Sample records for video image processor

  1. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    NASA Technical Reports Server (NTRS)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  2. Rapid Damage Assessment. Volume II. Development and Testing of Rapid Damage Assessment System.

    DTIC Science & Technology

    1981-02-01

    pixels/s Camera Line Rate 732.4 lines/s Pixels per Line 1728 video 314 blank 4 line number (binary) 2 run number (BCD) 2048 total Pixel Resolution 8 bits...sists of an LSI-ll microprocessor, a VDI -200 video display processor, an FD-2 dual floppy diskette subsystem, an FT-I function key-trackball module...COMPONENT LIST FOR IMAGE PROCESSOR SYSTEM IMAGE PROCESSOR SYSTEM VIEWS I VDI -200 Display Processor Racks, Table FD-2 Dual Floppy Diskette Subsystem FT-l

  3. Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors

    PubMed Central

    Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee

    2012-01-01

    In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181

  4. Control Software for Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.

    2006-01-01

    Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.

  5. PixonVision real-time video processor

    NASA Astrophysics Data System (ADS)

    Puetter, R. C.; Hier, R. G.

    2007-09-01

    PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.

  6. Optical stereo video signal processor

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    An otpical video signal processor is described which produces a two-dimensional cross-correlation in real time of images received by a stereo camera system. The optical image of each camera is projected on respective liquid crystal light valves. The images on the liquid crystal valves modulate light produced by an extended light source. This modulated light output becomes the two-dimensional cross-correlation when focused onto a video detector and is a function of the range of a target with respect to the stereo camera. Alternate embodiments utilize the two-dimensional cross-correlation to determine target movement and target identification.

  7. [Development of a video image system for wireless capsule endoscopes based on DSP].

    PubMed

    Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua

    2008-02-01

    A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.

  8. A digital video tracking system

    NASA Astrophysics Data System (ADS)

    Giles, M. K.

    1980-01-01

    The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.

  9. Parallel processing approach to transform-based image coding

    NASA Astrophysics Data System (ADS)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  10. The Engineer Topographic Laboratories /ETL/ hybrid optical/digital image processor

    NASA Astrophysics Data System (ADS)

    Benton, J. R.; Corbett, F.; Tuft, R.

    1980-01-01

    An optical-digital processor for generalized image enhancement and filtering is described. The optical subsystem is a two-PROM Fourier filter processor. Input imagery is isolated, scaled, and imaged onto the first PROM; this input plane acts like a liquid gate and serves as an incoherent-to-coherent converter. The image is transformed onto a second PROM which also serves as a filter medium; filters are written onto the second PROM with a laser scanner in real time. A solid state CCTV camera records the filtered image, which is then digitized and stored in a digital image processor. The operator can then manipulate the filtered image using the gray scale and color remapping capabilities of the video processor as well as the digital processing capabilities of the minicomputer.

  11. ACE: Automatic Centroid Extractor for real time target tracking

    NASA Technical Reports Server (NTRS)

    Cameron, K.; Whitaker, S.; Canaris, J.

    1990-01-01

    A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.

  12. Evaluation of commercial video-based intersection signal actuation systems.

    DOT National Transportation Integrated Search

    2008-12-01

    Video cameras and computer image processors have come into widespread use for the detection of : vehicles for signal actuation at controlled intersections. Video is considered both a cost-saving and : convenient alternative to conventional stop-line ...

  13. Improved Remapping Processor For Digital Imagery

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1991-01-01

    Proposed digital image processor improved version of Programmable Remapper, which performs geometric and radiometric transformations on digital images. Features include overlapping and variably sized preimages. Overcomes some of limitations of image-warping circuit boards implementing only those geometric tranformations expressible in terms of polynomials of limited order. Also overcomes limitations of existing Programmable Remapper and made to perform transformations at video rate.

  14. Embedded processor extensions for image processing

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Paindavoine, Michel; Letellier, Laurent; Heyrman, Barthélémy

    2008-04-01

    The advent of camera phones marks a new phase in embedded camera sales. By late 2009, the total number of camera phones will exceed that of both conventional and digital cameras shipped since the invention of photography. Use in mobile phones of applications like visiophony, matrix code readers and biometrics requires a high degree of component flexibility that image processors (IPs) have not, to date, been able to provide. For all these reasons, programmable processor solutions have become essential. This paper presents several techniques geared to speeding up image processors. It demonstrates that a gain of twice is possible for the complete image acquisition chain and the enhancement pipeline downstream of the video sensor. Such results confirm the potential of these computing systems for supporting future applications.

  15. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  16. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  17. Design of a dataway processor for a parallel image signal processing system

    NASA Astrophysics Data System (ADS)

    Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu

    1995-04-01

    Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.

  18. The architecture of a video image processor for the space station

    NASA Technical Reports Server (NTRS)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  19. SSME propellant path leak detection real-time

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Smith, L. M.

    1994-01-01

    Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.

  20. Research of real-time video processing system based on 6678 multi-core DSP

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang

    2017-10-01

    In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.

  1. Real-time lens distortion correction: speed, accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  2. Combining multi-layered bitmap files using network specific hardware

    DOEpatents

    DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM

    2012-02-28

    Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.

  3. Development of the SEASIS instrument for SEDSAT

    NASA Technical Reports Server (NTRS)

    Maier, Mark W.

    1996-01-01

    Two SEASIS experiment objectives are key: take images that allow three axis attitude determination and take multi-spectral images of the earth. During the tether mission it is also desirable to capture images for the recoiling tether from the endmass perspective (which has never been observed). SEASIS must store all its imagery taken during the tether mission until the earth downlink can be established. SEASIS determines attitude with a panoramic camera and performs earth observation with a telephoto lens camera. Camera video is digitized, compressed, and stored in solid state memory. These objectives are addressed through the following architectural choices: (1) A camera system using a Panoramic Annular Lens (PAL). This lens has a 360 deg. azimuthal field of view by a +45 degree vertical field measured from a plan normal to the lens boresight axis. It has been shown in Mr. Mark Steadham's UAH M.S. thesis that his camera can determine three axis attitude anytime the earth and one other recognizable celestial object (for example, the sun) is in the field of view. This will be essentially all the time during tether deployment. (2) A second camera system using telephoto lens and filter wheel. The camera is a black and white standard video camera. The filters are chosen to cover the visible spectral bands of remote sensing interest. (3) A processor and mass memory arrangement linked to the cameras. Video signals from the cameras are digitized, compressed in the processor, and stored in a large static RAM bank. The processor is a multi-chip module consisting of a T800 Transputer and three Zoran floating point Digital Signal Processors. This processor module was supplied under ARPA contract by the Space Computer Corporation to demonstrate its use in space.

  4. Implementing An Image Understanding System Architecture Using Pipe

    NASA Astrophysics Data System (ADS)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  5. Progress in video immersion using Panospheric imaging

    NASA Astrophysics Data System (ADS)

    Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.

    1998-09-01

    Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).

  6. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  7. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  8. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  9. An efficient HW and SW design of H.264 video compression, storage and playback on FPGA devices for handheld thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih

    2017-05-01

    Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.

  10. System for clinical photometric stereo endoscopy

    NASA Astrophysics Data System (ADS)

    Durr, Nicholas J.; González, Germán.; Lim, Daryl; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.; Parot, Vicente

    2014-02-01

    Photometric stereo endoscopy is a technique that captures information about the high-spatial-frequency topography of the field of view simultaneously with a conventional color image. Here we describe a system that will enable photometric stereo endoscopy to be clinically evaluated in the large intestine of human patients. The clinical photometric stereo endoscopy system consists of a commercial gastroscope, a commercial video processor, an image capturing and processing unit, custom synchronization electronics, white light LEDs, a set of four fibers with diffusing tips, and an alignment cap. The custom pieces that come into contact with the patient are composed of biocompatible materials that can be sterilized before use. The components can then be assembled in the endoscopy suite before use. The resulting endoscope has the same outer diameter as a conventional colonoscope (14 mm), plugs into a commercial video processor, captures topography and color images at 15 Hz, and displays the conventional color image to the gastroenterologist in real-time. We show that this system can capture a color and topographical video in a tubular colon phantom, demonstrating robustness to complex geometries and motion. The reported system is suitable for in vivo evaluation of photometric stereo endoscopy in the human large intestine.

  11. Video sensor with range measurement capability

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Briscoe, Jeri M. (Inventor); Corder, Eric L. (Inventor); Broderick, David J. (Inventor)

    2008-01-01

    A video sensor device is provided which incorporates a rangefinder function. The device includes a single video camera and a fixed laser spaced a predetermined distance from the camera for, when activated, producing a laser beam. A diffractive optic element divides the beam so that multiple light spots are produced on a target object. A processor calculates the range to the object based on the known spacing and angles determined from the light spots on the video images produced by the camera.

  12. Programmable remapper for image processing

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor); Sampsell, Jeffrey B. (Inventor)

    1991-01-01

    A video-rate coordinate remapper includes a memory for storing a plurality of transformations on look-up tables for remapping input images from one coordinate system to another. Such transformations are operator selectable. The remapper includes a collective processor by which certain input pixels of an input image are transformed to a portion of the output image in a many-to-one relationship. The remapper includes an interpolative processor by which the remaining input pixels of the input image are transformed to another portion of the output image in a one-to-many relationship. The invention includes certain specific transforms for creating output images useful for certain defects of visually impaired people. The invention also includes means for shifting input pixels and means for scrolling the output matrix.

  13. A design of real time image capturing and processing system using Texas Instrument's processor

    NASA Astrophysics Data System (ADS)

    Wee, Toon-Joo; Chaisorn, Lekha; Rahardja, Susanto; Gan, Woon-Seng

    2007-09-01

    In this work, we developed and implemented an image capturing and processing system that equipped with capability of capturing images from an input video in real time. The input video can be a video from a PC, video camcorder or DVD player. We developed two modes of operation in the system. In the first mode, an input image from the PC is processed on the processing board (development platform with a digital signal processor) and is displayed on the PC. In the second mode, current captured image from the video camcorder (or from DVD player) is processed on the board but is displayed on the LCD monitor. The major difference between our system and other existing conventional systems is that image-processing functions are performed on the board instead of the PC (so that the functions can be used for further developments on the board). The user can control the operations of the board through the Graphic User Interface (GUI) provided on the PC. In order to have a smooth image data transfer between the PC and the board, we employed Real Time Data Transfer (RTDX TM) technology to create a link between them. For image processing functions, we developed three main groups of function: (1) Point Processing; (2) Filtering and; (3) 'Others'. Point Processing includes rotation, negation and mirroring. Filter category provides median, adaptive, smooth and sharpen filtering in the time domain. In 'Others' category, auto-contrast adjustment, edge detection, segmentation and sepia color are provided, these functions either add effect on the image or enhance the image. We have developed and implemented our system using C/C# programming language on TMS320DM642 (or DM642) board from Texas Instruments (TI). The system was showcased in College of Engineering (CoE) exhibition 2006 at Nanyang Technological University (NTU) and have more than 40 users tried our system. It is demonstrated that our system is adequate for real time image capturing. Our system can be used or applied for applications such as medical imaging, video surveillance, etc.

  14. Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey W.

    1996-03-01

    Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.

  15. A noncoherent optical analog image processor.

    PubMed

    Swindell, W

    1970-11-01

    The description of a machine that performs a variety of image processing operations is given, together with a theoretical discussion of its operation. Spatial processing is performed by corrective convolution techniques. Density processing is achieved by means of an electrical transfer function generator included in the video circuit. Examples of images processed for removal of image motion blur, defocus, and atmospheric seeing blur are shown.

  16. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  17. Image-Based Focusing

    NASA Astrophysics Data System (ADS)

    Selker, Ted

    1983-05-01

    Lens focusing using a hardware model of a retina (Reticon RL256 light sensitive array) with a low cost processor (8085 with 512 bytes of ROM and 512 bytes of RAM) was built. This system was developed and tested on a variety of visual stimuli to demonstrate that: a)an algorithm which moves a lens to maximize the sum of the difference of light level on adjacent light sensors will converge to best focus in all but contrived situations. This is a simpler algorithm than any previously suggested; b) it is feasible to use unmodified video sensor arrays with in-expensive processors to aid video camera use. In the future, software could be developed to extend the processor's usefulness, possibly to track an actor by panning and zooming to give a earners operator increased ease of framing; c) lateral inhibition is an adequate basis for determining best focus. This supports a simple anatomically motivated model of how our brain focuses our eyes.

  18. DSP Implementation of the Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2004-01-01

    The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.

  19. High-resolution streaming video integrated with UGS systems

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew

    2010-04-01

    Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.

  20. System on a chip with MPEG-4 capability

    NASA Astrophysics Data System (ADS)

    Yassa, Fathy; Schonfeld, Dan

    2002-12-01

    Current products supporting video communication applications rely on existing computer architectures. RISC processors have been used successfully in numerous applications over several decades. DSP processors have become ubiquitous in signal processing and communication applications. Real-time applications such as speech processing in cellular telephony rely extensively on the computational power of these processors. Video processors designed to implement the computationally intensive codec operations have also been used to address the high demands of video communication applications (e.g., cable set-top boxes and DVDs). This paper presents an overview of a system-on-chip (SOC) architecture used for real-time video in wireless communication applications. The SOC specifications answer to the system requirements imposed by the application environment. A CAM-based video processor is used to accelerate data intensive video compression tasks such as motion estimations and filtering. Other components are dedicated to system level data processing and audio processing. A rich set of I/Os allows the SOC to communicate with other system components such as baseband and memory subsystems.

  1. Final report : mobile surveillance and wireless communication systems field operational test. Volume 1, Executive summary

    DOT National Transportation Integrated Search

    1999-03-01

    This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...

  2. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    NASA Astrophysics Data System (ADS)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  3. Parallel architecture for rapid image generation and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerheim, R.J.

    1987-01-01

    A multiprocessor architecture inspired by the Disney multiplane camera is proposed. For many applications, this approach produces a natural mapping of processors to objects in a scene. Such a mapping promotes parallelism and reduces the hidden-surface work with minimal interprocessor communication and low-overhead cost. Existing graphics architectures store the final picture as a monolithic entity. The architecture here stores each object's image separately. It assembles the final composite picture from component images only when the video display needs to be refreshed. This organization simplifies the work required to animate moving objects that occlude other objects. In addition, the architecture hasmore » multiple processors that generate the component images in parallel. This further shortens the time needed to create a composite picture. In addition to generating images for animation, the architecture has the ability to decompose images.« less

  4. A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian J.; Allinson, Nigel M.

    1989-03-01

    A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.

  5. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Intelligent Vision Systems, Inc. (InVision) needed image acquisition technology that was reliable in bad weather for its TDS-200 Traffic Detection System. InVision researchers used information from NASA Tech Briefs and assistance from Johnson Space Center to finish the system. The NASA technology used was developed for Earth-observing imaging satellites: charge coupled devices, in which silicon chips convert light directly into electronic or digital images. The TDS-200 consists of sensors mounted above traffic on poles or span wires, enabling two sensors to view an intersection; a "swing and sway" feature to compensate for movement of the sensors; a combination of electronic shutter and gain control; and sensor output to an image digital signal processor, still frame video and optionally live video.

  6. Video Guidance Sensor and Time-of-Flight Rangefinder

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas; Howard, Richard; Bell, Joseph L.; Roe, Fred D.; Book, Michael L.

    2007-01-01

    A proposed video guidance sensor (VGS) would be based mostly on the hardware and software of a prior Advanced VGS (AVGS), with some additions to enable it to function as a time-of-flight rangefinder (in contradistinction to a triangulation or image-processing rangefinder). It would typically be used at distances of the order of 2 or 3 kilometers, where a typical target would appear in a video image as a single blob, making it possible to extract the direction to the target (but not the orientation of the target or the distance to the target) from a video image of light reflected from the target. As described in several previous NASA Tech Briefs articles, an AVGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. In the original application, the two vehicles are spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In a prior AVGS system of the type upon which the now-proposed VGS is largely based, the tracked vehicle is equipped with one or more passive targets that reflect light from one or more continuous-wave laser diode(s) on the tracking vehicle, a video camera on the tracking vehicle acquires images of the targets in the reflected laser light, the video images are digitized, and the image data are processed to obtain the direction to the target. The design concept of the proposed VGS does not call for any memory or processor hardware beyond that already present in the prior AVGS, but does call for some additional hardware and some additional software. It also calls for assignment of some additional tasks to two subsystems that are parts of the prior VGS: a field-programmable gate array (FPGA) that generates timing and control signals, and a digital signal processor (DSP) that processes the digitized video images. The additional timing and control signals generated by the FPGA would cause the VGS to alternate between an imaging (direction-finding) mode and a time-of-flight (range-finding mode) and would govern operation in the range-finding mode.

  7. Development of a Receiver Processor For UAV Video Signal Acquisition and Tracking Using Digital Phased Array Antenna

    DTIC Science & Technology

    2010-09-01

    53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm

  8. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  9. Stereo and IMU-Assisted Visual Odometry for Small Robots

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This software performs two functions: (1) taking stereo image pairs as input, it computes stereo disparity maps from them by cross-correlation to achieve 3D (three-dimensional) perception; (2) taking a sequence of stereo image pairs as input, it tracks features in the image sequence to estimate the motion of the cameras between successive image pairs. A real-time stereo vision system with IMU (inertial measurement unit)-assisted visual odometry was implemented on a single 750 MHz/520 MHz OMAP3530 SoC (system on chip) from TI (Texas Instruments). Frame rates of 46 fps (frames per second) were achieved at QVGA (Quarter Video Graphics Array i.e. 320 240), or 8 fps at VGA (Video Graphics Array 640 480) resolutions, while simultaneously tracking up to 200 features, taking full advantage of the OMAP3530's integer DSP (digital signal processor) and floating point ARM processors. This is a substantial advancement over previous work as the stereo implementation produces 146 Mde/s (millions of disparities evaluated per second) in 2.5W, yielding a stereo energy efficiency of 58.8 Mde/J, which is 3.75 better than prior DSP stereo while providing more functionality.

  10. Image Processor

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Texas Instruments Programmable Remapper is a research tool used to determine how to best utilize the part of a patient's visual field still usable by mapping onto his field of vision with manipulated imagery. It is an offshoot of a NASA program for speeding up, improving the accuracy of pattern recognition in video imagery. The Remapper enables an image to be "pushed around" so more of it falls into the functional portions in the retina of a low vision person. It works at video rates, and researchers hope to significantly reduce its size and cost, creating a wearable prosthesis for visually impaired people.

  11. Realization of a single image haze removal system based on DaVinci DM6467T processor

    NASA Astrophysics Data System (ADS)

    Liu, Zhuang

    2014-10-01

    Video monitoring system (VMS) has been extensively applied in domains of target recognition, traffic management, remote sensing, auto navigation and national defence. However the VMS has a strong dependence on the weather, for instance, in foggy weather, the quality of images received by the VMS are distinct degraded and the effective range of VMS is also decreased. All in all, the VMS performs terribly in bad weather. Thus the research of fog degraded images enhancement has very high theoretical and practical application value. A design scheme of a fog degraded images enhancement system based on the TI DaVinci processor is presented in this paper. The main function of the referred system is to extract and digital cameras capture images and execute image enhancement processing to obtain a clear image. The processor used in this system is the dual core TI DaVinci DM6467T - ARM@500MHz+DSP@1GH. A MontaVista Linux operating system is running on the ARM subsystem which handles I/O and application processing. The DSP handles signal processing and the results are available to the ARM subsystem in shared memory.The system benefits from the DaVinci processor so that, with lower power cost and smaller volume, it provides the equivalent image processing capability of a X86 computer. The outcome shows that the system in this paper can process images at 25 frames per second on D1 resolution.

  12. Some Examples Of Image Warping For Low Vision Prosthesis

    NASA Astrophysics Data System (ADS)

    Juday, Richard D.; Loshin, David S.

    1988-08-01

    NASA and Texas Instruments have developed an image processor, the Programmable Remapper 1, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. We have developed coordinate warpings for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype. (Recorded video imagery was shown at the conference for the maculapathy remapping.

  13. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d’Appui pour la DT SIHS)

    DTIC Science & Technology

    2007-03-31

    Unlimited, Nivisys, Insight technology, Elcan, FLIR Systems, Stanford photonics Hardware Sensor fusion processors Video processing boards Image, video...Engineering The SPIE Digital Library is a resource for optics and photonics information. It contains more than 70,000 full-text papers from SPIE...conditions Top row: Stanford Photonics XR-Mega-10 Extreme 1400 x 1024 pixels ICCD detector, 33 msec exposure, no binning. Middle row: Andor EEV iXon

  14. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  15. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  16. PixonVision real-time Deblurring Anisoplanaticism Corrector (DAC)

    NASA Astrophysics Data System (ADS)

    Hier, R. G.; Puetter, R. C.

    2007-09-01

    DigiVision, Inc. and PixonImaging LLC have teamed to develop a real-time Deblurring Anisoplanaticism Corrector (DAC) for the Army. The DAC measures the geometric image warp caused by anisoplanaticism and removes it to rectify and stabilize (dejitter) the incoming image. Each new geometrically corrected image field is combined into a running-average reference image. The image averager employs a higher-order filter that uses temporal bandpass information to help identify true motion of objects and thereby adaptively moderate the contribution of each new pixel to the reference image. This result is then passed to a real-time PixonVision video processor (see paper 6696-04 note, the DAC also first dehazes the incoming video) where additional blur from high-order seeing effects is removed, the image is spatially denoised, and contrast is adjusted in a spatially adaptive manner. We plan to implement the entire algorithm within a few large modern FPGAs on a circuit board for video use. Obvious applications are within the DOD, surveillance and intelligence, security and law enforcement communities. Prototype hardware is scheduled to be available in late 2008. To demonstrate the capabilities of the DAC, we present a software simulation of the algorithm applied to real atmosphere-corrupted video data collected by Sandia Labs.

  17. Reading and Writing in the 21st Century.

    ERIC Educational Resources Information Center

    Soloway, Elliot; And Others

    1993-01-01

    Describes MediaText, a multimedia document processor developed at the University of Michigan that allows the incorporation of video, music, sound, animations, still images, and text into one document. Interactive documents are discussed, and the need for users to be able to write documents as well as read them is emphasized. (four references) (LRW)

  18. Very low cost real time histogram-based contrast enhancer utilizing fixed-point DSP processing

    NASA Astrophysics Data System (ADS)

    McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1998-03-01

    A real time contrast enhancement system utilizing histogram- based algorithms has been developed to operate on standard composite video signals. This low-cost DSP based system is designed with fixed-point algorithms and an off-chip look up table (LUT) to reduce the cost considerably over other contemporary approaches. This paper describes several real- time contrast enhancing systems advanced at the Sarnoff Corporation for high-speed visible and infrared cameras. The fixed-point enhancer was derived from these high performance cameras. The enhancer digitizes analog video and spatially subsamples the stream to qualify the scene's luminance. Simultaneously, the video is streamed through a LUT that has been programmed with the previous calculation. Reducing division operations by subsampling reduces calculation- cycles and also allows the processor to be used with cameras of nominal resolutions. All values are written to the LUT during blanking so no frames are lost. The enhancer measures 13 cm X 6.4 cm X 3.2 cm, operates off 9 VAC and consumes 12 W. This processor is small and inexpensive enough to be mounted with field deployed security cameras and can be used for surveillance, video forensics and real- time medical imaging.

  19. Video rate morphological processor based on a redundant number representation

    NASA Astrophysics Data System (ADS)

    Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.

    1992-03-01

    This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.

  20. Analysis of the color rendition of flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Murphy, Edward M.; Hegarty, Francis J.; McMahon, Barry P.; Boyle, Gerard

    2003-03-01

    Endoscopes are imaging devices routinely used for the diagnosis of disease within the human digestive tract. Light is transmitted into the body cavity via incoherent fibreoptic bundles and is controlled by a light feedback system. Fibreoptic endoscopes use coherent fibreoptic bundles to provide the clinician with an image. It is also possible to couple fibreoptic endoscopes to a clip-on video camera. Video endoscopes consist of a small CCD camera, which is inserted into gastrointestinal tract, and associated image processor to convert the signal to analogue RGB video signals. Images from both types of endoscope are displayed on standard video monitors. Diagnosis is dependent upon being able to determine changes in the structure and colour of tissues and biological fluids, and therefore is dependent upon the ability of the endoscope to reproduce the colour of these tissues and fluids with fidelity. This study investigates the colour reproduction of flexible optical and video endoscopes. Fibreoptic and video endoscopes alter image colour characteristics in different ways. The colour rendition of fibreoptic endoscopes was assessed by coupling them to a video camera and applying video colorimetric techniques. These techniques were then used on video endoscopes to assess how the colour rendition of video endoscopes compared with that of optical endoscopes. In both cases results were obtained at fixed illumination settings. Video endoscopes were then assessed with varying levels of illumination. Initial results show that at constant luminance endoscopy systems introduce non-linear shifts in colour. Techniques for examining how this colour shift varies with illumination intensity were developed and both methodology and results will be presented. We conclude that more rigorous quality assurance is required to reduce colour error and are developing calibration procedures applicable to medical endoscopes.

  1. Hardware/Software Issues for Video Guidance Systems: The Coreco Frame Grabber

    NASA Technical Reports Server (NTRS)

    Bales, John W.

    1996-01-01

    The F64 frame grabber is a high performance video image acquisition and processing board utilizing the TMS320C40 and TMS34020 processors. The hardware is designed for the ISA 16 bit bus and supports multiple digital or analog cameras. It has an acquisition rate of 40 million pixels per second, with a variable sampling frequency of 510 kHz to MO MHz. The board has a 4MB frame buffer memory expandable to 32 MB, and has a simultaneous acquisition and processing capability. It supports both VGA and RGB displays, and accepts all analog and digital video input standards.

  2. Selective visual region of interest to enhance medical video conferencing

    NASA Astrophysics Data System (ADS)

    Bonneau, Walt, Jr.; Read, Christopher J.; Shirali, Girish

    1998-06-01

    The continued economic pressure that is being placed upon the healthcare industry creates both challenge and opportunity to develop cost effective healthcare tools. Tools that provide improvements in the quality of medical care at the same time improve the distribution of efficient care will create product demand. Video Conferencing systems are one of the latest product technologies that are evolving their way into healthcare applications. The systems that provide quality Bi- directional video and imaging at the lowest system and communication cost are creating many possible options for the healthcare industry. A method to use only 128k bits/sec. of ISDN bandwidth while providing quality video images in selected regions will be applied to echocardiograms using a low cost video conferencing system operating within a basic rate ISDN line bandwidth. Within a given display area (frame) it has been observed that only selected informational areas of the frame of are of value when viewing for detail and precision within an image. Much in the same manner that a photograph is cropped. If a method to accomplish Region Of Interest (ROI) was applied to video conferencing using H.320 with H.263 (compression) and H.281 (camera control) international standards, medical image quality could be achieved in a cost-effective manner. For example, the cardiologist could be provided with a selectable three to eight end-point viewable ROI polygon that defines the ROI in the image. This is achieved by the video system calculating the selected regional end-points and creating an alpha mask to signify the importance of the ROI to the compression processor. This region is then applied to the compression algorithm in a manner that the majority of the video conferencing processor cycles are focused on the ROI of the image. An occasional update of the non-ROI area is processed to maintain total image coherence. The user could control the non-ROI area updates. Providing encoder side ROI specification is of value. However, the power of this capability is improved if remote access and selection of the ROI is also provided. Using the H.281 camera standard and proposing an additional option to the standard to allow for remote ROI selection would make this possible. When ROI is applied the ability to reach the equivalent of 384K bits/sec ISDN rates may be achieved or exceeded depending upon the size of the selected ROI using 128K bits/sec. This opens additional opportunity to establish international calling and reduced call rates by up to sixty- six percent making reoccurring communication costs attractive. Rates of twenty to thirty quality ROI updates could be achieved. It is however important to understand that this technique is still under development.

  3. Holo-Chidi video concentrator card

    NASA Astrophysics Data System (ADS)

    Nwodoh, Thomas A.; Prabhakar, Aditya; Benton, Stephen A.

    2001-12-01

    The Holo-Chidi Video Concentrator Card is a frame buffer for the Holo-Chidi holographic video processing system. Holo- Chidi is designed at the MIT Media Laboratory for real-time computation of computer generated holograms and the subsequent display of the holograms at video frame rates. The Holo-Chidi system is made of two sets of cards - the set of Processor cards and the set of Video Concentrator Cards (VCCs). The Processor cards are used for hologram computation, data archival/retrieval from a host system, and for higher-level control of the VCCs. The VCC formats computed holographic data from multiple hologram computing Processor cards, converting the digital data to analog form to feed the acousto-optic-modulators of the Media lab's Mark-II holographic display system. The Video Concentrator card is made of: a High-Speed I/O (HSIO) interface whence data is transferred from the hologram computing Processor cards, a set of FIFOs and video RAM used as buffer for data for the hololines being displayed, a one-chip integrated microprocessor and peripheral combination that handles communication with other VCCs and furnishes the card with a USB port, a co-processor which controls display data formatting, and D-to-A converters that convert digital fringes to analog form. The co-processor is implemented with an SRAM-based FPGA with over 500,000 gates and controls all the signals needed to format the data from the multiple Processor cards into the format required by Mark-II. A VCC has three HSIO ports through which up to 500 Megabytes of computed holographic data can flow from the Processor Cards to the VCC per second. A Holo-Chidi system with three VCCs has enough frame buffering capacity to hold up to thirty two 36Megabyte hologram frames at a time. Pre-computed holograms may also be loaded into the VCC from a host computer through the low- speed USB port. Both the microprocessor and the co- processor in the VCC can access the main system memory used to store control programs and data for the VCC. The Card also generates the control signals used by the scanning mirrors of Mark-II. In this paper we discuss the design of the VCC and its implementation in the Holo-Chidi system.

  4. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  5. A portable high-definition electronic endoscope based on embedded system

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Wang, Liqiang; Xu, Jin

    2012-11-01

    This paper presents a low power and portable highdefinition (HD) electronic endoscope based on CortexA8 embedded system. A 1/6 inch CMOS image sensor is used to acquire HD images with 1280 *800 pixels. The camera interface of A8 is designed to support images of various sizes and support multiple inputs of video format such as ITUR BT601/ 656 standard. Image rotation (90 degrees clockwise) and image process functions are achieved by CAMIF. The decode engine of the processor plays back or records HD videos at speed of 30 frames per second, builtin HDMI interface transmits high definition images to the external display. Image processing procedures such as demosaicking, color correction and auto white balance are realized on the A8 platform. Other functions are selected through OSD settings. An LCD panel displays the real time images. The snapshot pictures or compressed videos are saved in an SD card or transmited to a computer through USB interface. The size of the camera head is 4×4.8×15 mm with more than 3 meters working distance. The whole endoscope system can be powered by a lithium battery, with the advantages of miniature, low cost and portability.

  6. The recovery and utilization of space suit range-of-motion data

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL; Walton, James S.

    1988-01-01

    A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.

  7. Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)

    NASA Astrophysics Data System (ADS)

    Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook

    1997-05-01

    This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.

  8. Optimization of image processing algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Poudel, Pramod; Shirvaikar, Mukul

    2011-03-01

    This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.

