in determining which part of the body moves in which direction, at least under conditions in which a visual image of a limb is used to guide limb movements.

  3. Teasing Apart Complex Motions using VideoPoint

    NASA Astrophysics Data System (ADS)

    Fischer, Mark

    2002-10-01

    Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.

  4. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  5. Biotube

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    Biotube was developed for plant gravitropic research investigating the potential for magnetic fields to orient plant roots as they grow in microgravity. Prior to flight, experimental seeds are placed into seed cassettes, that are capable of containing up to 10 seeds, and inserted between two magnets located within one of three Magnetic Field Chamber (MFC). Biotube is stored within an International Space Station (ISS) stowage locker and provides three levels of containment for chemical fixatives. Features include monitoring of temperature, fixative/ preservative delivery to specimens, and real-time video imaging downlink. Biotube's primary subsystems are: (1) The Water Delivery System that automatically activates and controls the delivery of water (to initiate seed germination). (2) The Fixative Storage and Delivery System that stores and delivers chemical fixative or RNA later to each seed cassette. (3) The Digital Imaging System consisting of 4 charge-coupled device (CCD) cameras, a video multiplexer, a lighting multiplexer, and 16 infrared light-emitting diodes (LEDs) that provide illumination while the photos are being captured. (4) The Command and Data Management System that provides overall control of the integrated subsystems, graphical user interface, system status and error message display, image display, and other functions.

  6. Super-resolution image reconstruction from UAS surveillance video through affine invariant interest point-based motion estimation

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent

    2008-01-01

    In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.

  7. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  8. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH-image software.

    PubMed

    Shaw, S L; Salmon, E D; Quatrano, R S

    1995-12-01

    In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.

  9. Space-time light field rendering.

    PubMed

    Wang, Huamin; Sun, Mingxuan; Yang, Ruigang

    2007-01-01

    In this paper, we propose a novel framework called space-time light field rendering, which allows continuous exploration of a dynamic scene in both space and time. Compared to existing light field capture/rendering systems, it offers the capability of using unsynchronized video inputs and the added freedom of controlling the visualization in the temporal domain, such as smooth slow motion and temporal integration. In order to synthesize novel views from any viewpoint at any time instant, we develop a two-stage rendering algorithm. We first interpolate in the temporal domain to generate globally synchronized images using a robust spatial-temporal image registration algorithm followed by edge-preserving image morphing. We then interpolate these software-synchronized images in the spatial domain to synthesize the final view. In addition, we introduce a very accurate and robust algorithm to estimate subframe temporal offsets among input video sequences. Experimental results from unsynchronized videos with or without time stamps show that our approach is capable of maintaining photorealistic quality from a variety of real scenes.

  10. Counting repetitions: an observational study of video game play in people with chronic poststroke hemiparesis.

    PubMed

    Peters, Denise M; McPherson, Aaron K; Fletcher, Blake; McClenaghan, Bruce A; Fritz, Stacy L

    2013-09-01

    The use of video gaming as a therapeutic intervention has increased in popularity; however, the number of repetitions in comparison with traditional therapy methods has yet to be investigated. The primary purpose of this study was to document and compare the number of repetitions performed while playing 1 of 2 video gaming systems for a time frame similar to that of a traditional therapy session in individuals with chronic stroke. Twelve participants with chronic stroke (mean age, 66.8 ± 8.2 years; time poststroke, 19.2 ± 15.4 months) completed video game play sessions, using either the Nintendo Wii or the Playstation 2 EyeToy. A total of 203 sessions were captured on video record; of these, 50 sessions for each gaming system were randomly selected for analysis. For each selected record, active upper and lower extremity repetitions were counted for a 36-minute segment of the recorded session. The Playstation 2 EyeToy group produced an average of 302.5 (228.1) upper extremity active movements and 189.3 (98.3) weight shifts, significantly higher than the Nintendo Wii group, which produced an average of 61.9 (65.7) upper extremity active movements and 109.7 (78.5) weight shifts. No significant differences were found in steps and other lower extremity active movements between the 2 systems. The Playstation 2 EyeToy group produced more upper extremity active movements and weight shifting movements than the Nintendo Wii group; the number and type of repetitions varied across games. Active gaming (specifically Playstation 2 EyeToy) provided more upper extremity repetitions than those reported in the literature by using traditional therapy, suggesting that it may be a modality to promote increased active movements in individuals poststroke.

  11. Competition between Visual Events Modulates the Influence of Salience during Free-Viewing of Naturalistic Videos

    PubMed Central

    Nardo, Davide; Console, Paola; Reverberi, Carlo; Macaluso, Emiliano

    2016-01-01

    In daily life the brain is exposed to a large amount of external signals that compete for processing resources. The attentional system can select relevant information based on many possible combinations of goal-directed and stimulus-driven control signals. Here, we investigate the behavioral and physiological effects of competition between distinctive visual events during free-viewing of naturalistic videos. Nineteen healthy subjects underwent functional magnetic resonance imaging (fMRI) while viewing short video-clips of everyday life situations, without any explicit goal-directed task. Each video contained either a single semantically-relevant event on the left or right side (Lat-trials), or multiple distinctive events in both hemifields (Multi-trials). For each video, we computed a salience index to quantify the lateralization bias due to stimulus-driven signals, and a gaze index (based on eye-tracking data) to quantify the efficacy of the stimuli in capturing attention to either side. Behaviorally, our results showed that stimulus-driven salience influenced spatial orienting only in presence of multiple competing events (Multi-trials). fMRI results showed that the processing of competing events engaged the ventral attention network, including the right temporoparietal junction (R TPJ) and the right inferior frontal cortex. Salience was found to modulate activity in the visual cortex, but only in the presence of competing events; while the orienting efficacy of Multi-trials affected activity in both the visual cortex and posterior parietal cortex (PPC). We conclude that in presence of multiple competing events, the ventral attention system detects semantically-relevant events, while regions of the dorsal system make use of saliency signals to select relevant locations and guide spatial orienting. PMID:27445760

  12. Utilizing Commercial Hardware and Open Source Computer Vision Software to Perform Motion Capture for Reduced Gravity Flight

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the ability to perform multi-camera 3 dimensional reconstruction. Utilizing OpenCV, via the Python programming language, a set of tools has been developed to perform motion capture in confined spaces using commercial cameras. Four Sony Video Cameras were intrinsically calibrated prior to flight. Intrinsic calibration provides a set of camera specific parameters to remove geometric distortion of the lens and sensor (specific to each individual camera). A set of high contrast markers were placed on the exercising subject (safety also necessitated that they be soft in case they become detached during parabolic flight); small yarn balls were used. Extrinsic calibration, the determination of camera location and orientation parameters, is performed using fixed landmark markers shared by the camera scenes. Additionally a wand calibration, the sweeping of the camera scenes simultaneously, was also performed. Techniques have been developed to perform intrinsic calibration, extrinsic calibration, isolation of the markers in the scene, calculation of marker 2D centroids, and 3D reconstruction from multiple cameras. These methods have been tested in the laboratory side-by-side comparison to a traditional motion capture system and also on a parabolic flight.

  13. Hierarchical Context Modeling for Video Event Recognition.

    PubMed

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  14. Video-mosaicking of in vivo reflectance confocal microscopy images for noninvasive examination of skin lesion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.

  15. Quantifying cell mono-layer cultures by video imaging.

    PubMed

    Miller, K S; Hook, L A

    1996-04-01

    A method is described in which the relative number of adherent cells in multi-well tissue-culture plates is assayed by staining the cells with Giemsa and capturing the image of the stained cells with a video camera and charged-coupled device. The resultant image is quantified using the associated video imaging software. The method is shown to be sensitive and reproducible and should be useful for studies where quantifying relative cell numbers and/or proliferation in vitro is required.

  16. Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.

    PubMed

    Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf

    2016-01-01

    One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.

  17. A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2013-04-01

    Pixel correlation uses the same reduction techniques as speckle imaging but relies on autocorrelation among captured pixel hits rather than true speckles. A video camera operating at speeds (8-66 milliseconds) similar to lucky imaging to capture 400-1,000 video frames. The AVI files are converted to bitmap images and analyzed using the interferometric algorithms in REDUC using all frames. This results in a series of corellograms from which theta and rho can be measured. Results using a 20 cm (8") Dall-Kirkham working at f22.5 are presented for doubles with separations between 1" to 5.7" under average seeing conditions. I conclude that this form of visualizing and analyzing visual double stars is a viable alternative to lucky imaging that can be employed by telescopes that are too small in aperture to capture a sufficient number of speckles for true speckle interferometry.

  18. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  19. Exploring the Nonformal Adult Educator in Twenty-First Century Contexts Using Qualitative Video Data Analysis Techniques

    ERIC Educational Resources Information Center

    Alston, Geleana Drew; Ellis-Hervey, Nina

    2015-01-01

    This study examined how "YouTube" creates a unique, nonformal cyberspace for Black females to vlog about natural hair. Specifically, we utilized qualitative video data analysis techniques to understand how using "YouTube" as a facilitation tool has the ability to collectively capture and maintain an audience of more than a…

  20. Vodcasts and Captures: Using Multimedia to Improve Student Learning in Introductory Biology

    ERIC Educational Resources Information Center

    Walker, J. D.; Cotner, Sehoya; Beermann, Nicholas

    2011-01-01

    This study investigated the use of multimedia materials to enhance student learning in a large, introductory biology course. Two sections of this course were taught by the same instructor in the same semester. In one section, video podcasts or "vodcasts" were created which combined custom animation and video segments with music and…

  1. Making the Decision to Provide Enhanced Podcasts to Post-Secondary Science Students

    ERIC Educational Resources Information Center

    Holbrook, Jane; Dupont, Christine

    2011-01-01

    Providing students with supplementary course materials such as audio podcasts, enhanced podcasts, video podcasts and other forms of lecture-capture video files after a lecture is now a common occurrence in many post-secondary courses. We used an online questionnaire to ask students how helpful enhanced podcasts were for a variety of course…

  2. The Greatest Shadow on Earth

    ERIC Educational Resources Information Center

    Hughes, Stephen; Wimmer, Jason; Towsey, Michael; Fahmi, Marco; Winslett, Greg; Dubler, Gabriel; Le Prou, Angela; Loose, David

    2014-01-01

    In a total solar eclipse, the Moon completely covers the Sun, casting a shadow several hundred km wide across the face of the Earth. This paper describes observations of the 14 November 2012 total eclipse of the Sun visible from north Queensland, Australia. The edge of the umbra was captured on video during totality, and this video is provided for…

  3. The Conversational Framework and the ISE "Basketball Shot" Video Analysis Activity

    ERIC Educational Resources Information Center

    English, Vincent; Crotty, Yvonne; Farren, Margaret

    2015-01-01

    Inspiring Science Education (ISE) (http://www.inspiringscience.eu/) is an EU funded initiative that seeks to further the use of inquiry-based science learning (IBSL) through the medium of ICT in the classroom. The Basketball Shot is a scenario (lesson plan) that involves the use of video capture to help the student investigate the concepts of…

  4. Creating a Video Documentary as a Tool for Reflection and Assessment: Capturing Guerilla Marketing in Action

    ERIC Educational Resources Information Center

    Lee, Seung Hwan; Hoffman, K. Douglas; Chowdhury, Shahin A.; Sergueeva, Ksenia

    2018-01-01

    In this exercise, students were asked to devise a guerilla marketing campaign that achieved the four primary goals of guerilla marketing: message, unconventionality, hedonics, and value. Students documented their guerilla marketing event (via a video documentary) and discussed how they achieved their four objectives using the concepts and theories…

  5. Through the Eyes of the Participant: Making Connections between Researcher and Subject with Participant Viewpoint Ethnography

    ERIC Educational Resources Information Center

    Wilhoit, Elizabeth D.; Kisselburgh, Lorraine G.

    2016-01-01

    In this article, we introduce participant viewpoint ethnography (PVE), a phenomenological video research method that combines reflexive, interview-based data with video capture of actual experiences. In PVE, participants wear a head-mounted camera to record the phenomena of study from their point of view. The researcher and participant then review…

  6. Feasibility of automated speech sample collection with stuttering children using interactive voice response (IVR) technology.

    PubMed

    Vogel, Adam P; Block, Susan; Kefalianos, Elaina; Onslow, Mark; Eadie, Patricia; Barth, Ben; Conway, Laura; Mundt, James C; Reilly, Sheena

    2015-04-01

    To investigate the feasibility of adopting automated interactive voice response (IVR) technology for remotely capturing standardized speech samples from stuttering children. Participants were 10 6-year-old stuttering children. Their parents called a toll-free number from their homes and were prompted to elicit speech from their children using a standard protocol involving conversation, picture description and games. The automated IVR system was implemented using an off-the-shelf telephony software program and delivered by a standard desktop computer. The software infrastructure utilizes voice over internet protocol. Speech samples were automatically recorded during the calls. Video recordings were simultaneously acquired in the home at the time of the call to evaluate the fidelity of the telephone collected samples. Key outcome measures included syllables spoken, percentage of syllables stuttered and an overall rating of stuttering severity using a 10-point scale. Data revealed a high level of relative reliability in terms of intra-class correlation between the video and telephone acquired samples on all outcome measures during the conversation task. Findings were less consistent for speech samples during picture description and games. Results suggest that IVR technology can be used successfully to automate remote capture of child speech samples.

  7. Developing Short Films of Geoscience Research

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Webley, P. W.; Dehn, J.; Harrild, M.; Kienenberger, D.; Salganek, M.

    2015-12-01

    In today's prevalence of social media and networking, video products are becoming increasingly more useful to communicate research quickly and effectively to a diverse audience, including outreach activities as well as within the research community and to funding agencies. Due to the observational nature of geoscience, researchers often take photos and video footage to document fieldwork or to record laboratory experiments. Here we present how researchers can become more effective storytellers by collaborating with filmmakers to produce short documentary films of their research. We will focus on the use of traditional high-definition (HD) camcorders and HD DSLR cameras to record the scientific story while our research topic focuses on the use of remote sensing techniques, specifically thermal infrared imaging that is often used to analyze time varying natural processes such as volcanic hazards. By capturing the story in the thermal infrared wavelength range, in addition to traditional red-green-blue (RGB) color space, the audience is able to experience the world differently. We will develop a short film specifically designed using thermal infrared cameras that illustrates how visual storytellers can use these new tools to capture unique and important aspects of their research, convey their passion for earth systems science, as well as engage and captive the viewer.

  8. An Innovative Approach for Assessing the Ergonomic Risks of Lifting Tasks Using a Video Motion Capture System

    DTIC Science & Technology

    2006-03-01

    strained, unusually tired, weak or out of breadth (as cited in Townley , Hair, & Strong, 2005). The data used in these trials yielded tables of maximum...stress when lifting objects near the floor (Chaffin, Andersson, & Martin, 1999). Townley et al. (2005) quantified lifting hazards by using a two...Nachemson, A. (1986). Back injuries in industry: A retrospective study, I. Overview and cost analysis. SPINE, 11, 241-245. Townley , A.C., Hair

  9. Video-rate resonant scanning multiphoton microscopy

    PubMed Central

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  10. Conducting a study of Internet-based video conferencing for assessing acute medical problems in a nursing facility.

    PubMed Central

    Weiner, Michael; Schadow, Gunther; Lindbergh, Donald; Warvel, Jill; Abernathy, Greg; Perkins, Susan M.; Dexter, Paul R.; McDonald, Clement J.