  9. Analysis of Preoperative Airway Examination with the CMOS Video Rhino-laryngoscope.

    PubMed

    Tsukamoto, Masanori; Hitosugi, Takashi; Yokoyama, Takeshi

    2017-05-01

    Endoscopy is one of the most useful clinical techniques in difficult airway management Comparing with the fibroptic endoscope, this compact device is easy to operate and can provide the clear image. In this study, we investigated its usefulness in the preoperative examination of endoscopy. Patients undergoing oral maxillofacial surgery were enrolled in this study. We performed preoperative airway examination by electronic endoscope (The CMOS video rhino-laryngoscope, KARL STORZ Endoscopy Japan, Tokyo). The system is composed of a videoendoscope, a compact video processor and a video recorder. In addition, the endoscope has a small color charge coupled device (CMOS) chip built into the tip of the endoscope. The outer diameter of the tip of this scope is 3.7 mm. In this study, electronic endoscope was used for preoperative airway examination in 7 patients. The preoperative airway examination with electronic endoscope was performed successfully in all the patients except one patient The patient had the symptoms such as nausea and vomiting at the examination. We could perform preoperative airway examination with excellent visualization and convenient recording of video sequence images with the CMOS video rhino-laryngoscope. It might be a especially useful device for the patients of difficult airways.

  10. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  11. Edge smoothing for real-time simulation of a polygon face object system as viewed by a moving observer

    NASA Technical Reports Server (NTRS)

    Lotz, Robert W. (Inventor); Westerman, David J. (Inventor)

    1980-01-01

    The visual system within an aircraft flight simulation system receives flight data and terrain data which is formated into a buffer memory. The image data is forwarded to an image processor which translates the image data into face vertex vectors Vf, defining the position relationship between the vertices of each terrain object and the aircraft. The image processor then rotates, clips, and projects the image data into two-dimensional display vectors (Vd). A display generator receives the Vd faces, and other image data to provide analog inputs to CRT devices which provide the window displays for the simulated aircraft. The video signal to the CRT devices passes through an edge smoothing device which prolongs the rise time (and fall time) of the video data inversely as the slope of the edge being smoothed. An operational amplifier within the edge smoothing device has a plurality of independently selectable feedback capacitors each having a different value. The values of the capacitors form a series which doubles as a power of two. Each feedback capacitor has a fast switch responsive to the corresponding bit of a digital binary control word for selecting (1) or not selecting (0) that capacitor. The control word is determined by the slope of each edge. The resulting actual feedback capacitance for each edge is the sum of all the selected capacitors and is directly proportional to the value of the binary control word. The output rise time (or fall time) is a function of the feedback capacitance, and is controlled by the slope through the binary control word.

  12. Real-time video compressing under DSP/BIOS

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  13. 1981 Image II Conference Proceedings.

    DTIC Science & Technology

    1981-11-01

    rapid motion of terrain detail across the display requires fast display processors. Other difficulties are perceptual: the visual displays must convey...has been a continuing effort by Vought in the last decade. Early systems were restricted by the unavailability of video bulk storage with fast random...each photograph. The calculations aided in the proper sequencing of the scanned scenes on the tape recorder and eventually facilitated fast random

  14. Development of new UV-I. I. Cerenkov Viewing Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki; Nemoto, Koshichi

    1994-02-01

    The Cerenkov glow images from boiling-water reactors (BWR) and pressurized-water reactors (PWR) irradiated fuel assemblies are generally used for inspections. However, sometimes it is difficult or impossible to identify the image by the conventional Cerenkov Viewing Device (CVD), because of the long cooling time and/or low burnup. Now a new UV-I.I. (Ultra-Violet light Image Intensifier) CVD has been developed, which can detect the very weak Cerenkov glow from spent fuel assemblies. As this new device uses the newly developed proximity focused type UV-I.I., Cerenkov photons are used efficiently, producing better quality Cerenkov glow images. Moreover, since the image is convertedmore » to a video signal, it is easy to improve the signal to noise ratio (S/N) by an image processor. The new CVD was tested at BWR and PWR power plants in Japan, with fuel burnups ranging from 6,200--33,000 MWD/MTU (megawatt days per metric ton of uranium) and cooling times ranging from 370 to 6,200 d. The tests showed that the new CVD is superior to the conventional STA/CRIEPI CVD, and could detect very feeble Cerenkov glow images using an image processor.« less

  15. Missile signal processing common computer architecture for rapid technology upgrade

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.

  16. Some examples of image warping for low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Loshin, David S.

    1988-01-01

    NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.

  17. Knowledge-based vision for space station object motion detection, recognition, and tracking

    NASA Technical Reports Server (NTRS)

    Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III

    1987-01-01

    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.

  18. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  19. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed

    Bezanilla, F

    1985-03-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form.

  20. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed Central

    Bezanilla, F

    1985-01-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form. PMID:3978213

  1. Vehicle-borne IED detection using the ULTOR correlation processor

    NASA Astrophysics Data System (ADS)

    Burcham, Joel D.; Vachon, Joyce E.

    2006-05-01

    Advanced Optical Systems, Inc. developed the ULTOR(r) system, a real-time correlation processor that looks for improvised explosive devices (IED) by examining imagery of vehicles. The system determines the level of threat an approaching vehicle may represent. The system works on incoming video collected at different wavelengths, including visible, infrared, and synthetic aperture radar. Sensors that attach to ULTOR can be located wherever necessary to improve the safety around a checkpoint. When a suspect vehicle is detected, ULTOR can track the vehicle, alert personnel, check for previous instances of the vehicle, and update other networked systems with the threat information. The ULTOR processing engine focuses on the spatial frequency information available in the image. It correlates the imagery with templates that specify the criteria defining a suspect vehicle. It can perform full field correlations at a rate of 180 Hz or better. Additionally, the spatial frequency information is applied to a trained neural network to identify suspect vehicles. We have performed various laboratory and field experiments to verify the performance of the ULTOR system in a counter IED environment. The experiments cover tracking specific targets in video clips to demonstrating real-time ULTOR system performance. The selected targets in the experiments include various automobiles in both visible and infrared video.

  2. Space Shuttle Main Engine Propellant Path Leak Detection Using Sequential Image Processing

    NASA Technical Reports Server (NTRS)

    Smith, L. Montgomery; Malone, Jo Anne; Crawford, Roger A.

    1995-01-01

    Initial research in this study using theoretical radiation transport models established that the occurrence of a leak is accompanies by a sudden but sustained change in intensity in a given region of an image. In this phase, temporal processing of video images on a frame-by-frame basis was used to detect leaks within a given field of view. The leak detection algorithm developed in this study consists of a digital highpass filter cascaded with a moving average filter. The absolute value of the resulting discrete sequence is then taken and compared to a threshold value to produce the binary leak/no leak decision at each point in the image. Alternatively, averaging over the full frame of the output image produces a single time-varying mean value estimate that is indicative of the intensity and extent of a leak. Laboratory experiments were conducted in which artificially created leaks on a simulated SSME background were produced and recorded from a visible wavelength video camera. This data was processed frame-by-frame over the time interval of interest using an image processor implementation of the leak detection algorithm. In addition, a 20 second video sequence of an actual SSME failure was analyzed using this technique. The resulting output image sequences and plots of the full frame mean value versus time verify the effectiveness of the system.

  3. Single-Scale Retinex Using Digital Signal Processors

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2005-01-01

    The Retinex is an image enhancement algorithm that improves the brightness, contrast and sharpness of an image. It performs a non-linear spatial/spectral transform that provides simultaneous dynamic range compression and color constancy. It has been used for a wide variety of applications ranging from aviation safety to general purpose photography. Many potential applications require the use of Retinex processing at video frame rates. This is difficult to achieve with general purpose processors because the algorithm contains a large number of complex computations and data transfers. In addition, many of these applications also constrain the potential architectures to embedded processors to save power, weight and cost. Thus we have focused on digital signal processors (DSPs) and field programmable gate arrays (FPGAs) as potential solutions for real-time Retinex processing. In previous efforts we attained a 21 (full) frame per second (fps) processing rate for the single-scale monochromatic Retinex with a TMS320C6711 DSP operating at 150 MHz. This was achieved after several significant code improvements and optimizations. Since then we have migrated our design to the slightly more powerful TMS320C6713 DSP and the fixed point TMS320DM642 DSP. In this paper we briefly discuss the Retinex algorithm, the performance of the algorithm executing on the TMS320C6713 and the TMS320DM642, and compare the results with the TMS320C6711.

  4. An ultra-low-power image compressor for capsule endoscope.

    PubMed

    Lin, Meng-Chun; Dung, Lan-Rong; Weng, Ping-Kuo

    2006-02-25

    Gastrointestinal (GI) endoscopy has been popularly applied for the diagnosis of diseases of the alimentary canal including Crohn's Disease, Celiac disease and other malabsorption disorders, benign and malignant tumors of the small intestine, vascular disorders and medication related small bowel injury. The wireless capsule endoscope has been successfully utilized to diagnose diseases of the small intestine and alleviate the discomfort and pain of patients. However, the resolution of demosaicked image is still low, and some interesting spots may be unintentionally omitted. Especially, the images will be severely distorted when physicians zoom images in for detailed diagnosis. Increasing resolution may cause significant power consumption in RF transmitter; hence, image compression is necessary for saving the power dissipation of RF transmitter. To overcome this drawback, we have been developing a new capsule endoscope, called GICam. We developed an ultra-low-power image compression processor for capsule endoscope or swallowable imaging capsules. In applications of capsule endoscopy, it is imperative to consider battery life/performance trade-offs. Applying state-of-the-art video compression techniques may significantly reduce the image bit rate by their high compression ratio, but they all require intensive computation and consume much battery power. There are many fast compression algorithms for reducing computation load; however, they may result in distortion of the original image, which is not good for use in the medical care. Thus, this paper will first simplify traditional video compression algorithms and propose a scalable compression architecture. As the result, the developed video compressor only costs 31 K gates at 2 frames per second, consumes 14.92 mW, and reduces the video size by 75% at least.

  5. An embedded processor for real-time atmoshperic compensation

    NASA Astrophysics Data System (ADS)

    Bodnar, Michael R.; Curt, Petersen F.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.

    2009-05-01

    Imaging over long distances is crucial to a number of defense and security applications, such as homeland security and launch tracking. However, the image quality obtained from current long-range optical systems can be severely degraded by the turbulent atmosphere in the path between the region under observation and the imager. While this obscured image information can be recovered using post-processing techniques, the computational complexity of such approaches has prohibited deployment in real-time scenarios. To overcome this limitation, we have coupled a state-of-the-art atmospheric compensation algorithm, the average-bispectrum speckle method, with a powerful FPGA-based embedded processing board. The end result is a light-weight, lower-power image processing system that improves the quality of long-range imagery in real-time, and uses modular video I/O to provide a flexible interface to most common digital and analog video transport methods. By leveraging the custom, reconfigurable nature of the FPGA, a 20x speed increase over a modern desktop PC was achieved in a form-factor that is compact, low-power, and field-deployable.

  6. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification.

    PubMed

    Yang, Fan; Paindavoine, M

    2003-01-01

    This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.

  7. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  8. A comparison of basic deinterlacing approaches for a computer assisted diagnosis approach of videoscope images

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Canto, Marcia; Gorospe, Emmanuel; Almario, Antonio; Münzenmayer, Christian

    2010-03-01

    In the near future, Computer Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support clinical experts in the diagnosis of images derived from imaging modalities such as endoscopy. In the recent past, a few first approaches for computer assisted endoscopy have been presented already. These systems use a video signal as an input that is provided by the endoscopes video processor. Despite the advent of high-definition systems most standard endoscopy systems today still provide only analog video signals. These signals consist of interlaced images that can not be used in a CAD approach without deinterlacing. Of course, there are many different deinterlacing approaches known today. But most of them are specializations of some basic approaches. In this paper we present four basic deinterlacing approaches. We have used a database of non-interlaced images which have been degraded by artificial interlacing and afterwards processed by these approaches. The database contains regions of interest (ROI) of clinical relevance for the diagnosis of abnormalities in the esophagus. We compared the classification rates on these ROIs on the original images and after the deinterlacing. The results show that the deinterlacing has an impact on the classification rates. The Bobbing approach and the Motion Compensation approach achieved the best classification results in most cases.

  9. A complexity-scalable software-based MPEG-2 video encoder.

    PubMed

    Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin

    2004-05-01

    With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.

  10. Feasibility study of utilizing ultraportable projectors for endoscopic video display (with videos).

    PubMed

    Tang, Shou-Jiang; Fehring, Amanda; Mclemore, Mac; Griswold, Michael; Wang, Wanmei; Paine, Elizabeth R; Wu, Ruonan; To, Filip

    2014-10-01

    Modern endoscopy requires video display. Recent miniaturized, ultraportable projectors are affordable, durable, and offer quality image display. Explore feasibility of using ultraportable projectors in endoscopy. Prospective bench-top comparison; clinical feasibility study. Masked comparison study of images displayed via 2 Samsung ultraportable light-emitting diode projectors (pocket-sized SP-HO3; pico projector SP-P410M) and 1 Microvision Showwx-II Laser pico projector. BENCH-TOP FEASIBILITY STUDY: Prerecorded endoscopic video was streamed via computer. CLINICAL COMPARISON STUDY: Live high-definition endoscopy video was simultaneously displayed through each processor onto a standard liquid crystal display monitor and projected onto a portable, pull-down projection screen. Endoscopists, endoscopy nurses, and technicians rated video images; ratings were analyzed by linear mixed-effects regression models with random intercepts. All projectors were easy to set up, adjust, focus, and operate, with no real-time lapse for any. Bench-top study outcomes: Samsung pico preferred to Laser pico, overall rating 1.5 units higher (95% confidence interval [CI] = 0.7-2.4), P < .001; Samsung pocket preferred to Laser pico, 3.3 units higher (95% CI = 2.4-4.1), P < .001; Samsung pocket preferred to Samsung pico, 1.7 units higher (95% CI = 0.9-2.5), P < .001. The clinical comparison study confirmed the Samsung pocket projector as best, with a higher overall rating of 2.3 units (95% CI = 1.6-3.0), P < .001, than Samsung pico. Low brightness currently limits pico projector use in clinical endoscopy. The pocket projector, with higher brightness levels (170 lumens), is clinically useful. Continued improvements to ultraportable projectors will supply a needed niche in endoscopy through portability, reduced cost, and equal or better image quality. © The Author(s) 2013.

  11. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  12. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  13. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  14. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  15. Automatic digital image analysis for identification of mitotic cells in synchronous mammalian cell cultures.

    PubMed

    Eccles, B A; Klevecz, R R

    1986-06-01

    Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.

  16. Real-time processing of dual band HD video for maintaining operational effectiveness in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, Duncan L.; Smith, Moira I.

    2015-05-01

    Effective reconnaissance, surveillance and situational awareness, using dual band sensor systems, require the extraction, enhancement and fusion of salient features, with the processed video being presented to the user in an ergonomic and interpretable manner. HALO™ is designed to meet these requirements and provides an affordable, real-time, and low-latency image fusion solution on a low size, weight and power (SWAP) platform. The system has been progressively refined through field trials to increase its operating envelope and robustness. The result is a video processor that improves detection, recognition and identification (DRI) performance, whilst lowering operator fatigue and reaction times in complex and highly dynamic situations. This paper compares the performance of HALO™, both qualitatively and quantitatively, with conventional blended fusion for operation in degraded visual environments (DVEs), such as those experienced during ground and air-based operations. Although image blending provides a simple fusion solution, which explains its common adoption, the results presented demonstrate that its performance is poor compared to the HALO™ fusion scheme in DVE scenarios.

  17. The development of a specialized processor for a space-based multispectral earth imager

    NASA Astrophysics Data System (ADS)

    Khedr, Mostafa E.

    2008-10-01

    This work was done in the Department of Computer Engineering, Lvov Polytechnic National University, Lvov, Ukraine, as a thesis entitled "Space Imager Computer System for Raw Video Data Processing" [1]. This work describes the synthesis and practical implementation of a specialized computer system for raw data control and processing onboard a satellite MultiSpectral earth imager. This computer system is intended for satellites with resolution in the range of one meter with 12-bit precession. The design is based mostly on general off-the-shelf components such as (FPGAs) plus custom designed software for interfacing with PC and test equipment. The designed system was successfully manufactured and now fully functioning in orbit.

  18. Computer-based desktop system for surgical videotape editing.

    PubMed

    Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M

    1997-05-01

    The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.

  19. Enhanced tactical radar correlator (ETRAC): true interoperability of the 1990s

    NASA Astrophysics Data System (ADS)

    Guillen, Frank J.

    1994-10-01

    The enhanced tactical radar correlator (ETRAC) system is under development at Westinghouse Electric Corporation for the Army Space Program Office (ASPO). ETRAC is a real-time synthetic aperture radar (SAR) processing system that provides tactical IMINT to the corps commander. It features an open architecture comprised of ruggedized commercial-off-the-shelf (COTS), UNIX based workstations and processors. The architecture features the DoD common SAR processor (CSP), a multisensor computing platform to accommodate a variety of current and future imaging needs. ETRAC's principal functions include: (1) Mission planning and control -- ETRAC provides mission planning and control for the U-2R and ASARS-2 sensor, including capability for auto replanning, retasking, and immediate spot. (2) Image formation -- the image formation processor (IFP) provides the CPU intensive processing capability to produce real-time imagery for all ASARS imaging modes of operation. (3) Image exploitation -- two exploitation workstations are provided for first-phase image exploitation, manipulation, and annotation. Products include INTEL reports, annotated NITF SID imagery, high resolution hard copy prints and targeting data. ETRAC is transportable via two C-130 aircraft, with autonomous drive on/off capability for high mobility. Other autonomous capabilities include rapid setup/tear down, extended stand-alone support, internal environmental control units (ECUs) and power generation. ETRAC's mission is to provide the Army field commander with accurate, reliable, and timely imagery intelligence derived from collections made by the ASARS-2 sensor, located on-board the U-2R aircraft. To accomplish this mission, ETRAC receives video phase history (VPH) directly from the U-2R aircraft and converts it in real time into soft copy imagery for immediate exploitation and dissemination to the tactical users.

  20. A customizable commercial miniaturized 320×256 indium gallium arsenide shortwave infrared camera

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Che; O'Grady, Matthew; Groppe, Joseph V.; Ettenberg, Martin H.; Brubaker, Robert M.

    2004-10-01

    The design and performance of a commercial short-wave-infrared (SWIR) InGaAs microcamera engine is presented. The 0.9-to-1.7 micron SWIR imaging system consists of a room-temperature-TEC-stabilized, 320x256 (25 μm pitch) InGaAs focal plane array (FPA) and a high-performance, highly customizable image-processing set of electronics. The detectivity, D*, of the system is greater than 1013 cm-√Hz/W at 1.55 μm, and this sensitivity may be adjusted in real-time over 100 dB. It features snapshot-mode integration with a minimum exposure time of 130 μs. The digital video processor provides real time pixel-to-pixel, 2-point dark-current subtraction and non-uniformity compensation along with defective-pixel substitution. Other features include automatic gain control (AGC), gamma correction, 7 preset configurations, adjustable exposure time, external triggering, and windowing. The windowing feature is highly flexible; the region of interest (ROI) may be placed anywhere on the imager and can be varied at will. Windowing allows for high-speed readout enabling such applications as target acquisition and tracking; for example, a 32x32 ROI window may be read out at over 3500 frames per second (fps). Output video is provided as EIA170-compatible analog, or as 12-bit CameraLink-compatible digital. All the above features are accomplished in a small volume < 28 cm3, weight < 70 g, and with low power consumption < 1.3 W at room temperature using this new microcamera engine. Video processing is based on a field-programmable gate array (FPGA) platform with a soft-embedded processor that allows for ease of integration/addition of customer-specific algorithms, processes, or design requirements. The camera was developed with the high-performance, space-restricted, power-conscious application in mind, such as robotic or UAV deployment.

  1. A flexible software architecture for scalable real-time image and video processing applications

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2012-06-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.

  2. Proceedings of the Image Understanding Workshop, Held at Los Angeles, California November 7-8, 1979

    DTIC Science & Technology

    1979-11-01

    8217 We. ter. incorporated a CCD field delay to r-.move the inter ace and provide a processing capability -J^a- cent lines of video. This...is, let us change notation such that i,j are running indices over the entire frame. Then the center pixel to lower right pixel combination instead...we have what we feel is a very attractive solution to inter -pro- cessor communication, and processor-to-outside- world communicaMon. The strategy

  3. Optical Computations for Image Bandwidth Compression.

    DTIC Science & Technology

    1981-05-15

    UnCl1 ed 3 ’ " * ~ SECURITY CLASSIFICA/ION OF TWIS PA E Doi&e, be,. Enteerdj’ . /j (I) RFRORT DOCUMENTATION PAGE EAPINSTRUCTIONS (I) ~tOT DCUMETATON...Bolling Air Force Base, D. C. 20332 . NME’/PG 14. MONITORING AGENCY NAME 8 AOORESS(/I dilletnt from Controlling Office) IS. SECURITY CLASS. (oI thi ,(il... SECURITY CL.ASS4FICATII_ TI.AGE(W7Ief Deja Entered)2 (3)25imulations.m f a!1 incoherent optical/ *1 video feedback processor.. * Unclassi fled

  4. Navy Budget: Potential Reductions for Research, Development, Test, and Evaluation

    DTIC Science & Technology

    1990-11-01

    available for use in future Navy programs, including the MK-50 tor- pedo and Vertical Launch Antisubmarine Rocket. A total of $49.9 million of fiscal...346 Travel 03 07 + 04 Support 224 225 + 01 Total Requested $122.61 $122.61 -0- In addition, the Navy plans to acquire six Acoustic Video Processor...units at $2.4 million in fiscal year 1991. The Acoustic Video Processor pro- gram is experiencing development problems, and the full-scale develop- ment

  5. An FPGA-based heterogeneous image fusion system design method

    NASA Astrophysics Data System (ADS)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  6. Performance characterization of image and video analysis systems at Siemens Corporate Research

    NASA Astrophysics Data System (ADS)

    Ramesh, Visvanathan; Jolly, Marie-Pierre; Greiffenhagen, Michael

    2000-06-01

    There has been a significant increase in commercial products using imaging analysis techniques to solve real-world problems in diverse fields such as manufacturing, medical imaging, document analysis, transportation and public security, etc. This has been accelerated by various factors: more advanced algorithms, the availability of cheaper sensors, and faster processors. While algorithms continue to improve in performance, a major stumbling block in translating improvements in algorithms to faster deployment of image analysis systems is the lack of characterization of limits of algorithms and how they affect total system performance. The research community has realized the need for performance analysis and there have been significant efforts in the last few years to remedy the situation. Our efforts at SCR have been on statistical modeling and characterization of modules and systems. The emphasis is on both white-box and black box methodologies to evaluate and optimize vision systems. In the first part of this paper we review the literature on performance characterization and then provide an overview of the status of research in performance characterization of image and video understanding systems. The second part of the paper is on performance evaluation of medical image segmentation algorithms. Finally, we highlight some research issues in performance analysis in medical imaging systems.

  7. Master/Programmable-Slave Computer

    NASA Technical Reports Server (NTRS)

    Smaistrla, David; Hall, William A.

    1990-01-01

    Unique modular computer features compactness, low power, mass storage of data, multiprocessing, and choice of various input/output modes. Master processor communicates with user via usual keyboard and video display terminal. Coordinates operations of as many as 24 slave processors, each dedicated to different experiment. Each slave circuit card includes slave microprocessor and assortment of input/output circuits for communication with external equipment, with master processor, and with other slave processors. Adaptable to industrial process control with selectable degrees of automatic control, automatic and/or manual monitoring, and manual intervention.

  8. 77 FR 75617 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... transmittal, policy justification, and Sensitivity of Technology. Dated: December 18, 2012. Aaron Siegel... Processor Cabinets, 2 Video Wall Screen and Projector Systems, 46 Flat Panel Displays, and 2 Distributed Video Systems), 2 ship sets AN/SPQ-15 Digital Video Distribution Systems, 2 ship sets Operational...

  9. Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip; Steenburg, Robert Van; Chao, Tien-Hsin

    2004-01-01

    A proposed optoelectronic instrument would identify targets rapidly, without need to radiate an interrogating signal, apply identifying marks to the targets, or equip the targets with transponders. The instrument was conceived as an identification, friend or foe (IFF) system in a battlefield setting, where it would be part of a targeting system for weapons, by providing rapid identification for aimed weapons to help in deciding whether and when to trigger them. The instrument could also be adapted to law-enforcement and industrial applications in which it is necessary to rapidly identify objects in view. The instrument would comprise mainly an optical correlator and a neural processor (see figure). The inherent parallel-processing speed and capability of the optical correlator would be exploited to obtain rapid identification of a set of probable targets within a scene of interest and to define regions within the scene for the neural processor to analyze. The neural processor would then concentrate on each region selected by the optical correlator in an effort to identify the target. Depending on whether or not a target was recognized by comparison of its image data with data in an internal database on which the neural processor was trained, the processor would generate an identifying signal (typically, friend or foe ). The time taken for this identification process would be less than the time needed by a human or robotic gunner to acquire a view of, and aim at, a target. An optical correlator that has been under development for several years and that has been demonstrated to be capable of tracking a cruise missile might be considered a prototype of the optical correlator in the proposed IFF instrument. This optical correlator features a 512-by-512-pixel input image frame and operates at an input frame rate of 60 Hz. It includes a spatial light modulator (SLM) for video-to-optical image conversion, a pair of precise lenses to effect Fourier transforms, a filter SLM for digital-to-optical correlation-filter data conversion, and a charge-coupled device (CCD) for detection of correlation peaks. In operation, the input scene grabbed by a video sensor is streamed into the input SLM. Precomputed correlation-filter data files representative of known targets are then downloaded and sequenced into the filter SLM at a rate of 1,000 Hz. When there occurs a match between the input target data and one of the known-target data files, the CCD detects a correlation peak at the location of the target. Distortion- invariant correlation filters from a bank of such filters are then sequenced through the optical correlator for each input frame. The net result is the rapid preliminary recognition of one or a few targets.

  10. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  11. Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory

    NASA Astrophysics Data System (ADS)

    Dichter, W.; Doris, K.; Conkling, C.

    1982-06-01

    A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.

  12. A simplified Integer Cosine Transform and its application in image compression

    NASA Technical Reports Server (NTRS)

    Costa, M.; Tong, K.

    1994-01-01

    A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.

  13. Real-time machine vision system using FPGA and soft-core processor

    NASA Astrophysics Data System (ADS)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  14. Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by MWIR Sensors

    PubMed Central

    Yao, Guangle; Lei, Tao; Zhong, Jiandan; Jiang, Ping; Jia, Wenwu

    2017-01-01

    Background subtraction (BS) is one of the most commonly encountered tasks in video analysis and tracking systems. It distinguishes the foreground (moving objects) from the video sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR) video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for each frame is also provided. A series of experiments were conducted to evaluate BS algorithms on this proposed dataset. The overall performance of BS algorithms and the processor/memory requirements were compared. Proper evaluation metrics or criteria were employed to evaluate the capability of each BS algorithm to handle different kinds of BS challenges represented in this dataset. The results and conclusions in this paper provide valid references to develop new BS algorithm for remote scene IR video sequence, and some of them are not only limited to remote scene or IR video sequence but also generic for background subtraction. The Remote Scene IR dataset and the foreground masks detected by each evaluated BS algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR. PMID:28837112

  15. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-10-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.

  16. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed Central

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-01-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer. PMID:3676444

  17. Parallel design patterns for a low-power, software-defined compressed video encoder

    NASA Astrophysics Data System (ADS)

    Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar

    2011-06-01

    Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.

  18. Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency

    NASA Astrophysics Data System (ADS)

    Soderquist, Peter; Leeser, Miriam E.

    1999-01-01

    Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.

  19. MoNET: media over net gateway processor for next-generation network

    NASA Astrophysics Data System (ADS)

    Elabd, Hammam; Sundar, Rangarajan; Dedes, John

    2001-12-01

    MoNETTM (Media over Net) SX000 product family is designed using a scalable voice, video and packet-processing platform to address applications with channel densities from few voice channels to four OC3 per card. This platform is developed for bridging public circuit-switched network to the next generation packet telephony and data network. The platform consists of a DSP farm, RISC processors and interface modules. DSP farm is required to execute voice compression, image compression and line echo cancellation algorithms for large number of voice, video, fax, and modem or data channels. RISC CPUs are used for performing various packetizations based on RTP, UDP/IP and ATM encapsulations. In addition, RISC CPUs also participate in the DSP farm load management and communication with the host and other MoP devices. The MoNETTM S1000 communications device is designed for voice processing and for bridging TDM to ATM and IP packet networks. The S1000 consists of the DSP farm based on Carmel DSP core and 32-bit RISC CPU, along with Ethernet, Utopia, PCI, and TDM interfaces. In this paper, we will describe the VoIP infrastructure, building blocks of the S500, S1000 and S3000 devices, algorithms executed on these device and associated channel densities, detailed DSP architecture, memory architecture, data flow and scheduling.

  20. Development of an autonomous video rendezvous and docking system, phase 2

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Richardson, T. E.

    1983-01-01

    The critical elements of an autonomous video rendezvous and docking system were built and used successfully in a physical laboratory simulation. The laboratory system demonstrated that a small, inexpensive electronic package and a flight computer of modest size can analyze television images to derive guidance information for spacecraft. In the ultimate application, the system would use a docking aid consisting of three flashing lights mounted on a passive target spacecraft. Television imagery of the docking aid would be processed aboard an active chase vehicle to derive relative positions and attitudes of the two spacecraft. The demonstration system used scale models of the target spacecraft with working docking aids. A television camera mounted on a 6 degree of freedom (DOF) simulator provided imagery of the target to simulate observations from the chase vehicle. A hardware video processor extracted statistics from the imagery, from which a computer quickly computed position and attitude. Computer software known as a Kalman filter derived velocity information from position measurements.

  1. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  2. FPGA implementation of image dehazing algorithm for real time applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.

    2017-09-01

    Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.

  3. Hardware-Abbildung eines videobasierten Verfahrens zur echtzeitfähigen Auswertung von Winkelhistogrammen auf eine modulare Coprozessor-Architektur

    NASA Astrophysics Data System (ADS)

    Flatt, H.; Tarnowsky, A.; Blume, H.; Pirsch, P.

    2010-10-01

    Dieser Beitrag behandelt die Abbildung eines videobasierten Verfahrens zur echtzeitfähigen Auswertung von Winkelhistogrammen auf eine modulare Coprozessor-Architektur. Die Architektur besteht aus mehreren dedizierten Recheneinheiten zur parallelen Verarbeitung rechenintensiver Bildverarbeitungsverfahren und ist mit einem RISC-Prozessor verbunden. Eine konfigurierbare Architekturerweiterung um eine Recheneinheit zur Auswertung von Winkelhistogrammen von Objekten ermöglicht in Verbindung mit dem RISC eine echtzeitfähige Klassifikation. Je nach Konfiguration sind für die Architekturerweiterung auf einem Xilinx Virtex-5-FPGA zwischen 3300 und 12 000 Lookup-Tables erforderlich. Bei einer Taktfrequenz von 100 MHz können unabhängig von der Bildauflösung pro Einzelbild in einem 25-Hz-Videodatenstrom bis zu 100 Objekte der Größe 256×256 Pixel analysiert werden. This paper presents the mapping of a video-based approach for real-time evaluation of angular histograms on a modular coprocessor architecture. The architecture comprises several dedicated processing elements for parallel processing of computation-intensive image processing tasks and is coupled with a RISC processor. A configurable architecture extension, especially a processing element for evaluating angular histograms of objects in conjunction with a RISC processor, provides a real-time classification. Depending on the configuration of the architecture extension, 3 300 to 12 000 look-up tables are required for a Xilinx Virtex-5 FPGA implementation. Running at a clock frequency of 100 MHz and independently of the image resolution per frame, 100 objects of size 256×256 pixels are analyzed in a 25 Hz video stream by the architecture.

  4. Mediaprocessors in medical imaging for high performance and flexibility

    NASA Astrophysics Data System (ADS)

    Managuli, Ravi; Kim, Yongmin

    2002-05-01

    New high performance programmable processors, called mediaprocessors, have been emerging since the early 1990s for various digital media applications, such as digital TV, set-top boxes, desktop video conferencing, and digital camcorders. Modern mediaprocessors, e.g., TI's TMS320C64x and Hitachi/Equator Technologies MAP-CA, can offer high performance utilizing both instruction-level and data-level parallelism. During this decade, with continued performance improvement and cost reduction, we believe that the mediaprocessors will become a preferred choice in designing imaging and video systems due to their flexibility in incorporating new algorithms and applications via programming and faster-time-to-market. In this paper, we will evaluate the suitability of these mediaprocessors in medical imaging. We will review the core routines of several medical imaging modalities, such as ultrasound and DR, and present how these routines can be mapped to mediaprocessors and their resultant performance. We will analyze the architecture of several leading mediaprocessors. By carefully mapping key imaging routines, such as 2D convolution, unsharp masking, and 2D FFT, to the mediaprocessor, we have been able to achieve comparable (if not better) performance to that of traditional hardwired approaches. Thus, we believe that future medical imaging systems will benefit greatly from these advanced mediaprocessors, offering significantly increased flexibility and adaptability, reducing the time-to-market, and improving the cost/performance ratio compared to the existing systems while meeting the high computing requirements.

  5. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  6. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  7. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate ( C'' or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability bymore » using DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  8. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate (``C`` or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability by usingmore » DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  9. Multi-Core Programming Design Patterns: Stream Processing Algorithms for Dynamic Scene Perceptions

    DTIC Science & Technology

    2014-05-01

    processor developed by IBM and other companies , incorpo- rates the verb—POWER5— processor as the Power Processor Element (PPE), one of the early general...deliver an power efficient single-precision peak performance of more than 256 GFlops. Substantially more raw power became available later, when nVIDIA ...algorithms, including IBM’s Cell/B.E., GPUs from NVidia and AMD and many-core CPUs from Intel.27 The vast growth of digital video content has been a

  10. High End Visualization of Geophysical Datasets Using Immersive Technology: The SIO Visualization Center.

    NASA Astrophysics Data System (ADS)

    Newman, R. L.

    2002-12-01

    How many images can you display at one time with Power Point without getting "postage stamps"? Do you have fantastic datasets that you cannot view because your computer is too slow/small? Do you assume a few 2-D images of a 3-D picture are sufficient? High-end visualization centers can minimize and often eliminate these problems. The new visualization center [http://siovizcenter.ucsd.edu] at Scripps Institution of Oceanography [SIO] immerses users into a virtual world by projecting 3-D images onto a Panoram GVR-120E wall-sized floor-to-ceiling curved screen [7' x 23'] that has 3.2 mega-pixels of resolution. The Infinite Reality graphics subsystem is driven by a single-pipe SGI Onyx 3400 with a system bandwidth of 44 Gbps. The Onyx is powered by 16 MIPS R12K processors and 16 GB of addressable memory. The system is also equipped with transmitters and LCD shutter glasses which permit stereographic 3-D viewing of high-resolution images. This center is ideal for groups of up to 60 people who can simultaneously view these large-format images. A wide range of hardware and software is available, giving the users a totally immersive working environment in which to display, analyze, and discuss large datasets. The system enables simultaneous display of video and audio streams from sources such as SGI megadesktop and stereo megadesktop, S-VHS video, DVD video, and video from a Macintosh or PC. For instance, one-third of the screen might be displaying S-VHS video from a remotely-operated-vehicle [ROV], while the remaining portion of the screen might be used for an interactive 3-D flight over the same parcel of seafloor. The video and audio combinations using this system are numerous, allowing users to combine and explore data and images in innovative ways, greatly enhancing scientists' ability to visualize, understand and collaborate on complex datasets. In the not-distant future, with the rapid growth in networking speeds in the US, it will be possible for Earth Sciences Departments to collaborate effectively while limiting the amount of physical travel required. This includes porting visualization content to the popular, low-cost Geowall visualization systems, and providing web-based access to databanks filled with stock geoscience visualizations.

  11. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  12. Radar image processing of real aperture SLAR data for the detection and identification of iceberg and ship targets

    NASA Technical Reports Server (NTRS)

    Marthaler, J. G.; Heighway, J. E.

    1979-01-01

    An iceberg detection and identification system consisting of a moderate resolution Side Looking Airborne Radar (SLAR) interfaced with a Radar Image Processor (RIP) based on a ROLM 1664 computer with a 32K core memory updatable to 64K is described. The system can be operated in high- or low-resolution sampling modes. Specifically designed algorithms are applied to digitized signal returns to provide automatic target detection and location, geometrically correct video image display and data recording. The real aperture Motorola AN/APS-94D SLAR operates in the X-band and is tunable between 9.10 and 9.40 GHz; its output power is 45 kW peak with a pulse repetition rate of 750 pulses per hour. Schematic diagrams of the system are provided, together with preliminary test data.

  13. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  14. MPEG-4 ASP SoC receiver with novel image enhancement techniques for DAB networks

    NASA Astrophysics Data System (ADS)

    Barreto, D.; Quintana, A.; García, L.; Callicó, G. M.; Núñez, A.

    2007-05-01

    This paper presents a system for real-time video reception in low-power mobile devices using Digital Audio Broadcast (DAB) technology for transmission. A demo receiver terminal is designed into a FPGA platform using the Advanced Simple Profile (ASP) MPEG-4 standard for video decoding. In order to keep the demanding DAB requirements, the bandwidth of the encoded sequence must be drastically reduced. In this sense, prior to the MPEG-4 coding stage, a pre-processing stage is performed. It is firstly composed by a segmentation phase according to motion and texture based on the Principal Component Analysis (PCA) of the input video sequence, and secondly by a down-sampling phase, which depends on the segmentation results. As a result of the segmentation task, a set of texture and motion maps are obtained. These motion and texture maps are also included into the bit-stream as user data side-information and are therefore known to the receiver. For all bit-rates, the whole encoder/decoder system proposed in this paper exhibits higher image visual quality than the alternative encoding/decoding method, assuming equal image sizes. A complete analysis of both techniques has also been performed to provide the optimum motion and texture maps for the global system, which has been finally validated for a variety of video sequences. Additionally, an optimal HW/SW partition for the MPEG-4 decoder has been studied and implemented over a Programmable Logic Device with an embedded ARM9 processor. Simulation results show that a throughput of 15 QCIF frames per second can be achieved with low area and low power implementation.

  15. Study of Thread Level Parallelism in a Video Encoding Application for Chip Multiprocessor Design

    NASA Astrophysics Data System (ADS)

    Debes, Eric; Kaine, Greg

    2002-11-01

    In media applications there is a high level of available thread level parallelism (TLP). In this paper we study the intra TLP in a video encoder. We show that a well-distributed highly optimized encoder running on a symmetric multiprocessor (SMP) system can run 3.2 faster on a 4-way SMP machine than on a single processor. The multithreaded encoder running on an SMP system is then used to understand the requirements of a chip multiprocessor (CMP) architecture, which is one possible architectural direction to better exploit TLP. In the framework of this study, we use a software approach to evaluate the dataflow between processors for the video encoder running on an SMP system. An estimation of the dataflow is done with L2 cache miss event counters using Intel® VTuneTM performance analyzer. The experimental measurements are compared to theoretical results.

  16. Novel memory architecture for video signal processor

    NASA Astrophysics Data System (ADS)

    Hung, Jen-Sheng; Lin, Chia-Hsing; Jen, Chein-Wei

    1993-11-01

    An on-chip memory architecture for video signal processor (VSP) is proposed. This memory structure is a two-level design for the different data locality in video applications. The upper level--Memory A provides enough storage capacity to reduce the impact on the limitation of chip I/O bandwidth, and the lower level--Memory B provides enough data parallelism and flexibility to meet the requirements of multiple reconfigurable pipeline function units in a single VSP chip. The needed memory size is decided by the memory usage analysis for video algorithms and the number of function units. Both levels of memory adopted a dual-port memory scheme to sustain the simultaneous read and write operations. Especially, Memory B uses multiple one-read-one-write memory banks to emulate the real multiport memory. Therefore, one can change the configuration of Memory B to several sets of memories with variable read/write ports by adjusting the bus switches. Then the numbers of read ports and write ports in proposed memory can meet requirement of data flow patterns in different video coding algorithms. We have finished the design of a prototype memory design using 1.2- micrometers SPDM SRAM technology and will fabricated it through TSMC, in Taiwan.

  17. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    PubMed

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  18. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  19. [Observation of oral actions using digital image processing system].

    PubMed

    Ichikawa, T; Komoda, J; Horiuchi, M; Ichiba, H; Hada, M; Matsumoto, N

    1990-04-01

    A new digital image processing system to observe oral actions is proposed. The system provides analyses of motion pictures along with other physiological signals. The major components are a video tape recorder, a digital image processor, a percept scope, a CCD camera, an A/D converter and a personal computer. Five reference points were marked on the lip and eyeglasses of 9 adult subjects. Lip movements were recorded and analyzed using the system when uttering five vowels and [ka, sa, ta, ha, ra, ma, pa, ba[. 1. Positions of the lip when uttering five vowels were clearly classified. 2. Active articulatory movements of the lip were not recognized when uttering consonants [k, s, t, h, r[. It seemed lip movements were dependent on tongue and mandibular movements. Downward and rearward movements of the upper lip, and upward and forward movements of the lower lip were observed when uttering consonants [m, p, b[.

  20. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    NASA Technical Reports Server (NTRS)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  1. Satellite monitoring of sea surface pollution. [North and Irish Seas

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Hall, T. S. (Principal Investigator); Telfer, D. J.; Wilson, L.; Fryer, R. J.

    1980-01-01

    Thermal IR data from NASA's Heat Capacity Mapping Mission were used in a study of the feasibility of detecting oil spills in the seas around the UK. The period of observation covered the years 1978/9, in which there were no major spills in the area. A video processor capable of generating false color renderings of any satellite image from eight density levels was used in the synoptic search for spills. Other laboratory equipment, and associated analyses, were used to study the thermal behavior of oil spills on water. Oil spills may appear to be warmer or cooler that the surrounding sea, depending on numerous factors.

  2. Image processing for a tactile/vision substitution system using digital CNN.

    PubMed

    Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng

    2006-01-01

    In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.

  3. Database for the collection and analysis of clinical data and images of neoplasms of the sinonasal tract.

    PubMed

    Trimarchi, Matteo; Lund, Valerie J; Nicolai, Piero; Pini, Massimiliano; Senna, Massimo; Howard, David J

    2004-04-01

    The Neoplasms of the Sinonasal Tract software package (NSNT v 1.0) implements a complete visual database for patients with sinonasal neoplasia, facilitating standardization of data and statistical analysis. The software, which is compatible with the Macintosh and Windows platforms, provides multiuser application with a dedicated server (on Windows NT or 2000 or Macintosh OS 9 or X and a network of clients) together with web access, if required. The system hardware consists of an Apple Power Macintosh G4500 MHz computer with PCI bus, 256 Mb of RAM plus 60 Gb hard disk, or any IBM-compatible computer with a Pentium 2 processor. Image acquisition may be performed with different frame-grabber cards for analog or digital video input of different standards (PAL, SECAM, or NTSC) and levels of quality (VHS, S-VHS, Betacam, Mini DV, DV). The visual database is based on 4th Dimension by 4D Inc, and video compression is made in real-time MPEG format. Six sections have been developed: demographics, symptoms, extent of disease, radiology, treatment, and follow-up. Acquisition of data includes computed tomography and magnetic resonance imaging, histology, and endoscopy images, allowing sequential comparison. Statistical analysis integral to the program provides Kaplan-Meier survival curves. The development of a dedicated, user-friendly database for sinonasal neoplasia facilitates a multicenter network and has obvious clinical and research benefits.

  4. Automated system for acquisition and image processing for the control and monitoring boned nopal

    NASA Astrophysics Data System (ADS)

    Luevano, E.; de Posada, E.; Arronte, M.; Ponce, L.; Flores, T.

    2013-11-01

    This paper describes the design and fabrication of a system for acquisition and image processing to control the removal of thorns nopal vegetable (Opuntia ficus indica) in an automated machine that uses pulses of a laser of Nd: YAG. The areolas, areas where thorns grow on the bark of the Nopal, are located applying segmentation algorithms to the images obtained by a CCD. Once the position of the areolas is known, coordinates are sent to a motors system that controls the laser to interact with all areolas and remove the thorns of the nopal. The electronic system comprises a video decoder, memory for image and software storage, and digital signal processor for system control. The firmware programmed tasks on acquisition, preprocessing, segmentation, recognition and interpretation of the areolas. This system achievement identifying areolas and generating table of coordinates of them, which will be send the motor galvo system that controls the laser for removal

  5. Algorithm architecture co-design for ultra low-power image sensor

    NASA Astrophysics Data System (ADS)

    Laforest, T.; Dupret, A.; Verdant, A.; Lattard, D.; Villard, P.

    2012-03-01

    In a context of embedded video surveillance, stand alone leftbehind image sensors are used to detect events with high level of confidence, but also with a very low power consumption. Using a steady camera, motion detection algorithms based on background estimation to find regions in movement are simple to implement and computationally efficient. To reduce power consumption, the background is estimated using a down sampled image formed of macropixels. In order to extend the class of moving objects to be detected, we propose an original mixed mode architecture developed thanks to an algorithm architecture co-design methodology. This programmable architecture is composed of a vector of SIMD processors. A basic RISC architecture was optimized in order to implement motion detection algorithms with a dedicated set of 42 instructions. Definition of delta modulation as a calculation primitive has allowed to implement algorithms in a very compact way. Thereby, a 1920x1080@25fps CMOS image sensor performing integrated motion detection is proposed with a power estimation of 1.8 mW.

  6. Assessing Server Fault Tolerance and Disaster Recovery Implementation in Thin Client Architectures

    DTIC Science & Technology

    2007-09-01

    server • Windows 2003 server Processor AMD Geode GX Memory 512MB Flash/256MB DDR RAM I/O/Peripheral Support • VGA-type video output (DB-15...2000 Advanced Server Processor AMD Geode NX 1500 Memory • 256MB or 512MB or 1GB DDR SDRAM • 1GB or 512MB Flash I/O/Peripheral Support • SiS741 GX

  7. Tactical Operations Analysis Support Facility.

    DTIC Science & Technology

    1983-07-01

    are stored in nonvolatile RAM (NVR). Communication with a host processor via a UART (75-19.2K bps) in full duplex mode. An advanced video option...hardware/firmware "machines." Smart terminals, I/O con- * trollers, and unique peripheral processors are examples of this process. Briton Lee, Inc...the relational data base for symbol attributes and data retrievals. * Generates a grid system for precise cursor positioning for lines, charts, and

  8. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    NASA Astrophysics Data System (ADS)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  9. Programmable Remapper with Single Flow Architecture

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E. (Inventor)

    1993-01-01

    An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.

  10. Mobile and embedded fast high resolution image stitching for long length rectangular monochromatic objects with periodic structure

    NASA Astrophysics Data System (ADS)

    Limonova, Elena; Tropin, Daniil; Savelyev, Boris; Mamay, Igor; Nikolaev, Dmitry

    2018-04-01

    In this paper we describe stitching protocol, which allows to obtain high resolution images of long length monochromatic objects with periodic structure. This protocol can be used for long length documents or human-induced objects in satellite images of uninhabitable regions like Arctic regions. The length of such objects can reach notable values, while modern camera sensors have limited resolution and are not able to provide good enough image of the whole object for further processing, e.g. using in OCR system. The idea of the proposed method is to acquire a video stream containing full object in high resolution and use image stitching. We expect the scanned object to have straight boundaries and periodic structure, which allow us to introduce regularization to the stitching problem and adapt algorithm for limited computational power of mobile and embedded CPUs. With the help of detected boundaries and structure we estimate homography between frames and use this information to reduce complexity of stitching. We demonstrate our algorithm on mobile device and show image processing speed of 2 fps on Samsung Exynos 5422 processor

  11. Simulating Optical Correlation on a Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  12. Optical Potential Field Mapping System

    NASA Technical Reports Server (NTRS)

    Reid, Max B. (Inventor)

    1996-01-01

    The present invention relates to an optical system for creating a potential field map of a bounded two dimensional region containing a goal location and an arbitrary number of obstacles. The potential field mapping system has an imaging device and a processor. Two image writing modes are used by the imaging device, electron deposition and electron depletion. Patterns written in electron deposition mode appear black and expand. Patterns written in electron depletion mode are sharp and appear white. The generated image represents a robot's workspace. The imaging device under processor control then writes a goal location in the work-space using the electron deposition mode. The black image of the goal expands in the workspace. The processor stores the generated images, and uses them to generate a feedback pattern. The feedback pattern is written in the workspace by the imaging device in the electron deposition mode to enhance the expansion of the original goal pattern. After the feedback pattern is written, an obstacle pattern is written by the imaging device in the electron depletion mode to represent the obstacles in the robot's workspace. The processor compares a stored image to a previously stored image to determine a change therebetween. When no change occurs, the processor averages the stored images to produce the potential field map.

  13. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at approximately 3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.

  14. An efficient system for reliably transmitting image and video data over low bit rate noisy channels

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.

    1994-01-01

    This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.

  15. Design and implementation of H.264 based embedded video coding technology

    NASA Astrophysics Data System (ADS)

    Mao, Jian; Liu, Jinming; Zhang, Jiemin

    2016-03-01

    In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].

  16. PATCH image processor user's manual

    NASA Technical Reports Server (NTRS)

    Nieves, M. J. (Principal Investigator)

    1980-01-01

    The patch image processor extracts patches in various size (32 x 32, 64 x 64, 128 x 128, and 256 x 256 pixels) from full frame LANDSAT imagery data. With the patches that are extracted, a patch image mosaic is created in the image processing system, IMDACS, format.

  17. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor); Reinhart, Rene Felix (Inventor); Aghazarian, Hrand (Inventor); Rankin, Arturo (Inventor)

    2017-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  18. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand (Inventor); Reinhart, Rene Felix (Inventor); Huntsberger, Terrance L. (Inventor); Rankin, Arturo (Inventor); Howard, Andrew B. (Inventor)

    2015-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  19. Locating faces in color photographs using neural networks

    NASA Astrophysics Data System (ADS)

    Brown, Joe R.; Talley, Jim

    1994-03-01

    This paper summarizes a research effort in finding the locations and sizes of faces in color images (photographs, video stills, etc.) if, in fact, faces are presented. Scenarios for using such a system include serving as the means of localizing skin for automatic color balancing during photo processing or it could be used as a front-end in a customs port of energy context for a system which identified persona non grata given a database of known faces. The approach presented here is a hybrid system including: a neural pre-processor, some conventional image processing steps, and a neural classifier as the final face/non-face discriminator. Neither the training (containing 17,655 faces) nor the test (containing 1829 faces) imagery databases were constrained in their content or quality. The results for the pilot system are reported along with a discussion for improving the current system.

  20. A large flat panel multifunction display for military and space applications

    NASA Astrophysics Data System (ADS)

    Pruitt, James S.

    1992-09-01

    A flat panel multifunction display (MFD) that offers the size and reliability benefits of liquid crystal display technology while achieving near-CRT display quality is presented. Display generation algorithms that provide exceptional display quality are being implemented in custom VLSI components to minimize MFD size. A high-performance processor converts user-specified display lists to graphics commands used by these components, resulting in high-speed updates of two-dimensional and three-dimensional images. The MFD uses the MIL-STD-1553B data bus for compatibility with virtually all avionics systems. The MFD can generate displays directly from display lists received from the MIL-STD-1553B bus. Complex formats can be stored in the MFD and displayed using parameters from the data bus. The MFD also accepts direct video input and performs special processing on this input to enhance image quality.

  1. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  2. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging.

    PubMed

    Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming

    2011-11-01

    Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.

  3. Efficient Feature Extraction and Likelihood Fusion for Vehicle Tracking in Low Frame Rate Airborne Video

    DTIC Science & Technology

    2010-07-01

    imagery, persistent sensor array I. Introduction New device fabrication technologies and heterogeneous embedded processors have led to the emergence of a...geometric occlusions between target and sensor , motion blur, urban scene complexity, and high data volumes. In practical terms the targets are small...distributed airborne narrow-field-of-view video sensor networks. Airborne camera arrays combined with com- putational photography techniques enable the

  4. A real-time tracking system of infrared dim and small target based on FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Rong, Sheng-hui; Zhou, Hui-xin; Qin, Han-lin; Wang, Bing-jian; Qian, Kun

    2014-11-01

    A core technology in the infrared warning system is the detection tracking of dim and small targets with complicated background. Consequently, running the detection algorithm on the hardware platform has highly practical value in the military field. In this paper, a real-time detection tracking system of infrared dim and small target which is used FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) as the core was designed and the corresponding detection tracking algorithm and the signal flow is elaborated. At the first stage, the FPGA obtain the infrared image sequence from the sensor, then it suppresses background clutter by mathematical morphology method and enhances the target intensity by Laplacian of Gaussian operator. At the second stage, the DSP obtain both the original image and the filtered image form the FPGA via the video port. Then it segments the target from the filtered image by an adaptive threshold segmentation method and gets rid of false target by pipeline filter. Experimental results show that our system can achieve higher detection rate and lower false alarm rate.

  5. We Canwatch It For You Wholesale

    NASA Astrophysics Data System (ADS)

    Lipton, Alan J.

    This chapter provides an introduction to video analytics—a branch of computer vision technology that deals with automatic detection of activities and events in surveillance video feeds. Initial applications focused on the security and surveillance space, but as the technology improves it is rapidly finding a home in many other application areas. This chapter looks at some of those spaces, the requirements they impose on video analytics systems, and provides an example architecture and set of technology components to meet those requirements. This exemplary system is put through its paces to see how it stacks up in an embedded environment. Finally, we explore the future of video analytics and examine some of the market requirements that are driving breakthroughs in both video analytics and processor platform technology alike.

  6. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  7. Mobile visual communications and displays

    NASA Astrophysics Data System (ADS)

    Valliath, George T.

    2004-09-01

    The different types of mobile visual communication modes and the types of displays needed in cellular handsets are explored. The well-known 2-way video conferencing is only one of the possible modes. Some modes are already supported on current handsets while others need the arrival of advanced network capabilities to be supported. Displays for devices that support these visual communication modes need to deliver the required visual experience. Over the last 20 years the display has grown in size while the rest of the handset has shrunk. However, the display is still not large enough - the processor performance and network capabilities continue to outstrip the display ability. This makes the display a bottleneck. This paper will explore potential solutions to a small large image on a small handset.

  8. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    NASA Astrophysics Data System (ADS)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from multiple-purpose modules. In the last part of the thesis a well known optimization method (the Broyden-Fletcher-Goldfarb-Shanno memoryless quasi -Newton method) is applied to simple classification problems and shown to be superior to the "error back-propagation" algorithm for numerical stability, automatic selection of parameters, and convergence properties.

  9. Satellite on-board real-time SAR processor prototype

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.

  10. Radar derived spatial statistics of summer rain. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Ronnenburg, C.; Bassnett, A.; Knapp, H.; Vann, W. A.

    1975-01-01

    A collection of selected important memoranda written during the course of the experiment. It contains detailed information on: (1) frequency diversity, (2) radar controller and radar video processor, (3) SPANDAR calibration, and (4) meteorological summaries.

  11. Data recording and playback on video tape--a multi-channel analog interface for a digital audio processor system.

    PubMed

    Blaettler, M; Bruegger, A; Forster, I C; Lehareinger, Y

    1988-03-01

    The design of an analog interface to a digital audio signal processor (DASP)-video cassette recorder (VCR) system is described. The complete system represents a low-cost alternative to both FM instrumentation tape recorders and multi-channel chart recorders. The interface or DASP input-output unit described in this paper enables the recording and playback of up to 12 analog channels with a maximum of 12 bit resolution and a bandwidth of 2 kHz per channel. Internal control and timing in the recording component of the interface is performed using ROMs which can be reprogrammed to suit different analog-to-digital converter hardware. Improvement in the bandwidth specifications is possible by connecting channels in parallel. A parallel 16 bit data output port is provided for direct transfer of the digitized data to a computer.

  12. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  13. Video Bandwidth Compression System.

    DTIC Science & Technology

    1980-08-01

    scaling function, located between the inverse DPCM and inverse transform , on the decoder matrix multiplier chips. 1"V1 T.. ---- i.13 SECURITY...Bit Unpacker and Inverse DPCM Slave Sync Board 15 e. Inverse DPCM Loop Boards 15 f. Inverse Transform Board 16 g. Composite Video Output Board 16...36 a. Display Refresh Memory 36 (1) Memory Section 37 (2) Timing and Control 39 b. Bit Unpacker and Inverse DPCM 40 c. Inverse Transform Processor 43

  14. Digital camera with apparatus for authentication of images produced from an image file

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1993-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.

  15. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  16. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Realisation of video-frequency filters on the basis of a new mode of operation of an acousto-optical correlator with spatial integration

    NASA Astrophysics Data System (ADS)

    Ushakov, V. N.

    1995-10-01

    A video-frequency acousto-optical correlator with spatial integration, which widens the functional capabilities of correlation-type acousto-optical processors, is described. The correlator is based on a two-dimensional reference transparency and it can filter arbitrary video signals of spectral width limited by the pass band of an acousto-optical modulator. The calculated pulse characteristic is governed by the structure of the reference transparency. A procedure for the synthesis of this transparency is considered and experimental results are reported.

  17. Image Matrix Processor for Volumetric Computations Final Report CRADA No. TSB-1148-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G. Patrick; Browne, Jolyon

    The development of an Image Matrix Processor (IMP) was proposed that would provide an economical means to perform rapid ray-tracing processes on volume "Giga Voxel" data sets. This was a multi-phased project. The objective of the first phase of the IMP project was to evaluate the practicality of implementing a workstation-based Image Matrix Processor for use in volumetric reconstruction and rendering using hardware simulation techniques. Additionally, ARACOR and LLNL worked together to identify and pursue further funding sources to complete a second phase of this project.

  18. Optical links in handheld multimedia devices

    NASA Astrophysics Data System (ADS)

    van Geffen, S.; Duis, J.; Miller, R.

    2008-04-01

    Ever emerging applications in handheld multimedia devices such as mobile phones, laptop computers, portable video games and digital cameras requiring increased screen resolutions are driving higher aggregate bitrates between host processor and display(s) enabling services such as mobile video conferencing, video on demand and TV broadcasting. Larger displays and smaller phones require complex mechanical 3D hinge configurations striving to combine maximum functionality with compact building volumes. Conventional galvanic interconnections such as Micro-Coax and FPC carrying parallel digital data between host processor and display module may produce Electromagnetic Interference (EMI) and bandwidth limitations caused by small cable size and tight cable bends. To reduce the number of signals through a hinge, the mobile phone industry, organized in the MIPI (Mobile Industry Processor Interface) alliance, is currently defining an electrical interface transmitting serialized digital data at speeds >1Gbps. This interface allows for electrical or optical interconnects. Above 1Gbps optical links may offer a cost effective alternative because of their flexibility, increased bandwidth and immunity to EMI. This paper describes the development of optical links for handheld communication devices. A cable assembly based on a special Plastic Optical Fiber (POF) selected for its mechanical durability is terminated with a small form factor molded lens assembly which interfaces between an 850nm VCSEL transmitter and a receiving device on the printed circuit board of the display module. A statistical approach based on a Lean Design For Six Sigma (LDFSS) roadmap for new product development tries to find an optimum link definition which will be robust and low cost meeting the power consumption requirements appropriate for battery operated systems.

  19. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.

  20. Programmable architecture for pixel level processing tasks in lightweight strapdown IR seekers

    NASA Astrophysics Data System (ADS)

    Coates, James L.

    1993-06-01

    Typical processing tasks associated with missile IR seeker applications are described, and a straw man suite of algorithms is presented. A fully programmable multiprocessor architecture is realized on a multimedia video processor (MVP) developed by Texas Instruments. The MVP combines the elements of RISC, floating point, advanced DSPs, graphics processors, display and acquisition control, RAM, and external memory. Front end pixel level tasks typical of missile interceptor applications, operating on 256 x 256 sensor imagery, can be processed at frame rates exceeding 100 Hz in a single MVP chip.

  1. Optical Associative Processors For Visual Perception"

    NASA Astrophysics Data System (ADS)

    Casasent, David; Telfer, Brian

    1988-05-01

    We consider various associative processor modifications required to allow these systems to be used for visual perception, scene analysis, and object recognition. For these applications, decisions on the class of the objects present in the input image are required and thus heteroassociative memories are necessary (rather than the autoassociative memories that have been given most attention). We analyze the performance of both associative processors and note that there is considerable difference between heteroassociative and autoassociative memories. We describe associative processors suitable for realizing functions such as: distortion invariance (using linear discriminant function memory synthesis techniques), noise and image processing performance (using autoassociative memories in cascade with with a heteroassociative processor and with a finite number of autoassociative memory iterations employed), shift invariance (achieved through the use of associative processors operating on feature space data), and the analysis of multiple objects in high noise (which is achieved using associative processing of the output from symbolic correlators). We detail and provide initial demonstrations of the use of associative processors operating on iconic, feature space and symbolic data, as well as adaptive associative processors.

  2. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  3. Effect of poor control of film processors on mammographic image quality.

    PubMed

    Kimme-Smith, C; Sun, H; Bassett, L W; Gold, R H

    1992-11-01

    With the increasingly stringent standards of image quality in mammography, film processor quality control is especially important. Current methods are not sufficient for ensuring good processing. The authors used a sensitometer and densitometer system to evaluate the performance of 22 processors at 16 mammographic facilities. Standard sensitometric values of two films were established, and processor performance was assessed for variations from these standards. Developer chemistry of each processor was analyzed and correlated with its sensitometric values. Ten processors were retested, and nine were found to be out of calibration. The developer components of hydroquinone, sulfites, bromide, and alkalinity varied the most, and low concentrations of hydroquinone were associated with lower average gradients at two facilities. Use of the sensitometer and densitometer system helps identify out-of-calibration processors, but further study is needed to correlate sensitometric values with developer component values. The authors believe that present quality control would be improved if sensitometric or other tests could be used to identify developer components that are out of calibration.