    2002-01-01

    We expect the use of real-time, interactive video conferencing to grow, due to more affordable technology and new health policies. Building and implementing portable systems to enable conferencing between physicians and patients requires durable equipment, committed staff, reliable service, and adequate protection and capture of data. We are studying the use of Internet-based conferencing between on-call physicians and patients residing in a nursing facility. We describe the challenges we experienced in constructing the study. Initiating and orchestrating unscheduled conferences needs to be easy, and requirements for training staff in using equipment should be minimal. Studies of health outcomes should include identification of medical conditions most amenable to benefit from conferencing, and outcomes should include positive as well as negative effects. PMID:12463950

  11. Mobility and orientation aid for blind persons using artificial vision

    NASA Astrophysics Data System (ADS)

    Costa, Gustavo; Gusberti, Adrián; Graffigna, Juan Pablo; Guzzo, Martín; Nasisi, Oscar

    2007-11-01

    Blind or vision-impaired persons are limited in their normal life activities. Mobility and orientation of blind persons is an ever-present research subject because no total solution has yet been reached for these activities that pose certain risks for the affected persons. The current work presents the design and development of a device conceived on capturing environment information through stereoscopic vision. The images captured by a couple of video cameras are transferred and processed by configurable and sequential FPGA and DSP devices that issue action signals to a tactile feedback system. Optimal processing algorithms are implemented to perform this feedback in real time. The components selected permit portability; that is, to readily get used to wearing the device.

  12. Quantification of video-taped images in microcirculation research using inexpensive imaging software (Adobe Photoshop).

    PubMed

    Brunner, J; Krummenauer, F; Lehr, H A

    2000-04-01

    Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.

  13. Patterns of Negotiation

    NASA Astrophysics Data System (ADS)

    Sood, Suresh; Pattinson, Hugh

    Traditionally, face-to-face negotiations in the real world have not been looked at as a complex systems interaction of actors resulting in a dynamic and potentially emergent system. If indeed negotiations are an outcome of a dynamic interaction of simpler behavior just as with a complex system, we should be able to see the patterns contributing to the complexities of a negotiation under study. This paper and the supporting research sets out to show B2B (business-to-business) negotiations as complex systems of interacting actors exhibiting dynamic and emergent behavior. This paper discusses the exploratory research based on negotiation simulations in which a large number of business students participate as buyers and sellers. The student interactions are captured on video and a purpose built research method attempts to look for patterns of interactions between actors using visualization techniques traditionally reserved to observe the algorithmic complexity of complex systems. Students are videoed negotiating with partners. Each video is tagged according to a recognized classification and coding scheme for negotiations. The classification relates to the phases through which any particular negotiation might pass, such as laughter, aggression, compromise, and so forth — through some 30 possible categories. Were negotiations more or less successful if they progressed through the categories in different ways? Furthermore, does the data depict emergent pathway segments considered to be more or less successful? This focus on emergence within the data provides further strong support for face-to-face (F2F) negotiations to be construed as complex systems.

  14. Carotid and Femoral Artery Intima-Media Thickness During 6 Months of Spaceflight.

    PubMed

    Arbeille, Philippe; Provost, Romain; Zuj, Kathryn

    2016-05-01

    The objective was to determine the effects of 6 mo of microgravity exposure on conduit artery diameter and wall thickness. Diagnostic images of the common carotid artery (CC) and superficial femoral artery (FA) were obtained using echography which astronauts performed on themselves after receiving minimal training in the use of ultrasound imaging. Echographic video was recorded using a volume capture method directed by a trained sonographer on the ground through videoconferencing. Vessel properties were later assessed by processing the downlinked video. Data were collected from 10 astronauts who performed the echographic video capture at the beginning of the spaceflight (day 15) and near the end of the spaceflight (day 115 to 165). In-flight and postflight measurements were compared to preflight assessments. No significant changes with spaceflight were found for CC and FA diameter. Intima-media thickness (IMT) of the CC was found to be significantly increased (12% ± 4) in all astronauts during the spaceflight (early and late flight) and remained elevated 4 d after returning to Earth. Similarly, FA IMT was increased during the flight but returned to preflight levels 4 d postflight. The experiment demonstrated that, using the volume capture method of echography, untrained astronauts were able to capture enough echographic data to display vessel images of good quality for analysis. The increase in both CC and FA IMT during the flight suggest an adaptation to microgravity and to the confined environment of spaceflight which deserves further investigation.

  15. Age matters: The effect of onset age of video game play on task-switching abilities.

    PubMed

    Hartanto, Andree; Toh, Wei Xing; Yang, Hwajin

    2016-05-01

    Although prior research suggests that playing video games can improve cognitive abilities, recent empirical studies cast doubt on such findings (Unsworth et al., 2015). To reconcile these inconsistent findings, we focused on the link between video games and task switching. Furthermore, we conceptualized video-game expertise as the onset age of active video-game play rather than the frequency of recent gameplay, as it captures both how long a person has played video games and whether the individual began playing during periods of high cognitive plasticity. We found that the age of active onset better predicted switch and mixing costs than did frequency of recent gameplay; specifically, players who commenced playing video games at an earlier age reaped greater benefits in terms of task switching than did those who started at a later age. Moreover, improving switch costs required a more extensive period of video-game experience than did mixing costs; this finding suggests that certain cognitive abilities benefit from different amounts of video game experience.

  16. Capturing Revolute Motion and Revolute Joint Parameters with Optical Tracking

    NASA Astrophysics Data System (ADS)

    Antonya, C.

    2017-12-01

    Optical tracking of users and various technical systems are becoming more and more popular. It consists of analysing sequence of recorded images using video capturing devices and image processing algorithms. The returned data contains mainly point-clouds, coordinates of markers or coordinates of point of interest. These data can be used for retrieving information related to the geometry of the objects, but also to extract parameters for the analytical model of the system useful in a variety of computer aided engineering simulations. The parameter identification of joints deals with extraction of physical parameters (mainly geometric parameters) for the purpose of constructing accurate kinematic and dynamic models. The input data are the time-series of the marker’s position. The least square method was used for fitting the data into different geometrical shapes (ellipse, circle, plane) and for obtaining the position and orientation of revolute joins.

  17. Profcasts and Class Attendance--Does Year in Program Matter?

    ERIC Educational Resources Information Center

    Holbrook, Jane; Dupont, Christine

    2009-01-01

    The use of technology to capture the audio and visual elements of lectures, to engage students in course concepts, and to provide feedback to assignments has become a mainstream practice in higher education through podcasting and lecture capturing mechanisms. Instructors can create short podcasts or videos to produce "nuggets" of information for…

  18. Toward Dietary Assessment via Mobile Phone Video Cameras.

    PubMed

    Chen, Nicholas; Lee, Yun Young; Rabb, Maurice; Schatz, Bruce

    2010-11-13

    Reliable dietary assessment is a challenging yet essential task for determining general health. Existing efforts are manual, require considerable effort, and are prone to underestimation and misrepresentation of food intake. We propose leveraging mobile phones to make this process faster, easier and automatic. Using mobile phones with built-in video cameras, individuals capture short videos of their meals; our software then automatically analyzes the videos to recognize dishes and estimate calories. Preliminary experiments on 20 typical dishes from a local cafeteria show promising results. Our approach complements existing dietary assessment methods to help individuals better manage their diet to prevent obesity and other diet-related diseases.

  19. Soldering In Space Investigation Video

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This video captures Mike Fincke melting solder during the first set of planned In-Space Soldering Investigation (ISSI) experiments onboard the International Space Station (ISS). In the video, Fincke touches the tip of the soldering iron to a wire wrapped with rosin-core solder. Review of the experiment video revealed melting kinetics, wetting characteristics, and equilibrium shape attainment of the solder charge. Samples returned to Earth were examined for porosity and flux distribution as well as microstructural development. ISSI's purpose was to find out how solder behaves in a weightless environment and promote our knowledge of fabrication and repair techniques that might be employed during extended space exploration missions.

  20. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    NASA Astrophysics Data System (ADS)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  1. Hierarchical vs non-hierarchical audio indexation and classification for video genres

    NASA Astrophysics Data System (ADS)

    Dammak, Nouha; BenAyed, Yassine

    2018-04-01

    In this paper, Support Vector Machines (SVMs) are used for segmenting and indexing video genres based on only audio features extracted at block level, which has a prominent asset by capturing local temporal information. The main contribution of our study is to show the wide effect on the classification accuracies while using an hierarchical categorization structure based on Mel Frequency Cepstral Coefficients (MFCC) audio descriptor. In fact, the classification consists in three common video genres: sports videos, music clips and news scenes. The sub-classification may divide each genre into several multi-speaker and multi-dialect sub-genres. The validation of this approach was carried out on over 360 minutes of video span yielding a classification accuracy of over 99%.

  2. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  3. Virtual performer: single camera 3D measuring system for interaction in virtual space

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-10-01

    The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.

  4. Biomechanics Analysis of Combat Sport (Silat) By Using Motion Capture System

    NASA Astrophysics Data System (ADS)

    Zulhilmi Kaharuddin, Muhammad; Badriah Khairu Razak, Siti; Ikram Kushairi, Muhammad; Syawal Abd. Rahman, Mohamed; An, Wee Chang; Ngali, Z.; Siswanto, W. A.; Salleh, S. M.; Yusup, E. M.

    2017-01-01

    ‘Silat’ is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of ‘silat’. By using the 3D Depth Camera motion capture system, two subjects are to perform ‘Jurus Satu’ in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects’ execution of the ‘Jurus Satu’. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects’ execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of ‘Jurus Satu’ and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.

  5. Nyquist Sampling Theorem: Understanding the Illusion of a Spinning Wheel Captured with a Video Camera

    ERIC Educational Resources Information Center

    Levesque, Luc

    2014-01-01

    Inaccurate measurements occur regularly in data acquisition as a result of improper sampling times. An understanding of proper sampling times when collecting data with an analogue-to-digital converter or video camera is crucial in order to avoid anomalies. A proper choice of sampling times should be based on the Nyquist sampling theorem. If the…

  6. Affordances of Using Multiple Videoed Events to Construct a Rich Understanding of Adult-Child Book Readings

    ERIC Educational Resources Information Center

    Nicholas, Maria

    2018-01-01

    This paper explores the affordances of using video-based research to capture a multiplicity of events, along with multimodal representations when producing data related to adult-child book readings. In doing this we answer two questions: (1) why more than one event is needed when seeking a comprehensive collection of information for the purpose of…

  7. Using Mobile Devices and the Adobe Connect Web Conferencing Tool in the Assessment of EFL Student Teacher Performance

    ERIC Educational Resources Information Center

    Bolona Lopez, Maria del Carmen; Ortiz, Margarita Elizabeth; Allen, Christopher

    2015-01-01

    This paper describes a project to use mobile devices and video conferencing technology in the assessment of student English as a Foreign Language (EFL) teacher performance on teaching practice in Ecuador. With the increasing availability of mobile devices with video recording facilities, it has become easier for trainers to capture teacher…

  8. Evaluation of unmanned aerial vehicles (UAVs) for detection of cattle in the Cattle Fever Tick Permanent Quarantine Zone

    USDA-ARS?s Scientific Manuscript database

    An unmanned aerial vehicle was used to capture videos of cattle in pastures to determine the efficiency of this technology for use by Mounted Inspectors in the Permanent Quarantine zone (PQZ) of the Cattle Fever Tick Eradication Program in south Texas along the U.S.-Mexico Border. These videos were ...

  9. Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study

    NASA Astrophysics Data System (ADS)

    Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy

    2016-11-01

    The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).

  10. Calibration of Action Cameras for Photogrammetric Purposes

    PubMed Central

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  11. Calibration of action cameras for photogrammetric purposes.

    PubMed

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-09-18

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  12. Testing optimal foraging theory in a penguin-krill system.

    PubMed

    Watanabe, Yuuki Y; Ito, Motohiro; Takahashi, Akinori

    2014-03-22

    Food is heterogeneously distributed in nature, and understanding how animals search for and exploit food patches is a fundamental challenge in ecology. The classic marginal value theorem (MVT) formulates optimal patch residence time in response to patch quality. The MVT was generally proved in controlled animal experiments; however, owing to the technical difficulties in recording foraging behaviour in the wild, it has been inadequately examined in natural predator-prey systems, especially those in the three-dimensional marine environment. Using animal-borne accelerometers and video cameras, we collected a rare dataset in which the behaviour of a marine predator (penguin) was recorded simultaneously with the capture timings of mobile, patchily distributed prey (krill). We provide qualitative support for the MVT by showing that (i) krill capture rate diminished with time in each dive, as assumed in the MVT, and (ii) dive duration (or patch residence time, controlled for dive depth) increased with short-term, dive-scale krill capture rate, but decreased with long-term, bout-scale krill capture rate, as predicted from the MVT. Our results demonstrate that a single environmental factor (i.e. patch quality) can have opposite effects on animal behaviour depending on the time scale, emphasizing the importance of multi-scale approaches in understanding complex foraging strategies.

  13. The ALFA (Activity Log Files Aggregation) Toolkit: A Method for Precise Observation of the Consultation

    PubMed Central

    2008-01-01

    Background There is a lack of tools to evaluate and compare Electronic patient record (EPR) systems to inform a rational choice or development agenda. Objective To develop a tool kit to measure the impact of different EPR system features on the consultation. Methods We first developed a specification to overcome the limitations of existing methods. We divided this into work packages: (1) developing a method to display multichannel video of the consultation; (2) code and measure activities, including computer use and verbal interactions; (3) automate the capture of nonverbal interactions; (4) aggregate multiple observations into a single navigable output; and (5) produce an output interpretable by software developers. We piloted this method by filming live consultations (n = 22) by 4 general practitioners (GPs) using different EPR systems. We compared the time taken and variations during coded data entry, prescribing, and blood pressure (BP) recording. We used nonparametric tests to make statistical comparisons. We contrasted methods of BP recording using Unified Modeling Language (UML) sequence diagrams. Results We found that 4 channels of video were optimal. We identified an existing application for manual coding of video output. We developed in-house tools for capturing use of keyboard and mouse and to time stamp speech. The transcript is then typed within this time stamp. Although we managed to capture body language using pattern recognition software, we were unable to use this data quantitatively. We loaded these observational outputs into our aggregation tool, which allows simultaneous navigation and viewing of multiple files. This also creates a single exportable file in XML format, which we used to develop UML sequence diagrams. In our pilot, the GP using the EMIS LV (Egton Medical Information Systems Limited, Leeds, UK) system took the longest time to code data (mean 11.5 s, 95% CI 8.7-14.2). Nonparametric comparison of EMIS LV with the other systems showed a significant difference, with EMIS PCS (Egton Medical Information Systems Limited, Leeds, UK) (P = .007), iSoft Synergy (iSOFT, Banbury, UK) (P = .014), and INPS Vision (INPS, London, UK) (P = .006) facilitating faster coding. In contrast, prescribing was fastest with EMIS LV (mean 23.7 s, 95% CI 20.5-26.8), but nonparametric comparison showed no statistically significant difference. UML sequence diagrams showed that the simplest BP recording interface was not the easiest to use, as users spent longer navigating or looking up previous blood pressures separately. Complex interfaces with free-text boxes left clinicians unsure of what to add. Conclusions The ALFA method allows the precise observation of the clinical consultation. It enables rigorous comparison of core elements of EPR systems. Pilot data suggests its capacity to demonstrate differences between systems. Its outputs could provide the evidence base for making more objective choices between systems. PMID:18812313

  14. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  15. The UTCOMS: a wireless video capsule nanoendoscope

    NASA Astrophysics Data System (ADS)

    Lee, Mike M.; Lee, Eun-Mi; Cho, Byung Lok; Eshraghian, Kamran; Kim, Yun-Hyun

    2006-02-01

    This research shows a 1mW Low Power and real-time imaging Tx/Rx communication system via RF-delay smart Antenna using up to 10GHz UWB(Ultra WideBand) as a concept of Wireless Medical Telemetry Service (WMTS). This UTCOMS (COMmunication System for Nano-scale USLI designed Endoscope using UWB technology) results in less body loss(about 6~13dB) at high frequency, disposable and ingestible compact size of 5×10 mm2 and multifunction, bidirectional communications, independent subsystem control multichannel, and high sensitivity smart receiving antenna of three-dimensional image captured still and moving images.