  4. Robust media processing on programmable power-constrained systems

    NASA Astrophysics Data System (ADS)

    McVeigh, Jeff

    2005-03-01

    To achieve consumer-level quality, media systems must process continuous streams of audio and video data while maintaining exacting tolerances on sampling rate, jitter, synchronization, and latency. While it is relatively straightforward to design fixed-function hardware implementations to satisfy worst-case conditions, there is a growing trend to utilize programmable multi-tasking solutions for media applications. The flexibility of these systems enables support for multiple current and future media formats, which can reduce design costs and time-to-market. This paper provides practical engineering solutions to achieve robust media processing on such systems, with specific attention given to power-constrained platforms. The techniques covered in this article utilize the fundamental concepts of algorithm and software optimization, software/hardware partitioning, stream buffering, hierarchical prioritization, and system resource and power management. A novel enhancement to dynamically adjust processor voltage and frequency based on buffer fullness to reduce system power consumption is examined in detail. The application of these techniques is provided in a case study of a portable video player implementation based on a general-purpose processor running a non real-time operating system that achieves robust playback of synchronized H.264 video and MP3 audio from local storage and streaming over 802.11.

  5. The Bulletin of Military Operations Research, PHALANX, Vol. 31, No. 2.

    DTIC Science & Technology

    1998-06-01

    introduction of the Pentium II processor, the writeable CD, and the Digital Video Disc (DVD). Just around the corner, around the turn of the century...broader audi- ence. Presentations that use special visual aids ( videos , computers, etc.), short presen- tations best depicted with color charts...Throughout the treatment of data, anoth- er weapon we should take is Tukey’s Tor- pedo (John W. Tukey, "Sunset Salvo," The American Statistician, vol

  6. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  7. Bitstream decoding processor for fast entropy decoding of variable length coding-based multiformat videos

    NASA Astrophysics Data System (ADS)

    Jo, Hyunho; Sim, Donggyu

    2014-06-01

    We present a bitstream decoding processor for entropy decoding of variable length coding-based multiformat videos. Since most of the computational complexity of entropy decoders comes from bitstream accesses and table look-up process, the developed bitstream processing unit (BsPU) has several designated instructions to access bitstreams and to minimize branch operations in the table look-up process. In addition, the instruction for bitstream access has the capability to remove emulation prevention bytes (EPBs) of H.264/AVC without initial delay, repeated memory accesses, and additional buffer. Experimental results show that the proposed method for EPB removal achieves a speed-up of 1.23 times compared to the conventional EPB removal method. In addition, the BsPU achieves speed-ups of 5.6 and 3.5 times in entropy decoding of H.264/AVC and MPEG-4 Visual bitstreams, respectively, compared to an existing processor without designated instructions and a new table mapping algorithm. The BsPU is implemented on a Xilinx Virtex5 LX330 field-programmable gate array. The MPEG-4 Visual (ASP, Level 5) and H.264/AVC (Main Profile, Level 4) are processed using the developed BsPU with a core clock speed of under 250 MHz in real time.

  8. Mapping of MPEG-4 decoding on a flexible architecture platform

    NASA Astrophysics Data System (ADS)

    van der Tol, Erik B.; Jaspers, Egbert G.

    2001-12-01

    In the field of consumer electronics, the advent of new features such as Internet, games, video conferencing, and mobile communication has triggered the convergence of television and computers technologies. This requires a generic media-processing platform that enables simultaneous execution of very diverse tasks such as high-throughput stream-oriented data processing and highly data-dependent irregular processing with complex control flows. As a representative application, this paper presents the mapping of a Main Visual profile MPEG-4 for High-Definition (HD) video onto a flexible architecture platform. A stepwise approach is taken, going from the decoder application toward an implementation proposal. First, the application is decomposed into separate tasks with self-contained functionality, clear interfaces, and distinct characteristics. Next, a hardware-software partitioning is derived by analyzing the characteristics of each task such as the amount of inherent parallelism, the throughput requirements, the complexity of control processing, and the reuse potential over different applications and different systems. Finally, a feasible implementation is proposed that includes amongst others a very-long-instruction-word (VLIW) media processor, one or more RISC processors, and some dedicated processors. The mapping study of the MPEG-4 decoder proves the flexibility and extensibility of the media-processing platform. This platform enables an effective HW/SW co-design yielding a high performance density.

  9. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  10. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  11. Acousto-optic RF signal acquisition system

    NASA Astrophysics Data System (ADS)

    Bloxham, Laurence H.

    1990-09-01

    This paper describes the architecture and performance of a prototype Acousto-Optic RF Signal Acquisition System designed to intercept, automatically identify, and track communication signals in the VHF band. The system covers 28.0 to 92.0 MHz with five manually selectable, dual conversion; 12.8 MHZ bandwidth front ends. An acousto-optic spectrum analyzer (AOSA) implemented using a tellurium dioxide (Te02) Bragg cell is used to channelize the 12.8 MHz pass band into 512 25 KHz channels. Polarization switching is used to suppress optical noise. Excellent isolation and dynamic range are achieved by using a linear array of 512 custom 40/50 micron fiber optic cables to collect the light at the focal plane of the AOSA and route the light to individual photodetectors. The photodetectors are operated in the photovoltaic mode to compress the greater than 60 dB input optical dynamic range into an easily processed electrical signal. The 512 signals are multiplexed and processed as a line in a video image by a customized digital image processing system. The image processor simultaneously analyzes the channelized signal data and produces a classical waterfall display.

  12. Method for enhanced control of welding processes

    DOEpatents

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  13. Stroboscope Controller for Imaging Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Jensen, Scott; Marmie, John; Mai, Nghia

    2004-01-01

    A versatile electronic timing-and-control unit, denoted a rotorcraft strobe controller, has been developed for use in controlling stroboscopes, lasers, video cameras, and other instruments for capturing still images of rotating machine parts especially helicopter rotors. This unit is designed to be compatible with a variety of sources of input shaftangle or timing signals and to be capable of generating a variety of output signals suitable for triggering instruments characterized by different input-signal specifications. It is also designed to be flexible and reconfigurable in that it can be modified and updated through changes in its control software, without need to change its hardware. Figure 1 is a block diagram of the rotorcraft strobe controller. The control processor is a high-density complementary metal oxide semiconductor, singlechip 8-bit microcontroller. It is connected to a 32K x 8 nonvolatile static random-access memory (RAM) module. Also connected to the control processor is a 32K 8 electrically programmable read-only-memory (EPROM) module, which is used to store the control software. Digital logic support circuitry is implemented in a field-programmable gate array (FPGA). A 240 x 128-dot, 40- character 16-line liquid-crystal display (LCD) module serves as a graphical user interface; the user provides input through a 16-key keypad mounted next to the LCD. A 12-bit digital-to-analog converter (DAC) generates a 0-to-10-V ramp output signal used as part of a rotor-blade monitoring system, while the control processor generates all the appropriate strobing signals. Optocouplers are used to isolate all input and output digital signals, and optoisolators are used to isolate all analog signals. The unit is designed to fit inside a 19-in. (.48-cm) rack-mount enclosure. Electronic components are mounted on a custom printed-circuit board (see Figure 2). Two power-conversion modules on the printedcircuit board convert AC power to +5 VDC and 15 VDC, respectively.

  14. Use of GPUs in Trigger Systems

    NASA Astrophysics Data System (ADS)

    Lamanna, Gianluca

    In recent years the interest for using graphics processor (GPU) in general purpose high performance computing is constantly rising. In this paper we discuss the possible use of GPUs to construct a fast and effective real time trigger system, both in software and hardware levels. In particular, we study the integration of such a system in the NA62 trigger. The first application of GPUs for rings pattern recognition in the RICH will be presented. The results obtained show that there are not showstoppers in trigger systems with relatively low latency. Thanks to the use of off-the-shelf technology, in continous development for purposes related to video game and image processing market, the architecture described would be easily exported to other experiments, to build a versatile and fully customizable online selection.

  15. Real time processor for array speckle interferometry

    NASA Astrophysics Data System (ADS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  16. Real time processor for array speckle interferometry

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-01-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  17. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  18. Balloon-borne video cassette recorders for digital data storage

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.

    1985-01-01

    A high speed, high capacity digital data storage system was developed for a new balloon-borne gamma-ray telescope. The system incorporates economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.

  19. Embedded Palmprint Recognition System Using OMAP 3530

    PubMed Central

    Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen

    2012-01-01

    We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721

  20. Embedded palmprint recognition system using OMAP 3530.

    PubMed

    Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen

    2012-01-01

    We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.

  1. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  2. Noncoherent parallel optical processor for discrete two-dimensional linear transformations.

    PubMed

    Glaser, I

    1980-10-01

    We describe a parallel optical processor, based on a lenslet array, that provides general linear two-dimensional transformations using noncoherent light. Such a processor could become useful in image- and signal-processing applications in which the throughput requirements cannot be adequately satisfied by state-of-the-art digital processors. Experimental results that illustrate the feasibility of the processor by demonstrating its use in parallel optical computation of the two-dimensional Walsh-Hadamard transformation are presented.

  3. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  4. Novel computer-based endoscopic camera

    NASA Astrophysics Data System (ADS)

    Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia

    1995-05-01

    We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.

  5. Toshiba TDF-500 High Resolution Viewing And Analysis System

    NASA Astrophysics Data System (ADS)

    Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.

    1988-06-01

    A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.

  6. List-mode PET image reconstruction for motion correction using the Intel XEON PHI co-processor

    NASA Astrophysics Data System (ADS)

    Ryder, W. J.; Angelis, G. I.; Bashar, R.; Gillam, J. E.; Fulton, R.; Meikle, S.

    2014-03-01

    List-mode image reconstruction with motion correction is computationally expensive, as it requires projection of hundreds of millions of rays through a 3D array. To decrease reconstruction time it is possible to use symmetric multiprocessing computers or graphics processing units. The former can have high financial costs, while the latter can require refactoring of algorithms. The Xeon Phi is a new co-processor card with a Many Integrated Core architecture that can run 4 multiple-instruction, multiple data threads per core with each thread having a 512-bit single instruction, multiple data vector register. Thus, it is possible to run in the region of 220 threads simultaneously. The aim of this study was to investigate whether the Xeon Phi co-processor card is a viable alternative to an x86 Linux server for accelerating List-mode PET image reconstruction for motion correction. An existing list-mode image reconstruction algorithm with motion correction was ported to run on the Xeon Phi coprocessor with the multi-threading implemented using pthreads. There were no differences between images reconstructed using the Phi co-processor card and images reconstructed using the same algorithm run on a Linux server. However, it was found that the reconstruction runtimes were 3 times greater for the Phi than the server. A new version of the image reconstruction algorithm was developed in C++ using OpenMP for mutli-threading and the Phi runtimes decreased to 1.67 times that of the host Linux server. Data transfer from the host to co-processor card was found to be a rate-limiting step; this needs to be carefully considered in order to maximize runtime speeds. When considering the purchase price of a Linux workstation with Xeon Phi co-processor card and top of the range Linux server, the former is a cost-effective computation resource for list-mode image reconstruction. A multi-Phi workstation could be a viable alternative to cluster computers at a lower cost for medical imaging applications.

  7. Acousto-optic time- and space-integrating spotlight-mode SAR processor

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.

    1993-09-01

    The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.

  8. Emergency product generation for disaster management using RISAT and DMSAR quick look SAR processors

    NASA Astrophysics Data System (ADS)

    Desai, Nilesh; Sharma, Ritesh; Kumar, Saravana; Misra, Tapan; Gujraty, Virendra; Rana, SurinderSingh

    2006-12-01

    Since last few years, ISRO has embarked upon the development of two complex Synthetic Aperture Radar (SAR) missions, viz. Spaceborne Radar Imaging Satellite (RISAT) and Airborne SAR for Disaster Mangement (DMSAR), as a capacity building measure under country's Disaster Management Support (DMS) Program, for estimating the extent of damage over large areas (~75 Km) and also assess the effectiveness of the relief measures undertaken during natural disasters such as cyclones, epidemics, earthquakes, floods and landslides, forest fires, crop diseases etc. Synthetic Aperture Radar (SAR) has an unique role to play in mapping and monitoring of large areas affected by natural disasters especially floods, owing to its unique capability to see through clouds as well as all-weather imaging capability. The generation of SAR images with quick turn around time is very essential to meet the above DMS objectives. Thus the development of SAR Processors, for these two SAR systems poses considerable challenges and design efforts. Considering the growing user demand and inevitable necessity for a full-fledged high throughput processor, to process SAR data and generate image in real or near-real time, the design and development of a generic SAR Processor has been taken up and evolved, which will meet the SAR processing requirements for both Airborne and Spaceborne SAR systems. This hardware SAR processor is being built, to the extent possible, using only Commercial-Off-The-Shelf (COTS) DSP and other hardware plug-in modules on a Compact PCI (cPCI) platform. Thus, the major thrust has been on working out Multi-processor Digital Signal Processor (DSP) architecture and algorithm development and optimization rather than hardware design and fabrication. For DMSAR, this generic SAR Processor operates as a Quick Look SAR Processor (QLP) on-board the aircraft to produce real time full swath DMSAR images and as a ground based Near-Real Time high precision full swath Processor (NRTP). It will generate full-swath (6 to 75 Kms) DMSAR images in 1m / 3m / 5m / 10m / 30m resolution SAR operating modes. For RISAT mission, this generic Quick Look SAR Processor will be mainly used for browse product generation at NRSA-Shadnagar (SAN) ground receive station. RISAT QLP/NRTP is also proposed to provide an alternative emergency SAR product generation chain. For this, the S/C aux data appended in Onboard SAR Frame Format (x, y, z, x', y', z', roll, pitch, yaw) and predicted orbit from previous days Orbit Determination data will be used. The QLP / NRTP will produce ground range images in real / near real time. For emergency data product generation, additional Off-line tasks like geo-tagging, masking, QC etc needs to be performed on the processed image. The QLP / NRTP would generate geo-tagged images from the annotation data available from the SAR P/L data itself. Since the orbit & attitude information are taken as it is, the location accuracy will be poorer compared to the product generated using ADIF, where smoothened attitude and orbit are made available. Additional tasks like masking, output formatting and Quality checking of the data product will be carried out at Balanagar, NRSA after the image annotated data from QLP / NRTP is sent to Balanagar. The necessary interfaces to the QLP/NRTP for Emergency product generation are also being worked out. As is widely acknowledged, QLP/NRTP for RISAT and DMSAR is an ambitious effort and the technology of future. It is expected that by the middle of next decade, the next generation SAR missions worldwide will have onboard SAR Processors of varying capabilities and generate SAR Data products and Information products onboard instead of SAR raw data. Thus, it is also envisaged that these activities related to QLP/NRTP implementation for RISAT ground segment and DMSAR will be a significant step which will directly feed into the development of onboard real time processing systems for ISRO's future space borne SAR missions. This paper describes the design requirements, configuration details and salient features, apart from highlighting the utility of these Quick Look SAR processors for RISAT and DMSAR, for generation of emergency products for Disaster management.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, G.A.; Commer, M.

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less

  10. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  11. Video Image Stabilization and Registration

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)

    2002-01-01

    A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.

  12. Video Image Stabilization and Registration

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)

    2003-01-01

    A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.

  13. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  14. Balloon-borne video cassette recorders for digital data storage

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.

    1985-01-01

    A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.

  15. Video Guidance Sensor System With Integrated Rangefinding

    NASA Technical Reports Server (NTRS)

    Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Howard, Richard T. (Inventor); Roe, Fred Davis, Jr. (Inventor); Bell, Joseph L. (Inventor)

    2006-01-01

    A video guidance sensor system for use, p.g., in automated docking of a chase vehicle with a target vehicle. The system includes an integrated rangefinder sub-system that uses time of flight measurements to measure range. The rangefinder sub-system includes a pair of matched photodetectors for respectively detecting an output laser beam and return laser beam, a buffer memory for storing the photodetector outputs, and a digitizer connected to the buffer memory and including dual amplifiers and analog-to-digital converters. A digital signal processor processes the digitized output to produce a range measurement.

  16. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  17. FAST: framework for heterogeneous medical image computing and visualization.

    PubMed

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  18. On board processor development for NASA's spaceborne imaging radar with system-on-chip technology

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    2004-01-01

    This paper reports a preliminary study result of an on-board spaceborne SAR processor. It consists of a processing requirement analysis, functional specifications, and implementation with system-on-chip technology. Finally, a minimum version of this on-board processor designed for performance evaluation and for partial demonstration is illustrated.

  19. Video image stabilization and registration--plus

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor)

    2009-01-01

    A method of stabilizing a video image displayed in multiple video fields of a video sequence includes the steps of: subdividing a selected area of a first video field into nested pixel blocks; determining horizontal and vertical translation of each of the pixel blocks in each of the pixel block subdivision levels from the first video field to a second video field; and determining translation of the image from the first video field to the second video field by determining a change in magnification of the image from the first video field to the second video field in each of horizontal and vertical directions, and determining shear of the image from the first video field to the second video field in each of the horizontal and vertical directions.

  20. Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.; Commer, Michael

    2009-07-01

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.

  1. The calibration of photographic and spectroscopic films. The utilization of the digital image processor in the determination of aging of the surf clam (Spisula solidissima)

    NASA Technical Reports Server (NTRS)

    Peters, Kevin A.; Hammond, Ernest C., Jr.

    1987-01-01

    The age of the surf clam (Spisula solidissima) can be determined with the use of the Digital Image Processor. This technique is used in conjunction with a modified method for aging, refined by John Ropes of the Woods Hole Laboratory, Massachusetts. This method utilizes a thinned sectioned chondrophore of the surf clam which contains annual rings. The rings of the chondrophore are then counted to determine age. By digitizing the chondrophore, the Digital Image Processor is clearly able to separate these annual rings more accurately. This technique produces an easier and more efficient way to count annual rings to determine the age of the surf clam.

  2. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  3. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor. Image processing at the sensor node level may also be required for applications in security, asset management and process control. Due to the data bandwidth requirements posed on the network by video sensors, new networking protocols or video extensions to existing standards (e.g. Zigbee) are required. To this end, Avaak has designed and implemented an ultra-low power networking protocol designed to carry large volumes of data through the network. The low power wireless sensor nodes that will be discussed include a chemical sensor integrated with a CMOS digital camera, a controller, a DSP processor and a radio communication transceiver, which enables relaying of an alarm or image message, to a central station. In addition to the communications, identification is very desirable; hence location awareness will be later incorporated to the system in the form of Time-Of-Arrival triangulation, via wide band signaling. While the wireless imaging kernel already exists specific applications for surveillance and chemical detection are under development by Avaak, as part of a co-founded program from ONR and DARPA. Avaak is also designing vision networks for commercial applications - some of which are undergoing initial field tests.

  4. Parallel processor-based raster graphics system architecture

    DOEpatents

    Littlefield, Richard J.

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

  5. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  6. Microlens array processor with programmable weight mask and direct optical input

    NASA Astrophysics Data System (ADS)

    Schmid, Volker R.; Lueder, Ernst H.; Bader, Gerhard; Maier, Gert; Siegordner, Jochen

    1999-03-01

    We present an optical feature extraction system with a microlens array processor. The system is suitable for online implementation of a variety of transforms such as the Walsh transform and DCT. Operating with incoherent light, our processor accepts direct optical input. Employing a sandwich- like architecture, we obtain a very compact design of the optical system. The key elements of the microlens array processor are a square array of 15 X 15 spherical microlenses on acrylic substrate and a spatial light modulator as transmissive mask. The light distribution behind the mask is imaged onto the pixels of a customized a-Si image sensor with adjustable gain. We obtain one output sample for each microlens image and its corresponding weight mask area as summation of the transmitted intensity within one sensor pixel. The resulting architecture is very compact and robust like a conventional camera lens while incorporating a high degree of parallelism. We successfully demonstrate a Walsh transform into the spatial frequency domain as well as the implementation of a discrete cosine transform with digitized gray values. We provide results showing the transformation performance for both synthetic image patterns and images of natural texture samples. The extracted frequency features are suitable for neural classification of the input image. Other transforms and correlations can be implemented in real-time allowing adaptive optical signal processing.

  7. Benchmarking NWP Kernels on Multi- and Many-core Processors

    NASA Astrophysics Data System (ADS)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  8. Real-Time Symbol Extraction From Grey-Level Images

    NASA Astrophysics Data System (ADS)

    Massen, R.; Simnacher, M.; Rosch, J.; Herre, E.; Wuhrer, H. W.

    1988-04-01

    A VME-bus image pipeline processor for extracting vectorized contours from grey-level images in real-time is presented. This 3 Giga operation per second processor uses large kernel convolvers and new non-linear neighbourhood processing algorithms to compute true 1-pixel wide and noise-free contours without thresholding even from grey-level images with quite varying edge sharpness. The local edge orientation is used as an additional cue to compute a list of vectors describing the closed and open contours in real-time and to dump a CAD-like symbolic image description into a symbol memory at pixel clock rate.

  9. Hardware Acceleration of Sparse Cognitive Algorithms

    DTIC Science & Technology

    2016-05-01

    Processor in Memory (PiM) extensions and a 65 nm ASIC version. They were compared against a 28 nm GPU baseline using the KTH video action recognition...30 Table 17. Memory Requirement of Proposed ASIC...for improvement of performance per unit of power for customized implementations of the Sparsey and Numenta Hierarchical Temporal Memory (HTM

  10. Using video-oriented instructions to speed up sequence comparison.

    PubMed

    Wozniak, A

    1997-04-01

    This document presents an implementation of the well-known Smith-Waterman algorithm for comparison of proteic and nucleic sequences, using specialized video instructions. These instructions, SIMD-like in their design, make possible parallelization of the algorithm at the instruction level. Benchmarks on an ULTRA SPARC running at 167 MHz show a speed-up factor of two compared to the same algorithm implemented with integer instructions on the same machine. Performance reaches over 18 million matrix cells per second on a single processor, giving to our knowledge the fastest implementation of the Smith-Waterman algorithm on a workstation. The accelerated procedure was introduced in LASSAP--a LArge Scale Sequence compArison Package software developed at INRIA--which handles parallelism at higher level. On a SUN Enterprise 6000 server with 12 processors, a speed of nearly 200 million matrix cells per second has been obtained. A sequence of length 300 amino acids is scanned against SWISSPROT R33 (1,8531,385 residues) in 29 s. This procedure is not restricted to databank scanning. It applies to all cases handled by LASSAP (intra- and inter-bank comparisons, Z-score computation, etc.

  11. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  12. Web surveillance system using platform-based design

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Yo; Tsai, Tsung-Han

    2004-04-01

    A revolutionary methodology of SOPC platform-based design environment for multimedia communications will be developed. We embed a softcore processor to perform the image compression in FPGA. Then, we plug-in an Ethernet daughter board in the SOPC development platform system. Afterward, a web surveillance platform system is presented. The web surveillance system consists of three parts: image capture, web server and JPEG compression. In this architecture, user can control the surveillance system by remote. By the IP address configures to Ethernet daughter board, the user can access the surveillance system via browser. When user access the surveillance system, the CMOS sensor presently capture the remote image. After that, it will feed the captured image with the embedded processor. The embedded processor immediately performs the JPEG compression. Afterward, the user receives the compressed data via Ethernet. To sum up of the above mentioned, the all system will be implemented on APEX20K200E484-2X device.

  13. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  14. An optical processor for object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  15. Design of a system based on DSP and FPGA for video recording and replaying

    NASA Astrophysics Data System (ADS)

    Kang, Yan; Wang, Heng

    2013-08-01

    This paper brings forward a video recording and replaying system with the architecture of Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). The system achieved encoding, recording, decoding and replaying of Video Graphics Array (VGA) signals which are displayed on a monitor during airplanes and ships' navigating. In the architecture, the DSP is a main processor which is used for a large amount of complicated calculation during digital signal processing. The FPGA is a coprocessor for preprocessing video signals and implementing logic control in the system. In the hardware design of the system, Peripheral Device Transfer (PDT) function of the External Memory Interface (EMIF) is utilized to implement seamless interface among the DSP, the synchronous dynamic RAM (SDRAM) and the First-In-First-Out (FIFO) in the system. This transfer mode can avoid the bottle-neck of the data transfer and simplify the circuit between the DSP and its peripheral chips. The DSP's EMIF and two level matching chips are used to implement Advanced Technology Attachment (ATA) protocol on physical layer of the interface of an Integrated Drive Electronics (IDE) Hard Disk (HD), which has a high speed in data access and does not rely on a computer. Main functions of the logic on the FPGA are described and the screenshots of the behavioral simulation are provided in this paper. In the design of program on the DSP, Enhanced Direct Memory Access (EDMA) channels are used to transfer data between the FIFO and the SDRAM to exert the CPU's high performance on computing without intervention by the CPU and save its time spending. JPEG2000 is implemented to obtain high fidelity in video recording and replaying. Ways and means of acquiring high performance for code are briefly present. The ability of data processing of the system is desirable. And smoothness of the replayed video is acceptable. By right of its design flexibility and reliable operation, the system based on DSP and FPGA for video recording and replaying has a considerable perspective in analysis after the event, simulated exercitation and so forth.

  16. Processor core for real time background identification of HD video based on OpenCV Gaussian mixture model algorithm

    NASA Astrophysics Data System (ADS)

    Genovese, Mariangela; Napoli, Ettore

    2013-05-01

    The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.

  17. Tiny videos: a large data set for nonparametric video retrieval and frame classification.

    PubMed

    Karpenko, Alexandre; Aarabi, Parham

    2011-03-01

    In this paper, we present a large database of over 50,000 user-labeled videos collected from YouTube. We develop a compact representation called "tiny videos" that achieves high video compression rates while retaining the overall visual appearance of the video as it varies over time. We show that frame sampling using affinity propagation-an exemplar-based clustering algorithm-achieves the best trade-off between compression and video recall. We use this large collection of user-labeled videos in conjunction with simple data mining techniques to perform related video retrieval, as well as classification of images and video frames. The classification results achieved by tiny videos are compared with the tiny images framework [24] for a variety of recognition tasks. The tiny images data set consists of 80 million images collected from the Internet. These are the largest labeled research data sets of videos and images available to date. We show that tiny videos are better suited for classifying scenery and sports activities, while tiny images perform better at recognizing objects. Furthermore, we demonstrate that combining the tiny images and tiny videos data sets improves classification precision in a wider range of categories.

  18. A Novel Optical/digital Processing System for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Boone, Bradley G.; Shukla, Oodaye B.

    1993-01-01

    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.

  19. GLOBECOM '87 - Global Telecommunications Conference, Tokyo, Japan, Nov. 15-18, 1987, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.

  20. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    NASA Astrophysics Data System (ADS)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  1. Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    NASA Astrophysics Data System (ADS)

    Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  2. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  3. Next Generation Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan

    2008-01-01

    The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be discussed.

  4. The Use Of Videography For Three-Dimensional Motion Analysis

    NASA Astrophysics Data System (ADS)

    Hawkins, D. A.; Hawthorne, D. L.; DeLozier, G. S.; Campbell, K. R.; Grabiner, M. D.

    1988-02-01

    Special video path editing capabilities with custom hardware and software, have been developed for use in conjunction with existing video acquisition hardware and firmware. This system has simplified the task of quantifying the kinematics of human movement. A set of retro-reflective markers are secured to a subject performing a given task (i.e. walking, throwing, swinging a golf club, etc.). Multiple cameras, a video processor, and a computer work station collect video data while the task is performed. Software has been developed to edit video files, create centroid data, and identify marker paths. Multi-camera path files are combined to form a 3D path file using the DLT method of cinematography. A separate program converts the 3D path file into kinematic data by creating a set of local coordinate axes and performing a series of coordinate transformations from one local system to the next. The kinematic data is then displayed for appropriate review and/or comparison.

  5. Evaluation of the traffic parameters in a metropolitan area by fusing visual perceptions and CNN processing of webcam images.

    PubMed

    Faro, Alberto; Giordano, Daniela; Spampinato, Concetto

    2008-06-01

    This paper proposes a traffic monitoring architecture based on a high-speed communication network whose nodes are equipped with fuzzy processors and cellular neural network (CNN) embedded systems. It implements a real-time mobility information system where visual human perceptions sent by people working on the territory and video-sequences of traffic taken from webcams are jointly processed to evaluate the fundamental traffic parameters for every street of a metropolitan area. This paper presents the whole methodology for data collection and analysis and compares the accuracy and the processing time of the proposed soft computing techniques with other existing algorithms. Moreover, this paper discusses when and why it is recommended to fuse the visual perceptions of the traffic with the automated measurements taken from the webcams to compute the maximum traveling time that is likely needed to reach any destination in the traffic network.

  6. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  7. Draper Laboratory small autonomous aerial vehicle

    NASA Astrophysics Data System (ADS)

    DeBitetto, Paul A.; Johnson, Eric N.; Bosse, Michael C.; Trott, Christian A.

    1997-06-01

    The Charles Stark Draper Laboratory, Inc. and students from Massachusetts Institute of Technology and Boston University have cooperated to develop an autonomous aerial vehicle that won the 1996 International Aerial Robotics Competition. This paper describes the approach, system architecture and subsystem designs for the entry. This entry represents a combination of many technology areas: navigation, guidance, control, vision processing, human factors, packaging, power, real-time software, and others. The aerial vehicle, an autonomous helicopter, performs navigation and control functions using multiple sensors: differential GPS, inertial measurement unit, sonar altimeter, and a flux compass. The aerial transmits video imagery to the ground. A ground based vision processor converts the image data into target position and classification estimates. The system was designed, built, and flown in less than one year and has provided many lessons about autonomous vehicle systems, several of which are discussed. In an appendix, our current research in augmenting the navigation system with vision- based estimates is presented.

  8. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  9. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  10. An inexpensive digital tape recorder suitable for neurophysiological signals.

    PubMed

    Lamb, T D

    1985-10-01

    Modifications are described which convert an inexpensive 'Digital Audio Processor' (Sony PCM-701ES), together with a video cassette recorder, into a high performance digital tape recorder, with two analog channels of 16 bit resolution and DC-20 kHz bandwidth. A further modification is described which optionally provides four additional 1-bit digital channels by sacrificing the least significant four bits of one analog channel. If required two additional high quality analog channels may be obtained by use of one of the new video cassette recorders (such as the Sony SL-HF100) which incorporate a pair of FM tracks.

  11. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optoelectronic processors with scanning CCD photodetectors

    NASA Astrophysics Data System (ADS)

    Esepkina, N. A.; Lavrov, A. P.; Anan'ev, M. N.; Blagodarnyi, V. S.; Ivanov, S. I.; Mansyrev, M. I.; Molodyakov, S. A.

    1995-10-01

    Two new types of optoelectronic radio-signal processors were investigated. Charge-coupled device (CCD) photodetectors are used in these processors under continuous scanning conditions, i.e. in a time delay and storage mode. One of these processors is based on a CCD photodetector array with a reference-signal amplitude transparency and the other is an adaptive acousto-optical signal processor with linear frequency modulation. The processor with the transparency performs multichannel discrete—analogue convolution of an input signal with a corresponding kernel of the transformation determined by the transparency. If a light source is an array of light-emitting diodes of special (stripe) geometry, the optical stages of the processor can be made from optical fibre components and the whole processor then becomes a rigid 'sandwich' (a compact hybrid optoelectronic microcircuit). A report is given also of a study of a prototype processor with optical fibre components for the reception of signals from a system with antenna aperture synthesis, which forms a radio image of the Earth.

  12. Neurovision processor for designing intelligent sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1992-03-01

    A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.

  13. Full-frame video stabilization with motion inpainting.

    PubMed

    Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung

    2006-07-01

    Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.

  14. Digital Camera with Apparatus for Authentication of Images Produced from an Image File

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1996-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.