  16. Context-dependent player's movement interpretation: application to adaptive game development

    NASA Astrophysics Data System (ADS)

    Picard, Francois; Estraillier, Pascal

    2010-02-01

    Video games are more and more controlled by the real movements of the player. However, the player is constrained by the system devices, imposing a limited vocabulary of actions associated with a set of unnatural movements. To introduce more entertaining video games to players, a component-based architecture is proposed. It has been acknowledged as the starting point for the development of adaptive applications based on the hypothesis of a high level dialogue between the system and the player. The system adaptability relies on interpretation mechanisms of the player behaviors. These behaviors are defined through the representation of the real movements of the player who freely interacts with the 3D elements composing an immersive virtual environment, following a given game scenario. The efficient interpretation of the player movements relies on the introduction in the system of the management of the scene's context. The contextual information not only helps to determine the true meaning of an observed behavior but also makes the system to adapt its processes regarding this interpretation, while managing its hardware and software resources efficiently. A commercial motion capture interface has been enhanced by the elaboration of such a system.

  17. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    NASA Astrophysics Data System (ADS)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  18. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objectsmore » recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.« less

  19. Evaluation of privacy in high dynamic range video sequences

    NASA Astrophysics Data System (ADS)

    Řeřábek, Martin; Yuan, Lin; Krasula, Lukáš; Korshunov, Pavel; Fliegel, Karel; Ebrahimi, Touradj

    2014-09-01

    The ability of high dynamic range (HDR) to capture details in environments with high contrast has a significant impact on privacy in video surveillance. However, the extent to which HDR imaging affects privacy, when compared to a typical low dynamic range (LDR) imaging, is neither well studied nor well understood. To achieve such an objective, a suitable dataset of images and video sequences is needed. Therefore, we have created a publicly available dataset of HDR video for privacy evaluation PEViD-HDR, which is an HDR extension of an existing Privacy Evaluation Video Dataset (PEViD). PEViD-HDR video dataset can help in the evaluations of privacy protection tools, as well as for showing the importance of HDR imaging in video surveillance applications and its influence on the privacy-intelligibility trade-off. We conducted a preliminary subjective experiment demonstrating the usability of the created dataset for evaluation of privacy issues in video. The results confirm that a tone-mapped HDR video contains more privacy sensitive information and details compared to a typical LDR video.

  20. A Lightweight Intelligent Virtual Cinematography System for Machinima Production

    DTIC Science & Technology

    2007-01-01

    portmanteau of machine and cinema , machinima refers to the innovation of leveraging video game technology to greatly ease the creation of computer...selecting camera angles to capture the action of an a priori unknown script as aesthetically appropriate cinema . There are a number of challenges therein...Proc. of the 4th International Conf. on Autonomous Agents. Young, R.M. and Riedl, M.O. 2003. Towards an Architecture for Intelligent Control of Narrative in Interactive Virtual Worlds. In Proc. of IUI 2003.

  1. View of the HST berthed to the Shuttle Atlantis

    NASA Image and Video Library

    2009-05-13

    S125-E-007257 (14 May 2009) --- A wide view of the Hubble Space Telescope, locked down in the cargo bay of the Earth-orbiting Space Shuttle Atlantis, which will be site of a great deal of hands-on servicing over the next five days. The Canadian-built remote manipulator system arm (right), with its video cameras documenting activity in the shuttle's cargo bay all week, was instrumental in grappling and subsequently capturing the giant orbital observatory for the final servicing mission.

  2. Presence capture cameras - a new challenge to the image quality

    NASA Astrophysics Data System (ADS)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  3. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.

    PubMed

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.

  4. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder

    NASA Astrophysics Data System (ADS)

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.

  5. A wearable device for emotional recognition using facial expression and physiological response.

    PubMed

    Jangho Kwon; Da-Hye Kim; Wanjoo Park; Laehyun Kim

    2016-08-01

    This paper introduces a glasses-typed wearable system to detect user's emotions using facial expression and physiological responses. The system is designed to acquire facial expression through a built-in camera and physiological responses such as photoplethysmogram (PPG) and electrodermal activity (EDA) in unobtrusive way. We used video clips for induced emotions to test the system suitability in the experiment. The results showed a few meaningful properties that associate emotions with facial expressions and physiological responses captured by the developed wearable device. We expect that this wearable system with a built-in camera and physiological sensors may be a good solution to monitor user's emotional state in daily life.

  6. The Temporal Attentive Observation (TAO) Scale: Development of an Instrument to Assess Attentive Behavior Sequences during Serious Gameplay

    ERIC Educational Resources Information Center

    Folkestad, James E.; McKernan, Brian; Train, Stephanie; Martey, Rosa Mikeal; Rhodes, Matthew G.; Kenski, Kate; Shaw, Adrienne; Stromer-Galley, Jennifer; Clegg, Benjamin A.; Strzalkowski, Tomek

    2018-01-01

    The engaging nature of video games has intrigued learning professionals attempting to capture and retain learners' attention. Designing learning interventions that not only capture the learner's attention, but also are designed around the natural cycle of attention will be vital for learning. This paper introduces the temporal attentive…

  7. Can low-cost motion-tracking systems substitute a Polhemus system when researching social motor coordination in children?

    PubMed

    Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J

    2017-04-01

    Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.

  8. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    PubMed

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.

  9. Gigantic Rolling Wave Captured on the Sun [hd video

    NASA Image and Video Library

    2017-12-08

    A corona mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video, taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. [Development of Diagrammatic Recording System for Choledochoscope and Its Clinical Application].

    PubMed

    Xue, Zhao; Hu, Liangshuo; Tang, Bo; Zhang, Xiaogang; Lyu, Yi

    2017-11-30

    To develop a diagrammatic recording system for choledochoscopy and evaluate the system with clinical application. To match the real-time image and procedure illustration during choledochoscopy examination, we combined video-image capture and speech recognition technology to quickly generate personalized choledochoscopy images and texts records. The new system could be used in sharing territorial electronic medical records, telecommuting, scientific research and education, et al. In the clinical application of 32 patients, the choledochoscopy diagrammatic recording system could significantly improve the surgeons' working efficiency and patients' satisfaction. It could also meet the design requirement of remote information interaction. The choledochoscopy diagrammatic recording system which is recommended could elevate the quality of medical service and promote academic exchange and training.

  11. Implications of the law on video recording in clinical practice.

    PubMed

    Henken, Kirsten R; Jansen, Frank Willem; Klein, Jan; Stassen, Laurents P S; Dankelman, Jenny; van den Dobbelsteen, John J

    2012-10-01

    Technological developments allow for a variety of applications of video recording in health care, including endoscopic procedures. Although the value of video registration is recognized, medicolegal concerns regarding the privacy of patients and professionals are growing. A clear understanding of the legal framework is lacking. Therefore, this research aims to provide insight into the juridical position of patients and professionals regarding video recording in health care practice. Jurisprudence was searched to exemplify legislation on video recording in health care. In addition, legislation was translated for different applications of video in health care found in the literature. Three principles in Western law are relevant for video recording in health care practice: (1) regulations on privacy regarding personal data, which apply to the gathering and processing of video data in health care settings; (2) the patient record, in which video data can be stored; and (3) professional secrecy, which protects the privacy of patients including video data. Practical implementation of these principles in video recording in health care does not exist. Practical regulations on video recording in health care for different specifically defined purposes are needed. Innovations in video capture technology that enable video data to be made anonymous automatically can contribute to protection for the privacy of all the people involved.

  12. Lawrence Livermore National Laboratory`s Computer Security Short Subjects Videos: Hidden Password, The Incident, Dangerous Games and The Mess; Computer Security Awareness Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.

  13. Telepathology in cytopathology: challenges and opportunities.

    PubMed

    Collins, Brian T

    2013-01-01

    Telepathology in cytopathology is becoming more commonly utilized, and newer technologic infrastructures afford the laboratory a variety of options. The options and design of a telepathology system are driven by the clinical needs. This is primarily focused on providing rapid on-site evaluation service for fine needle aspiration. The clinical requirements and needs of a system are described. Available tools to design and implement a telepathology system are covered, including methods of image capture, network connectivity and remote viewing options. The primary telepathology method currently used and described involves the delivery via a network connection of a live video image to a remote site which is passively viewed by an internet web-based browser. By utilizing live video information and a voice connection to the on-site location, the remote viewer can collect clinical information and direct their view of the slides. Telepathology systems for use in cytopathology can be designed and implemented with commercially available infrastructure. It is necessary for the laboratory to validate the designed system and adhere to the required regulatory requirements. Telepathology for cytopathology can be reliably utilized by adapting existing technology, and newer advances hold great promise for further applications in the cytopathology laboratory. Copyright © 2013 S. Karger AG, Basel.

  14. A Marker-less Monitoring System for Movement Analysis of Infants Using Video Images

    NASA Astrophysics Data System (ADS)

    Shima, Keisuke; Osawa, Yuko; Bu, Nan; Tsuji, Tokuo; Tsuji, Toshio; Ishii, Idaku; Matsuda, Hiroshi; Orito, Kensuke; Ikeda, Tomoaki; Noda, Shunichi

    This paper proposes a marker-less motion measurement and analysis system for infants. This system calculates eight types of evaluation indices related to the movement of an infant such as “amount of body motion” and “activity of body” from binary images that are extracted from video images using the background difference and frame difference. Thus, medical doctors can intuitively understand the movements of infants without long-term observations, and this may be helpful in supporting their diagnoses and detecting disabilities and diseases in the early stages. The distinctive feature of this system is that the movements of infants can be measured without using any markers for motion capture and thus it is expected that the natural and inherent tendencies of infants can be analyzed and evaluated. In this paper, the evaluation indices and features of movements between full-term infants (FTIs) and low birth weight infants (LBWIs) are compared using the developed prototype. We found that the amount of body motion and symmetry of upper and lower body movements of LBWIs became lower than those of FTIs. The difference between the movements of FTIs and LBWIs can be evaluated using the proposed system.

  15. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  16. Reference Model for Project Support Environments Version 1.0

    DTIC Science & Technology

    1993-02-28

    relationship with the framework’s Process Support services and with the Lifecycle Process Engineering services. Examples: "* ORCA (Object-based...Design services. Examples: "* ORCA (Object-based Requirements Capture and Analysis). "* RETRAC (REquirements TRACeability). 4.3 Life-Cycle Process...34traditional" computer tools. Operations: Examples of audio and video processing operations include: "* Create, modify, and delete sound and video data

  17. Computer aided diagnosis of diabetic peripheral neuropathy

    NASA Astrophysics Data System (ADS)

    Chekh, Viktor; Soliz, Peter; McGrew, Elizabeth; Barriga, Simon; Burge, Mark; Luan, Shuang

    2014-03-01

    Diabetic peripheral neuropathy (DPN) refers to the nerve damage that can occur in diabetes patients. It most often affects the extremities, such as the feet, and can lead to peripheral vascular disease, deformity, infection, ulceration, and even amputation. The key to managing diabetic foot is prevention and early detection. Unfortunately, current existing diagnostic techniques are mostly based on patient sensations and exhibit significant inter- and intra-observer differences. We have developed a computer aided diagnostic (CAD) system for diabetic peripheral neuropathy. The thermal response of the feet of diabetic patients following cold stimulus is captured using an infrared camera. The plantar foot in the images from a thermal video are segmented and registered for tracking points or specific regions. The temperature recovery of each point on the plantar foot is extracted using our bio-thermal model and analyzed. The regions that exhibit abnormal ability to recover are automatically identified to aid the physicians to recognize problematic areas. The key to our CAD system is the segmentation of infrared video. The main challenges for segmenting infrared video compared to normal digital video are (1) as the foot warms up, it also warms up the surrounding, creating an ever changing contrast; and (2) there may be significant motion during imaging. To overcome this, a hybrid segmentation algorithm was developed based on a number of techniques such as continuous max-flow, model based segmentation, shape preservation, convex hull, and temperature normalization. Verifications of the automatic segmentation and registration using manual segmentation and markers show good agreement.

  18. Robust efficient video fingerprinting

    NASA Astrophysics Data System (ADS)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  19. Clustering method for counting passengers getting in a bus with single camera

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Yanning; Shao, Dapei; Li, Ying

    2010-03-01

    Automatic counting of passengers is very important for both business and security applications. We present a single-camera-based vision system that is able to count passengers in a highly crowded situation at the entrance of a traffic bus. The unique characteristics of the proposed system include, First, a novel feature-point-tracking- and online clustering-based passenger counting framework, which performs much better than those of background-modeling-and foreground-blob-tracking-based methods. Second, a simple and highly accurate clustering algorithm is developed that projects the high-dimensional feature point trajectories into a 2-D feature space by their appearance and disappearance times and counts the number of people through online clustering. Finally, all test video sequences in the experiment are captured from a real traffic bus in Shanghai, China. The results show that the system can process two 320×240 video sequences at a frame rate of 25 fps simultaneously, and can count passengers reliably in various difficult scenarios with complex interaction and occlusion among people. The method achieves high accuracy rates up to 96.5%.

  20. Mobile tele-echography: user interface design.

    PubMed

    Cañero, Cristina; Thomos, Nikolaos; Triantafyllidis, George A; Litos, George C; Strintzis, Michael Gerassimos

    2005-03-01

    Ultrasound imaging allows the evaluation of the degree of emergency of a patient. However, in some instances, a well-trained sonographer is unavailable to perform such echography. To cope with this issue, the Mobile Tele-Echography Using an Ultralight Robot (OTELO) project aims to develop a fully integrated end-to-end mobile tele-echography system using an ultralight remote-controlled robot for population groups that are not served locally by medical experts. This paper focuses on the user interface of the OTELO system, consisting of the following parts: an ultrasound video transmission system providing real-time images of the scanned area, an audio/video conference to communicate with the paramedical assistant and with the patient, and a virtual-reality environment, providing visual and haptic feedback to the expert, while capturing the expert's hand movements. These movements are reproduced by the robot at the patient site while holding the ultrasound probe against the patient skin. In addition, the user interface includes an image processing facility for enhancing the received images and the possibility to include them into a database.

  1. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    NASA Astrophysics Data System (ADS)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  2. High-Speed Video Analysis in a Conceptual Physics Class

    NASA Astrophysics Data System (ADS)

    Desbien, Dwain M.

    2011-09-01

    The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software.2,3 Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting and also allows real-world situations to be analyzed. Many motions are too fast to easily be captured at the standard video frame rate of 30 frames per second (fps) employed by most video cameras. This paper will discuss using a consumer camera that can record high-frame-rate video in a college-level conceptual physics class. In particular this will involve the use of model rockets to determine the acceleration during the boost period right at launch and compare it to a simple model of the expected acceleration.

  3. Video observation in HIT development: lessons learned on benefits and challenges.

    PubMed

    Høstgaard, Anna Marie; Bertelsen, Pernille

    2012-08-22

    Experience shows that the precondition for the development of successful health information technologies is a thorough insight into clinical work practice. In contemporary clinical work practice, clinical work and health information technology are integrated, and part of the practice is tacit. When work practice becomes routine, it slips to the background of the conscious awareness and becomes difficult to recognize without the context to support recall. This means that it is difficult to capture with traditional ethnographic research methods or in usability laboratories or clinical set ups. Observation by the use of the video technique within healthcare settings has proven to be capable of providing a thorough insight into the complex clinical work practice and its context - including parts of the tacit practice. The objective of this paper is 1) to argue for the video observation technique to inform and improve health-information-technology development and 2) to share insights and lessons learned on benefits and challenges when using the video observation technique within healthcare settings. A multiple case study including nine case studies conducted by DaCHI researchers 2004-2011 using audio-visual, non-participant video observation for data collection within different healthcare settings. In HIT development, video observation is beneficial for 1) informing and improving system design 2) studying changes in work practice 3) identifying new potentials and 4) documenting current work practices. The video observation technique used within healthcare settings is superior to other ethnographic research methods when it comes to disclosing the complexity in clinical work practice. The insights gained are far more realistic compared to traditional ethnographic studies or usability studies and studies in clinical set ups. Besides, the data generated through video recordings provide a solid basis for dialog between the health care professionals involved. The most important lessons learned are that a well considered methodology and clear formulated objectives are imperative, in order to stay focused during the data rich analysis phase. Additionally, the video observation technique is primarily recommended for studies of specific clinical work practices within delimited clinical settings. Overall, the video observation technique has proven to be capable of improving our understanding of the interwoven relation between clinical work practice and HIT and to inform us about user requirements and needs for HIT, which is a precondition for the development of more successful HIT systems in the future.

  4. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  5. Integrated telemedicine workstation for intercontinental grand rounds

    NASA Astrophysics Data System (ADS)

    Willis, Charles E.; Leckie, Robert G.; Brink, Linda; Goeringer, Fred

    1995-04-01

    The Telemedicine Spacebridge to Moscow was a series of intercontinental sessions sponsored jointly by NASA and the Moscow Academy of Medicine. To improve the quality of medical images presented, the MDIS Project developed a workstation for acquisition, storage, and interactive display of radiology and pathology images. The workstation was based on a Macintosh IIfx platform with a laser digitizer for radiographs and video capture capability for microscope images. Images were transmitted via the Russian Lyoutch Satellite which had only a single video channel available and no high speed data channels. Two workstations were configured -- one for use at the Uniformed Services University of Health Sciences in Bethesda, MD. and the other for use at the Hospital of the Interior in Moscow, Russia. The two workstations were used may times during 16 sessions. As clinicians used the systems, we modified the original configuration to improve interactive use. This project demonstrated that numerous acquisition and output devices could be brought together in a single interactive workstation. The video images were satisfactory for remote consultation in a grand rounds format.

  6. Metro Optical Networks for Homeland Security

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.

    Metro optical networks provide an enticing opportunity for strengthening homeland security. Many existing and emerging fiber-optic networks can be adapted for enhanced security applications. Applications include airports, theme parks, sports venues, and border surveillance systems. Here real-time high-quality video and captured images can be collected, transported, processed, and stored for security applications. Video and data collection are important also at correctional facilities, courts, infrastructure (e.g., dams, bridges, railroads, reservoirs, power stations), and at military and other government locations. The scaling of DWDM-based networks allows vast amounts of data to be collected and transported including biometric features of individuals at security check points. Here applications will be discussed along with potential solutions and challenges. Examples of solutions to these problems are given. This includes a discussion of metropolitan aggregation platforms for voice, video, and data that are SONET compliant for use in SONET networks and the use of DWDM technology for scaling and transporting a variety of protocols. Element management software allows not only network status monitoring, but also provides optimized allocation of network resources through the use of optical switches or electrical cross connects.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan Hruska

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical tomore » use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.« less

  8. Point-of-View Recording Devices for Intraoperative Neurosurgical Video Capture.

    PubMed

    Porras, Jose L; Khalid, Syed; Root, Brandon K; Khan, Imad S; Singer, Robert J

    2016-01-01

    The ability to record and stream neurosurgery is an unprecedented opportunity to further research, medical education, and quality improvement. Here, we appraise the ease of implementation of existing point-of-view devices when capturing and sharing procedures from the neurosurgical operating room and detail their potential utility in this context. Our neurosurgical team tested and critically evaluated features of the Google Glass and Panasonic HX-A500 cameras, including ergonomics, media quality, and media sharing in both the operating theater and the angiography suite. Existing devices boast several features that facilitate live recording and streaming of neurosurgical procedures. Given that their primary application is not intended for the surgical environment, we identified a number of concrete, yet improvable, limitations. The present study suggests that neurosurgical video capture and live streaming represents an opportunity to contribute to research, education, and quality improvement. Despite this promise, shortcomings render existing devices impractical for serious consideration. We describe the features that future recording platforms should possess to improve upon existing technology.

  9. US Spacesuit Knowledge Capture

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  10. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  11. Learning to manage complexity through simulation: students' challenges and possible strategies.

    PubMed

    Gormley, Gerard J; Fenwick, Tara

    2016-06-01

    Many have called for medical students to learn how to manage complexity in healthcare. This study examines the nuances of students' challenges in coping with a complex simulation learning activity, using concepts from complexity theory, and suggests strategies to help them better understand and manage complexity.Wearing video glasses, participants took part in a simulation ward-based exercise that incorporated characteristics of complexity. Video footage was used to elicit interviews, which were transcribed. Using complexity theory as a theoretical lens, an iterative approach was taken to identify the challenges that participants faced and possible coping strategies using both interview transcripts and video footage.Students' challenges in coping with clinical complexity included being: a) unprepared for 'diving in', b) caught in an escalating system, c) captured by the patient, and d) unable to assert boundaries of acceptable practice.Many characteristics of complexity can be recreated in a ward-based simulation learning activity, affording learners an embodied and immersive experience of these complexity challenges. Possible strategies for managing complexity themes include: a) taking time to size up the system, b) attuning to what emerges, c) reducing complexity, d) boundary practices, and e) working with uncertainty. This study signals pedagogical opportunities for recognizing and dealing with complexity.

  12. Real-time bicycle detection at signalized intersections using thermal imaging technology

    NASA Astrophysics Data System (ADS)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  13. What ring tone should be used for patient safety? Early results with a Blackberry-based telementoring safety solution.

    PubMed

    Parker, Alton; Rubinfeld, Ilan; Azuh, Ogochukwu; Blyden, Dionne; Falvo, Anthony; Horst, Mathilda; Velanovich, Vic; Patton, Pat

    2010-03-01

    Technology currently exists for the application of remote guidance in the laparoscopic operating suite. However, these solutions are costly and require extensive preparation and reconfiguration of current hardware. We propose a solution from existing technology, to send video of laparoscopic cholecystectomy to the Blackberry Pearl device (RIM Waterloo, ON, Canada) for remote guidance purposes. This technology is time- and cost-efficient, as well as reliable. After identification of the critical maneuver during a laparoscopic cholecystectomy as the division of the cystic duct, we captured a segment of video before it's transection. Video was captured using the laparoscopic camera input sent via DVI2USB Solo Frame Grabber (Epiphan Ottawa, Canada) to a video recording application on a laptop. Seven- to 40-second video clips were recorded. The video clip was then converted to an .mp4 file and was uploaded to our server and a link was then sent to the consultant via e-mail. The consultant accessed the file via Blackberry for viewing. After reviewing the video, the consultant was able to confidently comment on the operation. Approximately 7 to 40 seconds of 10 laparoscopic cholecystectomies were recorded and transferred to the consultant using our method. All 10 video clips were reviewed and deemed adequate for decision making. Remote guidance for laparoscopic cholecystectomy with existing technology can be accomplished with relatively low cost and minimal setup. Additional evaluation of our methods will aim to identify reliability, validity, and accuracy. Using our method, other forms of remote guidance may be feasible, such as other laparoscopic procedures, diagnostic ultrasonography, and remote intensive care unit monitoring. In addition, this method of remote guidance may be extended to centers with smaller budgets, allowing ubiquitous use of neighboring consultants and improved safety for our patients. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Real-time rendering for multiview autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Berretty, R.-P. M.; Peters, F. J.; Volleberg, G. T. G.

    2006-02-01

    In video systems, the introduction of 3D video might be the next revolution after the introduction of color. Nowadays multiview autostereoscopic displays are in development. Such displays offer various views at the same time and the image content observed by the viewer depends upon his position with respect to the screen. His left eye receives a signal that is different from what his right eye gets; this gives, provided the signals have been properly processed, the impression of depth. The various views produced on the display differ with respect to their associated camera positions. A possible video format that is suited for rendering from different camera positions is the usual 2D format enriched with a depth related channel, e.g. for each pixel in the video not only its color is given, but also e.g. its distance to a camera. In this paper we provide a theoretical framework for the parallactic transformations which relates captured and observed depths to screen and image disparities. Moreover we present an efficient real time rendering algorithm that uses forward mapping to reduce aliasing artefacts and that deals properly with occlusions. For improved perceived resolution, we take the relative position of the color subpixels and the optics of the lenticular screen into account. Sophisticated filtering techniques results in high quality images.

  15. Distributed Coding/Decoding Complexity in Video Sensor Networks

    PubMed Central

    Cordeiro, Paulo J.; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972

  16. Broadcast-quality-stereoscopic video in a time-critical entertainment and corporate environment

    NASA Astrophysics Data System (ADS)

    Gay, Jean-Philippe

    1995-03-01

    `reality present: Peter Gabrial and Cirque du Soleil' is a 12 minute original work directed and produced by Doug Brown, Jean-Philippe Gay & A. Coogan, which showcases creative content applications of commercial stereoscopic video equipment. For production, a complete equipment package including a Steadicam mount was used in support of the Ikegami LK-33 camera. Remote production units were fielded in the time critical, on-stage and off-stage environments of 2 major live concerts: Peter Gabriel's Secret World performance at the San Diego Sports Arena, and Cirque du Soleil's Saltimbanco performance in Chicago. Twin 60 Hz video channels were captured on Beta SP for maximum post production flexibility. Digital post production and field sequential mastering were effected in D-2 format at studio facilities in Los Angeles. The program was world premiered to a large public at the World of Music, Arts and Dance festivals in Los Angeles and San Francisco, in late 1993. It was presented to the artists in Los Angeles, Montreal and Washington D.C. Additional presentations have been made using a broad range of commercial and experimental stereoscopic video equipment, including projection systems, LCD and passive eyewear, and digital signal processors. Technical packages for live presentation have been fielded on site and off, through to the present.

  17. Distributed coding/decoding complexity in video sensor networks.

    PubMed

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  18. Persistent aerial video registration and fast multi-view mosaicing.

    PubMed

    Molina, Edgardo; Zhu, Zhigang

    2014-05-01

    Capturing aerial imagery at high resolutions often leads to very low frame rate video streams, well under full motion video standards, due to bandwidth, storage, and cost constraints. Low frame rates make registration difficult when an aircraft is moving at high speeds or when global positioning system (GPS) contains large errors or it fails. We present a method that takes advantage of persistent cyclic video data collections to perform an online registration with drift correction. We split the persistent aerial imagery collection into individual cycles of the scene, identify and correct the registration errors on the first cycle in a batch operation, and then use the corrected base cycle as a reference pass to register and correct subsequent passes online. A set of multi-view panoramic mosaics is then constructed for each aerial pass for representation, presentation and exploitation of the 3D dynamic scene. These sets of mosaics are all in alignment to the reference cycle allowing their direct use in change detection, tracking, and 3D reconstruction/visualization algorithms. Stereo viewing with adaptive baselines and varying view angles is realized by choosing a pair of mosaics from a set of multi-view mosaics. Further, the mosaics for the second pass and later can be generated and visualized online as their is no further batch error correction.

  19. Simulation videos presented in a blended learning platform to improve Australian nursing students' knowledge of family assessment.

    PubMed

    Coyne, Elisabeth; Frommolt, Valda; Rands, Hazel; Kain, Victoria; Mitchell, Marion

    2018-07-01

    The provision of simulation to enhance learning is becoming common practice as clinical placement becomes harder to secure within Bachelor of Nursing programs. The use of simulation videos within a blended learning platform enables students to view best practice and provides relevant links between theory and practice. Four simulation videos depicting family assessment viewed by a cohort of Australian undergraduate nursing students were evaluated. These videos were professionally developed using actors and experienced family nurses. Surveys were used to explore the students' self-assessed knowledge, confidence and learning preferences before and after exposure to blended learning resources. Students' engagement with the simulated videos was captured via the Learning Management System. Time 1 survey was completed by 163 students and Time 2 by 91 students. There was a significant increase in students' perceived knowledge of family theory Item 1 from a mean 4.13 (SD = 1.04) at Time 1 to 4.74 (SD = 0.89) (Z = -4.54 p < 0.001) at Time 2; Item 2- Knowledge of family assessment improved from mean 3.91 (SD = 1.02) at Time 1 to 4.90 (SD = 0.67) (Z = -7.86 p < 0.001) at Time 2. Also a significant increase in their confidence undertaking family assessment Item 5 from a mean 3.55 (SD = 1.14) at Time 1 to 4.44 (SD = 0.85) (Z = -6.12 p < 0.001) at Time 2. The students watched the videos an average of 1.9 times. The simulated videos as a blended learning resource increases the students' understanding of family assessment and is worth incorporating into future development of courses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Integration of image capture and processing: beyond single-chip digital camera

    NASA Astrophysics Data System (ADS)

    Lim, SukHwan; El Gamal, Abbas

    2001-05-01

    An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.

  1. Mobile Video in Everyday Social Interactions

    NASA Astrophysics Data System (ADS)

    Reponen, Erika; Lehikoinen, Jaakko; Impiö, Jussi

    Video recording has become a spontaneous everyday activity for many people, thanks to the video capabilities of modern mobile phones. Internet connectivity of mobile phones enables fluent sharing of captured material even real-time, which makes video an up-and-coming everyday interaction medium. In this article we discuss the effect of the video camera in the social environment, everyday life situations, mainly based on a study where four groups of people used digital video cameras in their normal settings. We also reflect on another study of ours, relating to real-time mobile video communication and discuss future views. The aim of our research is to understand the possibilities in the domain of mobile video. Live and delayed sharing seem to have their special characteristics, live video being used as a virtual window between places whereas delayed video usage has more scope for good-quality content. While this novel way of interacting via mobile video enables new social patterns, it also raises new concerns for privacy and trust between participating persons in all roles, largely due to the widely spreading possibilities of videos. Video in a social situation affects cameramen (who record), targets (who are recorded), passers-by (who are unintentionally in the situation), and the audience (who follow the videos or recording situations) but also the other way around, the participants affect the video by their varying and evolving personal and communicational motivations for recording.

  2. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  3. Dashboard Videos

    NASA Astrophysics Data System (ADS)

    Gleue, Alan D.; Depcik, Chris; Peltier, Ted

    2012-11-01

    Last school year, I had a web link emailed to me entitled "A Dashboard Physics Lesson." The link, created and posted by Dale Basier on his Lab Out Loud blog, illustrates video of a car's speedometer synchronized with video of the road. These two separate video streams are compiled into one video that students can watch and analyze. After seeing this website and video, I decided to create my own dashboard videos to show to my high school physics students. I have produced and synchronized 12 separate dashboard videos, each about 10 minutes in length, driving around the city of Lawrence, KS, and Douglas County, and posted them to a website.2 Each video reflects different types of driving: both positive and negative accelerations and constant speeds. As shown in Fig. 1, I was able to capture speed, distance, and miles per gallon from my dashboard instrumentation. By linking this with a stopwatch, each of these quantities can be graphed with respect to time. I anticipate and hope that teachers will find these useful in their own classrooms, i.e., having physics students watch the videos and create their own motion maps (distance-time, speed-time) for study.

  4. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Hellenic Amateur Astronomy Association's activities: Preliminary results on Perseids 2010

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2011-01-01

    Preliminary results on the Perseids 2010 are presented. Visual and video observations were obtained by the author and a first reduction of the visual data shows that a maximum of ZHR ~120 was reached during the night 12-13 of August 2010. Moreover, a video setup was tested (DMK camera and UFO Capture v2) and the results show that, under some limitations, valuable data can be obtained.

  6. Software for Real-Time Analysis of Subsonic Test Shot Accuracy

    DTIC Science & Technology

    2014-03-01

    used the C++ programming language, the Open Source Computer Vision ( OpenCV ®) software library, and Microsoft Windows® Application Programming...video for comparison through OpenCV image analysis tools. Based on the comparison, the software then computed the coordinates of each shot relative to...DWB researchers wanted to use the Open Source Computer Vision ( OpenCV ) software library for capturing and analyzing frames of video. OpenCV contains

  7. Gear Shifting of Quadriceps during Isometric Knee Extension Disclosed Using Ultrasonography.

    PubMed

    Zhang, Shu; Huang, Weijian; Zeng, Yu; Shi, Wenxiu; Diao, Xianfen; Wei, Xiguang; Ling, Shan

    2018-01-01

    Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps contraction may have several forward gear ratios relative to femur.