  15. Registration of multiple video images to preoperative CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    1999-05-01

    In this paper we propose a method which uses multiple video images to establish the pose of a CT volume with respect to video camera coordinates for use in image guided surgery. The majority of neurosurgical procedures require the neurosurgeon to relate the pre-operative MR/CT data to the intra-operative scene. Registration of 2D video images to the pre-operative 3D image enables a perspective projection of the pre-operative data to be overlaid onto the video image. Our registration method is based on image intensity and uses a simple iterative optimization scheme to maximize the mutual information between a video image and a rendering from the pre-operative data. Video images are obtained from a stereo operating microscope, with a field of view of approximately 110 X 80 mm. We have extended an existing information theoretical framework for 2D-3D registration, so that multiple video images can be registered simultaneously to the pre-operative data. Experiments were performed on video and CT images of a skull phantom. We took three video images, and our algorithm registered these individually to the 3D image. The mean projection error varied between 4.33 and 9.81 millimeters (mm), and the mean 3D error varied between 4.47 and 11.92 mm. Using our novel techniques we then registered five video views simultaneously to the 3D model. This produced an accurate and robust registration with a mean projection error of 0.68 mm and a mean 3D error of 1.05 mm.

  16. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  17. Hadfield and Marshburn during HRCS Ku Comm Unit 2 Installation

    NASA Image and Video Library

    2013-04-02

    ISS035-E-013783 (2 April 2013) --- In the U.S. lab Destiny on the International Space Station, Expedition 35 Commander Chris Hadfield (right) and Flight Engineer Tom Marshburn remove the Video Baseband Signal Processor (VBSP) in order to replace it with a new Ku communication unit and its associated data and Ethernet cabling.

  18. Hadfield and Marshburn during HRCS Ku Comm Unit 2 Installation

    NASA Image and Video Library

    2013-04-02

    ISS035-E-013790 (2 April 2013) --- In the U.S. lab Destiny on the International Space Station, Expedition 35 Commander Chris Hadfield (background) and Flight Engineer Tom Marshburn remove the Video Baseband Signal Processor (VBSP) in order to replace it with a new Ku communication unit and its associated data and Ethernet cabling.

  19. PIFEX: An advanced programmable pipelined-image processor

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.; Wilcox, B.

    1985-01-01

    PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It will operate on digitized raster-scanned images (at 60 frames per second for images up to about 300 by 400 and at lesser rates for larger images), performing a variety of operations simultaneously under program control. It thus is a powerful, flexible tool for image processing and low-level computer vision. It also has applications in other two-dimensional problems such as route planning for obstacle avoidance and the numerical solution of two-dimensional partial differential equations (although its low numerical precision limits its use in the latter field). The concept and design of PIFEX are described herein, and some examples of its use are given.

  20. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  1. Proximity Operations and Docking Sensor Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the brassboard and proto-type NGAVGS units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  2. Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms And First Results

    NASA Astrophysics Data System (ADS)

    Muller-Wilm, Uwe; Louis, Jerome; Richter, Rudolf; Gascon, Ferran; Niezette, Marc

    2013-12-01

    Sen2Core is a prototype processor for Sentinel-2 Level 2A product processing and formatting. The processor is developed for and with ESA and performs the tasks of Atmospheric Correction and Scene Classification of Level 1C input data. Level 2A outputs are: Bottom-Of- Atmosphere (BOA) corrected reflectance images, Aerosol Optical Thickness-, Water Vapour-, Scene Classification maps and Quality indicators, including cloud and snow probabilities. The Level 2A Product Formatting performed by the processor follows the specification of the Level 1C User Product.

  3. Computations on the massively parallel processor at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Strong, James P.

    1991-01-01

    Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.

  4. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  5. RTEMS SMP and MTAPI for Efficient Multi-Core Space Applications on LEON3/LEON4 Processors

    NASA Astrophysics Data System (ADS)

    Cederman, Daniel; Hellstrom, Daniel; Sherrill, Joel; Bloom, Gedare; Patte, Mathieu; Zulianello, Marco

    2015-09-01

    This paper presents the final result of an European Space Agency (ESA) activity aimed at improving the software support for LEON processors used in SMP configurations. One of the benefits of using a multicore system in a SMP configuration is that in many instances it is possible to better utilize the available processing resources by load balancing between cores. This however comes with the cost of having to synchronize operations between cores, leading to increased complexity. While in an AMP system one can use multiple instances of operating systems that are only uni-processor capable, a SMP system requires the operating system to be written to support multicore systems. In this activity we have improved and extended the SMP support of the RTEMS real-time operating system and ensured that it fully supports the multicore capable LEON processors. The targeted hardware in the activity has been the GR712RC, a dual-core core LEON3FT processor, and the functional prototype of ESA's Next Generation Multiprocessor (NGMP), a quad core LEON4 processor. The final version of the NGMP is now available as a product under the name GR740. An implementation of the Multicore Task Management API (MTAPI) has been developed as part of this activity to aid in the parallelization of applications for RTEMS SMP. It allows for simplified development of parallel applications using the task-based programming model. An existing space application, the Gaia Video Processing Unit, has been ported to RTEMS SMP using the MTAPI implementation to demonstrate the feasibility and usefulness of multicore processors for space payload software. The activity is funded by ESA under contract 4000108560/13/NL/JK. Gedare Bloom is supported in part by NSF CNS-0934725.

  6. Using video playbacks to study visual communication in a marine fish, Salaria pavo.

    PubMed

    Gonçalves; Oliveira; Körner; Poschadel; Schlupp

    2000-09-01

    Video playbacks have been successfully applied to the study of visual communication in several groups of animals. However, this technique is controversial as video monitors are designed with the human visual system in mind. Differences between the visual capabilities of humans and other animals will lead to perceptually different interpretations of video images. We simultaneously presented males and females of the peacock blenny, Salaria pavo, with a live conspecific male and an online video image of the same individual. Video images failed to elicit appropriate responses. Males were aggressive towards the live male but not towards video images of the same male. Similarly, females courted only the live male and spent more time near this stimulus. In contrast, females of the gynogenetic poecilid Poecilia formosa showed an equal preference for a live and video image of a P. mexicana male, suggesting a response to live animals as strong as to video images. We discuss differences between the species that may explain their opposite reaction to video images. Copyright 2000 The Association for the Study of Animal Behaviour.

  7. Design of a motion JPEG (M/JPEG) adapter card

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sudharsanan, Subramania I.

    1994-05-01

    In this paper we describe a design of a high performance JPEG (Joint Photographic Experts Group) Micro Channel adapter card. The card, tested on a range of PS/2 platforms (models 50 to 95), can complete JPEG operations on a 640 by 240 pixel image within 1/60 of a second, thus enabling real-time capture and display of high quality digital video. The card accepts digital pixels for either a YUV 4:2:2 or an RGB 4:4:4 pixel bus and has been shown to handle up to 2.05 MBytes/second of compressed data. The compressed data is transmitted to a host memory area by Direct Memory Access operations. The card uses a single C-Cube's CL550 JPEG processor that complies with the baseline JPEG. We give broad descriptions of the hardware that controls the video interface, CL550, and the system interface. Some critical design points that enhance the overall performance of the M/JPEG systems are pointed out. The control of the adapter card is achieved by an interrupt driven software that runs under DOS. The software performs a variety of tasks that include change of color space (RGB or YUV), change of quantization and Huffman tables, odd and even field control and some diagnostic operations.

  8. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    NASA Astrophysics Data System (ADS)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  9. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  10. Transparent volume imaging

    NASA Astrophysics Data System (ADS)

    Wixson, Steve E.

    1990-07-01

    Transparent Volume Imaging began with the stereo xray in 1895 and ended for most investigators when radiation safety concerns eliminated the second view. Today, similiar images can be generated by the computer without safety hazards providing improved perception and new means of image quantification. A volumetric workstation is under development based on an operational prototype. The workstation consists of multiple symbolic and numeric processors, binocular stereo color display generator with large image memory and liquid crystal shutter, voice input and output, a 3D pointer that uses projection lenses so that structures in 3 space can be touched directly, 3D hard copy using vectograph and lenticular printing, and presentation facilities using stereo 35mm slide and stereo video tape projection. Volumetric software includes a volume window manager, Mayo Clinic's Analyze program and our Digital Stereo Microscope (DSM) algorithms. The DSM uses stereo xray-like projections, rapidly oscillating motion and focal depth cues such that detail can be studied in the spatial context of the entire set of data. Focal depth cues are generated with a lens and apeture algorithm that generates a plane of sharp focus, and multiple stereo pairs each with a different plane of sharp focus are generated and stored in the large memory for interactive selection using a physical or symbolic depth selector. More recent work is studying non-linear focussing. Psychophysical studies are underway to understand how people perce ive images on a volumetric display and how accurately 3 dimensional structures can be quantitated from these displays.

  11. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  12. Real-time Enhancement, Registration, and Fusion for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than-human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests.

  13. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  14. A spatiotemporal decomposition strategy for personal home video management

    NASA Astrophysics Data System (ADS)

    Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole

    2007-01-01

    With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.

  15. Aerospace Applications Conference, Steamboat Springs, CO, Feb. 1-8, 1986, Digest

    NASA Astrophysics Data System (ADS)

    The present conference considers topics concerning the projected NASA Space Station's systems, digital signal and data processing applications, and space science and microwave applications. Attention is given to Space Station video and audio subsystems design, clock error, jitter, phase error and differential time-of-arrival in satellite communications, automation and robotics in space applications, target insertion into synthetic background scenes, and a novel scheme for the computation of the discrete Fourier transform on a systolic processor. Also discussed are a novel signal parameter measurement system employing digital signal processing, EEPROMS for spacecraft applications, a unique concurrent processor architecture for high speed simulation of dynamic systems, a dual polarization flat plate antenna, Fresnel diffraction, and ultralinear TWTs for high efficiency satellite communications.

  16. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  17. A generic FPGA-based detector readout and real-time image processing board

    NASA Astrophysics Data System (ADS)

    Sarpotdar, Mayuresh; Mathew, Joice; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    For space-based astronomical observations, it is important to have a mechanism to capture the digital output from the standard detector for further on-board analysis and storage. We have developed a generic (application- wise) field-programmable gate array (FPGA) board to interface with an image sensor, a method to generate the clocks required to read the image data from the sensor, and a real-time image processor system (on-chip) which can be used for various image processing tasks. The FPGA board is applied as the image processor board in the Lunar Ultraviolet Cosmic Imager (LUCI) and a star sensor (StarSense) - instruments developed by our group. In this paper, we discuss the various design considerations for this board and its applications in the future balloon and possible space flights.

  18. 4D megahertz optical coherence tomography (OCT): imaging and live display beyond 1 gigavoxel/sec (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huber, Robert A.; Draxinger, Wolfgang; Wieser, Wolfgang; Kolb, Jan Philip; Pfeiffer, Tom; Karpf, Sebastian N.; Eibl, Matthias; Klein, Thomas

    2016-03-01

    Over the last 20 years, optical coherence tomography (OCT) has become a valuable diagnostic tool in ophthalmology with several 10,000 devices sold today. Other applications, like intravascular OCT in cardiology and gastro-intestinal imaging will follow. OCT provides 3-dimensional image data with microscopic resolution of biological tissue in vivo. In most applications, off-line processing of the acquired OCT-data is sufficient. However, for OCT applications like OCT aided surgical microscopes, for functional OCT imaging of tissue after a stimulus, or for interactive endoscopy an OCT engine capable of acquiring, processing and displaying large and high quality 3D OCT data sets at video rate is highly desired. We developed such a prototype OCT engine and demonstrate live OCT with 25 volumes per second at a size of 320x320x320 pixels. The computer processing load of more than 1.5 TFLOPS was handled by a GTX 690 graphics processing unit with more than 3000 stream processors operating in parallel. In the talk, we will describe the optics and electronics hardware as well as the software of the system in detail and analyze current limitations. The talk also focuses on new OCT applications, where such a system improves diagnosis and monitoring of medical procedures. The additional acquisition of hyperspectral stimulated Raman signals with the system will be discussed.

  19. Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusion

  20. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  1. Consumer-based technology for distribution of surgical videos for objective evaluation.

    PubMed

    Gonzalez, Ray; Martinez, Jose M; Lo Menzo, Emanuele; Iglesias, Alberto R; Ro, Charles Y; Madan, Atul K

    2012-08-01

    The Global Operative Assessment of Laparoscopic Skill (GOALS) is one validated metric utilized to grade laparoscopic skills and has been utilized to score recorded operative videos. To facilitate easier viewing of these recorded videos, we are developing novel techniques to enable surgeons to view these videos. The objective of this study is to determine the feasibility of utilizing widespread current consumer-based technology to assist in distributing appropriate videos for objective evaluation. Videos from residents were recorded via a direct connection from the camera processor via an S-video output via a cable into a hub to connect to a standard laptop computer via a universal serial bus (USB) port. A standard consumer-based video editing program was utilized to capture the video and record in appropriate format. We utilized mp4 format, and depending on the size of the file, the videos were scaled down (compressed), their format changed (using a standard video editing program), or sliced into multiple videos. Standard available consumer-based programs were utilized to convert the video into a more appropriate format for handheld personal digital assistants. In addition, the videos were uploaded to a social networking website and video sharing websites. Recorded cases of laparoscopic cholecystectomy in a porcine model were utilized. Compression was required for all formats. All formats were accessed from home computers, work computers, and iPhones without difficulty. Qualitative analyses by four surgeons demonstrated appropriate quality to grade for these formats. Our preliminary results show promise that, utilizing consumer-based technology, videos can be easily distributed to surgeons to grade via GOALS via various methods. Easy accessibility may help make evaluation of resident videos less complicated and cumbersome.

  2. Visual Object Recognition and Tracking of Tools

    NASA Technical Reports Server (NTRS)

    English, James; Chang, Chu-Yin; Tardella, Neil

    2011-01-01

    A method has been created to automatically build an algorithm off-line, using computer-aided design (CAD) models, and to apply this at runtime. The object type is discriminated, and the position and orientation are identified. This system can work with a single image and can provide improved performance using multiple images provided from videos. The spatial processing unit uses three stages: (1) segmentation; (2) initial type, pose, and geometry (ITPG) estimation; and (3) refined type, pose, and geometry (RTPG) calculation. The image segmentation module files all the tools in an image and isolates them from the background. For this, the system uses edge-detection and thresholding to find the pixels that are part of a tool. After the pixels are identified, nearby pixels are grouped into blobs. These blobs represent the potential tools in the image and are the product of the segmentation algorithm. The second module uses matched filtering (or template matching). This approach is used for condensing synthetic images using an image subspace that captures key information. Three degrees of orientation, three degrees of position, and any number of degrees of freedom in geometry change are included. To do this, a template-matching framework is applied. This framework uses an off-line system for calculating template images, measurement images, and the measurements of the template images. These results are used online to match segmented tools against the templates. The final module is the RTPG processor. Its role is to find the exact states of the tools given initial conditions provided by the ITPG module. The requirement that the initial conditions exist allows this module to make use of a local search (whereas the ITPG module had global scope). To perform the local search, 3D model matching is used, where a synthetic image of the object is created and compared to the sensed data. The availability of low-cost PC graphics hardware allows rapid creation of synthetic images. In this approach, a function of orientation, distance, and articulation is defined as a metric on the difference between the captured image and a synthetic image with an object in the given orientation, distance, and articulation. The synthetic image is created using a model that is looked up in an object-model database. A composable software architecture is used for implementation. Video is first preprocessed to remove sensor anomalies (like dead pixels), and then is processed sequentially by a prioritized list of tracker-identifiers.

  3. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    NASA Astrophysics Data System (ADS)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations, each spacecraft hosts 3 electro-optical sensors dedicated to imaging the companion satellite. The image processor will analyze the images to obtain estimates for range, bearing, and pose, with associated rates and uncertainties. These observations will be fed to the RPO processor's relative Kalman filter to perform relative navigation updates. This paper includes estimates for expected navigation accuracies for both absolute and relative position and velocity. Another key task for the RPO processor is maneuver planning. This includes automation to plan maneuvers to achieve a desired formation configuration or trajectory (including docking), as well as automation to safely react to potentially dangerous situations. This will allow each spacecraft to autonomously plan fuel-efficient maneuvers to achieve a desired trajectory as well as compute adjustment maneuvers to correct for thrusting errors. This paper discusses results from a trade study that has been conducted to examine maneuver targeting algorithms required on-board the spacecraft. Ground software will also work in conjunction with the on-board software to validate and approve maneuvers as necessary.

  4. Recent experiences with implementing a video based six degree of freedom measurement system for airplane models in a 20 foot diameter vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.

    1993-01-01

    A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.

  5. Flightspeed Integral Image Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2009-01-01

    The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles

  6. An optical/digital processor - Hardware and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Sterling, W. M.

    1975-01-01

    A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.

  7. Keyhole imaging method for dynamic objects behind the occlusion area

    NASA Astrophysics Data System (ADS)

    Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong

    2018-01-01

    A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .

  8. Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.

    PubMed

    Sakaino, Hidetomo

    2016-09-01

    Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost.

  9. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  10. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  11. Video-based face recognition via convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bao, Tianlong; Ding, Chunhui; Karmoshi, Saleem; Zhu, Ming

    2017-06-01

    Face recognition has been widely studied recently while video-based face recognition still remains a challenging task because of the low quality and large intra-class variation of video captured face images. In this paper, we focus on two scenarios of video-based face recognition: 1)Still-to-Video(S2V) face recognition, i.e., querying a still face image against a gallery of video sequences; 2)Video-to-Still(V2S) face recognition, in contrast to S2V scenario. A novel method was proposed in this paper to transfer still and video face images to an Euclidean space by a carefully designed convolutional neural network, then Euclidean metrics are used to measure the distance between still and video images. Identities of still and video images that group as pairs are used as supervision. In the training stage, a joint loss function that measures the Euclidean distance between the predicted features of training pairs and expanding vectors of still images is optimized to minimize the intra-class variation while the inter-class variation is guaranteed due to the large margin of still images. Transferred features are finally learned via the designed convolutional neural network. Experiments are performed on COX face dataset. Experimental results show that our method achieves reliable performance compared with other state-of-the-art methods.

  12. UGS video target detection and discrimination

    NASA Astrophysics Data System (ADS)

    Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert; Vitale, Joseph D.

    2007-04-01

    This project focuses on developing electro-optic algorithms which rank images by their likelihood of containing vehicles and people. These algorithms have been applied to images obtained from Textron's Terrain Commander 2 (TC2) Unattended Ground Sensor system. The TC2 is a multi-sensor surveillance system used in military applications. It combines infrared, acoustic, seismic, magnetic, and electro-optic sensors to detect nearby targets. When targets are detected by the seismic and acoustic sensors, the system is triggered and images are taken in the visible and infrared spectrum. The original Terrain Commander system occasionally captured and transmitted an excessive number of images, sometimes triggered by undesirable targets such as swaying trees. This wasted communications bandwidth, increased power consumption, and resulted in a large amount of end-user time being spent evaluating unimportant images. The algorithms discussed here help alleviate these problems. These algorithms are currently optimized for infra-red images, which give the best visibility in a wide range of environments, but could be adapted to visible imagery as well. It is important that the algorithms be robust, with minimal dependency on user input. They should be effective when tracking varying numbers of targets of different sizes and orientations, despite the low resolutions of the images used. Most importantly, the algorithms must be appropriate for implementation on a low-power processor in real time. This would enable us to maintain frame rates of 2 Hz for effective surveillance operations. Throughout our project we have implemented several algorithms, and used an appropriate methodology to quantitatively compare their performance. They are discussed in this paper.

  13. Mass-storage management for distributed image/video archives

    NASA Astrophysics Data System (ADS)

    Franchi, Santina; Guarda, Roberto; Prampolini, Franco

    1993-04-01

    The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.

  14. Fibered fluorescence microscopy (FFM) of intra epidermal nerve fibers--translational marker for peripheral neuropathies in preclinical research: processing and analysis of the data

    NASA Astrophysics Data System (ADS)

    Cornelissen, Frans; De Backer, Steve; Lemeire, Jan; Torfs, Berf; Nuydens, Rony; Meert, Theo; Schelkens, Peter; Scheunders, Paul

    2008-08-01

    Peripheral neuropathy can be caused by diabetes or AIDS or be a side-effect of chemotherapy. Fibered Fluorescence Microscopy (FFM) is a recently developed imaging modality using a fiber optic probe connected to a laser scanning unit. It allows for in-vivo scanning of small animal subjects by moving the probe along the tissue surface. In preclinical research, FFM enables non-invasive, longitudinal in vivo assessment of intra epidermal nerve fibre density in various models for peripheral neuropathies. By moving the probe, FFM allows visualization of larger surfaces, since, during the movement, images are continuously captured, allowing to acquire an area larger then the field of view of the probe. For analysis purposes, we need to obtain a single static image from the multiple overlapping frames. We introduce a mosaicing procedure for this kind of video sequence. Construction of mosaic images with sub-pixel alignment is indispensable and must be integrated into a global consistent image aligning. An additional motivation for the mosaicing is the use of overlapping redundant information to improve the signal to noise ratio of the acquisition, because the individual frames tend to have both high noise levels and intensity inhomogeneities. For longitudinal analysis, mosaics captured at different times must be aligned as well. For alignment, global correlation-based matching is compared with interest point matching. Use of algorithms working on multiple CPU's (parallel processor/cluster/grid) is imperative for use in a screening model.

  15. New Modular Ultrasonic Signal Processing Building Blocks for Real-Time Data Acquisition and Post Processing

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion

    2003-03-01

    A suite of basic signal processors has been developed. These basic building blocks can be cascaded together to form more complex processors without the need for programming. The data structures between each of the processors are handled automatically. This allows a processor built for one purpose to be applied to any type of data such as images, waveform arrays and single values. The processors are part of Winspect Data Acquisition software. The new processors are fast enough to work on A-scan signals live while scanning. Their primary use is to extract features, reduce noise or to calculate material properties. The cascaded processors work equally well on live A-scan displays, live gated data or as a post-processing engine on saved data. Researchers are able to call their own MATLAB or C-code from anywhere within the processor structure. A built-in formula node processor that uses a simple algebraic editor may make external user programs unnecessary. This paper also discusses the problems associated with ad hoc software development and how graphical programming languages can tie up researchers writing software rather than designing experiments.

  16. Action recognition in depth video from RGB perspective: A knowledge transfer manner

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xiao, Yang; Cao, Zhiguo; Fang, Zhiwen

    2018-03-01

    Different video modal for human action recognition has becoming a highly promising trend in the video analysis. In this paper, we propose a method for human action recognition from RGB video to Depth video using domain adaptation, where we use learned feature from RGB videos to do action recognition for depth videos. More specifically, we make three steps for solving this problem in this paper. First, different from image, video is more complex as it has both spatial and temporal information, in order to better encode this information, dynamic image method is used to represent each RGB or Depth video to one image, based on this, most methods for extracting feature in image can be used in video. Secondly, as video can be represented as image, so standard CNN model can be used for training and testing for videos, beside, CNN model can be also used for feature extracting as its powerful feature expressing ability. Thirdly, as RGB videos and Depth videos are belong to two different domains, in order to make two different feature domains has more similarity, domain adaptation is firstly used for solving this problem between RGB and Depth video, based on this, the learned feature from RGB video model can be directly used for Depth video classification. We evaluate the proposed method on one complex RGB-D action dataset (NTU RGB-D), and our method can have more than 2% accuracy improvement using domain adaptation from RGB to Depth action recognition.

  17. Next-generation digital camera integration and software development issues

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Peters, Ken; Hecht, Richard

    1998-04-01

    This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.

  18. Computer program documentation for the patch subsampling processor

    NASA Technical Reports Server (NTRS)

    Nieves, M. J.; Obrien, S. O.; Oney, J. K. (Principal Investigator)

    1981-01-01

    The programs presented are intended to provide a way to extract a sample from a full-frame scene and summarize it in a useful way. The sample in each case was chosen to fill a 512-by-512 pixel (sample-by-line) image since this is the largest image that can be displayed on the Integrated Multivariant Data Analysis and Classification System. This sample size provides one megabyte of data for manipulation and storage and contains about 3% of the full-frame data. A patch image processor computes means for 256 32-by-32 pixel squares which constitute the 512-by-512 pixel image. Thus, 256 measurements are available for 8 vegetation indexes over a 100-mile square.

  19. Learning to Decode Nonverbal Cues in Cross-Cultural Interactions

    DTIC Science & Technology

    2009-06-01

    iPhones support Mac OS X v10.4.10 or later operating system, as well as Windows Vista and XP, and iTunes 7.5 or later. Apple has designed the iPhones to be...Processor; 1G RAM, 1G HD, Direct X9/ATI Radeon 9800 card with dedicated memory; Noise-canceling headset w/ microphone. Apple video iPod (can be

  20. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  1. 17 CFR 232.304 - Graphic, image, audio and video material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... video material. 232.304 Section 232.304 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Submissions § 232.304 Graphic, image, audio and video material. (a) If a filer includes graphic, image, audio or video material in a document delivered to investors and others that is not reproduced in an...

  2. 17 CFR 232.304 - Graphic, image, audio and video material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... video material. 232.304 Section 232.304 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Submissions § 232.304 Graphic, image, audio and video material. (a) If a filer includes graphic, image, audio or video material in a document delivered to investors and others that is not reproduced in an...

  3. 17 CFR 232.304 - Graphic, image, audio and video material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... video material. 232.304 Section 232.304 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Submissions § 232.304 Graphic, image, audio and video material. (a) If a filer includes graphic, image, audio or video material in a document delivered to investors and others that is not reproduced in an...

  4. 17 CFR 232.304 - Graphic, image, audio and video material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... video material. 232.304 Section 232.304 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Submissions § 232.304 Graphic, image, audio and video material. (a) If a filer includes graphic, image, audio or video material in a document delivered to investors and others that is not reproduced in an...

  5. 17 CFR 232.304 - Graphic, image, audio and video material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... video material. 232.304 Section 232.304 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Submissions § 232.304 Graphic, image, audio and video material. (a) If a filer includes graphic, image, audio or video material in a document delivered to investors and others that is not reproduced in an...

  6. MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, Jacob; Kerekes, Ryan A; ST Charles, Jesse Lee

    2008-01-01

    High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlationmore » processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core performs the matrix-vector multiplications, where the nominal matrix size is 256x256. The system clock is 125MHz. At each clock cycle, 128K multiply-and-add operations per second (OPS) are carried out, which yields a peak performance of 16 TeraOPS. IBM Cell Broadband Engine. The Cell processor is the extraordinary resulting product of 5 years of sustained, intensive R&D collaboration (involving over $400M investment) between IBM, Sony, and Toshiba. Its architecture comprises one multithreaded 64-bit PowerPC processor element (PPE) with VMX capabilities and two levels of globally coherent cache, and 8 synergistic processor elements (SPEs). Each SPE consists of a processor (SPU) designed for streaming workloads, local memory, and a globally coherent direct memory access (DMA) engine. Computations are performed in 128-bit wide single instruction multiple data streams (SIMD). An integrated high-bandwidth element interconnect bus (EIB) connects the nine processors and their ports to external memory and to system I/O. The Applied Software Engineering Research (ASER) Group at the ORNL is applying the Cell to a variety of text and image analysis applications. Research on Cell-equipped PlayStation3 (PS3) consoles has led to the development of a correlation-based image recognition engine that enables a single PS3 to process images at more than 10X the speed of state-of-the-art single-core processors. NVIDIA Graphics Processing Units. The ASER group is also employing the latest NVIDIA graphical processing units (GPUs) to accelerate clustering of thousands of text documents using recently developed clustering algorithms such as document flocking and affinity propagation.« less

  7. Energy consumption estimation of an OMAP-based Android operating system

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Juárez, Eduardo; Castro, Juan José; Sanz, César

    2011-05-01

    System-level energy optimization of battery-powered multimedia embedded systems has recently become a design goal. The poor operational time of multimedia terminals makes computationally demanding applications impractical in real scenarios. For instance, the so-called smart-phones are currently unable to remain in operation longer than several hours. The OMAP3530 processor basically consists of two processing cores, a General Purpose Processor (GPP) and a Digital Signal Processor (DSP). The former, an ARM Cortex-A8 processor, is aimed to run a generic Operating System (OS) while the latter, a DSP core based on the C64x+, has architecture optimized for video processing. The BeagleBoard, a commercial prototyping board based on the OMAP processor, has been used to test the Android Operating System and measure its performance. The board has 128 MB of SDRAM external memory, 256 MB of Flash external memory and several interfaces. Note that the clock frequency of the ARM and DSP OMAP cores is 600 MHz and 430 MHz, respectively. This paper describes the energy consumption estimation of the processes and multimedia applications of an Android v1.6 (Donut) OS on the OMAP3530-Based BeagleBoard. In addition, tools to communicate the two processing cores have been employed. A test-bench to profile the OS resource usage has been developed. As far as the energy estimates concern, the OMAP processor energy consumption model provided by the manufacturer has been used. The model is basically divided in two energy components. The former, the baseline core energy, describes the energy consumption that is independent of any chip activity. The latter, the module active energy, describes the energy consumed by the active modules depending on resource usage.

  8. Encrypting Digital Camera with Automatic Encryption Key Deletion

    NASA Technical Reports Server (NTRS)

    Oakley, Ernest C. (Inventor)

    2007-01-01

    A digital video camera includes an image sensor capable of producing a frame of video data representing an image viewed by the sensor, an image memory for storing video data such as previously recorded frame data in a video frame location of the image memory, a read circuit for fetching the previously recorded frame data, an encryption circuit having an encryption key input connected to receive the previously recorded frame data from the read circuit as an encryption key, an un-encrypted data input connected to receive the frame of video data from the image sensor and an encrypted data output port, and a write circuit for writing a frame of encrypted video data received from the encrypted data output port of the encryption circuit to the memory and overwriting the video frame location storing the previously recorded frame data.

  9. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Hossack, James (Inventor); Owen, Neil (Inventor); Bailey, Michael R. (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  10. Advances in optical information processing IV; Proceedings of the Meeting, Orlando, FL, Apr. 18-20, 1990

    NASA Astrophysics Data System (ADS)

    Pape, Dennis R.

    1990-09-01

    The present conference discusses topics in optical image processing, optical signal processing, acoustooptic spectrum analyzer systems and components, and optical computing. Attention is given to tradeoffs in nonlinearly recorded matched filters, miniature spatial light modulators, detection and classification using higher-order statistics of optical matched filters, rapid traversal of an image data base using binary synthetic discriminant filters, wideband signal processing for emitter location, an acoustooptic processor for autonomous SAR guidance, and sampling of Fresnel transforms. Also discussed are an acoustooptic RF signal-acquisition system, scanning acoustooptic spectrum analyzers, the effects of aberrations on acoustooptic systems, fast optical digital arithmetic processors, information utilization in analog and digital processing, optical processors for smart structures, and a self-organizing neural network for unsupervised learning.

  11. Robotic Vehicle Communications Interoperability

    DTIC Science & Technology

    1988-08-01

    starter (cold start) X X Fire suppression X Fording control X Fuel control X Fuel tank selector X Garage toggle X Gear selector X X X X Hazard warning...optic Sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor control...optic sensors Sensor switch Video Radar IR Thermal imaging system Image intensifier Laser ranger Video camera selector Forward Stereo Rear Sensor

  12. Multilocation Video Conference By Optical Fiber

    NASA Astrophysics Data System (ADS)

    Gray, Donald J.

    1982-10-01

    An experimental system that permits interconnection of many offices in a single video conference is described. Video images transmitted to conference participants are selected by the conference chairman and switched by a microprocessor-controlled video switch. Speakers can, at their choice, transmit their own images or images of graphics they wish to display. Users are connected to the Switching Center by optical fiber subscriber loops that carry analog video, digitized telephone, data and signaling. The same system also provides user-selectable distribution of video program and video library material. Experience in the operation of the conference system is discussed.

  13. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  14. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    PubMed

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  15. A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei

    2016-03-01

    Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.

  16. In vivo experiences with magnetic resonance imaging scans in Vibrant Soundbridge type 503 implantees.

    PubMed

    Todt, I; Mittmann, P; Ernst, A; Mutze, S; Rademacher, G

    2018-05-01

    To observe the effects of magnetic resonance imaging scans in Vibrant Soundbridge 503 implantees at 1.5T in vivo. In a prospective case study of five Vibrant Soundbridge 503 implantees, 1.5T magnetic resonance imaging scans were performed with and without a headband. The degree of pain was evaluated using a visual analogue scale. Scan-related pure tone audiogram and audio processor fitting changes were assessed. In all patients, magnetic resonance imaging scans were performed without any degree of pain or change in pure tone audiogram or audio processor fitting, even without a headband. In this series, 1.5T magnetic resonance imaging scans were performed with the Vibrant Soundbridge 503 without complications. Limitations persist in terms of magnetic artefacts.

  17. High-performance image processing architecture

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick C.

    1992-04-01

    The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.

  18. System and method for controlling a combustor assembly

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  19. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  20. Two-dimensional systolic-array architecture for pixel-level vision tasks

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; de With, Peter H. N.

    2010-05-01

    This paper presents ongoing work on the design of a two-dimensional (2D) systolic array for image processing. This component is designed to operate on a multi-processor system-on-chip. In contrast with other 2D systolic-array architectures and many other hardware accelerators, we investigate the applicability of executing multiple tasks in a time-interleaved fashion on the Systolic Array (SA). This leads to a lower external memory bandwidth and better load balancing of the tasks on the different processing tiles. To enable the interleaving of tasks, we add a shadow-state register for fast task switching. To reduce the number of accesses to the external memory, we propose to share the communication assist between consecutive tasks. A preliminary, non-functional version of the SA has been synthesized for an XV4S25 FPGA device and yields a maximum clock frequency of 150 MHz requiring 1,447 slices and 5 memory blocks. Mapping tasks from video content-analysis applications from literature on the SA yields reductions in the execution time of 1-2 orders of magnitude compared to the software implementation. We conclude that the choice for an SA architecture is useful, but a scaled version of the SA featuring less logic with fewer processing and pipeline stages yielding a lower clock frequency, would be sufficient for a video analysis system-on-chip.

  1. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    PubMed

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Multi Modality Brain Mapping System (MBMS) Using Artificial Intelligence and Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Kateb, Babak (Inventor)

    2017-01-01

    A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and/or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and/or first data and/or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image.

  3. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  4. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  5. The programmable remapper: clinical applications for patients with field defects.

    PubMed

    Loshin, D S; Juday, R D

    1989-06-01

    NASA, Johnson Space Center is developing an electronic image remapper which will warp an image from one coordinate system onto another with great flexibility and speed. The Programmable Remapper will transform images at conventional video frame rate. The Remapper was designed to be used in conjunction with an optical correlator to enhance object recognition through "real time" Fourier analysis. We are investigating an additional potential application for the Remapper as a low-vision aid. In diseases which result in obvious field defects such as age-related maculopathy (ARM) or retinitis pigmentosa (RP), the Remapper can be used to redistribute onto the still-functioning retina the image information that would otherwise be lost due to the associated field defect. Compared with eccentric viewing, this process makes use of the acuity of a larger area of the retina. We envision the future aid to consist of a portable spectacle-mounted display with miniaturized camera input and the Remapper. The patient will view the remapped world on this display. Patients may require training with feedback as to eye and scotoma position in order to use the Remapper most effectively. The Remapper might be reduced in cost, weight, and size to the point of being a feasible low-vision prosthesis as a result of development required by military, space, and industrial utilization. In order to demonstrate how such an aid may work, we have generated static images on an image processor which have undergone radial-only remapping; i.e., image points are slid along radii, with their azimuths unchanged. The remapping process and the application to low vision along with static images are presented in this paper.

  6. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  7. Picturing Video

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Video Pics is a software program that generates high-quality photos from video. The software was developed under an SBIR contract with Marshall Space Flight Center by Redhawk Vision, Inc.--a subsidiary of Irvine Sensors Corporation. Video Pics takes information content from multiple frames of video and enhances the resolution of a selected frame. The resulting image has enhanced sharpness and clarity like that of a 35 mm photo. The images are generated as digital files and are compatible with image editing software.

  8. Using a Multicore Processor for Rover Autonomous Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Estlin, Tara; Clement, Bradley; Springer, Paul

    2011-01-01

    Multicore processing promises to be a critical component of future spacecraft. It provides immense increases in onboard processing power and provides an environment for directly supporting fault-tolerant computing. This paper discusses using a state-of-the-art multicore processor to efficiently perform image analysis onboard a Mars rover in support of autonomous science activities.

  9. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    NASA Astrophysics Data System (ADS)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  10. Exploiting spatio-temporal characteristics of human vision for mobile video applications

    NASA Astrophysics Data System (ADS)

    Jillani, Rashad; Kalva, Hari

    2008-08-01

    Video applications on handheld devices such as smart phones pose a significant challenge to achieve high quality user experience. Recent advances in processor and wireless networking technology are producing a new class of multimedia applications (e.g. video streaming) for mobile handheld devices. These devices are light weight and have modest sizes, and therefore very limited resources - lower processing power, smaller display resolution, lesser memory, and limited battery life as compared to desktop and laptop systems. Multimedia applications on the other hand have extensive processing requirements which make the mobile devices extremely resource hungry. In addition, the device specific properties (e.g. display screen) significantly influence the human perception of multimedia quality. In this paper we propose a saliency based framework that exploits the structure in content creation as well as the human vision system to find the salient points in the incoming bitstream and adapt it according to the target device, thus improving the quality of new adapted area around salient points. Our experimental results indicate that the adaptation process that is cognizant of video content and user preferences can produce better perceptual quality video for mobile devices. Furthermore, we demonstrated how such a framework can affect user experience on a handheld device.

  11. Real-Time Transmission and Storage of Video, Audio, and Health Data in Emergency and Home Care Situations

    NASA Astrophysics Data System (ADS)

    Barbieri, Ivano; Lambruschini, Paolo; Raggio, Marco; Stagnaro, Riccardo

    2007-12-01

    The increase in the availability of bandwidth for wireless links, network integration, and the computational power on fixed and mobile platforms at affordable costs allows nowadays for the handling of audio and video data, their quality making them suitable for medical application. These information streams can support both continuous monitoring and emergency situations. According to this scenario, the authors have developed and implemented the mobile communication system which is described in this paper. The system is based on ITU-T H.323 multimedia terminal recommendation, suitable for real-time data/video/audio and telemedical applications. The audio and video codecs, respectively, H.264 and G723.1, were implemented and optimized in order to obtain high performance on the system target processors. Offline media streaming storage and retrieval functionalities were supported by integrating a relational database in the hospital central system. The system is based on low-cost consumer technologies such as general packet radio service (GPRS) and wireless local area network (WLAN or WiFi) for lowband data/video transmission. Implementation and testing were carried out for medical emergency and telemedicine application. In this paper, the emergency case study is described.

  12. Fast Video Encryption Using the H.264 Error Propagation Property for Smart Mobile Devices

    PubMed Central

    Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee

    2015-01-01

    In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security. PMID:25850068

  13. Landsat image registration for agricultural applications

    NASA Technical Reports Server (NTRS)

    Wolfe, R. H., Jr.; Juday, R. D.; Wacker, A. G.; Kaneko, T.

    1982-01-01

    An image registration system has been developed at the NASA Johnson Space Center (JSC) to spatially align multi-temporal Landsat acquisitions for use in agriculture and forestry research. Working in conjunction with the Master Data Processor (MDP) at the Goddard Space Flight Center, it functionally replaces the long-standing LACIE Registration Processor as JSC's data supplier. The system represents an expansion of the techniques developed for the MDP and LACIE Registration Processor, and it utilizes the experience gained in an IBM/JSC effort evaluating the performance of the latter. These techniques are discussed in detail. Several tests were developed to evaluate the registration performance of the system. The results indicate that 1/15-pixel accuracy (about 4m for Landsat MSS) is achievable in ideal circumstances, sub-pixel accuracy (often to 0.2 pixel or better) was attained on a representative set of U.S. acquisitions, and a success rate commensurate with the LACIE Registration Processor was realized. The system has been employed in a production mode on U.S. and foreign data, and a performance similar to the earlier tests has been noted.

  14. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  15. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  16. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  17. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  18. From Video to Photo

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ever wonder whether a still shot from a home video could serve as a "picture perfect" photograph worthy of being framed and proudly displayed on the mantle? Wonder no more. A critical imaging code used to enhance video footage taken from spaceborne imaging instruments is now available within a portable photography tool capable of producing an optimized, high-resolution image from multiple video frames.

  19. 13 point video tape quality guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaunt, R.

    1997-05-01

    Until high definition television (ATV) arrives, in the U.S. we must still contend with the National Television Systems Committee (NTSC) video standard (or PAL or SECAM-depending on your country). NTSC, a 40-year old standard designed for transmission of color video camera images over a small bandwidth, is not well suited for the sharp, full-color images that todays computers are capable of producing. PAL and SECAM also suffers from many of NTSC`s problems, but to varying degrees. Video professionals, when working with computer graphic (CG) images, use two monitors: a computer monitor for producing CGs and an NTSC monitor to viewmore » how a CG will look on video. More often than not, the NTSC image will differ significantly from the CG image, and outputting it to NTSC as an artist works enables the him or her to see the images as others will see it. Below are thirteen guidelines designed to increase the quality of computer graphics recorded onto video tape. Viewing your work in NTSC and attempting to follow the below tips will enable you to create higher quality videos. No video is perfect, so don`t expect to abide by every guideline every time.« less

  20. Peri-operative imaging of cancer margins with reflectance confocal microscopy during Mohs micrographic surgery: feasibility of a video-mosaicing algorithm

    NASA Astrophysics Data System (ADS)

    Flores, Eileen; Yelamos, Oriol; Cordova, Miguel; Kose, Kivanc; Phillips, William; Rossi, Anthony; Nehal, Kishwer; Rajadhyaksha, Milind

    2017-02-01

    Reflectance confocal microscopy (RCM) imaging shows promise for guiding surgical treatment of skin cancers. Recent technological advancements such as the introduction of the handheld version of the reflectance confocal microscope, video acquisition and video-mosaicing have improved RCM as an emerging tool to evaluate cancer margins during routine surgical skin procedures such as Mohs micrographic surgery (MMS). Detection of residual non-melanoma skin cancer (NMSC) tumor during MMS is feasible, as demonstrated by the introduction of real-time perioperative imaging on patients in the surgical setting. Our study is currently testing the feasibility of a new mosaicing algorithm for perioperative RCM imaging of NMSC cancer margins on patients during MMS. We report progress toward imaging and image analysis on forty-five patients, who presented for MMS at the MSKCC Dermatology service. The first 10 patients were used as a training set to establish an RCM imaging algorithm, which was implemented on the remaining test set of 35 patients. RCM imaging, using 35% AlCl3 for nuclear contrast, was performed pre- and intra-operatively with the Vivascope 3000 (Caliber ID). Imaging was performed in quadrants in the wound, to simulate the Mohs surgeon's examination of pathology. Videos were taken at the epidermal and deep dermal margins. Our Mohs surgeons assessed all videos and video-mosaics for quality and correlation to histology. Overall, our RCM video-mosaicing algorithm is feasible. RCM videos and video-mosaics of the epidermal and dermal margins were found to be of clinically acceptable quality. Assessment of cancer margins was affected by type of NMSC, size and location. Among the test set of 35 patients, 83% showed acceptable imaging quality, resolution and contrast. Visualization of nuclear and cellular morphology of residual BCC/SCC tumor and normal skin features could be detected in the peripheral and deep dermal margins. We observed correlation between the RCM videos/video-mosaics and the corresponding histology in 32 lesions. Peri-operative RCM imaging shows promise for improved and faster detection of cancer margins and guiding MMS in the surgical setting.

  1. Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

  2. On 3D Dimension: Study cases for Archaeological sites

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Marino, C. L.; Rotondi, A.

    2014-04-01

    For more than a century the tridimensional vision has been of interest for scientists and users in several fields of application. The mathematical bases have remained substantially unchanged but only the new technologies have allowed us to make the vision really impressive. Photography opens new frontiers and has enriched of physical, mathematical, chemical, informatical and topographic notions by making the images so real to make the observer fully immersed into the represented scene. By means of active googless the 3D digital technique, commonly used for video games, makes possible animations without limitations in the dimension of the images thanks to the improved performances of the graphic processor units and related hardware components. In this paper we illustrate an experience made by the students of the MSc'degree course of Topography, active at the University of Cassino and Southern Lazio, in which the photography has been applied as an innovative technique for the surveying of cultural heritage. The tests foresee the use of traditional techniques of survey with 3D digital images and use of GPS sensors. The ultimate objective of our experience is the insertion in the web, allowing us the visualization of the 3D images equipped with all data. In conclusion these new methods of survey allow for the fusion of extremely different techniques, in such an impressive way to make them inseparable and justifying the origin of the neologism "Geomatics" coined at the Laval University (Canada) during the eighties.

  3. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  4. Evaluation of privacy in high dynamic range video sequences

    NASA Astrophysics Data System (ADS)

    Řeřábek, Martin; Yuan, Lin; Krasula, Lukáš; Korshunov, Pavel; Fliegel, Karel; Ebrahimi, Touradj

    2014-09-01

    The ability of high dynamic range (HDR) to capture details in environments with high contrast has a significant impact on privacy in video surveillance. However, the extent to which HDR imaging affects privacy, when compared to a typical low dynamic range (LDR) imaging, is neither well studied nor well understood. To achieve such an objective, a suitable dataset of images and video sequences is needed. Therefore, we have created a publicly available dataset of HDR video for privacy evaluation PEViD-HDR, which is an HDR extension of an existing Privacy Evaluation Video Dataset (PEViD). PEViD-HDR video dataset can help in the evaluations of privacy protection tools, as well as for showing the importance of HDR imaging in video surveillance applications and its influence on the privacy-intelligibility trade-off. We conducted a preliminary subjective experiment demonstrating the usability of the created dataset for evaluation of privacy issues in video. The results confirm that a tone-mapped HDR video contains more privacy sensitive information and details compared to a typical LDR video.

  5. Conceptual design of an on-board optical processor with components

    NASA Technical Reports Server (NTRS)

    Walsh, J. R.; Shackelford, R. G.

    1977-01-01

    The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator.

  6. Landsat real-time processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.L.

    A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less

  7. Investigation of TM Band-to-band Registration Using the JSC Registration Processor

    NASA Technical Reports Server (NTRS)

    Yao, S. S.; Amis, M. L.

    1984-01-01

    The JSC registration processor performs scene-to-scene (or band-to-band) correlation based on edge images. The edge images are derived from a percentage of the edge pixels calculated from the raw scene data, excluding clouds and other extraneous data in the scene. Correlations are performed on patches (blocks) of the edge images, and the correlation peak location in each patch is estimated iteratively to fractional pixel location accuracy. Peak offset locations from all patches over the scene are then considered together, and a variety of tests are made to weed out outliers and other inconsistencies before a distortion model is assumed. Thus, the correlation peak offset locations in each patch indicate quantitatively how well the two TM bands register to each other over that patch of scene data. The average of these offsets indicate the overall accuracies of the band-to-band registration. The registration processor was also used to register one acquisition to another acquisition of multitemporal TM data acquired over the same ground track. Band 4 images from both acquisitions were correlated and an rms error of a fraction of a pixel was routinely obtained.

  8. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  9. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    DOEpatents

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  10. Video image position determination

    DOEpatents

    Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.

    1991-01-01

    An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

  11. A video event trigger for high frame rate, high resolution video technology

    NASA Astrophysics Data System (ADS)

    Williams, Glenn L.

    1991-12-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  12. A video event trigger for high frame rate, high resolution video technology

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1991-01-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  13. Video library for video imaging detection at intersection stop lines.

    DOT National Transportation Integrated Search

    2010-04-01

    The objective of this activity was to record video that could be used for controlled : evaluation of video image vehicle detection system (VIVDS) products and software upgrades to : existing products based on a list of conditions that might be diffic...

  14. Does Instructor's Image Size in Video Lectures Affect Learning Outcomes?

    ERIC Educational Resources Information Center

    Pi, Z.; Hong, J.; Yang, J.

    2017-01-01

    One of the most commonly used forms of video lectures is a combination of an instructor's image and accompanying lecture slides as a picture-in-picture. As the image size of the instructor varies significantly across video lectures, and so do the learning outcomes associated with this technology, the influence of the instructor's image size should…

  15. Compression of CCD raw images for digital still cameras

    NASA Astrophysics Data System (ADS)

    Sriram, Parthasarathy; Sudharsanan, Subramania

    2005-03-01

    Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.

  16. A Star Image Extractor for the Nano-JASMINE satellite

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Gouda, N.; Kobayashi, Y.; Tsujimoto, T.; Yano, T.; Suganuma, M.; Yamada, Y.; Nakasuka, S.; Sako, N.

    2008-07-01

    We have developped a software of Star-Image-Extractor (SIE) which works as the on-board real-time image processor. It detects and extracts only the object data from raw image data. SIE has two functions: reducing image data and providing data for the satellite's high accuracy attitude control system.

  17. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  18. Potential usefulness of a video printer for producing secondary images from digitized chest radiographs

    NASA Astrophysics Data System (ADS)

    Nishikawa, Robert M.; MacMahon, Heber; Doi, Kunio; Bosworth, Eric

    1991-05-01

    Communication between radiologists and clinicians could be improved if a secondary image (copy of the original image) accompanied the radiologic report. In addition, the number of lost original radiographs could be decreased, since clinicians would have less need to borrow films. The secondary image should be simple and inexpensive to produce, while providing sufficient image quality for verification of the diagnosis. We are investigating the potential usefulness of a video printer for producing copies of radiographs, i.e. images printed on thermal paper. The video printer we examined (Seikosha model VP-3500) can provide 64 shades of gray. It is capable of recording images up to 1,280 pixels by 1,240 lines and can accept any raster-type video signal. The video printer was characterized in terms of its linearity, contrast, latitude, resolution, and noise properties. The quality of video-printer images was also evaluated in an observer study using portable chest radiographs. We found that observers could confirm up to 90 of the reported findings in the thorax using video- printer images, when the original radiographs were of high quality. The number of verified findings was diminished when high spatial resolution was required (e.g. detection of a subtle pneumothorax) or when a low-contrast finding was located in the mediastinal area or below the diaphragm (e.g. nasogastric tubes).

  19. Real-time UAV trajectory generation using feature points matching between video image sequences

    NASA Astrophysics Data System (ADS)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  20. Researching on the process of remote sensing video imagery

    NASA Astrophysics Data System (ADS)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  1. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets was established as the most reliable protocol after testing various options. Improvement can be made to the system by migrating more algorithms to the hardware based FPGA to further speed up the operations of the vehicle.

  2. iLIDS Simulations and Videos for Docking TIM

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.

  3. Extended image differencing for change detection in UAV video mosaics

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  4. Landsat-1 and Landsat-2 flight evaluation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The flight performance of Landsat 1 and Landsat 2 is analyzed. Flight operations of the satellites are briefly summarized. Other topics discussed include: orbital parameters; power subsystem; attitude control subsystem; command/clock subsystem; telemetry subsystem; orbit adjust subsystem; magnetic moment compensating assembly; unified s-band/premodulation processor; electrical interface subsystem; thermal subsystem; narrowband tape recorders; wideband telemetry subsystem; attitude measurement sensor; wideband video tape recorders; return beam vidicon; multispectral scanner subsystem; and data collection subsystem.

  5. An adaptive enhancement algorithm for infrared video based on modified k-means clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Linze; Wang, Jingqi; Wu, Wen

    2016-09-01

    In this paper, we have proposed a video enhancement algorithm to improve the output video of the infrared camera. Sometimes the video obtained by infrared camera is very dark since there is no clear target. In this case, infrared video should be divided into frame images by frame extraction, in order to carry out the image enhancement. For the first frame image, which can be divided into k sub images by using K-means clustering according to the gray interval it occupies before k sub images' histogram equalization according to the amount of information per sub image, we used a method to solve a problem that final cluster centers close to each other in some cases; and for the other frame images, their initial cluster centers can be determined by the final clustering centers of the previous ones, and the histogram equalization of each sub image will be carried out after image segmentation based on K-means clustering. The histogram equalization can make the gray value of the image to the whole gray level, and the gray level of each sub image is determined by the ratio of pixels to a frame image. Experimental results show that this algorithm can improve the contrast of infrared video where night target is not obvious which lead to a dim scene, and reduce the negative effect given by the overexposed pixels adaptively in a certain range.

  6. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  7. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  8. Using underwater video imaging as an assessment tool for coastal condition

    EPA Science Inventory

    As part of an effort to monitor ecological conditions in nearshore habitats, from 2009-2012 underwater videos were captured at over 400 locations throughout the Laurentian Great Lakes. This study focuses on developing a video rating system and assessing video images. This ratin...

  9. Trans-Pacific tele-ultrasound image transmission of fetal central nervous system structures.

    PubMed

    Ferreira, Adilson Cunha; Araujo Júnior, Edward; Martins, Wellington P; Jordão, João Francisco; Oliani, Antônio Hélio; Meagher, Simon E; Da Silva Costa, Fabricio

    2015-01-01

    To assess the quality of images and video clips of fetal central nervous (CNS) structures obtained by ultrasound and transmitted via tele-ultrasound from Brazil to Australia. In this cross-sectional study, 15 normal singleton pregnant women between 20 and 26 weeks were selected. Fetal CNS structures were obtained by images and video clips. The exams were transmitted in real-time using a broadband internet and an inexpensive video streaming device. Four blinded examiners evaluated the quality of the exams using the Likert scale. We calculated the mean, standard deviation, mean difference, and p values were obtained from paired t tests. The quality of the original video clips was slightly better than that observed by the transmitted video clips; mean difference considering all observers = 0.23 points. In 47/60 comparisons (78.3%; 95% CI = 66.4-86.9%) the quality of the video clips were judged to be the same. In 182/240 still images (75.8%; 95% CI = 70.0-80.8%) the scores of transmitted image were considered the same as the original. We demonstrated that long distance tele-ultrasound transmission of fetal CNS structures using an inexpensive video streaming device provided images of subjective good quality.

  10. Innovative Video Diagnostic Equipment for Material Science

    NASA Technical Reports Server (NTRS)

    Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.

    2012-01-01

    Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.

  11. Seafloor video footage and still-frame grabs from U.S. Geological Survey cruises in Hawaiian nearshore waters

    USGS Publications Warehouse

    Gibbs, Ann E.; Cochran, Susan A.; Tierney, Peter W.

    2013-01-01

    Underwater video footage was collected in nearshore waters (<60-meter depth) off the Hawaiian Islands from 2002 to 2011 as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project, to improve seafloor characterization and for the development and ground-truthing of benthic-habitat maps. This report includes nearly 53 hours of digital underwater video footage collected during four USGS cruises and more than 10,200 still images extracted from the videos, including still frames from every 10 seconds along transect lines, and still frames showing both an overview and a near-bottom view from fixed stations. Environmental Systems Research Institute (ESRI) shapefiles of individual video and still-image locations, and Google Earth kml files with explanatory text and links to the video and still images, are included. This report documents the various camera systems and methods used to collect the videos, and the techniques and software used to convert the analog video tapes into digital data in order to process the images for optimum viewing and to extract the still images, along with a brief summary of each survey cruise.

  12. Method and apparatus for reading meters from a video image

    DOEpatents

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  13. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  14. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  15. Image segmentation based upon topological operators: real-time implementation case study

    NASA Astrophysics Data System (ADS)

    Mahmoudi, R.; Akil, M.

    2009-02-01

    In miscellaneous applications of image treatment, thinning and crest restoring present a lot of interests. Recommended algorithms for these procedures are those able to act directly over grayscales images while preserving topology. But their strong consummation in term of time remains the major disadvantage in their choice. In this paper we present an efficient hardware implementation on RISC processor of two powerful algorithms of thinning and crest restoring developed by our team. Proposed implementation enhances execution time. A chain of segmentation applied to medical imaging will serve as a concrete example to illustrate the improvements brought thanks to the optimization techniques in both algorithm and architectural levels. The particular use of the SSE instruction set relative to the X86_32 processors (PIV 3.06 GHz) will allow a best performance for real time processing: a cadency of 33 images (512*512) per second is assured.

  16. Secure Video Surveillance System Acquisition Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-12-04

    The SVSS Acquisition Software collects and displays video images from two cameras through a VPN, and store the images onto a collection controller. The software is configured to allow a user to enter a time window to display up to 2 1/2, hours of video review. The software collects images from the cameras at a rate of 1 image per second and automatically deletes images older than 3 hours. The software code operates in a linux environment and can be run in a virtual machine on Windows XP. The Sandia software integrates the different COTS software together to build themore » video review system.« less

  17. Video bioinformatics analysis of human embryonic stem cell colony growth.

    PubMed

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-05-20

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion.

  18. VLSI-based video event triggering for image data compression

    NASA Astrophysics Data System (ADS)

    Williams, Glenn L.

    1994-02-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  19. VLSI-based Video Event Triggering for Image Data Compression

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1994-01-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  20. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  1. Visualization of information with an established order

    DOEpatents

    Wong, Pak Chung [Richland, WA; Foote, Harlan P [Richmond, WA; Thomas, James J [Richland, WA; Wong, Kwong-Kwok [Sugar Land, TX

    2007-02-13

    Among the embodiments of the present invention is a system including one or more processors operable to access data representative of a biopolymer sequence of monomer units. The one or more processors are further operable to establish a pattern corresponding to at least one fractal curve and generate one or more output signals corresponding to a number of image elements each representative of one of the monomer units. Also included is a display device responsive to the one or more output signals to visualize the biopolymer sequence by displaying the image elements in accordance with the pattern.

  2. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  3. Innovative Solution to Video Enhancement

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement, Intergraph Government Solutions adapted a technology originally developed at NASA's Marshall Space Flight Center for enhanced video imaging by developing its Video Analyst(TM) System. Marshall's scientists developed the Video Image Stabilization and Registration (VISAR) technology to help FBI agents analyze video footage of the deadly 1996 Olympic Summer Games bombing in Atlanta, Georgia. VISAR technology enhanced nighttime videotapes made with hand-held camcorders, revealing important details about the explosion. Intergraph's Video Analyst System is a simple, effective, and affordable tool for video enhancement and analysis. The benefits associated with the Video Analyst System include support of full-resolution digital video, frame-by-frame analysis, and the ability to store analog video in digital format. Up to 12 hours of digital video can be stored and maintained for reliable footage analysis. The system also includes state-of-the-art features such as stabilization, image enhancement, and convolution to help improve the visibility of subjects in the video without altering underlying footage. Adaptable to many uses, Intergraph#s Video Analyst System meets the stringent demands of the law enforcement industry in the areas of surveillance, crime scene footage, sting operations, and dash-mounted video cameras.

  4. Improving stop line detection using video imaging detectors.

    DOT National Transportation Integrated Search

    2010-11-01

    The Texas Department of Transportation and other state departments of transportation as well as cities : nationwide are using video detection successfully at signalized intersections. However, operational : issues with video imaging vehicle detection...

  5. Photometric Calibration of Consumer Video Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.

  6. Transmission of digital images within the NTSC analog format

    DOEpatents

    Nickel, George H.

    2004-06-15

    HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.

  7. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a display. This paper discusses the impact of simulation on choosing signal processing algorithms and architectures, drawing from the experiences of the Demonstration and Benchmark inter-company teams at Lockhhed Sanders, Motorola, Hughes, and ISX.

  8. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution - an application in higher education.

    PubMed

    Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan

    2015-11-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  9. NASA's Myriad Uses of Digital Video

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt; George, Sandy

    1999-01-01

    Since it's inception, NASA has created many of the most memorable images seen this Century. From the fuzzy video of Neil Armstrong taking that first step on the moon, to images of the Mars surface available to all on the internet, NASA has provided images to inspire a generation, all because a scientist or researcher had a requirement to see something unusual. Digital Television technology will give NASA unprecedented new tools for acquiring, analyzing, and distributing video. This paper will explore NASA's DTV future. The agency has a requirement to move video from one NASA Center to another, in real time. Specifics will be provided relating to the NASA video infrastructure, including video from the Space Shuttle and from the various Centers. A comparison of the pros and cons of interlace and progressive scanned images will be presented. Film is a major component of NASA's image acquisition for analysis usage. The future of film within the context of DTV will be explored.

  10. Compact time- and space-integrating SAR processor: design and development status

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.

    1994-06-01

    Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.

  11. Spacecraft on-board SAR image generation for EOS-type missions

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.; Arens, W. E.; Assal, H. M.; Vesecky, J. F.

    1987-01-01

    Spacecraft on-board synthetic aperture radar (SAR) image generation is an extremely difficult problem because of the requirements for high computational rates (usually on the order of Giga-operations per second), high reliability (some missions last up to 10 years), and low power dissipation and mass (typically less than 500 watts and 100 Kilograms). Recently, a JPL study was performed to assess the feasibility of on-board SAR image generation for EOS-type missions. This paper summarizes the results of that study. Specifically, it proposes a processor architecture using a VLSI time-domain parallel array for azimuth correlation. Using available space qualifiable technology to implement the proposed architecture, an on-board SAR processor having acceptable power and mass characteristics appears feasible for EOS-type applications.

  12. Processing techniques for software based SAR processors

    NASA Technical Reports Server (NTRS)

    Leung, K.; Wu, C.

    1983-01-01

    Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.

  13. Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video

    NASA Astrophysics Data System (ADS)

    Li, Honggui

    2017-09-01

    This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.

  14. Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Cabrera, Michelle T; Wallace, David K; Freedman, Sharon F; Farsiu, Sina

    2011-10-01

    Indirect ophthalmoscopy (IO) is the standard of care for evaluation of the neonatal retina. When recorded on video from a head-mounted camera, IO images have low quality and narrow Field of View (FOV). We present an image fusion methodology for converting a video IO recording into a single, high quality, wide-FOV mosaic that seamlessly blends the best frames in the video. To this end, we have developed fast and robust algorithms for automatic evaluation of video quality, artifact detection and removal, vessel mapping, registration, and multi-frame image fusion. Our experiments show the effectiveness of the proposed methods.