  8. Robust real-time horizon detection in full-motion video

    NASA Astrophysics Data System (ADS)

    Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin

    2014-06-01

    The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.

  9. Augmented-reality visualization of brain structures with stereo and kinetic depth cues: system description and initial evaluation with head phantom

    NASA Astrophysics Data System (ADS)

    Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.

    2001-05-01

    We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.

  10. Fuzzy control system for a remote focusing microscope

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  11. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems

    PubMed Central

    Hong, Seunghwan; Park, Ilsuk; Lee, Jisang; Lim, Kwangyong; Choi, Yoonjo; Sohn, Hong-Gyoo

    2017-01-01

    This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS). On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D) terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively. PMID:28264457

  12. Application of TrackEye in equine locomotion research.

    PubMed

    Drevemo, S; Roepstorff, L; Kallings, P; Johnston, C J

    1993-01-01

    TrackEye is an analysis system, which is applicable for equine biokinematic studies. It covers the whole process from digitizing of images, automatic target tracking and analysis. Key components in the system are an image work station for processing of video images and a high-resolution film-to-video scanner for 16-mm film. A recording module controls the input device and handles the capture of image sequences into a videodisc system, and a tracking module is able to follow reference markers automatically. The system offers a flexible analysis including calculations of markers displacements, distances and joint angles, velocities and accelerations. TrackEye was used to study effects of phenylbutazone on the fetlock and carpal joint angle movements in a horse with a mild lameness caused by osteo-arthritis in the fetlock joint of a forelimb. Significant differences, most evident before treatment, were observed in the minimum fetlock and carpal joint angles when contralateral limbs were compared (p < 0.001). The minimum fetlock angle and the minimum carpal joint angle were significantly greater in the lame limb before treatment compared to those 6, 37 and 49 h after the last treatment (p < 0.001).

  13. Video System for Viewing From a Remote or Windowless Cockpit

    NASA Technical Reports Server (NTRS)

    Banerjee, Amamath

    2009-01-01

    A system of electronic hardware and software synthesizes, in nearly real time, an image of a portion of a scene surveyed by as many as eight video cameras aimed, in different directions, at portions of the scene. This is a prototype of systems that would enable a pilot to view the scene outside a remote or windowless cockpit. The outputs of the cameras are digitized. Direct memory addressing is used to store the data of a few captured images in sequence, and the sequence is repeated in cycles. Cylindrical warping is used in merging adjacent images at their borders to construct a mosaic image of the scene. The mosaic-image data are written to a memory block from which they can be rendered on a head-mounted display (HMD) device. A subsystem in the HMD device tracks the direction of gaze of the wearer, providing data that are used to select, for display, the portion of the mosaic image corresponding to the direction of gaze. The basic functionality of the system has been demonstrated by mounting the cameras on the roof of a van and steering the van by use of the images presented on the HMD device.

  14. Legally compatible design of digital dactyloscopy in future surveillance scenarios

    NASA Astrophysics Data System (ADS)

    Pocs, Matthias; Schott, Maik; Hildebrandt, Mario

    2012-06-01

    Innovation in multimedia systems impacts on our society. For example surveillance camera systems combine video and audio information. Currently a new sensor for capturing fingerprint traces is being researched. It combines greyscale images to determine the intensity of the image signal, on one hand, and topographic information to determine fingerprint texture on a variety of surface materials, on the other. This research proposes new application areas which will be analyzed from a technical-legal view point. It assesses how technology design can promote legal criteria of German and European privacy and data protection. For this we focus on one technology goal as an example.

  15. Fluorescence-guided tumor visualization using a custom designed NIR attachment to a surgical microscope for high sensitivity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kittle, David S.; Patil, Chirag G.; Mamelak, Adam; Hansen, Stacey; Perry, Jeff; Ishak, Laura; Black, Keith L.; Butte, Pramod V.

    2016-03-01

    Current surgical microscopes are limited in sensitivity for NIR fluorescence. Recent developments in tumor markers attached with NIR dyes require newer, more sensitive imaging systems with high resolution to guide surgical resection. We report on a small, single camera solution enabling advanced image processing opportunities previously unavailable for ultra-high sensitivity imaging of these agents. The system captures both visible reflectance and NIR fluorescence at 300 fps while displaying full HD resolution video at 60 fps. The camera head has been designed to easily mount onto the Zeiss Pentero microscope head for seamless integration into surgical procedures.

  16. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    NASA Astrophysics Data System (ADS)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  17. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  18. Test of the MarsSedEx Settling Tube Photometer during the 2nd Swiss Parabolic Flight Campaign

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas

    2017-04-01

    Gravity affects flow hydraulics and thus limits the application of simple models for sediment transport developed for Earth on Mars. The significance of the differences in sediment settling has been demonstrated for sand-sized particles by measuring settling velocities using video-imaging during parabolic flights. This approach does not work for finer particles because they cannot be distinguished individually on a video. Tracking of fine sediment clouds is also difficult using videos because changes in density are not captured. Photometers, on the other hand, are able to capture differences in turbidity and offer the potential to measure the settling behaviour of clouds of fine and differently-sized sediment particles. In this study, the feasibility of using a settling-tube photometer used for the rapid assessment of settling velocities developed by the University of Basel during a parabolic flight with reduced gravity is presented. In addition, the potential of the results generated in this Martian-analogue environment to support the identification sediments containing traces of life on Mars is discussed.

  19. Snapshot hyperspectral fovea vision system (HyperVideo)

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.

    2012-06-01

    The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.

  20. Automated detection of pain from facial expressions: a rule-based approach using AAM

    NASA Astrophysics Data System (ADS)

    Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.

    2012-02-01

    In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.

  1. Lecture Capturing: Its Effects on Students' Absenteeism, Performance, and Impressions in a Traditional Marketing Research Course

    ERIC Educational Resources Information Center

    Dommeyer, Curt J.

    2017-01-01

    A quasiexperiment was conducted among marketing research students to determine the effects of lecture capturing (LC). One group of students (the LC group) was allowed access to video recordings of the class lectures whereas another group of students in a parallel class (the control group) was not given access to the recordings. When both groups…

  2. Movement measurement of isolated skeletal muscle using imaging microscopy

    NASA Astrophysics Data System (ADS)

    Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.

    1997-05-01

    An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.

  3. A Data Hiding Technique to Synchronously Embed Physiological Signals in H.264/AVC Encoded Video for Medicine Healthcare.

    PubMed

    Peña, Raul; Ávila, Alfonso; Muñoz, David; Lavariega, Juan

    2015-01-01

    The recognition of clinical manifestations in both video images and physiological-signal waveforms is an important aid to improve the safety and effectiveness in medical care. Physicians can rely on video-waveform (VW) observations to recognize difficult-to-spot signs and symptoms. The VW observations can also reduce the number of false positive incidents and expand the recognition coverage to abnormal health conditions. The synchronization between the video images and the physiological-signal waveforms is fundamental for the successful recognition of the clinical manifestations. The use of conventional equipment to synchronously acquire and display the video-waveform information involves complex tasks such as the video capture/compression, the acquisition/compression of each physiological signal, and the video-waveform synchronization based on timestamps. This paper introduces a data hiding technique capable of both enabling embedding channels and synchronously hiding samples of physiological signals into encoded video sequences. Our data hiding technique offers large data capacity and simplifies the complexity of the video-waveform acquisition and reproduction. The experimental results revealed successful embedding and full restoration of signal's samples. Our results also demonstrated a small distortion in the video objective quality, a small increment in bit-rate, and embedded cost savings of -2.6196% for high and medium motion video sequences.

  4. Portrayal of Alcohol Brands Popular Among Underage Youth on YouTube: A Content Analysis.

    PubMed

    Primack, Brian A; Colditz, Jason B; Rosen, Eva B; Giles, Leila M; Jackson, Kristina M; Kraemer, Kevin L

    2017-09-01

    We characterized leading YouTube videos featuring alcohol brand references and examined video characteristics associated with each brand and video category. We systematically captured the 137 most relevant and popular videos on YouTube portraying alcohol brands that are popular among underage youth. We used an iterative process to codebook development. We coded variables within domains of video type, character sociodemographics, production quality, and negative and positive associations with alcohol use. All variables were double coded, and Cohen's kappa was greater than .80 for all variables except age, which was eliminated. There were 96,860,936 combined views for all videos. The most common video type was "traditional advertisements," which comprised 40% of videos. Of the videos, 20% were "guides" and 10% focused on chugging a bottle of distilled spirits. While 95% of videos featured males, 40% featured females. Alcohol intoxication was present in 19% of videos. Aggression, addiction, and injuries were uncommonly identified (2%, 3%, and 4%, respectively), but 47% of videos contained humor. Traditional advertisements represented the majority of videos related to Bud Light (83%) but only 18% of Grey Goose and 8% of Hennessy videos. Intoxication was most present in chugging demonstrations (77%), whereas addiction was only portrayed in music videos (22%). Videos containing humor ranged from 11% for music-related videos to 77% for traditional advertisements. YouTube videos depicting the alcohol brands favored by underage youth are heavily viewed, and the majority are traditional or narrative advertisements. Understanding characteristics associated with different brands and video categories may aid in intervention development.

  5. Advanced Video Activity Analytics (AVAA): Human Factors Evaluation

    DTIC Science & Technology

    2015-05-01

    video, and 3) creating and saving annotations (Fig. 11). (The logging program was updated after the pilot to also capture search clicks.) Playing and... visual search task and the auditory task together and thus automatically focused on the visual task. Alternatively, the operator may have intentionally...affect performance on the primary task; however, in the current test there was no apparent effect on the operator’s performance in the visual search task

  6. Enhancing the performance of cooperative face detector by NFGS

    NASA Astrophysics Data System (ADS)

    Yesugade, Snehal; Dave, Palak; Srivastava, Srinkhala; Das, Apurba

    2015-07-01

    Computerized human face detection is an important task of deformable pattern recognition in today's world. Especially in cooperative authentication scenarios like ATM fraud detection, attendance recording, video tracking and video surveillance, the accuracy of the face detection engine in terms of accuracy, memory utilization and speed have been active areas of research for the last decade. The Haar based face detection or SIFT and EBGM based face recognition systems are fairly reliable in this regard. But, there the features are extracted in terms of gray textures. When the input is a high resolution online video with a fairly large viewing area, Haar needs to search for face everywhere (say 352×250 pixels) and every time (e.g., 30 FPS capture all the time). In the current paper we have proposed to address both the aforementioned scenarios by a neuro-visually inspired method of figure-ground segregation (NFGS) [5] to result in a two-dimensional binary array from gray face image. The NFGS would identify the reference video frame in a low sampling rate and updates the same with significant change of environment like illumination. The proposed algorithm would trigger the face detector only when appearance of a new entity is encountered into the viewing area. To address the detection accuracy, classical face detector would be enabled only in a narrowed down region of interest (RoI) as fed by the NFGS. The act of updating the RoI would be done in each frame online with respect to the moving entity which in turn would improve both FR (False Rejection) and FA (False Acceptance) of the face detection system.

  7. Lidar-Incorporated Traffic Sign Detection from Video Log Images of Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y.; Fan, J.; Huang, Y.; Chen, Z.

    2016-06-01

    Mobile Mapping System (MMS) simultaneously collects the Lidar points and video log images in a scenario with the laser profiler and digital camera. Besides the textural details of video log images, it also captures the 3D geometric shape of point cloud. It is widely used to survey the street view and roadside transportation infrastructure, such as traffic sign, guardrail, etc., in many transportation agencies. Although many literature on traffic sign detection are available, they only focus on either Lidar or imagery data of traffic sign. Based on the well-calibrated extrinsic parameters of MMS, 3D Lidar points are, the first time, incorporated into 2D video log images to enhance the detection of traffic sign both physically and visually. Based on the local elevation, the 3D pavement area is first located. Within a certain distance and height of the pavement, points of the overhead and roadside traffic signs can be obtained according to the setup specification of traffic signs in different transportation agencies. The 3D candidate planes of traffic signs are then fitted using the RANSAC plane-fitting of those points. By projecting the candidate planes onto the image, Regions of Interest (ROIs) of traffic signs are found physically with the geometric constraints between laser profiling and camera imaging. The Random forest learning of the visual color and shape features of traffic signs is adopted to validate the sign ROIs from the video log images. The sequential occurrence of a traffic sign among consecutive video log images are defined by the geometric constraint of the imaging geometry and GPS movement. Candidate ROIs are predicted in this temporal context to double-check the salient traffic sign among video log images. The proposed algorithm is tested on a diverse set of scenarios on the interstate highway G-4 near Beijing, China under varying lighting conditions and occlusions. Experimental results show the proposed algorithm enhances the rate of detecting traffic signs with the incorporation of the 3D planar constraint of their Lidar points. It is promising for the robust and large-scale survey of most transportation infrastructure with the application of MMS.

  8. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  9. Deep hierarchical attention network for video description

    NASA Astrophysics Data System (ADS)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  10. How can video supported reflection enhance teachers' professional development?

    NASA Astrophysics Data System (ADS)

    McCullagh, John F.

    2012-03-01

    This paper responds to Eva Lundqvist, Jonas Almqvist and Leif Ostman's account of how the manner of teaching can strongly influence pupil learning by recommending video supported reflection as a means by which teachers can transform the nature of their practice. Given the complex nature of the many conditions which influence and control teachers' actions the reframing of routine practice through reflection-in-action can prove challenging. This response paper describes how video can empower teachers to take greater control of their progress and allows for a more social constructivist approach to professional development. Along with a consideration of the difficulties associated with the notion of `reflection' and a short case study, the paper uses Lev Semenovich Vygotsky's zone of proximal development and the notion of scaffolding to propose that video offers a Video Supported Zone of Proximal Development which can ease the process of teacher development. In capturing permanent and exchangeable representations of practice video encourages a collaborative approach to reflection and is consistent with the original ideas of John Dewey.

  11. Dimensional measuring techniques in the automotive and aircraft industry

    NASA Astrophysics Data System (ADS)

    Muench, K. H.; Baertlein, Hugh

    1994-03-01

    Optical tooling methods used in industry are rapidly being replaced by new electronic sensor techniques. The impact of new measuring technologies on the production process has caused major changes on the industrial shop floor as well as within industrial measurement systems. The paper deals with one particular industrial measuring system, the manual theodolite measuring system (TMS), within the aircraft and automobile industry. With TMS, setup, data capture, and data analysis are flexible enough to suit industry's demands regarding speed, accuracy, and mobility. Examples show the efficiency and the wide range of TMS applications. In cooperation with industry, the Video Theodolite System was developed. Its origin, functions, capabilities, and future plans are briefly described. With the VTS a major step has been realized in direction to vision systems for industrial applications.

  12. Hi-G electronic gated camera for precision trajectory analysis

    NASA Astrophysics Data System (ADS)

    Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.

    1997-12-01

    It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for trajectory, timing, and advanced sensor development. This system will be used for ground tracking data reduction in support of small air vehicle and munition testing. It will provide a means of integrating the imagery and telemetry data from the item with ground based photographic support. The technique we have designed will exploit off-the-shelf software and analysis components. A differential GPS survey instrument will establish a photogrammetric calibration grid throughout the range and reference targets along the flight path. Images from the on-board sensor will be used to calibrate the ortho- rectification model in the analysis software. The projectile images will be transmitted and recorded on several tape recorders to insure complete capture of each video field. The images will be combined with a non-linear video editor into a time-correlated record. Each correlated video field will be written to video disk. The files will be converted to DMA compatible format and then analyzed for determination of the projectile altitude, attitude and position in space. The resulting data file will be used to create a photomosaic of the ground the projectile flew over and the targets it saw. The data will be then transformed to a trajectory file and used to generate a graphic overlay that will merge digital photo data of the range with actual images captured. The plan is to superimpose the flight path of the projectile, the path of the weapons aimpoint, and annotation of each internal sequence event. With tools used to produce state-of-the-art computer graphics, we now think it will be possible to reconstruct the test event from the viewpoint of the warhead, the target, and a 'God's-Eye' view looking over the shoulder of the projectile.