  15. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center, atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  16. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  17. A high performance parallel computing architecture for robust image features

    NASA Astrophysics Data System (ADS)

    Zhou, Renyan; Liu, Leibo; Wei, Shaojun

    2014-03-01

    A design of parallel architecture for image feature detection and description is proposed in this article. The major component of this architecture is a 2D cellular network composed of simple reprogrammable processors, enabling the Hessian Blob Detector and Haar Response Calculation, which are the most computing-intensive stage of the Speeded Up Robust Features (SURF) algorithm. Combining this 2D cellular network and dedicated hardware for SURF descriptors, this architecture achieves real-time image feature detection with minimal software in the host processor. A prototype FPGA implementation of the proposed architecture achieves 1318.9 GOPS general pixel processing @ 100 MHz clock and achieves up to 118 fps in VGA (640 × 480) image feature detection. The proposed architecture is stand-alone and scalable so it is easy to be migrated into VLSI implementation.

  18. Video Imaging System Particularly Suited for Dynamic Gear Inspection

    NASA Technical Reports Server (NTRS)

    Broughton, Howard (Inventor)

    1999-01-01

    A digital video imaging system that captures the image of a single tooth of interest of a rotating gear is disclosed. The video imaging system detects the complete rotation of the gear and divide that rotation into discrete time intervals so that each tooth of interest of the gear is precisely determined when it is at a desired location that is illuminated in unison with a digital video camera so as to record a single digital image for each tooth. The digital images are available to provide instantaneous analysis of the tooth of interest, or to be stored and later provide images that yield a history that may be used to predict gear failure, such as gear fatigue. The imaging system is completely automated by a controlling program so that it may run for several days acquiring images without supervision from the user.

  19. Qualitative and quantitative assessment of video transmitted by DVTS (digital video transport system) in surgical telemedicine.

    PubMed

    Shima, Yoichiro; Suwa, Akina; Gomi, Yuichiro; Nogawa, Hiroki; Nagata, Hiroshi; Tanaka, Hiroshi

    2007-01-01

    Real-time video pictures can be transmitted inexpensively via a broadband connection using the DVTS (digital video transport system). However, the degradation of video pictures transmitted by DVTS has not been sufficiently evaluated. We examined the application of DVTS to remote consultation by using images of laparoscopic and endoscopic surgeries. A subjective assessment by the double stimulus continuous quality scale (DSCQS) method of the transmitted video pictures was carried out by eight doctors. Three of the four video recordings were assessed as being transmitted with no degradation in quality. None of the doctors noticed any degradation in the images due to encryption by the VPN (virtual private network) system. We also used an automatic picture quality assessment system to make an objective assessment of the same images. The objective DSCQS values were similar to the subjective ones. We conclude that although the quality of video pictures transmitted by the DVTS was slightly reduced, they were useful for clinical purposes. Encryption with a VPN did not degrade image quality.

  20. Method and apparatus for reading meters from a video image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.J.; Ferguson, J.J.

    1995-12-31

    A method and system enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusivemore » manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.« less

  1. Method and apparatus for reading meters from a video image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, T.J.; Ferguson, J.J.

    1997-09-30

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relativelymore » non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower. 1 fig.« less

  2. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    NASA Astrophysics Data System (ADS)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  3. Acceleration of block-matching algorithms using a custom instruction-based paradigm on a Nios II microprocessor

    NASA Astrophysics Data System (ADS)

    González, Diego; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco

    2013-12-01

    This contribution focuses on the optimization of matching-based motion estimation algorithms widely used for video coding standards using an Altera custom instruction-based paradigm and a combination of synchronous dynamic random access memory (SDRAM) with on-chip memory in Nios II processors. A complete profile of the algorithms is achieved before the optimization, which locates code leaks, and afterward, creates a custom instruction set, which is then added to the specific design, enhancing the original system. As well, every possible memory combination between on-chip memory and SDRAM has been tested to achieve the best performance. The final throughput of the complete designs are shown. This manuscript outlines a low-cost system, mapped using very large scale integration technology, which accelerates software algorithms by converting them into custom hardware logic blocks and showing the best combination between on-chip memory and SDRAM for the Nios II processor.

  4. A Macintosh-Based Scientific Images Video Analysis System

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Friedland, Peter (Technical Monitor)

    1994-01-01

    A set of experiments was designed at MIT's Man-Vehicle Laboratory in order to evaluate the effects of zero gravity on the human orientation system. During many of these experiments, the movements of the eyes are recorded on high quality video cassettes. The images must be analyzed off-line to calculate the position of the eyes at every moment in time. To this aim, I have implemented a simple inexpensive computerized system which measures the angle of rotation of the eye from digitized video images. The system is implemented on a desktop Macintosh computer, processes one play-back frame per second and exhibits adequate levels of accuracy and precision. The system uses LabVIEW, a digital output board, and a video input board to control a VCR, digitize video images, analyze them, and provide a user friendly interface for the various phases of the process. The system uses the Concept Vi LabVIEW library (Graftek's Image, Meudon la Foret, France) for image grabbing and displaying as well as translation to and from LabVIEW arrays. Graftek's software layer drives an Image Grabber board from Neotech (Eastleigh, United Kingdom). A Colour Adapter box from Neotech provides adequate video signal synchronization. The system also requires a LabVIEW driven digital output board (MacADIOS II from GW Instruments, Cambridge, MA) controlling a slightly modified VCR remote control used mainly to advance the video tape frame by frame.

  5. Probabilistic Methods for Image Generation and Encoding.

    DTIC Science & Technology

    1993-10-15

    video and graphics lab at Georgia Tech, linking together Silicon Graphics workstations, a laser video recorder, a Betacam video recorder, scanner...computer laboratory at Georgia Tech, based on two Silicon Graphics Personal Iris workstations, a SONY laser video recorder, a SONY Betacam SP video...laser disk in component RGB form, with variable speed playback. From the laser recorder the images can be dubbed to the Betacam or the VHS recorder in

  6. Video-to-film color-image recorder.

    NASA Technical Reports Server (NTRS)

    Montuori, J. S.; Carnes, W. R.; Shim, I. H.

    1973-01-01

    A precision video-to-film recorder for use in image data processing systems, being developed for NASA, will convert three video input signals (red, blue, green) into a single full-color light beam for image recording on color film. Argon ion and krypton lasers are used to produce three spectral lines which are independently modulated by the appropriate video signals, combined into a single full-color light beam, and swept over the recording film in a raster format for image recording. A rotating multi-faceted spinner mounted on a translating carriage generates the raster, and an annotation head is used to record up to 512 alphanumeric characters in a designated area outside the image area.

  7. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  8. Image and Video Compression with VLSI Neural Networks

    NASA Technical Reports Server (NTRS)

    Fang, W.; Sheu, B.

    1993-01-01

    An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.

  9. Feasibility of video codec algorithms for software-only playback

    NASA Astrophysics Data System (ADS)

    Rodriguez, Arturo A.; Morse, Ken

    1994-05-01

    Software-only video codecs can provide good playback performance in desktop computers with a 486 or 68040 CPU running at 33 MHz without special hardware assistance. Typically, playback of compressed video can be categorized into three tasks: the actual decoding of the video stream, color conversion, and the transfer of decoded video data from system RAM to video RAM. By current standards, good playback performance is the decoding and display of video streams of 320 by 240 (or larger) compressed frames at 15 (or greater) frames-per- second. Software-only video codecs have evolved by modifying and tailoring existing compression methodologies to suit video playback in desktop computers. In this paper we examine the characteristics used to evaluate software-only video codec algorithms, namely: image fidelity (i.e., image quality), bandwidth (i.e., compression) ease-of-decoding (i.e., playback performance), memory consumption, compression to decompression asymmetry, scalability, and delay. We discuss the tradeoffs among these variables and the compromises that can be made to achieve low numerical complexity for software-only playback. Frame- differencing approaches are described since software-only video codecs typically employ them to enhance playback performance. To complement other papers that appear in this session of the Proceedings, we review methods derived from binary pattern image coding since these methods are amenable for software-only playback. In particular, we introduce a novel approach called pixel distribution image coding.

  10. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  11. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  12. A comparison of five methods for monitoring the precision of automated x-ray film processors.

    PubMed

    Nickoloff, E L; Leo, F; Reese, M

    1978-11-01

    Five different methods for preparing sensitometric strips used to monitor the precision of automated film processors are compared. A method for determining the sensitivity of each system to processor variations is presented; the observed statistical variability is multiplied by the system response to temperature or chemical changes. Pre-exposed sensitometric strips required the use of accurate densitometers and stringent control limits to be effective. X-ray exposed sensitometric strips demonstrated large variations in the x-ray output (2 omega approximately equal to 8.0%) over a period of one month. Some light sensitometers were capable of detecting +/- 1.0 degrees F (+/- 0.6 degrees C) variations in developer temperature in the processor and/or about 10.0 ml of chemical contamination in the processor. Nevertheless, even the light sensitometers were susceptible to problems, e.g. film emulsion selection, line voltage variations, and latent image fading. Advantages and disadvantages of the various sensitometric methods are discussed.

  13. Video as Character: The Use of Video Technology in Theatrical Productions.

    ERIC Educational Resources Information Center

    Trimble, Frank P.

    The use of video images, tempered with good judgment and some restraint, can serve a stage play as opposed to stealing its thunder. An experienced director of university theater productions decided to try to incorporate video images into his production of "Joseph and the Amazing Technicolor Dreamcoat." The production drew from the works…

  14. Document Image Parsing and Understanding using Neuromorphic Architecture

    DTIC Science & Technology

    2015-03-01

    processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored to reduce the processing...developed to reduce the processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored... cortex where the complex data is reduced to abstract representations. The abstract representation is compared to stored patterns in massively parallel

  15. ADP of multispectral scanner data for land use mapping

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1971-01-01

    The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.

  16. Do Stereotypic Images in Video Games Affect Attitudes and Behavior? Adolescents’ Perspectives

    PubMed Central

    Henning, Alexandra; Brenick, Alaina; Killen, Melanie; O’Connor, Alexander; Collins, Michael J.

    2015-01-01

    This study examined adolescents’ attitudes about video games along with their self-reported play frequency. Ninth and eleventh grade students (N = 361), approximately evenly divided by grade and gender, were surveyed about whether video games have stereotypic images, involve harmful consequences or affect one’s attitudes, whether game playing should be regulated by parents or the government, and whether game playing is a personal choice. Adolescents who played video games frequently showed decreased concern about the effects that games with negatively stereotyped images may have on the players’ attitudes compared to adolescents who played games infrequently or not at all. With age, adolescents were more likely to view images as negative, but were also less likely to recognize stereotypic images of females as harmful and more likely to judge video-game playing as a personal choice. The paper discusses other findings in relation to research on adolescents’ social cognitive judgments. PMID:25729336

  17. Do Stereotypic Images in Video Games Affect Attitudes and Behavior? Adolescents' Perspectives.

    PubMed

    Henning, Alexandra; Brenick, Alaina; Killen, Melanie; O'Connor, Alexander; Collins, Michael J

    This study examined adolescents' attitudes about video games along with their self-reported play frequency. Ninth and eleventh grade students (N = 361), approximately evenly divided by grade and gender, were surveyed about whether video games have stereotypic images, involve harmful consequences or affect one's attitudes, whether game playing should be regulated by parents or the government, and whether game playing is a personal choice. Adolescents who played video games frequently showed decreased concern about the effects that games with negatively stereotyped images may have on the players' attitudes compared to adolescents who played games infrequently or not at all. With age, adolescents were more likely to view images as negative, but were also less likely to recognize stereotypic images of females as harmful and more likely to judge video-game playing as a personal choice. The paper discusses other findings in relation to research on adolescents' social cognitive judgments.

  18. Evaluation of a video image detection system : final report.

    DOT National Transportation Integrated Search

    1994-05-01

    A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...

  19. Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.

    2013-02-01

    In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.

  20. A method of intentional movement estimation of oblique small-UAV videos stabilized based on homography model

    NASA Astrophysics Data System (ADS)

    Guo, Shiyi; Mai, Ying; Zhao, Hongying; Gao, Pengqi

    2013-05-01

    The airborne video streams of small-UAVs are commonly plagued with distractive jittery and shaking motions, disorienting rotations, noisy and distorted images and other unwanted movements. These problems collectively make it very difficult for observers to obtain useful information from the video. Due to the small payload of small-UAVs, it is a priority to improve the image quality by means of electronic image stabilization. But when small-UAV makes a turn, affected by the flight characteristics of it, the video is easy to become oblique. This brings a lot of difficulties to electronic image stabilization technology. Homography model performed well in the oblique image motion estimation, while bringing great challenges to intentional motion estimation. Therefore, in this paper, we focus on solve the problem of the video stabilized when small-UAVs banking and turning. We attend to the small-UAVs fly along with an arc of a fixed turning radius. For this reason, after a series of experimental analysis on the flight characteristics and the path how small-UAVs turned, we presented a new method to estimate the intentional motion in which the path of the frame center was used to fit the video moving track. Meanwhile, the image sequences dynamic mosaic was done to make up for the limited field of view. At last, the proposed algorithm was carried out and validated by actual airborne videos. The results show that the proposed method is effective to stabilize the oblique video of small-UAVs.

  1. Innovative hyperchaotic encryption algorithm for compressed video

    NASA Astrophysics Data System (ADS)

    Yuan, Chun; Zhong, Yuzhuo; Yang, Shiqiang

    2002-12-01

    It is accepted that stream cryptosystem can achieve good real-time performance and flexibility which implements encryption by selecting few parts of the block data and header information of the compressed video stream. Chaotic random number generator, for example Logistics Map, is a comparatively promising substitute, but it is easily attacked by nonlinear dynamic forecasting and geometric information extracting. In this paper, we present a hyperchaotic cryptography scheme to encrypt the compressed video, which integrates Logistics Map with Z(232 - 1) field linear congruential algorithm to strengthen the security of the mono-chaotic cryptography, meanwhile, the real-time performance and flexibility of the chaotic sequence cryptography are maintained. It also integrates with the dissymmetrical public-key cryptography and implements encryption and identity authentification on control parameters at initialization phase. In accord with the importance of data in compressed video stream, encryption is performed in layered scheme. In the innovative hyperchaotic cryptography, the value and the updating frequency of control parameters can be changed online to satisfy the requirement of the network quality, processor capability and security requirement. The innovative hyperchaotic cryprography proves robust security by cryptoanalysis, shows good real-time performance and flexible implement capability through the arithmetic evaluating and test.

  2. 2011 Tohoku tsunami video and TLS based measurements: hydrographs, currents, inundation flow velocities, and ship tracks

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C. E.; Takahashi, T.

    2012-12-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of the Tohoku region caused catastrophic damage and loss of life in Japan. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided spontaneous spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s per second were measured in Kesennuma Bay making navigation impossible. Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to -10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities.;

  3. Experimental design and analysis of JND test on coded image/video

    NASA Astrophysics Data System (ADS)

    Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay

    2015-09-01

    The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.

  4. Still-to-video face recognition in unconstrained environments

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Liu, Changsong; Ding, Xiaoqing

    2015-02-01

    Face images from video sequences captured in unconstrained environments usually contain several kinds of variations, e.g. pose, facial expression, illumination, image resolution and occlusion. Motion blur and compression artifacts also deteriorate recognition performance. Besides, in various practical systems such as law enforcement, video surveillance and e-passport identification, only a single still image per person is enrolled as the gallery set. Many existing methods may fail to work due to variations in face appearances and the limit of available gallery samples. In this paper, we propose a novel approach for still-to-video face recognition in unconstrained environments. By assuming that faces from still images and video frames share the same identity space, a regularized least squares regression method is utilized to tackle the multi-modality problem. Regularization terms based on heuristic assumptions are enrolled to avoid overfitting. In order to deal with the single image per person problem, we exploit face variations learned from training sets to synthesize virtual samples for gallery samples. We adopt a learning algorithm combining both affine/convex hull-based approach and regularizations to match image sets. Experimental results on a real-world dataset consisting of unconstrained video sequences demonstrate that our method outperforms the state-of-the-art methods impressively.

  5. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    PubMed Central

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-01-01

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382

  6. Montage Version 3.0

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia

    2006-01-01

    The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.

  7. The AIS-5000 parallel processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, L.A.; Wilson, S.S.

    1988-05-01

    The AIS-5000 is a commercially available massively parallel processor which has been designed to operate in an industrial environment. It has fine-grained parallelism with up to 1024 processing elements arranged in a single-instruction multiple-data (SIMD) architecture. The processing elements are arranged in a one-dimensional chain that, for computer vision applications, can be as wide as the image itself. This architecture has superior cost/performance characteristics than two-dimensional mesh-connected systems. The design of the processing elements and their interconnections as well as the software used to program the system allow a wide variety of algorithms and applications to be implemented. In thismore » paper, the overall architecture of the system is described. Various components of the system are discussed, including details of the processing elements, data I/O pathways and parallel memory organization. A virtual two-dimensional model for programming image-based algorithms for the system is presented. This model is supported by the AIS-5000 hardware and software and allows the system to be treated as a full-image-size, two-dimensional, mesh-connected parallel processor. Performance bench marks are given for certain simple and complex functions.« less

  8. Pattern recognition and feature extraction with an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2016-09-01

    Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.

  9. QWIP technology for both military and civilian applications

    NASA Astrophysics Data System (ADS)

    Gunapala, Sarath D.; Kukkonen, Carl A.; Sirangelo, Mark N.; McQuiston, Barbara K.; Chehayeb, Riad; Kaufmann, M.

    2001-10-01

    Advanced thermal imaging infrared cameras have been a cost effective and reliable method to obtain the temperature of objects. Quantum Well Infrared Photodetector (QWIP) based thermal imaging systems have advanced the state-of-the-art and are the most sensitive commercially available thermal systems. QWIP Technologies LLC, under exclusive agreement with Caltech University, is currently manufacturing the QWIP-ChipTM, a 320 X 256 element, bound-to-quasibound QWIP FPA. The camera performance falls within the long-wave IR band, spectrally peaked at 8.5 μm. The camera is equipped with a 32-bit floating-point digital signal processor combined with multi- tasking software, delivering a digital acquisition resolution of 12-bits using nominal power consumption of less than 50 Watts. With a variety of video interface options, remote control capability via an RS-232 connection, and an integrated control driver circuit to support motorized zoom and focus- compatible lenses, this camera design has excellent application in both the military and commercial sector. In the area of remote sensing, high-performance QWIP systems can be used for high-resolution, target recognition as part of a new system of airborne platforms (including UAVs). Such systems also have direct application in law enforcement, surveillance, industrial monitoring and road hazard detection systems. This presentation will cover the current performance of the commercial QWIP cameras, conceptual platform systems and advanced image processing for use in both military remote sensing and civilian applications currently being developed in road hazard monitoring.

  10. Examining the effect of task on viewing behavior in videos using saliency maps

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith A.; Heynderickx, Ingrid

    2012-03-01

    Research has shown that when viewing still images, people will look at these images in a different manner if instructed to evaluate their quality. They will tend to focus less on the main features of the image and, instead, scan the entire image area looking for clues for its level of quality. It is questionable, however, whether this finding can be extended to videos considering their dynamic nature. One can argue that when watching a video the viewer will always focus on the dynamically changing features of the video regardless of the given task. To test whether this is true, an experiment was conducted where half of the participants viewed videos with the task of quality evaluation while the other half were simply told to watch the videos as if they were watching a movie on TV or a video downloaded from the internet. The videos contained content which was degraded with compression artifacts over a wide range of quality. An eye tracking device was used to record the viewing behavior in both conditions. By comparing the behavior during each task, it was possible to observe a systematic difference in the viewing behavior which seemed to correlate to the quality of the videos.

  11. On-board landmark navigation and attitude reference parallel processor system

    NASA Technical Reports Server (NTRS)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  12. Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism

    DOEpatents

    Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA

    2011-09-27

    A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.

  13. Handling of huge multispectral image data volumes from a spectral hole burning device (SHBD)

    NASA Astrophysics Data System (ADS)

    Graff, Werner; Rosselet, Armel C.; Wild, Urs P.; Gschwind, Rudolf; Keller, Christoph U.

    1995-06-01

    We use chlorin-doped polymer films at low temperatures as the primary imaging detector. Based on the principles of persistent spectral hole burning, this system is capable of storing spatial and spectral information simultaneously in one exposure with extremely high resolution. The sun as an extended light source has been imaged onto the film. The information recorded amounts to tens of GBytes. This data volume is read out by scanning the frequency of a tunable dye laser and reading the images with a digital CCD camera. For acquisition, archival, processing, and visualization, we use MUSIC (MUlti processor System with Intelligent Communication), a single instruction multiple data parallel processor system equipped with the necessary I/O facilities. The huge amount of data requires the developemnt of sophisticated algorithms to efficiently calibrate the data and to extract useful and new information for solar physics.

  14. Research on compression performance of ultrahigh-definition videos

    NASA Astrophysics Data System (ADS)

    Li, Xiangqun; He, Xiaohai; Qing, Linbo; Tao, Qingchuan; Wu, Di

    2017-11-01

    With the popularization of high-definition (HD) images and videos (1920×1080 pixels and above), there are even 4K (3840×2160) television signals and 8 K (8192×4320) ultrahigh-definition videos. The demand for HD images and videos is increasing continuously, along with the increasing data volume. The storage and transmission cannot be properly solved only by virtue of the expansion capacity of hard disks and the update and improvement of transmission devices. Based on the full use of the coding standard high-efficiency video coding (HEVC), super-resolution reconstruction technology, and the correlation between the intra- and the interprediction, we first put forward a "division-compensation"-based strategy to further improve the compression performance of a single image and frame I. Then, by making use of the above thought and HEVC encoder and decoder, a video compression coding frame is designed. HEVC is used inside the frame. Last, with the super-resolution reconstruction technology, the reconstructed video quality is further improved. The experiment shows that by the proposed compression method for a single image (frame I) and video sequence here, the performance is superior to that of HEVC in a low bit rate environment.

  15. Self-Image--Alien Image: A Bilateral Video Project.

    ERIC Educational Resources Information Center

    Kracsay, Susanne

    1995-01-01

    Describes a project in which Austrian and Hungarian students learned how people see each other by creating video pictures and letters of their neighbors (alien images) that were returned with corrections (self-images). Discussion includes student critiques, impressions, and misconceptions. (AEF)

  16. Digital tumor fluoroscopy (DTF)--a new direct imaging system in the therapy planning for brain tumors.

    PubMed

    Herbst, M; Fröder, M

    1990-01-01

    Digital Tumor Fluoroscopy is an expanded x-ray video chain optimized to iodine contrast with an extended Gy scale up to 64000 Gy values. Series of pictures are taken before and after injection of contrast medium. With the most recent unit, up to ten images can be taken and stored. The microprogrammable processor allows the subtraction of images recorded at any moment of the examination. Dynamic views of the distribution of contrast medium in the intravasal and extravasal spaces of brain and tumor tissue are gained by the subtraction of stored images. Tumors can be differentiated by studying the storage and drainage behavior of the contrast medium during the period of examination. Meningiomas store contrast medium very intensively during the whole time of investigation, whereas astrocytomas grade 2-3 pick it up less strongly at the beginning and release it within 2 min. Glioblastomas show a massive but delayed accumulation of contrast medium and a decreased flow-off-rate. In comparison with radiography and MR-imaging the most important advantage of Digital Tumor Fluoroscopy is that direct information on tumor localization is gained in relation to the skull-cap. This enables the radiotherapist to mark the treatment field directly on the skull. Therefore it is no longer necessary to calculate the tumor volume from several CT scans for localization. In radiotherapy Digital Tumor Fluoroscopy a unit combined with a simulator can replace CT planning. This would help overcome the disadvantages arising from the lack of a collimating system, and the inaccuracies which result from completely different geometric relationships between a CT unit and a therapy machine.

  17. Commercialization of Australian advanced infrared technology

    NASA Astrophysics Data System (ADS)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  18. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  19. LANDSAT-2 and LANDSAT-3 Flight evaluation report

    NASA Technical Reports Server (NTRS)

    Winchester, T. W.

    1978-01-01

    Flight performance analysis of LANDSAT 2 and LANDSAT 3 are presented for the period July 1978 to October 1978. Spacecraft operations and orbital parameters are summarized for each spacecraft. Data are provided on the performance and operation of the following subsystems onboard the spacecraft: power; attitude control; command/clock; telemetry; orbit adjust; magnetic moment compensating assembly; unified S band/premodulation processor; electrical interface; thermal narrowband tape recorders; wideband telemetry; attitude measurement sensor; wideband video tape recorders; return beam vidicon; multispectral scanner subsystem; and data collections.

  20. Mobile Situational Awareness Tool: Unattended Ground Sensor-Based Remote Surveillance System

    DTIC Science & Technology

    2014-09-01

    into prototyped WSNs. In 2012, the Raspberry Pi , an SBC with an Arm-Processor running Gnu/Linux also designed for students and hobbyists, entered...the market selling for only $25 each [30]. The Raspberry Pi was the size of a credit card, had the ability to connect to a wide variety of...peripherals to include Wi-Fi adapters and cameras, and had enough processing power to play high-definition video [31]. The Raspberry Pi proved to be

  1. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    NASA Astrophysics Data System (ADS)

    Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao

    2011-06-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.

  2. Heterogeneity image patch index and its application to consumer video summarization.

    PubMed

    Dang, Chinh T; Radha, Hayder

    2014-06-01

    Automatic video summarization is indispensable for fast browsing and efficient management of large video libraries. In this paper, we introduce an image feature that we refer to as heterogeneity image patch (HIP) index. The proposed HIP index provides a new entropy-based measure of the heterogeneity of patches within any picture. By evaluating this index for every frame in a video sequence, we generate a HIP curve for that sequence. We exploit the HIP curve in solving two categories of video summarization applications: key frame extraction and dynamic video skimming. Under the key frame extraction frame-work, a set of candidate key frames is selected from abundant video frames based on the HIP curve. Then, a proposed patch-based image dissimilarity measure is used to create affinity matrix of these candidates. Finally, a set of key frames is extracted from the affinity matrix using a min–max based algorithm. Under video skimming, we propose a method to measure the distance between a video and its skimmed representation. The video skimming problem is then mapped into an optimization framework and solved by minimizing a HIP-based distance for a set of extracted excerpts. The HIP framework is pixel-based and does not require semantic information or complex camera motion estimation. Our simulation results are based on experiments performed on consumer videos and are compared with state-of-the-art methods. It is shown that the HIP approach outperforms other leading methods, while maintaining low complexity.

  3. PIZZARO: Forensic analysis and restoration of image and video data.

    PubMed

    Kamenicky, Jan; Bartos, Michal; Flusser, Jan; Mahdian, Babak; Kotera, Jan; Novozamsky, Adam; Saic, Stanislav; Sroubek, Filip; Sorel, Michal; Zita, Ales; Zitova, Barbara; Sima, Zdenek; Svarc, Petr; Horinek, Jan

    2016-07-01

    This paper introduces a set of methods for image and video forensic analysis. They were designed to help to assess image and video credibility and origin and to restore and increase image quality by diminishing unwanted blur, noise, and other possible artifacts. The motivation came from the best practices used in the criminal investigation utilizing images and/or videos. The determination of the image source, the verification of the image content, and image restoration were identified as the most important issues of which automation can facilitate criminalists work. Novel theoretical results complemented with existing approaches (LCD re-capture detection and denoising) were implemented in the PIZZARO software tool, which consists of the image processing functionality as well as of reporting and archiving functions to ensure the repeatability of image analysis procedures and thus fulfills formal aspects of the image/video analysis work. Comparison of new proposed methods with the state of the art approaches is shown. Real use cases are presented, which illustrate the functionality of the developed methods and demonstrate their applicability in different situations. The use cases as well as the method design were solved in tight cooperation of scientists from the Institute of Criminalistics, National Drug Headquarters of the Criminal Police and Investigation Service of the Police of the Czech Republic, and image processing experts from the Czech Academy of Sciences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Design concepts for an on-board coherent optical image processor

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    On-board spacecraft image data processing systems for transmitting processed data rather than raw data are discussed. A brief history of the development of the optical data processing techniques is presented along with the conceptual design of a coherent optical system with a noncoherent image input.

  5. Video stereo-laparoscopy system

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Hu, Jiasheng; Jiang, Huilin

    2006-01-01

    Minimally invasive surgery (MIS) has contributed significantly to patient care by reducing the morbidity associated with more invasive procedures. MIS procedures have become standard treatment for gallbladder disease and some abdominal malignancies. The imaging system has played a major role in the evolving field of minimally invasive surgery (MIS). The image need to have good resolution, large magnification, especially, the image need to have depth cue at the same time the image have no flicker and suit brightness. The video stereo-laparoscopy system can meet the demand of the doctors. This paper introduces the 3d video laparoscopy has those characteristic, field frequency: 100Hz, the depth space: 150mm, resolution: 10pl/mm. The work principle of the system is introduced in detail, and the optical system and time-division stereo-display system are described briefly in this paper. The system has focusing image lens, it can image on the CCD chip, the optical signal can change the video signal, and through A/D switch of the image processing system become the digital signal, then display the polarized image on the screen of the monitor through the liquid crystal shutters. The doctors with the polarized glasses can watch the 3D image without flicker of the tissue or organ. The 3D video laparoscope system has apply in the MIS field and praised by doctors. Contrast to the traditional 2D video laparoscopy system, it has some merit such as reducing the time of surgery, reducing the problem of surgery and the trained time.

  6. Context indexing of digital cardiac ultrasound records in PACS

    NASA Astrophysics Data System (ADS)

    Lobodzinski, S. Suave; Meszaros, Georg N.

    1998-07-01

    Recent wide adoption of the DICOM 3.0 standard by ultrasound equipment vendors created a need for practical clinical implementations of cardiac imaging study visualization, management and archiving, DICOM 3.0 defines only a logical and physical format for exchanging image data (still images, video, patient and study demographics). All DICOM compliant imaging studies must presently be archived on a 650 Mb recordable compact disk. This is a severe limitation for ultrasound applications where studies of 3 to 10 minutes long are a common practice. In addition, DICOM digital echocardiography objects require physiological signal indexing, content segmentation and characterization. Since DICOM 3.0 is an interchange standard only, it does not define how to database composite video objects. The goal of this research was therefore to address the issues of efficient storage, retrieval and management of DICOM compliant cardiac video studies in a distributed PACS environment. Our Web based implementation has the advantage of accommodating both DICOM defined entity-relation modules (equipment data, patient data, video format, etc.) in standard relational database tables and digital indexed video with its attributes in an object relational database. Object relational data model facilitates content indexing of full motion cardiac imaging studies through bi-directional hyperlink generation that tie searchable video attributes and related objects to individual video frames in the temporal domain. Benefits realized from use of bi-directionally hyperlinked data models in an object relational database include: (1) real time video indexing during image acquisition, (2) random access and frame accurate instant playback of previously recorded full motion imaging data, and (3) time savings from faster and more accurate access to data through multiple navigation mechanisms such as multidimensional queries on an index, queries on a hyperlink attribute, free search and browsing.

  7. Complex Event Processing for Content-Based Text, Image, and Video Retrieval

    DTIC Science & Technology

    2016-06-01

    NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval

  8. EROS to universal tape conversion processor

    NASA Technical Reports Server (NTRS)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The function of the EROS processor is to allow a user to select a specific area from a full frame LANDSAT image which is written on tape in the EROS format. The area of interest is read from the EROS formatted tape and converted to the JSC Universal format and written onto another tape. This tape can then be read by the IMDACS processing system and normal analysis can be performed.

  9. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    PubMed Central

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  10. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  11. State of the art in video system performance

    NASA Technical Reports Server (NTRS)

    Lewis, Michael J.

    1990-01-01

    The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.

  12. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  13. USC orthogonal multiprocessor for image processing with neural networks

    NASA Astrophysics Data System (ADS)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  14. A pipelined architecture for real time correction of non-uniformity in infrared focal plane arrays imaging system using multiprocessors

    NASA Astrophysics Data System (ADS)

    Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan

    2010-07-01

    This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.

  15. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  16. Early Validation of Sentinel-2 L2A Processor and Products

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Main-Knorn, Magdalena; Bieniarz, Jakub; Debaecker, Vincent; Louis, Jerome

    2016-08-01

    Sentinel-2 is a constellation of two polar orbiting satellite units each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23, 2015 and Sentinel-2B will follow in 2017.The Level-2A (L2A) processor Sen2Cor implemented for Sentinel-2 data provides a scene classification image, aerosol optical thickness (AOT) and water vapour (WV) maps and the Bottom-Of-Atmosphere (BOA) corrected reflectance product. First validation results of Sen2Cor scene classification showed an overall accuracy of 81%. AOT at 550 nm is estimated by Sen2Cor with uncertainty of 0.035 for cloudless images and locations with dense dark vegetation (DDV) pixels present in the image. Aerosol estimation fails if the image contains no DDV-pixels. Mean difference between Sen2Cor WV and ground-truth is 0.29 cm. Uncertainty of up to 0.04 was found for the BOA- reflectance product.

  17. Design of a MATLAB(registered trademark) Image Comparison and Analysis Tool for Augmentation of the Results of the Ann Arbor Distortion Test

    DTIC Science & Technology

    2016-06-25

    The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was

  18. Quantifying cell mono-layer cultures by video imaging.

    PubMed

    Miller, K S; Hook, L A

    1996-04-01

    A method is described in which the relative number of adherent cells in multi-well tissue-culture plates is assayed by staining the cells with Giemsa and capturing the image of the stained cells with a video camera and charged-coupled device. The resultant image is quantified using the associated video imaging software. The method is shown to be sensitive and reproducible and should be useful for studies where quantifying relative cell numbers and/or proliferation in vitro is required.

  19. Facial Attractiveness Ratings from Video-Clips and Static Images Tell the Same Story

    PubMed Central

    Rhodes, Gillian; Lie, Hanne C.; Thevaraja, Nishta; Taylor, Libby; Iredell, Natasha; Curran, Christine; Tan, Shi Qin Claire; Carnemolla, Pia; Simmons, Leigh W.

    2011-01-01

    Most of what we know about what makes a face attractive and why we have the preferences we do is based on attractiveness ratings of static images of faces, usually photographs. However, several reports that such ratings fail to correlate significantly with ratings made to dynamic video clips, which provide richer samples of appearance, challenge the validity of this literature. Here, we tested the validity of attractiveness ratings made to static images, using a substantial sample of male faces. We found that these ratings agreed very strongly with ratings made to videos of these men, despite the presence of much more information in the videos (multiple views, neutral and smiling expressions and speech-related movements). Not surprisingly, given this high agreement, the components of video-attractiveness were also very similar to those reported previously for static-attractiveness. Specifically, averageness, symmetry and masculinity were all significant components of attractiveness rated from videos. Finally, regression analyses yielded very similar effects of attractiveness on success in obtaining sexual partners, whether attractiveness was rated from videos or static images. These results validate the widespread use of attractiveness ratings made to static images in evolutionary and social psychological research. We speculate that this validity may stem from our tendency to make rapid and robust judgements of attractiveness. PMID:22096491

  20. Video and LAN solutions for a digital OR: the Varese experience

    NASA Astrophysics Data System (ADS)

    Nocco, Umberto; Cocozza, Eugenio; Sivo, Monica; Peta, Giancarlo

    2007-03-01

    Purpose: build 20 ORs equipped with independent video acquisition and broadcasting systems and a powerful LAN connectivity. Methods: a digital PC controlled video matrix has been installed in each OR. The LAN connectivity has been developed to grant data entering the OR and high speed connectivity to a server and to broadcasting devices. Video signals are broadcasted within the OR. Fixed inputs and five additional video inputs have been placed in the OR. Images can be stored locally on a high capacity HDD and a DVD recorder. Images can be also stored in a central archive for future acquisition and reference. Ethernet plugs have been placed within the OR to acquire images and data from the Hospital LAN; the OR is connected to the server/archive using a dedicated optical fiber. Results: 20 independent digital ORs have been built. Each OR is "self contained" and images can be digitally managed and broadcasted. Security issues concerning both image visualization and electrical safety have been fulfilled and each OR is fully integrated in the Hospital LAN. Conclusions: Digital ORs were fully implemented, they fulfill surgeons needs in terms of video acquisition and distribution and grant high quality video for each kind of surgery in a major hospital.

  1. A simple method for panretinal imaging with the slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2016-12-01

    Slit lamp biomicroscopy of the retina with a convex lens is a key procedure in clinical practice. The methods presented enable ophthalmologists to adequately image large and peripheral parts of the fundus using a video-slit lamp and freely available stitching software. A routine examination of the fundus with a slit lamp and a +90 D lens is recorded on a video film. Later, sufficiently sharp still images are identified on the video sequence. These still images are imported into a freely available image-processing program (Hugin, for stitching mosaics together digitally) and corresponding points are marked on adjacent still images with some overlap. Using the digital stitching program Hugin panoramic overviews of the retina can be built which can extend to the equator. This allows to image diseases involving the whole retina or its periphery by performing a structured fundus examination with a video-slit lamp. Similar images with a video-slit lamp based on a fundus examination through a hand-held non-contact lens have not been demonstrated before. The methods presented enable those ophthalmologists without high-end imaging equipment to monitor pathological fundus findings. The suggested procedure might even be interesting for retinological departments if peripheral findings are to be documented which might be difficult with fundus cameras.

  2. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune fields where constant HIRISE image acquisitions are available. ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.

  3. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  4. Plant Chlorophyll Content Imager with Reference Detection Signals

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A portable plant chlorophyll imaging system is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels is processed using synchronized video cameras. A controller provided in the system compares the level of light of video images reflected from a target plant with a reference level of light from a source illuminating the plant. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio video image which indicates a relative level of plant chlorophyll content and physiological stress. Multiple display modes are described for viewing the video images.

  5. Local wavelet transform: a cost-efficient custom processor for space image compression

    NASA Astrophysics Data System (ADS)

    Masschelein, Bart; Bormans, Jan G.; Lafruit, Gauthier

    2002-11-01

    Thanks to its intrinsic scalability features, the wavelet transform has become increasingly popular as decorrelator in image compression applications. Throuhgput, memory requirements and complexity are important parameters when developing hardware image compression modules. An implementation of the classical, global wavelet transform requires large memory sizes and implies a large latency between the availability of the input image and the production of minimal data entities for entropy coding. Image tiling methods, as proposed by JPEG2000, reduce the memory sizes and the latency, but inevitably introduce image artefacts. The Local Wavelet Transform (LWT), presented in this paper, is a low-complexity wavelet transform architecture using a block-based processing that results in the same transformed images as those obtained by the global wavelet transform. The architecture minimizes the processing latency with a limited amount of memory. Moreover, as the LWT is an instruction-based custom processor, it can be programmed for specific tasks, such as push-broom processing of infinite-length satelite images. The features of the LWT makes it appropriate for use in space image compression, where high throughput, low memory sizes, low complexity, low power and push-broom processing are important requirements.

  6. Applied learning-based color tone mapping for face recognition in video surveillance system

    NASA Astrophysics Data System (ADS)

    Yew, Chuu Tian; Suandi, Shahrel Azmin

    2012-04-01

    In this paper, we present an applied learning-based color tone mapping technique for video surveillance system. This technique can be applied onto both color and grayscale surveillance images. The basic idea is to learn the color or intensity statistics from a training dataset of photorealistic images of the candidates appeared in the surveillance images, and remap the color or intensity of the input image so that the color or intensity statistics match those in the training dataset. It is well known that the difference in commercial surveillance cameras models, and signal processing chipsets used by different manufacturers will cause the color and intensity of the images to differ from one another, thus creating additional challenges for face recognition in video surveillance system. Using Multi-Class Support Vector Machines as the classifier on a publicly available video surveillance camera database, namely SCface database, this approach is validated and compared to the results of using holistic approach on grayscale images. The results show that this technique is suitable to improve the color or intensity quality of video surveillance system for face recognition.

  7. Fast registration and reconstruction of aliased low-resolution frames by use of a modified maximum-likelihood approach.

    PubMed

    Alam, M S; Bognar, J G; Cain, S; Yasuda, B J

    1998-03-10

    During the process of microscanning a controlled vibrating mirror typically is used to produce subpixel shifts in a sequence of forward-looking infrared (FLIR) images. If the FLIR is mounted on a moving platform, such as an aircraft, uncontrolled random vibrations associated with the platform can be used to generate the shifts. Iterative techniques such as the expectation-maximization (EM) approach by means of the maximum-likelihood algorithm can be used to generate high-resolution images from multiple randomly shifted aliased frames. In the maximum-likelihood approach the data are considered to be Poisson random variables and an EM algorithm is developed that iteratively estimates an unaliased image that is compensated for known imager-system blur while it simultaneously estimates the translational shifts. Although this algorithm yields high-resolution images from a sequence of randomly shifted frames, it requires significant computation time and cannot be implemented for real-time applications that use the currently available high-performance processors. The new image shifts are iteratively calculated by evaluation of a cost function that compares the shifted and interlaced data frames with the corresponding values in the algorithm's latest estimate of the high-resolution image. We present a registration algorithm that estimates the shifts in one step. The shift parameters provided by the new algorithm are accurate enough to eliminate the need for iterative recalculation of translational shifts. Using this shift information, we apply a simplified version of the EM algorithm to estimate a high-resolution image from a given sequence of video frames. The proposed modified EM algorithm has been found to reduce significantly the computational burden when compared with the original EM algorithm, thus making it more attractive for practical implementation. Both simulation and experimental results are presented to verify the effectiveness of the proposed technique.

  8. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing

    PubMed Central

    Farabet, Clément; Paz, Rafael; Pérez-Carrasco, Jose; Zamarreño-Ramos, Carlos; Linares-Barranco, Alejandro; LeCun, Yann; Culurciello, Eugenio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2012-01-01

    Most scene segmentation and categorization architectures for the extraction of features in images and patches make exhaustive use of 2D convolution operations for template matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are one example of such architectures that can implement general-purpose bio-inspired vision systems. In standard digital computers 2D convolutions are usually expensive in terms of resource consumption and impose severe limitations for efficient real-time applications. Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet Convolution Processors, are advancing real-time visual processing. These two approaches share the neural inspiration, but each of them solves the problem in different ways. Frame-Based ConvNets process frame by frame video information in a very robust and fast way that requires to use and share the available hardware resources (such as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching data in and out. Thus memory bandwidth and size is important for good performance. On the other hand, spike-based convolution processors are a frame-free alternative that is able to perform convolution of a spike-based source of visual information with very low latency, which makes ideal for very high-speed applications. However, hardware resources need to be available all the time and cannot be time-multiplexed. Thus, hardware should be modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom integrated circuits (digital and analog) and FPGA have been already used to demonstrate the performance of these systems. In this paper we present a comparison study of these two neuro-inspired solutions. A brief description of both systems is presented and also discussions about their differences, pros and cons. PMID:22518097

  9. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing.

    PubMed

    Farabet, Clément; Paz, Rafael; Pérez-Carrasco, Jose; Zamarreño-Ramos, Carlos; Linares-Barranco, Alejandro; Lecun, Yann; Culurciello, Eugenio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2012-01-01

    Most scene segmentation and categorization architectures for the extraction of features in images and patches make exhaustive use of 2D convolution operations for template matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are one example of such architectures that can implement general-purpose bio-inspired vision systems. In standard digital computers 2D convolutions are usually expensive in terms of resource consumption and impose severe limitations for efficient real-time applications. Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet Convolution Processors, are advancing real-time visual processing. These two approaches share the neural inspiration, but each of them solves the problem in different ways. Frame-Based ConvNets process frame by frame video information in a very robust and fast way that requires to use and share the available hardware resources (such as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching data in and out. Thus memory bandwidth and size is important for good performance. On the other hand, spike-based convolution processors are a frame-free alternative that is able to perform convolution of a spike-based source of visual information with very low latency, which makes ideal for very high-speed applications. However, hardware resources need to be available all the time and cannot be time-multiplexed. Thus, hardware should be modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom integrated circuits (digital and analog) and FPGA have been already used to demonstrate the performance of these systems. In this paper we present a comparison study of these two neuro-inspired solutions. A brief description of both systems is presented and also discussions about their differences, pros and cons.

  10. Video conference quality assessment based on cooperative sensing of video and audio

    NASA Astrophysics Data System (ADS)

    Wang, Junxi; Chen, Jialin; Tian, Xin; Zhou, Cheng; Zhou, Zheng; Ye, Lu

    2015-12-01

    This paper presents a method to video conference quality assessment, which is based on cooperative sensing of video and audio. In this method, a proposed video quality evaluation method is used to assess the video frame quality. The video frame is divided into noise image and filtered image by the bilateral filters. It is similar to the characteristic of human visual, which could also be seen as a low-pass filtering. The audio frames are evaluated by the PEAQ algorithm. The two results are integrated to evaluate the video conference quality. A video conference database is built to test the performance of the proposed method. It could be found that the objective results correlate well with MOS. Then we can conclude that the proposed method is efficiency in assessing video conference quality.

  11. 2011 Tohoku tsunami hydrographs, currents, flow velocities and ship tracks based on video and TLS measurements

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Phillips, David A.; Okayasu, Akio; Shimozono, Takenori; Liu, Haijiang; Takeda, Seiichi; Mohammed, Fahad; Skanavis, Vassilis; Synolakis, Costas E.; Takahashi, Tomoyuki

    2013-04-01

    The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life to a tsunami aware population. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided fragmented spatially and temporally resolved inundation recordings. This report focuses on the surveys at 9 tsunami eyewitness video recording locations in Myako, Kamaishi, Kesennuma and Yoriisohama along Japan's Sanriku coast and the subsequent video image calibration, processing, tsunami hydrograph and flow velocity analysis. Selected tsunami video recording sites were explored, eyewitnesses interviewed and some ground control points recorded during the initial tsunami reconnaissance in April, 2011. A follow-up survey in June, 2011 focused on terrestrial laser scanning (TLS) at locations with high quality eyewitness videos. We acquired precise topographic data using TLS at the video sites producing a 3-dimensional "point cloud" dataset. A camera mounted on the Riegl VZ-400 scanner yields photorealistic 3D images. Integrated GPS measurements allow accurate georeferencing. The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure originally developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh, Indonesia (Fritz et al., 2006). The first step requires the calibration of the sector of view present in the eyewitness video recording based on ground control points measured in the LiDAR data. In a second step the video image motion induced by the panning of the video camera was determined from subsequent images by particle image velocimetry (PIV) applied to fixed objects. The third step involves the transformation of the raw tsunami video images from image coordinates to world coordinates with a direct linear transformation (DLT) procedure. Finally, the instantaneous tsunami surface current and flooding velocity vector maps are determined by applying the digital PIV analysis method to the rectified tsunami video images with floating debris clusters. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible (Fritz et al., 2012). Tsunami hydrographs are derived from the videos based on water surface elevations at surface piercing objects identified in the acquired topographic TLS data. Apart from a dominant tsunami crest the hydrograph at Kamaishi also reveals a subsequent draw down to minus 10m exposing the harbor bottom. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down and setting vessels a drift for hours. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs and flow velocities. Lastly a perspective on the recovery and reconstruction process is provided based on numerous revisits of identical sites between April 2011 and July 2012.

  12. Infrared hyperspectral imaging sensor for gas detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2000-11-01

    A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.

  13. Reliability of ultrasound grading traditional score and new global OMERACT-EULAR score system (GLOESS): results from an inter- and intra-reading exercise by rheumatologists.

    PubMed

    Ventura-Ríos, Lucio; Hernández-Díaz, Cristina; Ferrusquia-Toríz, Diana; Cruz-Arenas, Esteban; Rodríguez-Henríquez, Pedro; Alvarez Del Castillo, Ana Laura; Campaña-Parra, Alfredo; Canul, Efrén; Guerrero Yeo, Gerardo; Mendoza-Ruiz, Juan Jorge; Pérez Cristóbal, Mario; Sicsik, Sandra; Silva Luna, Karina

    2017-12-01

    This study aims to test the reliability of ultrasound to graduate synovitis in static and video images, evaluating separately grayscale and power Doppler (PD), and combined. Thirteen trained rheumatologist ultrasonographers participated in two separate rounds reading 42 images, 15 static and 27 videos, of the 7-joint count [wrist, 2nd and 3rd metacarpophalangeal (MCP), 2nd and 3rd interphalangeal (IPP), 2nd and 5th metatarsophalangeal (MTP) joints]. The images were from six patients with rheumatoid arthritis, performed by one ultrasonographer. Synovitis definition was according to OMERACT. Scoring system in grayscale, PD separately, and combined (GLOESS-Global OMERACT-EULAR Score System) were reviewed before exercise. Reliability intra- and inter-reading was calculated with Cohen's kappa weighted, according to Landis and Koch. Kappa values for inter-reading were good to excellent. The minor kappa was for GLOESS in static images, and the highest was for the same scoring in videos (k 0.59 and 0.85, respectively). Excellent values were obtained for static PD in 5th MTP joint and for PD video in 2nd MTP joint. Results for GLOESS in general were good to moderate. Poor agreement was observed in 3rd MCP and 3rd IPP in all kinds of images. Intra-reading agreement were greater in grayscale and GLOESS in static images than in videos (k 0.86 vs. 0.77 and k 0.86 vs. 0.71, respectively), but PD was greater in videos than in static images (k 1.0 vs. 0.79). The reliability of the synovitis scoring through static images and videos is in general good to moderate when using grayscale and PD separately or combined.

  14. From image captioning to video summary using deep recurrent networks and unsupervised segmentation

    NASA Astrophysics Data System (ADS)

    Morosanu, Bogdan-Andrei; Lemnaru, Camelia

    2018-04-01

    Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.

  15. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  16. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  17. Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2004-01-01

    We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

  18. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    PubMed

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  19. Air-Lubricated Thermal Processor For Dry Silver Film

    NASA Astrophysics Data System (ADS)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  20. Performance improvement of multi-class detection using greedy algorithm for Viola-Jones cascade selection

    NASA Astrophysics Data System (ADS)

    Tereshin, Alexander A.; Usilin, Sergey A.; Arlazarov, Vladimir V.

    2018-04-01

    This paper aims to study the problem of multi-class object detection in video stream with Viola-Jones cascades. An adaptive algorithm for selecting Viola-Jones cascade based on greedy choice strategy in solution of the N-armed bandit problem is proposed. The efficiency of the algorithm on the problem of detection and recognition of the bank card logos in the video stream is shown. The proposed algorithm can be effectively used in documents localization and identification, recognition of road scene elements, localization and tracking of the lengthy objects , and for solving other problems of rigid object detection in a heterogeneous data flows. The computational efficiency of the algorithm makes it possible to use it both on personal computers and on mobile devices based on processors with low power consumption.

  1. Talking Wheelchair

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Communication is made possible for disabled individuals by means of an electronic system, developed at Stanford University's School of Medicine, which produces highly intelligible synthesized speech. Familiarly known as the "talking wheelchair" and formally as the Versatile Portable Speech Prosthesis (VPSP). Wheelchair mounted system consists of a word processor, a video screen, a voice synthesizer and a computer program which instructs the synthesizer how to produce intelligible sounds in response to user commands. Computer's memory contains 925 words plus a number of common phrases and questions. Memory can also store several thousand other words of the user's choice. Message units are selected by operating a simple switch, joystick or keyboard. Completed message appears on the video screen, then user activates speech synthesizer, which generates a voice with a somewhat mechanical tone. With the keyboard, an experienced user can construct messages as rapidly as 30 words per minute.

  2. Positive effect on patient experience of video information given prior to cardiovascular magnetic resonance imaging: A clinical trial.

    PubMed

    Ahlander, Britt-Marie; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2018-03-01

    To evaluate the effect of video information given before cardiovascular magnetic resonance imaging on patient anxiety and to compare patient experiences of cardiovascular magnetic resonance imaging versus myocardial perfusion scintigraphy. To evaluate whether additional information has an impact on motion artefacts. Cardiovascular magnetic resonance imaging and myocardial perfusion scintigraphy are technically advanced methods for the evaluation of heart diseases. Although cardiovascular magnetic resonance imaging is considered to be painless, patients may experience anxiety due to the closed environment. A prospective randomised intervention study, not registered. The sample (n = 148) consisted of 97 patients referred for cardiovascular magnetic resonance imaging, randomised to receive either video information in addition to standard text-information (CMR-video/n = 49) or standard text-information alone (CMR-standard/n = 48). A third group undergoing myocardial perfusion scintigraphy (n = 51) was compared with the cardiovascular magnetic resonance imaging-standard group. Anxiety was evaluated before, immediately after the procedure and 1 week later. Five questionnaires were used: Cardiac Anxiety Questionnaire, State-Trait Anxiety Inventory, Hospital Anxiety and Depression scale, MRI Fear Survey Schedule and the MRI-Anxiety Questionnaire. Motion artefacts were evaluated by three observers, blinded to the information given. Data were collected between April 2015-April 2016. The study followed the CONSORT guidelines. The CMR-video group scored lower (better) than the cardiovascular magnetic resonance imaging-standard group in the factor Relaxation (p = .039) but not in the factor Anxiety. Anxiety levels were lower during scintigraphic examinations compared to the CMR-standard group (p < .001). No difference was found regarding motion artefacts between CMR-video and CMR-standard. Patient ability to relax during cardiovascular magnetic resonance imaging increased by adding video information prior the exam, which is important in relation to perceived quality in nursing. No effect was seen on motion artefacts. Video information prior to examinations can be an easy and time effective method to help patients cooperate in imaging procedures. © 2017 John Wiley & Sons Ltd.

  3. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  4. A system for the real-time display of radar and video images of targets

    NASA Technical Reports Server (NTRS)

    Allen, W. W.; Burnside, W. D.

    1990-01-01

    Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.

  5. Development of laryngeal video stroboscope with laser marking module for dynamic glottis measurement.

    PubMed

    Kuo, Chung-Feng Jeffrey; Wang, Hsing-Won; Hsiao, Shang-Wun; Peng, Kai-Ching; Chou, Ying-Liang; Lai, Chun-Yu; Hsu, Chien-Tung Max

    2014-01-01

    Physicians clinically use laryngeal video stroboscope as an auxiliary instrument to test glottal diseases, and read vocal fold images and voice quality for diagnosis. As the position of vocal fold varies in each person, the proportion of the vocal fold size as presented in the vocal fold image is different, making it impossible to directly estimate relevant glottis physiological parameters, such as the length, area, perimeter, and opening angle of the glottis. Hence, this study designs an innovative laser projection marking module for the laryngeal video stroboscope to provide reference parameters for image scaling conversion. This innovative laser projection marking module to be installed on the laryngeal video stroboscope using laser beams to project onto the glottis plane, in order to provide reference parameters for scaling conversion of images of laryngeal video stroboscope. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Temporal compressive imaging for video

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Zhang, Linxia; Ke, Jun

    2018-01-01

    In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.

  7. Exemplar-Based Image and Video Stylization Using Fully Convolutional Semantic Features.

    PubMed

    Zhu, Feida; Yan, Zhicheng; Bu, Jiajun; Yu, Yizhou

    2017-05-10

    Color and tone stylization in images and videos strives to enhance unique themes with artistic color and tone adjustments. It has a broad range of applications from professional image postprocessing to photo sharing over social networks. Mainstream photo enhancement softwares, such as Adobe Lightroom and Instagram, provide users with predefined styles, which are often hand-crafted through a trial-and-error process. Such photo adjustment tools lack a semantic understanding of image contents and the resulting global color transform limits the range of artistic styles it can represent. On the other hand, stylistic enhancement needs to apply distinct adjustments to various semantic regions. Such an ability enables a broader range of visual styles. In this paper, we first propose a novel deep learning architecture for exemplar-based image stylization, which learns local enhancement styles from image pairs. Our deep learning architecture consists of fully convolutional networks (FCNs) for automatic semantics-aware feature extraction and fully connected neural layers for adjustment prediction. Image stylization can be efficiently accomplished with a single forward pass through our deep network. To extend our deep network from image stylization to video stylization, we exploit temporal superpixels (TSPs) to facilitate the transfer of artistic styles from image exemplars to videos. Experiments on a number of datasets for image stylization as well as a diverse set of video clips demonstrate the effectiveness of our deep learning architecture.

  8. Analysis of DuPont and Kodak duplicating films and chemistries in a Fultron spray processor

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    A test program was conducted with duPont duplicating film type SR 112 and SCOLOR developer and Kodak duplicating film types 2430, 2422, and FE 2628 (SO-467) and MX-641 developer to determine sensitometric and image quality characteristics of these materials when used with a fultron spray processor. The test results show that the SCOLOR developer foams excessively in the fultron processor when used with or without the addition of an antifoaming agent. The Kodak type FE 2628 film with MX-641 chemistry had the longest linear Log E range at a 1.0 gamma. Sensitometric curves and granularity traces for all film process combinations tested are included.

  9. Video Analytics for Indexing, Summarization and Searching of Video Archives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Harold E.; Trease, Lynn L.

    This paper will be submitted to the proceedings The Eleventh IASTED International Conference on. Signal and Image Processing. Given a video or video archive how does one effectively and quickly summarize, classify, and search the information contained within the data? This paper addresses these issues by describing a process for the automated generation of a table-of-contents and keyword, topic-based index tables that can be used to catalogue, summarize, and search large amounts of video data. Having the ability to index and search the information contained within the videos, beyond just metadata tags, provides a mechanism to extract and identify "useful"more » content from image and video data.« less

  10. MOSAIC - A space-multiplexing technique for optical processing of large images

    NASA Technical Reports Server (NTRS)

    Athale, Ravindra A.; Astor, Michael E.; Yu, Jeffrey

    1993-01-01

    A technique for Fourier processing of images larger than the space-bandwidth products of conventional or smart spatial light modulators and two-dimensional detector arrays is described. The technique involves a spatial combination of subimages displayed on individual spatial light modulators to form a phase-coherent image, which is subsequently processed with Fourier optical techniques. Because of the technique's similarity with the mosaic technique used in art, the processor used is termed an optical MOSAIC processor. The phase accuracy requirements of this system were studied by computer simulation. It was found that phase errors of less than lambda/8 did not degrade the performance of the system and that the system was relatively insensitive to amplitude nonuniformities. Several schemes for implementing the subimage combination are described. Initial experimental results demonstrating the validity of the mosaic concept are also presented.

  11. General-purpose interface bus for multiuser, multitasking computer system

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.

  12. A novel parallel architecture for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan

    2005-07-01

    Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.

  13. CT Imaging of Hardwood Logs for Lumber Production

    Treesearch

    Daniel L. Schmoldt; Pei Li; A. Lynn Abbott

    1996-01-01

    Hardwood sawmill operators need to improve the conversion of raw material (logs) into lumber. Internal log scanning provides detailed information that can aid log processors in improving lumber recovery. However, scanner data (i.e. tomographic images) need to be analyzed prior to presentation to saw operators. Automatic labeling of computer tomography (CT) images is...

  14. [Image processing system of visual prostheses based on digital signal processor DM642].

    PubMed

    Xie, Chengcheng; Lu, Yanyu; Gu, Yun; Wang, Jing; Chai, Xinyu

    2011-09-01

    This paper employed a DSP platform to create the real-time and portable image processing system, and introduced a series of commonly used algorithms for visual prostheses. The results of performance evaluation revealed that this platform could afford image processing algorithms to be executed in real time.

  15. Custom large scale integrated circuits for spaceborne SAR processors

    NASA Technical Reports Server (NTRS)

    Tyree, V. C.

    1978-01-01

    The application of modern LSI technology to the development of a time-domain azimuth correlator for SAR processing is discussed. General design requirements for azimuth correlators for missions such as SEASAT-A, Venus orbital imaging radar (VOIR), and shuttle imaging radar (SIR) are summarized. Several azimuth correlator architectures that are suitable for implementation using custom LSI devices are described. Technical factors pertaining to selection of appropriate LSI technologies are discussed, and the maturity of alternative technologies for spacecraft applications are reported in the context of expected space mission launch dates. The preliminary design of a custom LSI time-domain azimuth correlator device (ACD) being developed for use in future SAR processors is detailed.

  16. Spatial Phase Coding for Incoherent Optical Processors

    NASA Technical Reports Server (NTRS)

    Tigin, D. V.; Lavrentev, A. A.; Gary, C. K.

    1994-01-01

    In this paper we introduce spatial phase coding of incoherent optical signals for representing signed numbers in optical processors and present an experimental demonstration of this coding technique. If a diffraction grating, such as an acousto-optic cell, modulates a stream of light, the image of the grating can be recovered from the diffracted beam. The position of the grating image, or more precisely its phase, can be used to denote the sign of the number represented by the diffracted light. The intensity of the light represents the magnitude of the number. This technique is more economical than current methods in terms of the number of information channels required to represent a number and the amount of post processing required.

  17. Analytical and experimental design and analysis of an optimal processor for image registration

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D. (Principal Investigator); Svedlow, M.; Anuta, P. E.

    1976-01-01

    The author has identified the following significant results. A quantitative measure of the registration processor accuracy in terms of the variance of the registration error was derived. With the appropriate assumptions, the variance was shown to be inversely proportional to the square of the effective bandwidth times the signal to noise ratio. The final expressions were presented to emphasize both the form and simplicity of their representation. In the situation where relative spatial distortions exist between images to be registered, expressions were derived for estimating the loss in output signal to noise ratio due to these spatial distortions. These results are in terms of a reduction factor.

  18. Semi-Automated Identification of Rocks in Images

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Andres; Anderson, Robert

    2006-01-01

    Rock Identification Toolkit Suite is a computer program that assists users in identifying and characterizing rocks shown in images returned by the Mars Explorer Rover mission. Included in the program are components for automated finding of rocks, interactive adjustments of outlines of rocks, active contouring of rocks, and automated analysis of shapes in two dimensions. The program assists users in evaluating the surface properties of rocks and soil and reports basic properties of rocks. The program requires either the Mac OS X operating system running on a G4 (or more capable) processor or a Linux operating system running on a Pentium (or more capable) processor, plus at least 128MB of random-access memory.

  19. Authenticating cache

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tyler Barratt; Urrea, Jorge Mario

    2012-06-01

    The aim of the Authenticating Cache architecture is to ensure that machine instructions in a Read Only Memory (ROM) are legitimate from the time the ROM image is signed (immediately after compilation) to the time they are placed in the cache for the processor to consume. The proposed architecture allows the detection of ROM image modifications during distribution or when it is loaded into memory. It also ensures that modified instructions will not execute in the processor-as the cache will not be loaded with a page that fails an integrity check. The authenticity of the instruction stream can also bemore » verified in this architecture. The combination of integrity and authenticity assurance greatly improves the security profile of a system.« less

  20. Onboard spectral imager data processor

    NASA Astrophysics Data System (ADS)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

Top