  13. Instrumentation for simultaneous kinetic imaging of multiple fluorophores in single living cells

    NASA Astrophysics Data System (ADS)

    Morris, Stephen J.; Beatty, Diane M.; Welling, Larry W.; Wiegmann, Thomas B.

    1991-05-01

    Low-light fluorescence video microscopy has established itself as an excellent method for investigations of cell dynamics. There is a growing interest in resolving multiple images of 'ratio' fluorophores like indo or BCECF or the emission from multiple dyes placed in the same cell system. For rapid kinetic studies, the problems of photodynamic damage and photobleaching on one hand and the need for good spatial and temporal resolution on the other, press the resolution of the instrumentation. Rapid resolution of multiple probes at multiple wavelengths presents a third set of problems of exciting the probes and appropriately imaging the emitted light. The authors have designed a new real-time low-light fluorescence video microscope for capturing intensified images of up to four dyes contained in the same cell system. These can be two dual-emission wavelength 'ratio' dyes or multiple dyes. The optics allow simultaneous excitation of up to four fluorophores and the real-time (30 frames/second) capture of four separate fluorescence emission images. Each emission wavelength is imaged simultaneously by one of four cameras, then digitized and appropriately combined at standard video frame rates to be stored at high resolution on tape or video disk for further off-line correction and analysis. The design has no moving parts in its optical train, which overcomes a number of technical difficulties encountered in filter wheel or mechanical shutter designs for multiple imaging. The instrument can be assembled form off-the-shelf components. Coupled to compatible image processing software utilizing PC-AT computers, it can be realized for relatively low cost. Two examples of simultaneous multi-parameter imaging are presented. Synchronous observations of calcium and pH distribution in kidney epithelial cells, loaded with both indo-1 and SNARF-1TM, show that both are altered in response to ionomycin treatment; however, the kinetics for the two changes are quite different. Intracellular calcium increases rapidly when the bath Ca2+ is raised. The pH remains stable for several seconds, then suddenly collapses. The second example concerns fusion of human red blood cells (RBC) to fibroblasts expressing influenza hemagglutinin. Movement of soluble and membrane-bound dyes follow different kinetics, depending upon the molecular weight of the soluble dye. Furthermore, the swelling of the RBC occurs after the onset of fusion, and therefore cannot provide the driving force.

  14. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  15. Evolution of the Mobile Information SysTem (MIST)

    NASA Technical Reports Server (NTRS)

    Litaker, Harry L., Jr.; Thompson, Shelby; Archer, Ronald D.

    2008-01-01

    The Mobile Information SysTem (MIST) had its origins in the need to determine whether commercial off the shelf (COTS) technologies could improve intervehicular activities (IVA) on International Space Station (ISS) crew maintenance productivity. It began with an exploration of head mounted displays (HMDs), but quickly evolved to include voice recognition, mobile personal computing, and data collection. The unique characteristic of the MIST lies within its mobility, in which a vest is worn that contains a mini-computer and supporting equipment, and a headband with attachments for a HMD, lipstick camera, and microphone. Data is then captured directly by the computer running Morae(TM) or similar software for analysis. To date, the MIST system has been tested in numerous environments such as two parabolic flights on NASA's C-9 microgravity aircraft and several mockup facilities ranging from ISS to the Altair Lunar Sortie Lander. Functional capabilities have included its lightweight and compact design, commonality across systems and environments, and usefulness in remote collaboration. Human Factors evaluations of the system have proven the MIST's ability to be worn for long durations of time (approximately four continuous hours) with no adverse physical deficits, moderate operator compensation, and low workload being reported as measured by Corlett Bishop Discomfort Scale, Cooper-Harper Ratings, and the NASA Total Workload Index (TLX), respectively. Additionally, through development of the system, it has spawned several new applications useful in research. For example, by only employing the lipstick camera, microphone, and a compact digital video recorder (DVR), we created a portable, lightweight data collection device. Video is recorded from the participants point of view (POV) through the use of the camera mounted on the side of the head. Both the video and audio is recorded directly into the DVR located on a belt around the waist. This data is then transferred to another computer for video editing and analysis. Another application has been discovered using simulated flight, in which, a kneeboard is replaced with mini-computer and the HMD to project flight paths and glide slopes for lunar ascent. As technologies evolve, so will the system and its application for research and space system operations.

  16. Salvia divinorum: effects and use among YouTube users.

    PubMed

    Lange, James E; Daniel, Jason; Homer, Kestrel; Reed, Mark B; Clapp, John D

    2010-04-01

    Salvia divinorum (salvia) is an intense, short-acting hallucinogenic plant gaining popularity among adolescents in the United States. There has been little scientific documentation of salvia's effects. The popular video-sharing website YouTube has received literally thousands of video-posts of people using salvia. The objective of this study was to assess the effects of salvia use through systematic observations of YouTube videos. A sample of salvia videos was obtained using the search term "salvia." The videos were further screened and only videos that captured the entire drug "trip" without video edits were included in the analyses described here (n=34). Three trained research assistants independently watched the videos and rated their observations on 42 effects in 30-s intervals. Onset of symptoms was quick (often less than 30s) and tended to dissipate within 8min. Further, there was a relationship between salvia dose and effect duration. Since salvia's effects on humans are largely undocumented, this study provides the look at users in a non-laboratory environment (e.g. self-taped videos) exhibiting impairments and behaviors consistent with this powerful hallucinogen. Also, this study demonstrates the feasibility and shortcomings of using YouTube videos to assess emerging drugs and drug effects. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Video-based face recognition via convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bao, Tianlong; Ding, Chunhui; Karmoshi, Saleem; Zhu, Ming

    2017-06-01

    Face recognition has been widely studied recently while video-based face recognition still remains a challenging task because of the low quality and large intra-class variation of video captured face images. In this paper, we focus on two scenarios of video-based face recognition: 1)Still-to-Video(S2V) face recognition, i.e., querying a still face image against a gallery of video sequences; 2)Video-to-Still(V2S) face recognition, in contrast to S2V scenario. A novel method was proposed in this paper to transfer still and video face images to an Euclidean space by a carefully designed convolutional neural network, then Euclidean metrics are used to measure the distance between still and video images. Identities of still and video images that group as pairs are used as supervision. In the training stage, a joint loss function that measures the Euclidean distance between the predicted features of training pairs and expanding vectors of still images is optimized to minimize the intra-class variation while the inter-class variation is guaranteed due to the large margin of still images. Transferred features are finally learned via the designed convolutional neural network. Experiments are performed on COX face dataset. Experimental results show that our method achieves reliable performance compared with other state-of-the-art methods.

  18. A method for the real-time construction of a full parallax light field

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenji; Aoki, Soko

    2006-02-01

    We designed and implemented a light field acquisition and reproduction system for dynamic objects called LiveDimension, which serves as a 3D live video system for multiple viewers. The acquisition unit consists of circularly arranged NTSC cameras surrounding an object. The display consists of circularly arranged projectors and a rotating screen. The projectors are constantly projecting images captured by the corresponding cameras onto the screen. The screen rotates around an in-plane vertical axis at a sufficient speed so that it faces each of the projectors in sequence. Since the Lambertian surfaces of the screens are covered by light-collimating plastic films with vertical louver patterns that are used for the selection of appropriate light rays, viewers can only observe images from a projector located in the same direction as the viewer. Thus, the dynamic view of an object is dependent on the viewer's head position. We evaluated the system by projecting both objects and human figures and confirmed that the entire system can reproduce light fields with a horizontal parallax to display video sequences of 430x770 pixels at a frame rate of 45 fps. Applications of this system include product design reviews, sales promotion, art exhibits, fashion shows, and sports training with form checking.

  19. Our experiences with development of digitised video streams and their use in animal-free medical education.

    PubMed

    Cervinka, Miroslav; Cervinková, Zuzana; Novák, Jan; Spicák, Jan; Rudolf, Emil; Peychl, Jan

    2004-06-01

    Alternatives and their teaching are an essential part of the curricula at the Faculty of Medicine. Dynamic screen-based video recordings are the most important type of alternative models employed for teaching purposes. Currently, the majority of teaching materials for this purpose are based on PowerPoint presentations, which are very popular because of their high versatility and visual impact. Furthermore, current developments in the field of image capturing devices and software enable the use of digitised video streams, tailored precisely to the specific situation. Here, we demonstrate that with reasonable financial resources, it is possible to prepare video sequences and to introduce them into the PowerPoint presentation, thereby shaping the teaching process according to individual students' needs and specificities.

  20. In-flight Video Captured by External Tank Camera System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.

  1. Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius

    PubMed Central

    Dunstan, Andrew; Bradshaw, Corey J. A.; Marshall, Justin

    2011-01-01

    The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6–77.4 km−2) dominated by males (83∶17 male∶female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide. PMID:21347360

  2. Ice Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling.

    PubMed

    Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron

    2017-05-16

    The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.

  3. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  4. Image enhancement software for underwater recovery operations: User's manual

    NASA Astrophysics Data System (ADS)

    Partridge, William J.; Therrien, Charles W.

    1989-06-01

    This report describes software for performing image enhancement on live or recorded video images. The software was developed for operational use during underwater recovery operations at the Naval Undersea Warfare Engineering Station. The image processing is performed on an IBM-PC/AT compatible computer equipped with hardware to digitize and display video images. The software provides the capability to provide contrast enhancement and other similar functions in real time through hardware lookup tables, to automatically perform histogram equalization, to capture one or more frames and average them or apply one of several different processing algorithms to a captured frame. The report is in the form of a user manual for the software and includes guided tutorial and reference sections. A Digital Image Processing Primer in the appendix serves to explain the principle concepts that are used in the image processing.

  5. Self-report captures 27 distinct categories of emotion bridged by continuous gradients.

    PubMed

    Cowen, Alan S; Keltner, Dacher

    2017-09-19

    Emotions are centered in subjective experiences that people represent, in part, with hundreds, if not thousands, of semantic terms. Claims about the distribution of reported emotional states and the boundaries between emotion categories-that is, the geometric organization of the semantic space of emotion-have sparked intense debate. Here we introduce a conceptual framework to analyze reported emotional states elicited by 2,185 short videos, examining the richest array of reported emotional experiences studied to date and the extent to which reported experiences of emotion are structured by discrete and dimensional geometries. Across self-report methods, we find that the videos reliably elicit 27 distinct varieties of reported emotional experience. Further analyses revealed that categorical labels such as amusement better capture reports of subjective experience than commonly measured affective dimensions (e.g., valence and arousal). Although reported emotional experiences are represented within a semantic space best captured by categorical labels, the boundaries between categories of emotion are fuzzy rather than discrete. By analyzing the distribution of reported emotional states we uncover gradients of emotion-from anxiety to fear to horror to disgust, calmness to aesthetic appreciation to awe, and others-that correspond to smooth variation in affective dimensions such as valence and dominance. Reported emotional states occupy a complex, high-dimensional categorical space. In addition, our library of videos and an interactive map of the emotional states they elicit (https://s3-us-west-1.amazonaws.com/emogifs/map.html) are made available to advance the science of emotion.

  6. Self-report captures 27 distinct categories of emotion bridged by continuous gradients

    PubMed Central

    Keltner, Dacher

    2017-01-01

    Emotions are centered in subjective experiences that people represent, in part, with hundreds, if not thousands, of semantic terms. Claims about the distribution of reported emotional states and the boundaries between emotion categories—that is, the geometric organization of the semantic space of emotion—have sparked intense debate. Here we introduce a conceptual framework to analyze reported emotional states elicited by 2,185 short videos, examining the richest array of reported emotional experiences studied to date and the extent to which reported experiences of emotion are structured by discrete and dimensional geometries. Across self-report methods, we find that the videos reliably elicit 27 distinct varieties of reported emotional experience. Further analyses revealed that categorical labels such as amusement better capture reports of subjective experience than commonly measured affective dimensions (e.g., valence and arousal). Although reported emotional experiences are represented within a semantic space best captured by categorical labels, the boundaries between categories of emotion are fuzzy rather than discrete. By analyzing the distribution of reported emotional states we uncover gradients of emotion—from anxiety to fear to horror to disgust, calmness to aesthetic appreciation to awe, and others—that correspond to smooth variation in affective dimensions such as valence and dominance. Reported emotional states occupy a complex, high-dimensional categorical space. In addition, our library of videos and an interactive map of the emotional states they elicit (https://s3-us-west-1.amazonaws.com/emogifs/map.html) are made available to advance the science of emotion. PMID:28874542

  7. An improved real time superresolution FPGA system

    NASA Astrophysics Data System (ADS)

    Lakshmi Narasimha, Pramod; Mudigoudar, Basavaraj; Yue, Zhanfeng; Topiwala, Pankaj

    2009-05-01

    In numerous computer vision applications, enhancing the quality and resolution of captured video can be critical. Acquired video is often grainy and low quality due to motion, transmission bottlenecks, etc. Postprocessing can enhance it. Superresolution greatly decreases camera jitter to deliver a smooth, stabilized, high quality video. In this paper, we extend previous work on a real-time superresolution application implemented in ASIC/FPGA hardware. A gradient based technique is used to register the frames at the sub-pixel level. Once we get the high resolution grid, we use an improved regularization technique in which the image is iteratively modified by applying back-projection to get a sharp and undistorted image. The algorithm was first tested in software and migrated to hardware, to achieve 320x240 -> 1280x960, about 30 fps, a stunning superresolution by 16X in total pixels. Various input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as in FPGA hardware, which gives us a fine balance between the number of bits and performance. The proposed system is robust and highly efficient. We have shown the performance improvement of the hardware superresolution over the software version (C code).

  8. 1200737

    NASA Image and Video Library

    2012-08-21

    FINAL DEMONSTRATION OF A WIRELESS DATA TASK SUPPORTED BY SLS ADVANCED DEVELOPMENT USED TO DEMONSTRATE REAL-TIME VIDEO OVER WIRELESS CONNECTIONS ALONG WITH DATA AND COMMANDS AS DEMONSTRATED VIA THE ROBOTIC ARMS. THE ARMS AND VIDEO CAMERAS WERE MOUNTED ON FREE FLOATING AIR-BEARING VEHICLES TO SIMULATE CONDITIONS IN SPACE. THEY WERE USED TO SHOW HOW A CHASE VEHICLE COULD MOVE UP TO AND CAPTURE A SATELLITE, SUCH AS THE FASTSAT MOCKUP DEMONSTRITING HOW ROBOTIC TECHNOLOGY AND SMALL SPACECRAFT COULD ASSIST WITH ORBITAL DEBRIS MITIGATION

  9. 1200739

    NASA Image and Video Library

    2012-08-21

    FINAL DEMONSTRATION OF A WIRELESS DATA TASK SUPPORTED BY SLS ADVANCED DEVELOPMENT USED TO DEMONSTRATE REAL-TIME VIDEO OVER WIRELESS CONNECTIONS ALONG WITH DATA AND COMMANDS AS DEMONSTRATED VIA THE ROBOTIC ARMS. THE ARMS AND VIDEO CAMERAS WERE MOUNTED ON FREE FLOATING AIR-BEARING VEHICLES TO SIMULATE CONDITIONS IN SPACE. THEY WERE USED TO SHOW HOW A CHASE VEHICLE COULD MOVE UP TO AND CAPTURE A SATELLITE, SUCH AS THE FASTSAT MOCKUP DEMONSTRITING HOW ROBOTIC TECHNOLOGY AND SMALL SPACECRAFT COULD ASSIST WITH ORBITAL DEBRIS MITIGATION

  10. 1200738

    NASA Image and Video Library

    2012-08-21

    FINAL DEMONSTRATION OF A WIRELESS DATA TASK SUPPORTED BY SLS ADVANCED DEVELOPMENT USED TO DEMONSTRATE REAL-TIME VIDEO OVER WIRELESS CONNECTIONS ALONG WITH DATA AND COMMANDS AS DEMONSTRATED VIA THE ROBOTIC ARMS. THE ARMS AND VIDEO CAMERAS WERE MOUNTED ON FREE FLOATING AIR-BEARING VEHICLES TO SIMULATE CONDITIONS IN SPACE. THEY WERE USED TO SHOW HOW A CHASE VEHICLE COULD MOVE UP TO AND CAPTURE A SATELLITE, SUCH AS THE FASTSAT MOCKUP DEMONSTRITING HOW ROBOTIC TECHNOLOGY AND SMALL SPACECRAFT COULD ASSIST WITH ORBITAL DEBRIS MITIGATION

  11. A pilot project in distance education: nurse practitioner students' experience of personal video capture technology as an assessment method of clinical skills.

    PubMed

    Strand, Haakan; Fox-Young, Stephanie; Long, Phil; Bogossian, Fiona

    2013-03-01

    This paper reports on a pilot project aimed at exploring postgraduate distance students' experiences using personal video capture technology to complete competency assessments in physical examination. A pre-intervention survey gathered demographic data from nurse practitioner students (n=31) and measured their information communication technology fluency. Subsequently, thirteen (13) students were allocated a hand held video camera to use in their clinical setting. Those participating in the trial completed a post-intervention survey and further data were gathered using semi-structured interviews. Data were analysed by descriptive statistics and deductive content analysis, and the Unified Theory of Acceptance and Use of Technology (Venkatesh et al., 2003) were used to guide the project. Uptake of the intervention was high (93%) as students recognised the potential benefit. Students were video recorded while performing physical examinations. They described high level of stress and some anxiety, which decreased rapidly while assessment was underway. Barriers experienced were in the areas of facilitating conditions (technical character e.g. upload of files) and social influence (e.g. local ethical approval). Students valued the opportunity to reflect on their recorded performance with their clinical mentors and by themselves. This project highlights the demands and difficulties of introducing technology to support work-based learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Distributed Sensing and Processing for Multi-Camera Networks

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  13. Automatic exposure for panoramic systems in uncontrolled lighting conditions: a football stadium case study

    NASA Astrophysics Data System (ADS)

    Gaddam, Vamsidhar Reddy; Griwodz, Carsten; Halvorsen, Pâl.

    2014-02-01

    One of the most common ways of capturing wide eld-of-view scenes is by recording panoramic videos. Using an array of cameras with limited overlapping in the corresponding images, one can generate good panorama images. Using the panorama, several immersive display options can be explored. There is a two fold synchronization problem associated to such a system. One is the temporal synchronization, but this challenge can easily be handled by using a common triggering solution to control the shutters of the cameras. The other synchronization challenge is the automatic exposure synchronization which does not have a straight forward solution, especially in a wide area scenario where the light conditions are uncontrolled like in the case of an open, outdoor football stadium. In this paper, we present the challenges and approaches for creating a completely automatic real-time panoramic capture system with a particular focus on the camera settings. One of the main challenges in building such a system is that there is not one common area of the pitch that is visible to all the cameras that can be used for metering the light in order to nd appropriate camera parameters. One approach we tested is to use the green color of the eld grass. Such an approach provided us with acceptable results only in limited light conditions.A second approach was devised where the overlapping areas between adjacent cameras are exploited, thus creating pairs of perfectly matched video streams. However, there still existed some disparity between di erent pairs. We nally developed an approach where the time between two temporal frames is exploited to communicate the exposures among the cameras where we achieve a perfectly synchronized array. An analysis of the system and some experimental results are presented in this paper. In summary, a pilot-camera approach running in auto-exposure mode and then distributing the used exposure values to the other cameras seems to give best visual results.

  14. Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas

    2018-06-01

    In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.

  15. SarcOptiM for ImageJ: high-frequency online sarcomere length computing on stimulated cardiomyocytes.

    PubMed

    Pasqualin, Côme; Gannier, François; Yu, Angèle; Malécot, Claire O; Bredeloux, Pierre; Maupoil, Véronique

    2016-08-01

    Accurate measurement of cardiomyocyte contraction is a critical issue for scientists working on cardiac physiology and physiopathology of diseases implying contraction impairment. Cardiomyocytes contraction can be quantified by measuring sarcomere length, but few tools are available for this, and none is freely distributed. We developed a plug-in (SarcOptiM) for the ImageJ/Fiji image analysis platform developed by the National Institutes of Health. SarcOptiM computes sarcomere length via fast Fourier transform analysis of video frames captured or displayed in ImageJ and thus is not tied to a dedicated video camera. It can work in real time or offline, the latter overcoming rotating motion or displacement-related artifacts. SarcOptiM includes a simulator and video generator of cardiomyocyte contraction. Acquisition parameters, such as pixel size and camera frame rate, were tested with both experimental recordings of rat ventricular cardiomyocytes and synthetic videos. It is freely distributed, and its source code is available. It works under Windows, Mac, or Linux operating systems. The camera speed is the limiting factor, since the algorithm can compute online sarcomere shortening at frame rates >10 kHz. In conclusion, SarcOptiM is a free and validated user-friendly tool for studying cardiomyocyte contraction in all species, including human. Copyright © 2016 the American Physiological Society.

  16. The Advanced Video Guidance Sensor: Orbital Express and the Next Generation

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Heaton, Andrew F.; Pinson, Robin M.; Carrington, Connie L.; Lee, James E.; Bryan, Thomas C.; Robertson, Bryan A.; Spencer, Susan H.; Johnson, Jimmie E.

    2008-01-01

    The Orbital Express (OE) mission performed the first autonomous rendezvous and docking in the history of the United States on May 5-6, 2007 with the Advanced Video Guidance Sensor (AVGS) acting as one of the primary docking sensors. Since that event, the OE spacecraft performed four more rendezvous and docking maneuvers, each time using the AVGS as one of the docking sensors. The Marshall Space Flight Center's (MSFC's) AVGS is a nearfield proximity operations sensor that was integrated into the Autonomous Rendezvous and Capture Sensor System (ARCSS) on OE. The ARCSS provided the relative state knowledge to allow the OE spacecraft to rendezvous and dock. The AVGS is a mature sensor technology designed to support Automated Rendezvous and Docking (AR&D) operations. It is a video-based laser-illuminated sensor that can determine the relative position and attitude between itself and its target. Due to parts obsolescence, the AVGS that was flown on OE can no longer be manufactured. MSFC has been working on the next generation of AVGS for application to future Constellation missions. This paper provides an overview of the performance of the AVGS on Orbital Express and discusses the work on the Next Generation AVGS (NGAVGS).

  17. Solar Eclipse Video Captured by STEREO-B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    No human has ever witnessed a solar eclipse quite like the one captured on this video. The NASA STEREO-B spacecraft, managed by the Goddard Space Center, was about a million miles from Earth , February 25, 2007, when it photographed the Moon passing in front of the sun. The resulting movie looks like it came from an alien solar system. The fantastically-colored star is our own sun as STEREO sees it in four wavelengths of extreme ultraviolet light. The black disk is the Moon. When we observe a lunar transit from Earth, the Moon appears to be the same size as the sun, a coincidence that produces intoxicatingly beautiful solar eclipses. The silhouette STEREO-B saw, on the other hand, was only a fraction of the Sun. The Moon seems small because of the STEREO-B location. The spacecraft circles the sun in an Earth-like orbit, but it lags behind Earth by one million miles. This means STEREO-B is 4.4 times further from the Moon than we are, and so the Moon looks 4.4 times smaller. This version of the STEREO-B eclipse movie is a composite of data from the coronagraph and extreme ultraviolet imager of the spacecraft. STEREO-B has a sister ship named STEREO-A. Both are on a mission to study the sun. While STEREO-B lags behind Earth, STEREO-A orbits one million miles ahead ('B' for behind, 'A' for ahead). The gap is deliberate as it allows the two spacecraft to capture offset views of the sun. Researchers can then combine the images to produce 3D stereo movies of solar storms. The two spacecraft were launched in Oct. 2006 and reached their stations on either side of Earth in January 2007.

  18. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    PubMed

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  19. Investigating helmet promotion for cyclists: results from a randomised study with observation of behaviour, using a semi-automatic video system.

    PubMed

    Constant, Aymery; Messiah, Antoine; Felonneau, Marie-Line; Lagarde, Emmanuel

    2012-01-01

    Half of fatal injuries among bicyclists are head injuries. While helmet use is likely to provide protection, their use often remains rare. We assessed the influence of strategies for promotion of helmet use with direct observation of behaviour by a semi-automatic video system. We performed a single-centre randomised controlled study, with 4 balanced randomisation groups. Participants were non-helmet users, aged 18-75 years, recruited at a loan facility in the city of Bordeaux, France. After completing a questionnaire investigating their attitudes towards road safety and helmet use, participants were randomly assigned to three groups with the provision of "helmet only", "helmet and information" or "information only", and to a fourth control group. Bikes were labelled with a colour code designed to enable observation of helmet use by participants while cycling, using a 7-spot semi-automatic video system located in the city. A total of 1557 participants were included in the study. Between October 15th 2009 and September 28th 2010, 2621 cyclists' movements, made by 587 participants, were captured by the video system. Participants seen at least once with a helmet amounted to 6.6% of all observed participants, with higher rates in the two groups that received a helmet at baseline. The likelihood of observed helmet use was significantly increased among participants of the "helmet only" group (OR = 7.73 [2.09-28.5]) and this impact faded within six months following the intervention. No effect of information delivery was found. Providing a helmet may be of value, but will not be sufficient to achieve high rates of helmet wearing among adult cyclists. Integrated and repeated prevention programmes will be needed, including free provision of helmets, but also information on the protective effect of helmets and strategies to increase peer and parental pressure.

  20. Investigating Helmet Promotion for Cyclists: Results from a Randomised Study with Observation of Behaviour, Using a Semi-Automatic Video System

    PubMed Central

    Constant, Aymery; Messiah, Antoine; Felonneau, Marie-Line; Lagarde, Emmanuel

    2012-01-01

    Introduction Half of fatal injuries among bicyclists are head injuries. While helmet use is likely to provide protection, their use often remains rare. We assessed the influence of strategies for promotion of helmet use with direct observation of behaviour by a semi-automatic video system. Methods We performed a single-centre randomised controlled study, with 4 balanced randomisation groups. Participants were non-helmet users, aged 18–75 years, recruited at a loan facility in the city of Bordeaux, France. After completing a questionnaire investigating their attitudes towards road safety and helmet use, participants were randomly assigned to three groups with the provision of “helmet only”, “helmet and information” or “information only”, and to a fourth control group. Bikes were labelled with a colour code designed to enable observation of helmet use by participants while cycling, using a 7-spot semi-automatic video system located in the city. A total of 1557 participants were included in the study. Results Between October 15th 2009 and September 28th 2010, 2621 cyclists' movements, made by 587 participants, were captured by the video system. Participants seen at least once with a helmet amounted to 6.6% of all observed participants, with higher rates in the two groups that received a helmet at baseline. The likelihood of observed helmet use was significantly increased among participants of the “helmet only” group (OR = 7.73 [2.09–28.5]) and this impact faded within six months following the intervention. No effect of information delivery was found. Conclusion Providing a helmet may be of value, but will not be sufficient to achieve high rates of helmet wearing among adult cyclists. Integrated and repeated prevention programmes will be needed, including free provision of helmets, but also information on the protective effect of helmets and strategies to increase peer and parental pressure. PMID:22355384

  1. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  2. Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.

    2007-09-01

    We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.

  3. Four reversible and reconfigurable structures for three-phase emulsions: extended morphologies and applications

    NASA Astrophysics Data System (ADS)

    Ge, Xue-Hui; Geng, Yu-Hao; Zhang, Qiao-Chu; Shao, Meng; Chen, Jian; Luo, Guang-Sheng; Xu, Jian-Hong

    2017-02-01

    Here in this article, we classify and conclude the four morphologies of three-phase emulsions. Remarkably, we achieve the reversible transformations between every shape. Through theoretical analysis, we choose four liquid systems to form these four morphologies. Then monodispersed droplets with these four morphologies are formed through a microfluidic device and captured in a petri-dish. By replacing their ambient solution of the captured emulsions, in-situ morphology transformations between each shape are achieved. The process is well recorded through photographs and videos and they are systematical and reversible. Finally, we use the droplets structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve the process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea to achieve the switchable and reversible reaction control in multiple-phase reactions.

  4. How much camera separation should be used for the capture and presentation of 3D stereoscopic imagery on binocular HMDs?

    NASA Astrophysics Data System (ADS)

    McIntire, John; Geiselman, Eric; Heft, Eric; Havig, Paul

    2011-06-01

    Designers, researchers, and users of binocular stereoscopic head- or helmet-mounted displays (HMDs) face the tricky issue of what imagery to present in their particular displays, and how to do so effectively. Stereoscopic imagery must often be created in-house with a 3D graphics program or from within a 3D virtual environment, or stereoscopic photos/videos must be carefully captured, perhaps for relaying to an operator in a teleoperative system. In such situations, the question arises as to what camera separation (real or virtual) is appropriate or desirable for end-users and operators. We review some of the relevant literature regarding the question of stereo pair camera separation using deskmounted or larger scale stereoscopic displays, and employ our findings to potential HMD applications, including command & control, teleoperation, information and scientific visualization, and entertainment.

  5. Evacuation support system for improved medical documentation and information flow in the field.

    PubMed

    Walderhaug, Ståle; Meland, Per Håkon; Mikalsen, Marius; Sagen, Terje; Brevik, John Ivar

    2008-02-01

    Documentation of medical treatment and observation of patients during evacuation from the point of injury to definitive treatment is important both for optimizing patient treatment and managing the evacuation process. The current practice in military medical field documentation uses paper forms and voice communication. There are many shortcomings associated with this approach, especially with respect to information capture and sharing processes. Current research addresses the use of new technology for civilian ambulance-to-hospital communication. The research work presented in this article addresses information capture and sharing in extreme military conditions by evaluating a targeted computerized information system called EvacSys during a military exercise in northern Norway in December 2003. EvacSys was designed and implemented in close cooperation with military medical personnel in both Norway and the USA. The system was evaluated and compared to the traditional paper-based documentation method during a military exercise. The on-site evaluation was conducted in a military medical platoon in the Norwegian Armed Forces, using questionnaires, semi-structured interviews, observation and video recording to capture the users' system acceptance. A prototype software system running on a commercial off-the-shelf hardware platform was successfully developed. The evaluation of this system shows that the usability of digital information capturing and sharing are perceived to be at least as good as the traditional paper-based method. The medics found the new digital method to be more viable than the old one. No technical problems were encountered. Our research shows that it is feasible to utilize digital information systems for medical documentation in extreme outdoor environments. The usability concern is of utmost importance, and more research should be put into the design and alignment with existing workflow. Successful digitalization of information at the point of care will provide accurate and timely information for the management of resources during disaster response.

  6. Consumer-based technology for distribution of surgical videos for objective evaluation.

    PubMed

    Gonzalez, Ray; Martinez, Jose M; Lo Menzo, Emanuele; Iglesias, Alberto R; Ro, Charles Y; Madan, Atul K

    2012-08-01

    The Global Operative Assessment of Laparoscopic Skill (GOALS) is one validated metric utilized to grade laparoscopic skills and has been utilized to score recorded operative videos. To facilitate easier viewing of these recorded videos, we are developing novel techniques to enable surgeons to view these videos. The objective of this study is to determine the feasibility of utilizing widespread current consumer-based technology to assist in distributing appropriate videos for objective evaluation. Videos from residents were recorded via a direct connection from the camera processor via an S-video output via a cable into a hub to connect to a standard laptop computer via a universal serial bus (USB) port. A standard consumer-based video editing program was utilized to capture the video and record in appropriate format. We utilized mp4 format, and depending on the size of the file, the videos were scaled down (compressed), their format changed (using a standard video editing program), or sliced into multiple videos. Standard available consumer-based programs were utilized to convert the video into a more appropriate format for handheld personal digital assistants. In addition, the videos were uploaded to a social networking website and video sharing websites. Recorded cases of laparoscopic cholecystectomy in a porcine model were utilized. Compression was required for all formats. All formats were accessed from home computers, work computers, and iPhones without difficulty. Qualitative analyses by four surgeons demonstrated appropriate quality to grade for these formats. Our preliminary results show promise that, utilizing consumer-based technology, videos can be easily distributed to surgeons to grade via GOALS via various methods. Easy accessibility may help make evaluation of resident videos less complicated and cumbersome.

  7. StreaMorph: A Case for Synthesizing Energy-Efficient Adaptive Programs Using High-Level Abstractions

    DTIC Science & Technology

    2013-08-12

    technique when switching from using eight cores to one core. 1. Introduction Real - time streaming of media data is growing in popularity. This includes...both capture and processing of real - time video and audio, and delivery of video and audio from servers; recent usage number shows over 800 million...source of data, when that source is a real - time source, and it is generally not necessary to get ahead of the sink. Even with real - time sources and sinks

  8. Quantitative evaluation of low-cost frame-grabber boards for personal computers.

    PubMed

    Kofler, J M; Gray, J E; Fuelberth, J T; Taubel, J P

    1995-11-01

    Nine moderately priced frame-grabber boards for both Macintosh (Apple Computers, Cupertino, CA) and IBM-compatible computers were evaluated using a Society of Motion Pictures and Television Engineers (SMPTE) pattern and a video signal generator for dynamic range, gray-scale reproducibility, and spatial integrity of the captured image. The degradation of the video information ranged from minor to severe. Some boards are of reasonable quality for applications in diagnostic imaging and education. However, price and quality are not necessarily directly related.

  9. Machine-assisted editing of user-generated content

    NASA Astrophysics Data System (ADS)

    Cremer, Markus; Cook, Randall

    2009-02-01

    Over recent years user-generated content has become ubiquitously available and an attractive entertainment source for millions of end-users. Particularly for larger events, where many people use their devices to capture the action, a great number of short video clips are made available through appropriate web services. The objective of this presentation is to describe a way to combine these clips by analyzing them, and automatically reconstruct the time line in which the individual video clips were captured. This will enable people to easily create a compelling multimedia experience by leveraging multiple clips taken by different users from different angles, and across different time spans. The user will be able to shift into the role of a movie director mastering a multi-camera recording of the event. To achieve this goal, the audio portion of the video clips is analyzed, and waveform characteristics are computed with high temporal granularity in order to facilitate precise time alignment and overlap computation of the user-generated clips. Special care has to be given not only to the robustness of the selected audio features against ambient noise and various distortions, but also to the matching algorithm used to align the user-generated clips properly.

  10. Evaluating Perceived Naturalness of Facial Expression After Fillers to the Nasolabial Folds and Lower Face With Standardized Video and Photography.

    PubMed

    Philipp-Dormston, Wolfgang G; Wong, Cindy; Schuster, Bernd; Larsson, Markus K; Podda, Maurizio

    2018-06-01

    Hyaluronic acid (HA) fillers are commonly used in treating facial wrinkles and folds but have not been studied with standardized methodology to include assessment of standard facial expressions. To assess perceived naturalness of facial expression after treatment with 2 HA fillers manufactured with XpresHAn Technology (also known as Optimal Balance Technology). Treatment was directed to the nasolabial folds (NLFs) and at least 1 additional lower face wrinkle or fold. Maintenance of naturalness, attractiveness, and age at 1 month after optimal treatment were assessed using video recordings and photographs capturing different facial animations. Global aesthetic improvement, subjects' satisfaction, and safety were also evaluated. The treatment was well tolerated. Naturalness of facial expression in motion was determined to be at least maintained in 95% of subjects. Attractiveness was enhanced in 89% of subjects and 79% of subjects were considered to look younger. Most subjects assessed their aesthetic appearance as improved and were satisfied with their treatment. Naturalness and attractiveness can be assessed using video recordings and photographs capturing different facial animations. XpresHAn Technology HA filler treatments create natural-looking results with high subject satisfaction.

  11. Transforming Education Research Through Open Video Data Sharing.

    PubMed

    Gilmore, Rick O; Adolph, Karen E; Millman, David S; Gordon, Andrew

    2016-01-01

    Open data sharing promises to accelerate the pace of discovery in the developmental and learning sciences, but significant technical, policy, and cultural barriers have limited its adoption. As a result, most research on learning and development remains shrouded in a culture of isolation. Data sharing is the rare exception (Gilmore, 2016). Many researchers who study teaching and learning in classroom, laboratory, museum, and home contexts use video as a primary source of raw research data. Unlike other measures, video captures the complexity, richness, and diversity of behavior. Moreover, because video is self-documenting, it presents significant potential for reuse. However, the potential for reuse goes largely unrealized because videos are rarely shared. Research videos contain information about participants' identities making the materials challenging to share. The large size of video files, diversity of formats, and incompatible software tools pose technical challenges. The Databrary (databrary.org) digital library enables researchers who study learning and development to store, share, stream, and annotate videos. In this article, we describe how Databrary has overcome barriers to sharing research videos and associated data and metadata. Databrary has developed solutions for respecting participants' privacy; for storing, streaming, and sharing videos; and for managing videos and associated metadata. The Databrary experience suggests ways that videos and other identifiable data collected in the context of educational research might be shared. Open data sharing enabled by Databrary can serve as a catalyst for a truly multidisciplinary science of learning.

  12. Transforming Education Research Through Open Video Data Sharing

    PubMed Central

    Gilmore, Rick O.; Adolph, Karen E.; Millman, David S.; Gordon, Andrew

    2016-01-01

    Open data sharing promises to accelerate the pace of discovery in the developmental and learning sciences, but significant technical, policy, and cultural barriers have limited its adoption. As a result, most research on learning and development remains shrouded in a culture of isolation. Data sharing is the rare exception (Gilmore, 2016). Many researchers who study teaching and learning in classroom, laboratory, museum, and home contexts use video as a primary source of raw research data. Unlike other measures, video captures the complexity, richness, and diversity of behavior. Moreover, because video is self-documenting, it presents significant potential for reuse. However, the potential for reuse goes largely unrealized because videos are rarely shared. Research videos contain information about participants’ identities making the materials challenging to share. The large size of video files, diversity of formats, and incompatible software tools pose technical challenges. The Databrary (databrary.org) digital library enables researchers who study learning and development to store, share, stream, and annotate videos. In this article, we describe how Databrary has overcome barriers to sharing research videos and associated data and metadata. Databrary has developed solutions for respecting participants’ privacy; for storing, streaming, and sharing videos; and for managing videos and associated metadata. The Databrary experience suggests ways that videos and other identifiable data collected in the context of educational research might be shared. Open data sharing enabled by Databrary can serve as a catalyst for a truly multidisciplinary science of learning. PMID:28042361

  13. Content analysis of antismoking videos on YouTube: message sensation value, message appeals, and their relationships with viewer responses.

    PubMed

    Paek, Hye-Jin; Kim, Kyongseok; Hove, Thomas

    2010-12-01

    Focusing on several message features that are prominent in antismoking campaign literature, this content-analytic study examines 934 antismoking video clips on YouTube for the following characteristics: message sensation value (MSV) and three types of message appeal (threat, social and humor). These four characteristics are then linked to YouTube's interactive audience response mechanisms (number of viewers, viewer ratings and number of comments) to capture message reach, viewer preference and viewer engagement. The findings suggest the following: (i) antismoking messages are prevalent on YouTube, (ii) MSV levels of online antismoking videos are relatively low compared with MSV levels of televised antismoking messages, (iii) threat appeals are the videos' predominant message strategy and (iv) message characteristics are related to viewer reach and viewer preference.

  14. On the development of new SPMN diurnal video systems for daylight fireball monitoring

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.

    2008-09-01

    Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y Convenciones Ecológicas y Medioambientales (CIECEM, University of Huelva), in the environment of Doñana Natural Park (Huelva province). In this way, both stations, which are separated by a distance of 75 km, will work as a double video station system in order to provide trajectory and orbit information of mayor bolides and, thus, increase the chance of meteorite recovery in the Iberian Peninsula. The new diurnal SPMN video stations are endowed with different models of Mintron cameras (Mintron Enterprise Co., LTD). These are high-sensitivity devices that employ a colour 1/2" Sony interline transfer CCD image sensor. Aspherical lenses are attached to the video cameras in order to maximize image quality. However, the use of fast lenses is not a priority here: while most of our nocturnal cameras use f0.8 or f1.0 lenses in order to detect meteors as faint as magnitude +3, diurnal systems employ in most cases f1.4 to f2.0 lenses. Their focal length ranges from 3.8 to 12 mm to cover different atmospheric volumes. The cameras are arranged in such a way that the whole sky is monitored from every observing station. Figure 1. A daylight event recorded from Sevilla on May 26, 2008 at 4h30m05.4 +-0.1s UT. The way our diurnal video cameras work is similar to the operation of our nocturnal systems [1]. Thus, diurnal stations are automatically switched on and off at sunrise and sunset, respectively. The images taken at 25 fps and with a resolution of 720x576 pixels are continuously sent to PC computers through a video capture device. The computers run a software (UFOCapture, by SonotaCo, Japan) that automatically registers meteor trails and stores the corresponding video frames on hard disk. Besides, before the signal from the cameras reaches the computers, a video time inserter that employs a GPS device (KIWI-OSD, by PFD Systems) inserts time information on every video frame. This allows us to measure time in a precise way (about 0.01 sec.) along the whole fireball path. EPSC Abstracts, Vol. 3, EPSC2008-A-00319, 2008 European Planetary Science Congress, Author(s) 2008 However, one of the issues with respect to nocturnal observing stations is the high number of false detections as a consequence of several factors: higher activity of birds and insects, reflection of sunlight on planes and helicopters, etc. Sometimes some of these false events follow a pattern which is very similar to fireball trails, which makes absolutely necessary the use of a second station in order to discriminate between them. Other key issue is related to the passage of the Sun before the field of view of some of the cameras. In fact, special care is necessary with this to avoid any damage to the CCD sensor. Besides, depending on atmospheric conditions (dust or moisture, for instance), the Sun may saturate most of the video frame. To solve this, our automated system determines which camera is pointing towards the Sun at a given moment and disconnects it. As the cameras are endowed with autoiris lenses, its disconnection means that the optics is fully closed and, so, the CCD sensor is protected. This, of course, means that when this happens the atmospheric volume covered by the corresponding camera is not monitored. It must be also taken into account that, in general, operation temperatures are higher for diurnal cameras. This results in higher thermal noise and, so, poses some difficulties to the detection software. To minimize this effect, it is necessary to employ CCD video cameras with proper signal to noise ratio. Refrigeration of the CCD sensor with, for instance, a Peltier system, can also be considered. The astrometric reduction procedure is also somewhat different for daytime events: it requires that reference objects are located within the field of view of every camera in order to calibrate the corresponding images. This is done by allowing every camera to capture distant buildings that, by means of said calibration, would allow us to obtain the equatorial coordinates of the fireball along its path by measuring its corresponding X and Y positions on every video frame. Such calibration can be performed from stars positions measured from nocturnal images taken with the same cameras. Once made, if the cameras are not moved it is possible to estimate the equatorial coordinates of any future fireball event. We don't use any software for automatic astrometry of the images. This crucial step is made via direct measurements of the pixel position as in all our previous work. Then, from these astrometric measurements, our software estimates the atmospheric trajectory and radiant for each fireball ([10] to [13]). During 2007 and 2008 the SPMN has also setup other diurnal stations based on 1/3' progressive-scan CMOS sensors attached to modified wide-field lenses covering a 120x80 degrees FOV. They are placed in Andalusia: El Arenosillo (Huelva), La Mayora (Málaga) and Murtas (Granada). They have also night sensitivity thanks to a infrared cut filter (ICR) which enables the camera to perform well in both high and low light condition in colour as well as provide IR sensitive Black/White video at night. Conclusions First detections of daylight fireballs by CCD video camera are being achieved in the SPMN framework. Future expansion and set up of new observing stations is currently being planned. The future establishment of additional diurnal SPMN stations will allow an increase in the number of daytime fireballs detected. This will also increase our chance of meteorite recovery.

  15. Marshall Installs Receiving Antenna for Next-Generation Weather Satellites

    NASA Image and Video Library

    2016-12-16

    Technicians assemble a hefty segment of a new antenna system in this 30-second time-lapse video captured Dec. 16 at NASA's Marshall Space Flight Center. The high-performance ground station is designed to receive meteorological and space weather data from instruments flown on the National Oceanic and Atmospheric Administration's new, game-changing Geostationary Operational Environmental Satellite series. The six-meter dish antenna near Building 4316 expands the capacity of Marshall’s Earth Science Office to use real-time GOES observations for studies of Earth and to deliver new forecasting, warning and disaster response tools to partners around the world. (NASA/MSFC)

  16. Fluorescent screens and image processing for the APS linac test stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, W.; Ko, K.

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed.

  17. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank dopedmore » with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.« less

  18. Juno Captures Jupiter Glow in Infrared Light

    NASA Image and Video Library

    2016-09-02

    As NASA's Juno spacecraft approached Jupiter on Aug. 27, 2016, the Jovian Infrared Auroral Mapper (JIRAM) instrument captured the planet's glow in infrared light. The video is composed of 580 images collected over a period of about nine hours while Jupiter completed nearly a full rotation on its axis. The video shows the two parts composing the JIRAM imager: the lower one, in a red color scale, is used for mapping the planet's thermal emission at wavelengths around 4.8 microns; the upper one, in a blue color scale, is used to map the auroras at wavelengths around 3.45 microns. In this case the exposure time of the imager was optimized to observe the planet's thermal emission. However, it is possible to see a faint aurora and Jupiter's moon Io approaching the planet. The Great Red Spot is also visible just south of the planet's equator. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA21036

  19. Tile-Image Merging and Delivering for Virtual Camera Services on Tiled-Display for Real-Time Remote Collaboration

    NASA Astrophysics Data System (ADS)

    Choe, Giseok; Nang, Jongho

    The tiled-display system has been used as a Computer Supported Cooperative Work (CSCW) environment, in which multiple local (and/or remote) participants cooperate using some shared applications whose outputs are displayed on a large-scale and high-resolution tiled-display, which is controlled by a cluster of PC's, one PC per display. In order to make the collaboration effective, each remote participant should be aware of all CSCW activities on the titled display system in real-time. This paper presents a capturing and delivering mechanism of all activities on titled-display system to remote participants in real-time. In the proposed mechanism, the screen images of all PC's are periodically captured and delivered to the Merging Server that maintains separate buffers to store the captured images from the PCs. The mechanism selects one tile image from each buffer, merges the images to make a screen shot of the whole tiled-display, clips a Region of Interest (ROI), compresses and streams it to remote participants in real-time. A technical challenge in the proposed mechanism is how to select a set of tile images, one from each buffer, for merging so that the tile images displayed at the same time on the tiled-display can be properly merged together. This paper presents three selection algorithms; a sequential selection algorithm, a capturing time based algorithm, and a capturing time and visual consistency based algorithm. It also proposes a mechanism of providing several virtual cameras on tiled-display system to remote participants by concurrently clipping several different ROI's from the same merged tiled-display images, and delivering them after compressing with video encoders requested by the remote participants. By interactively changing and resizing his/her own ROI, a remote participant can check the activities on the tiled-display effectively. Experiments on a 3 × 2 tiled-display system show that the proposed merging algorithm can build a tiled-display image stream synchronously, and the ROI-based clipping and delivering mechanism can provide individual views on the tiled-display system to multiple remote participants in real-time.

  20. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution - an application in higher education.

    PubMed

    Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan

    2015-11-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

Top